
Attack, solution and verification for shared authorisation data in TCG TPM

Liqun Chen
HP Labs, UK

Mark Ryan
HP Labs, UK, and

University of Birmingham

Abstract

The Trusted Platform Module (TPM) is a hardware
chip designed to enable computers achieve greater
security. Proof of possession of authorisation values
known asauthdatais required by user processes in
order to use TPM keys. If a group of users are to
be authorised to use a key, then the authdata for the
key may be shared among them. We show that sharing
authdata between users allows a TPM impersonation
attack, which enables an attacker to completely usurp
the secure storage of the TPM. An attacker that knows
authdata for the Storage Root Key can fake all the
storage capabilities of the TPM, including key creation,
sealing, unsealing and unbinding, and many other
functions.

To solve this problem, we propose a new authori-
sation protocol for the TPM, which we call Session
Key Authorisation Protocol (SKAP). It generalises and
replaces the existing authorisation protocols (OIAP
and OSAP). It allows authdata to be shared without
the possibility of the impersonation attack, and it
solves some other problems associated with OIAP and
OSAP. We analyse the old and the new protocols using
ProVerif. Authentication and secrecy properties (which
fail for the old protocols) are proved to hold of SKAP.

1. Introduction

The Trusted Platform Module (TPM) specification is
an industry standard coordinated by the Trusted Com-
puting Group (TCG), for providing trusted comput-
ing concepts in commodity hardware [13]. The TPM
specification is currently undergoing ratification as an
ISO/IEC standard1 [6]. TPMs are chips that aim to
enable computers to achieve greater levels of security
than is possible in software alone. There are 100
million TPMs currently in existence, mostly in high-
end laptops. Application software such as Microsoft’s

1. The specification has recently passed the national body voting
ballot stage, and will be published as an ISO/IEC standard in2009.

BitLocker and HP’s HP ProtectTools use the TPM in
order to guarantee security properties.

The TPM stores cryptographic keys and other sensi-
tive information in shielded locations. Keys are organ-
ised in a tree hierarchy, with theStorage Root Key
(SRK) at its root. Each key has associated with it
some authorisation data, known as authdata. It may
be thought of as a password to use the key. Processes
running on the host platform or on other computers
can use the TPM keys in certain controlled ways. To
use a key, a user process has to prove knowledge of the
relevant authdata. This is done by accompanying the
command with an HMAC [5], keyed on the authdata
or on a shared secret derived from the authdata. When
a new key is created in the tree hierarchy, its authdata
is chosen by the user process, and sent encrypted to the
TPM. The encryption is done with a key that is derived
from the parent key authdata. The TPM stores the new
key’s authdata along with the new key. Creating a new
key involves using the parent key, and therefore an
HMAC proving knowledge of the parent key’s authdata
has to be sent.

If a group of users are to be authorised to use a key,
then the authdata for the key may be shared among
them. In particular, the authdata for SRK (written
srkAuth) is often assumed to be a widely known value,
in order to permit anyone to create child keys of SRK2.
This is analagous to allowing several people to share
a password to use a resource, such as a database.

We show that sharing authdata between users has
some significant undesirable consequences. For ex-
ample, an attacker that knows srkAuth can fakeall
the storage capabilitiesof the TPM, including key
creation, sealing, unsealing and unbinding. Shared
authdata completely breaks the security of the TPM
storage functions.

We solve this problem by proposing a new autho-
risation protocol for the TPM, which we call Session

2. E.g., inDesign Principlesof the TPM specification [6], [13],
sections 14.5, 14.6 refer to the possibility that srkAuth isa well-
known value, and sections 30.2, 30.8 refer to other authorisation
data being well-known values.

Key Authorisation Protocol (SKAP). It generalises and
replaces the existing authorisation protocols (OIAP
and OSAP). In contrast with them, it does not allow
an attacker that knows authdata to fake a response
by the TPM. SKAP also fixes some other problems
associated with OIAP and OSAP. To demonstrate its
security, we analyse the old and the new protocols
using the protocol analyser ProVerif [7], [8], and prove
authentication and secrecy properties of SKAP.

Related work. Other attacks of a less significant
nature have been found against the TPM. The TPM
protocols expose weak authdata secrets to offline dic-
tionary attacks [10]. To fix this, it was proposed to
modify the TPM protocols by using SPEKE (Simple
Password Exponential Key Exchange) [1]). The mod-
ifications proposed in [10] do not solve the problem
of shared authdata. An attacker can in some circum-
stances illegitimately obtain a certificate on a TPM
key of his choice [11]. Also, an attacker can intercept
a message, aiming to cause the legitimate user to
issue another one, and then cause both to be received,
resulting in the message being processed twice [9].
Some verification of certain aspects of the TPM is done
in [12].

Paper overview. Section 2 describes the current
authorisation protocols for the TPM, and in Sections
2.2 and 2.3 we demonstrate our attack. Section 3
describes our proposed protocol, SKAP, that replaces
OIAP and OSAP. In section 4, we use ProVerif to
demonstrate the security of SKAP compared with
OIAP and OSAP. Conclusions are in Section 5.

2. TPM authorisation

A TPM command that makes use of TPM keys
requires the process issuing the command to be au-
thorised. A process demonstrates its authorisation by
proving knowledge of the relevant authdata. This is
done by accompanying the command with an HMAC
of the command parameters, keyed on the authdata
or on a shared secret derived from the authdata. The
response from the TPM to an authorised command
is also accompanied by an HMAC of the response
parameters, keyed again on the authdata or the shared
secret. This is intended to authenticate the response to
the calling process.

The TPM provides two kinds of authorisation ses-
sions, calledobject independent authorisation proto-
col (OIAP) andobject specific authorisation protocol
(OAAP). OIAP allows multiple keys to be used within
the same session, but it doesn’t allow commands that

introduce new authdata, and it doesn’t allow auth-
data for an object to be cached for use over several
commands. An OSAP session is restricted to a single
object, but it does allow new authdata to be introduced
and it creates a session secret to securely cache authori-
sation over several commands. If a command within an
OSAP session introduces new authdata, then the OSAP
session is terminated by the TPM (because the shared
secret is contaminated by its use in XOR encryption).

2.1. Authorisation example

Figure 1 shows the normal exchange of messages
between a user process and the TPM when a child
key of SRK is created using TPMCreateWrapKey.
First, the user process sets up a OSAP session based
on SRK with the TPM, resulting in the user process
and the TPM each having calculated the shared secret
S derived from SRK authdata. Then, the user process
calls TPM CreateWrapKey, providing arguments in-
cluding the new authdata for the key being created,
some other parameters about the key, and the HMAC
keyed onS demonstrating knowledge of SRK auth-
data. The new authdata is XOR-encrypted with a key
derived from SRK authdata. The TPM receives this
command, checks the HMAC, and creates the new key.
It returns a blob consisting of the public key and an
encrypted package containing the private key and the
new authdata. The returned message is authenticated
by accompanying it with an HMAC keyed onS.
Because the shared secretS has been used as a basis
for an authdata encryption key, the OSAP session is
terminated by the TPM. Later commands will have to
start a new session.

In order to be used, the newly created key must be
loaded into the TPM. For this, an OIAP session may be
used. Figure 2 shows the messages exchanged between
the user process and the TPM during the creation of
the OIAP session and the TPMLoadkey2 command.
Now that the key is loaded, it may be used to encrypt
data using TPMSeal. As well as encrypting the data,
TPM Seal binds the encrypted package to particular
Platform Configuration Registers (PCRs) specified in
the TPM Seal command. The TPM will later unseal
the data only if the platform is in a configuration
matching those PCRs. TPMSeal requires a new OSAP
session based on the newly created key. The details are
shown in Figure 3.

2.2. The problem of shared authdata

If authdata is a secret shared only between the
calling process and the TPM, then the HMACs serve

User TPM

TPM OSAP(pkh, nosap
o)

ah, ne, nosap
e

S = hmacad(pkh)(n
osap
e , nosap

o) S = hmacad(pkh)(n
osap
e , nosap

o)

TPM CreateWrapKey(ah, pkh, no, . . . ,
SHA1(S, ne) ⊕ newauth), hmacS(. . .)

keyblob, n′

e, hmacS(. . .)

Figure 1. Creating a key on the TPM. TPM OSAP creates an OSAP session and the shared secret S by
both parties. TPM CreateWrapKey requests the TPM to create a key. The command and the response are
authenticated by the shared secret S.

User TPM

TPM OIAP()

ah′, n′′

e

TPM LoadKey2(ah′, pkh, n′

o, . . .), hmacad(kh)(. . .)

kh, n′′′

e , hmacad(kh)(. . .)

Figure 2. Loading a key on the TPM. TPM OIAP creates an OIAP session for the TPM Loadkey2
command.

to authorise the command and to authenticate the TPM
response. However, as mentioned earlier, authdata may
be shared between several users, in order to allow each
of them to use the resource that the authdata protects.
In particular, the authdata of SRK is often assumed
to be a well-known value. Suppose an attacker that
knows an authdata value can intercept a command from
another user to the TPM (the TPM protocols involving
encryption and HMACs are clearly designed on the
assumption that such interception is possible). He can

use knowledge of the authdata to decrypt any new
authdata that the command is introducing; and he can
fake the TPM response that is authenticated using the
shared authdata.

It follows that an attacker that knows the authdata for
SRK can fake the creation of child keys of SRK. Those
keys are then keys made by the attacker in software,
and completely under his control. He can intercept
requests to use those keys, and fake the response.
Therefore, all keys intended to be descendents of SRK

User TPM

TPM OSAP(kh, nosap
o

′)

ah′′, n′′′′

e , nosap
e

′

S′ = hmacad(kh)(n
osap
e

′, nosap
o

′) S′ = hmacad(kh)(n
osap
e

′, nosap
o

′)

TPM Seal(ah′′, kh, n′′

o , . . . ,
SHA1(S′, n′′′′

e) ⊕ newauth′), hmacS′(. . .)

sealedblob,n′′′′′

e , hmacS′(. . .)

Figure 3. Using the key to seal data. TPM OSAP creates an OSAP session and its corresponding shared
secret S′ for the TPM Seal command. The seal command and the response are authenticated by S′.

can be faked by the TPM. An attacker with knowledge
of SRK authdata can completely usurp the storage
functionality of the TPM, by creating all the keys in
software under his own control, and faking all the
responses by the TPM.

2.3. The attack in detail

An attacker in possession of SRK authdata is fully
able to play the part of the TPM in the protocols shown
in Figures 1, 2 and 3. The attacker creates the necessary
nonces and fakes the response to TPMOSAP. Next, it
fakes the creation of the key and fakes all the responses
to the user (again creating all the necessary nonces).
In particular, in the case of TPMCreateWrapKey, the
attacker

• is able to calculate the session secretS, since it
is based on SRK authdata and other public values
(namely, the OSAP nonces that are sent in the
clear);

• is able to decrypt the new authdata, since it
is XOR encrypted with a key based on SRK
authdata and other public values (namely, the
command nonces that are sent in the clear);

• is able to create an RSA key in software, accord-
ing to the parameters specified in the command;

• is able to create the message returned to the
user process. This involves encrypting the “secret”
package with SRK, and creating the HMAC that
“authenticates” the TPM.

Next, the attacker fakes the response to
TPM Loadkey2 (using its knowledge of SRK
authdata to create the necessary HMAC). Finally, it
fakes the response to TPMSeal (using its knowledge
of the new key’s authdata to create the necessary
HMAC).

3. A new TPM authorisation protocol

We propose Session Key Authorisation Protocol
(SKAP), which has the following advantages over the
existing OIAP and OSAP protocols:

• It generalises OIAP and OSAP, providing a ses-
sion type that offers the advantages of both. In
particular, it can cache a session secret to avoid
repeatedly requesting the same authdata from a
user (like OSAP), and it allows different objects
within the same session (like OIAP).

• It is a long-lived session. In contrast with OSAP,
it is not necessary to terminate the session when
a command introduces new authdata.

• It allows authdata to be shared among users,
without allowing users that know authdata to
impersonate the TPM.

• In contrast with existing TPM authorisation, it
does not expose low-entropy authdata to offline
dictionary attacks [10].

Similarly to OSAP, an SKAP session is established
relative to a loaded key with handle (say)kh. The
secret part of this keysk(kh) is known to the TPM and

User TPM

TPM SKAP(kh, {S}pk(kh))

ah, ne

K1 = hmacS(ad(kh), ne, 1)
K2 = hmacS(ad(kh), ne, 2)

K1 = hmacS(ad(kh), ne, 1)
K2 = hmacS(ad(kh), ne, 2)

TPM Command1(ah, kh, no, . . .), encK2
(newauth),

hmacK1
(null, . . .)

response, n′

e, hmacK1
(null, . . .)

TPM Command2(ah, kh′, n′

o, . . .), encK2
(newauth),

hmacK1
(ad(kh′), . . .)

response, n′′

e , hmacK1
(ad(kh′), . . .)

Figure 4. Establishing a session using Session Key Authorisation Protocol, and executing two commands
in the session. The session is established relative to a loaded key with handle kh. Command1 uses that
key, and therefore does not need to cite authdata. Command2 uses a different key, and cites authdata in
the body of the authorisation hmac.

the public partpk(kh) is known to all user processes
which want to use the key. At the time the session is
established, the user process generates a high-entropy
session secretS, and sends the encryption{S}pk(kh)

of S with pk(kh) to the TPM. Theoretically any secure
asymmetric encryption algorithm can be used for this
purpose; in the TPM Specification uses RSA-OAEP [2]
throughout, so we propose to use that too. The TPM
responds with an authorisation handleah and the first
of the rolling nonces,ne, as usual. Then each side
computes two keysK1, K2 from S by using a MAC
function keyed onS. The authdataad(kh) for the key
and the noncene are cited in the body of the MAC.
Any secure MAC function is suitable for our solution,
but the TPM specification uses HMAC [5] for other
purposes so we use that too. The message exchanges
between a user process and the TPM in the SKAP
protocol is illustrated in Figure 4.

Command1 in the illustrated session uses the key
(sk(kh), pk(kh)) for which the session was estab-
lished. The authorisation HMAC it sends is keyed on
K1, a secret known only to the user process and the
TPM. In contrast with OSAP, this secret is not avail-
able to other users or processes that know the authdata
for the key. Moreover,K1 is high-entropy even if
the underlying authdata is low entropy (thanks to the
high-entropy session secretS). New authdata (written
newauth) that Command1 introduces to the TPM is
encrypted usingK2. In the figure,encK2

(newauth)
denotes the result of encryptingnewauth with a sym-
metric encryption algorithm using the secret keyK2.
In general, any secure symmetric encryption scheme
can be used in this solution. More specifically, in order
to guarantee against not only eavesdropping but also
unauthorised modification, we suggest using authenti-
cated encryption as specified in [4]. One example is
AES Key Wrap with AES block cipher [3].

User TPM

TPM SKAP(kh, {S}pk(kh))

ah, ne

K1 = hmacS(ad(kh), ne, 1)
K2 = hmacS(ad(kh), ne, 2)

K1 = hmacS(ad(kh), ne, 1)
K2 = hmacS(ad(kh), ne, 2)

TPM CreateWrapKey(ah, pkh, no, . . . , encK2
(newauth)),

hmacK1
(null, . . .)

keyblob, n′

e, hmacK1
(null, . . .)

TPM LoadKey2(ah, pkh, n′

o, . . .), hmacK1
(null, . . .)

kh, n′′

e , hmacK1
(null, . . .)

TPM Seal(ah, kh, n′′

o , . . . , encK2
(newauth′)),

hmacK1
(ad(kh), . . .)

sealedblob, n′′′

e , hmacK1
(ad(kh′), . . .)

Figure 5. An example of SKAP, showing creating a key, loading the key, and sealing with the key in a single
SKAP session. Compare Figures 1, 2 and 3.

In contrast with OSAP, SKAP sessions may use keys
other than the one relative to which the session was
established. Command2 in Figure 4 uses a different
key, whose handle iskh′. Authdata for that key is cited
in the body of the HMAC that is keyed onS.

3.1. The example revisited

We revisit the authorisation example described in
Section 2.1, where the user wants to perform three
commands, TPMCreateWrapKey, TPMLoadkey2
and TPM Seal in a short period. We briefly demon-
strate how these commands can be run in a single
session (Figure 5). Suppose that the user starts from
using the SRK as a parent key. The user is aware
that the authorisation data for this keysrkAuth is
a publicly known value, but the secret part of SRK

is known only to the TPM. By following the SKAP
protocol, the user first establishes a session for the
SRK. To do this, he chooses a 160-bit random number
as the session secretS, then encryptsS with the public
part of SRK and sends{S}pk(srk) to the TPM.

After that both side computes two keysK1 andK2

based on the valuesS and srkAuth. Then the user
sends TPMCreateWrapKey as TPMCommand1 in
Figure 4 along with an encrypted new authorisation
data for the requested key and hmac for integrity check.
The TPM responds the command with a key blob for
the newly created key. When receiving any message
which shows either of these two keysK1 andK2 has
been used, the user is convinced that he must be talking
to the TPM and the TPM knows that its communication
partner knows srkAuth.

When the user wants to use this key (for example,

for the sealing function), he sends the TPM the second
command TPMLoadkey2 in the same session. Since
this also uses the parent key, it is again an example
of Command1. The user and the TPM carry on using
K1 for authentication. Since TPMLoadKey2 does not
introduce new authdata,K2 is not used. After the
loading key process succeeds, the user sends the last
command TPMSeal. This command uses the newly
created and loaded key, which is not the key for which
the session is created. Therefore it is an example of
Command2 in the figure, and the authdata for the
key is required. The command uses the session keys
K1 and K2 for authentication and protection of the
sealed blob authdata, as before. So as we have seen
that a single session of the SKAP protocol can handle
multiple commands comfortably. The commands are
shown in Figure 5. Comparison with Figures 1, 2 and
3 shows a reduction from 12 to 8 messages, showing
that that our protocol is more efficient as well as more
secure.

4. Verification

We have modelled the current OSAP authorisation
protocol using ProVerif [7], [8]. ProVerif is a popular
and widely-used tool that checks security properties
of protocols. It uses the Dolev-Yao model; that is,
it assumes the cryptography is perfect, and checks
protocol errors against an active adversary that can
capture and insert messages, and can perform crypto-
graphic operations if it has the relevant keys. ProVerif
is particularly good for secrecy and authentication
properties, and is therefore ideal for our purpose.
ProVerif is easily able to find the shared authdata attack
of section 2.3. It shows both failure of secrecy and
failure of authentication. We have also modelled the
new proposed protocol SKAP, and ProVerif confirms
the secrecy and authentication properties.

In both models, there are two processes, representing
the user process and the TPM. The user process
requests to start a new session (respectively OSAP or
SKAP) and then requests the execution of a command,
such as TPMCreateWrapKey to create a new key. The
user process then checks the response from the TPM,
and (in our first version) declares the eventsuccessU.

The TPM process provides the new session, executes
the requested command (after checking correct autho-
risation), and provides the response to the calling user
process. It declares the eventsuccessT.

The properties we verify are

• query attacker:newauth
• query ev:successU() ==> ev:successT()

The first one checks ifnewauth is available to the
attacker. The second one stipulates that if the user de-
clares success (i.e. the user considers that the command
has executed correctly), then the TPM also declares
success (i.e. it has executed the command). If this
property is violated, then potentially an attacker has
found a means to impersonate the TPM.

We expect the secrecy property (first query) to fail
for OSAP and succeed for SKAP, and this is indeed
the case. The correspondence property (second query)
is also expected to expected to fail OSAP and succeed
for SKAP. Unfortunately the second query fails for
both models, for the trivial reason that the TPM can
complete the actions in its trace and then stop just
before it declares success. To avoid this trivial reason,
we extend the user process so it asks the TPM to
prove knowledge of the new authdata introduced by
the command, before it declares success. Now if the
user declares success, the TPM should have passed
the point at which it declares success too. If it has not,
then an attacker has found a means to impersonate the
responses of the TPM.

With this modification, we find an attack for each of
the properties for OSAP, demonstrating the attack of
section 2.3. ProVerif proves that SKAP satisfies both
properties, demonstrating its security. See the appendix
for the ProVerif code.

5. Conclusion

Sharing authorisation data between several users of
a TPM key is a practice endorsed by the Trusted
Computing Group [6], [13, Design principles,§14.5,
§14.6,§30.2,§30.8], but it makes the TPM vulnerable
to impersonation attacks. An attacker in possession of
the authorisation data for the storage root key (which
is the authdata most likely to be shared among users)
can completely usurp the secure storage functionality
of the TPM.

We propose SKAP, a new authorisation session, to
replace the existing authorisation sessions OIAP and
OSAP. It generalises both of them and improves them
in several ways, in particular by avoiding the TPM
impersonation attack.

We have analysed the old authorisation sessions
and the new proposed one in ProVerif, the protocol
analyser. The results show the vulnerability of the old
sessions, and the security of the new one.

References

[1] ISO/IEC 11770-4: Information technology – Security
techniques – Key management – Part 4: Mechanisms
based on weak secrets.

[2] ISO/IEC 18033-2: Information technology – Security
techniques – Encryption algorithms – Part 2: Asym-
metric ciphers.

[3] ISO/IEC 18033-3: Information technology – Security
techniques – Encryption algorithms – Part 3: Block
ciphers.

[4] ISO/IEC 19772: Information technology – Security
techniques – Authenticated encryption.

[5] ISO/IEC 9797-2: Information technology – Security
techniques – Message authentication codes (MACs) –
Part 2: Mechanisms using a dedicated hash-function.

[6] ISO/IEC PAS DIS 11889: Information technology –
Security techniques – Trusted platform module.

[7] Bruno Blanchet. An efficient cryptographic protocol
verifier based on prolog rules. In Steve Schneider, ed-
itor, 14th IEEE Computer Security Foundations Work-
shop, pages 82–96, Cape Breton, Nova Scotia, Canada,
June 2001. IEEE Computer Society Press.

[8] Bruno Blanchet. ProVerif: Automatic Cryptographic
Protocol Verifier User Manual, 2008.

[9] Danilo Bruschi, Lorenzo Cavallaro, Andrea Lanzi, and
Mattia Monga. Replay attack in TCG specification
and solution. InACSAC ’05: Proceedings of the 21st
Annual Computer Security Applications Conference,
pages 127–137, Washington, DC, USA, 2005. IEEE
Computer Society.

[10] L. Chen and M. D. Ryan. Offline dictionary attack on
TCG TPM weak authorisation data, and solution. In
D. Grawrock, H. Reimer, A. Sadeghi, and C. Vishik,
editors,Future of Trust in Computing. Vieweg & Teub-
ner, 2008.

[11] Sigrid Gürgens, Carsten Rudolph, Dirk Scheuermann,
Marion Atts, and Rainer Plaga. Security evaluation of
scenarios based on the TCG’s TPM specification. In
Joachim Biskup and Javier Lopez, editors,ESORICS,
volume 4734 ofLecture Notes in Computer Science,
pages 438–453. Springer, 2007.

[12] Amerson H. Lin. Automated Analysis of Security APIs.
Master’s thesis, MIT, 2005. http://sdg.csail.mit.edu/
pubs/theses/amerson-masters.pdf.

[13] Trusted Computing Group. TPM Specification version
1.2. Parts 1–3. www.trustedcomputinggroup.org/specs/
TPM/, 2007.

Appendix 1: ProVerif script for OSAP

free null, c, one, two.
fun enc/2. fun dec/2. fun senc/2. fun sdec/2.
fun hmac/2. fun pk/1. fun handle/1.
equation dec(sk, enc(pk(sk), m)) = m.
equation sdec(k, senc(k, m)) = m.
(* Queries. Uncomment one or the other. *)
(* query attacker:newauth. *) (* ATTACK FOUND *)
(* query ev:successU() ==> ev:successT(). *) (* ATTACK FOUND *)
let User =

(* request an OSAP session *)
new no;
new noOSAP;
out(c, (kh, noOSAP));
in(c, (ah, ne, neOSAP));
let K = hmac(authdata, (neOSAP, noOSAP)) in
(* request execution of a command, e.g. TPM_CreateWrapKey *)
new newauth;
out(c, no);
out(c, senc(K,newauth));
out(c, hmac(K,(ne,no)));
(* receive the response from the TPM, and check it *)
in(c, (r, hm));
if hm = hmac(K , r) then
(* check that the TPM has newauth *)
new n;
out(c, n);
in(c, hm2);
if hm2=hmac(newauth,n) then
event successU().

let TPM =
(* handle the request for an OSAP session *)
new ne;
new neOSAP;
in(c, noOSAP);
out(c, (ne, neOSAP));
let K = hmac(authdata, (neOSAP, noOSAP)) in
(* execute a command from the user, e.g. TPM_CreateWrapKey *)
in(c, (no, encNewAuth, hm));
if hm = hmac(K, (ne,no)) then
let newauth = sdec(K, encNewAuth) in
(* return a response to the user *)
new response;
out(c, (response, hmac(K , response)));
event successT();
(* if asked, prove knowledge of newauth *)
in(c, n);
out(c, hmac(newauth,n)).

process
new skTPM; (* secret part of a TPM key *)
let pkTPM = pk(skTPM) in (* public part of a TPM key *)
new authdata; (* the shared authdata *)
let kh = handle(pkTPM) in
out(c, (pkTPM, authdata, kh));
(!User | !TPM)

Appendix 2: ProVerif script for SKAP

free null, c, one, two.
fun enc/2. fun dec/2. fun senc/2. fun sdec/2.
fun hmac/2. fun pk/1. fun kdf/2. fun handle/1.
equation dec(sk, enc(pk(sk), m)) = m.
equation sdec(k, senc(k, m)) = m.
(* Queries. Uncomment one or the other. *)
(* query attacker:newauth. *) (* SECRECY HOLDS *)
(* query ev:successU() ==> ev:successT(). *) (* CORRESPONDENCE HOLDS *)
let User =

(* request an OSAP session *)
new K;
new no;
out(c, (kh, enc(pkTPM, K)));
in(c, (ah, ne));
let K1 = hmac(K, (authdata, ne, one)) in
let K2 = hmac(K, (authdata, ne, two)) in
(* request execution of a command, e.g. TPM_CreateWrapKey *)
new newauth;
out(c, (no, senc(K2,(ne,no,newauth)), hmac(K1,(null,ne,no))));
(* receive the response from the TPM, and check it *)
in(c, (response, hm));
if hm = hmac(kdf(K1,newauth), response) then
(* check that the TPM has newauth *)
new n;
out(c, n);
in(c, hm2);
if hm2=hmac(newauth,n) then
event successU().

let TPM =
(* handle the request for an OSAP session *)
new ne;
in(c, encSessKey);
let K = dec(skTPM, encSessKey) in
out(c, ne);
let K1 = hmac(K, (authdata, ne, one)) in
let K2 = hmac(K, (authdata, ne, two)) in
(* execute a command from the user, e.g. TPM_CreateWrapKey *)
in(c, (no, encNewAuth, hm));
if hm = hmac(K1, (null,ne,no)) then
let (ne’,no’,newauth) = sdec(K2, encNewAuth) in
if ne’=ne then
if no’=no then
(* return a response to the user *)
new reponse;
out(c, (response, hmac(kdf(K1,newauth), response)));
event successT();
(* if asked, prove knowledge of newauth *)
in(c, n);
out(c, hmac(newauth,n)).

process
new skTPM; (* secret part of a TPM key *)
let pkTPM = pk(skTPM) in (* public part of a TPM key *)
new authdata; (* the shared authdata *)
let kh = handle(pkTPM) in
out(c, (pkTPM, authdata, kh));
(!User | !TPM)

