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Abstract. We introduce a symbolic model checking procedure for Pribistib
Computation Tree Logic PCTL over labelled Markov chains axlets. Model
checking for probabilistic logics typically involves sahg linear equation sys-
tems in order to ascertain the probability of a given formiutdding in a state.
Our algorithm is based on the idea of representing the nestiised in the lin-
ear equation systems by Multi-Terminal Binary Decision@ams (MTBDDs)
introduced in Clarkeet al [14]. Our procedure, based on the algorithm used by
Hansson and Jonsson [24], uses BDDs to represent formuthMaBDDs to
represent Markov chains, and is efficient because it avoigiic#t state space
construction. A PCTL model checker is being implementedenug [9].

1 Introduction

Probabilistic techniques, and in particular probabilistic logics gharnoved successful
in the specification and verification of systems that exhibit uncertainth ss fault-
tolerant systems, randomized distributed systems and communicatimc@so Mod-
els for such systems are variants of probabilistic automata (such aseihibddirkov
chains used in e.g. [24, 34, 35, 17]), in which the usual (boolean)iti@nselation
is replaced with its probabilistic version given in the form of a Marlgyobability
transition matrix. The probabilistic logics are typically obtained“bfting” a non-
probabilistic logic to the probabilistic case by constructing dach formulap and a
real numbep in the[0, 1]-interval the formulg¢]>, in which p acts as @hreshold for
truth in the sense that for the formula]>, to be satisfied (in the statg the proba-
bility that ¢ holds ins must beat leastp (see [26, 32, 25] for a different approach).
With such logics one can expregsantitativeproperties such as “the probability of
the message being delivered withitime steps is at least75” (see e.g. the timing or
average-case analysis of real-time or randomized distributed systen&3[Z, 6, 2])
or (the more prevalentyualitativeproperties, for whichy is required to be satisfied by
almost all executions (which amounts to showing thé satisfied with probability 1,
see e.g. [1, 17, 23, 24, 21, 22, 29, 30, 34)).
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Much has been published concerning the verification methods for probiabdis-
ics. Probabilistic extensions of dynamic logic [26] and temporal amdiahlogics,
e.g.[2,6,17, 24,21, 27, 30, 31, 34], and automatic procedures foricigesatisfaction
for such logics have been proposed. The latter are based on reducing thataziooi
the probability of formulas being satisfied to a linear algebra probfenexample, in
[24], the calculation of the probability of ‘until’ formulas is based solving the linear
equation system given by anx n matrix wheren is the size of the state space. Optimal
methods are known (for sequential Markov chains, the lower boundgsesaxponen-
tial in the size of the formula and polynomial in the size of the Markbain [18]),
but these algorithms are not of much practical use when verifying readigstems. As
a result, efficiency of probabilistic analysis lags behind efficient modetking tech-
niques for conventional logics, such as symbolic model checking [11,A1 B, 15, 28],
for which tools capable of tackling industrial scale applications areatviail(cf.snv).
This is undesirable as probabilistic approaches allow one to estaldishertain prop-
erties hold (in some meaningful probabilistic sense) where conveitioodel checkers
fail, either because the property simply is not true in the state (bigshin that state
with some acceptable probability), or because exhaustive search of onitianof the
system is feasible.

The main difficulty with current probabilistic model checking is the nézthte-
grate a linear algebra package with a conventional model checker. Despitembeqio
existing linear algebra packages, this can lead to inefficient and time corgsaorim
putation through the implicit requirement for the constructionhe state space. This
paper proposes an alternative, which is based on expressing the protatbditlations
in terms of Multi-Terminal Binary Decision Diagrams (MTBDDs) [16]. TDDs are
a generalization of (ordered) BDDs in the sense that they allow arbiteatynumbers
in the terminal nodes instead of just 0 and 1, and so can provide a compasen{a-
tion for matrices. As a matter of fact, in [13] MTBDDs have been showretéopmno
worsethan sparse matrices. Thus, converting to MTBDDs ensures smoothatitey
with a symbolic model checker suchssv and has the potential to outperform sparse
matrices due to the compactness of the representation, in the same way ah8I2Ds
outperformed other methods. As with BDDs, the precise time contglestimates of
model checking for MTBDDs are difficult to obtain, but the success of BDpsactice
[8, 28] serves as sufficient encouragement to develop the foundationsBibMIbased
probabilistic model checkers.

In this paper we consider a probabilistic extension of CTL called PrdibabiCom-
putation Tree Logic (PCTL), and give symbolicmodel checking procedure which
avoids the explicit construction of the state space. We use finitedsta¢lled Markov
chains as models. The model checking procedure is based on that of [24utl@&k b
use BDDs to represent the boolean formulas, and a suitable combinaB&1Ds and
MTBDDs for probabilistic formulas. Currently, we are implementithe PCTL sym-
bolic model checking in Verus [9]. For reasons of space we omit much degail this
paper, which will be reported in [4]. We assume some familiarity wiblil, automata
on infinite sequences, probability and measure theory [8, 33, 20].



2 Labdled Markov chains

We use discrete time Markov chains as models (we do not consider nonatesenin
Let AP denote a finite set of atomic propositionslabelled Markov chairover a set
of atomic propositionsiP is a tupleM = (S, P, L) whereS is a finite set oftates
P : S xS — [0,1] atransition matrix i.e.} ", P(s,t) = 1foralls € S,
andL : S — 24" alabelling functionwhich assigns to each statec S a set of
atomic propositions. We assume that there2rastates for some, and that there are
sufficiently many atomic propositions to distinguish them (L¢s) # L(s') for all
statess, s’ with s # s'). Any labelled Markov chain may be transformed into one
satisfying these conditions by adding dummy states and new prigpsit

Execution sequences arise by resolving the probabilistic choices. Rgraraéx-
ecution sequenc| M is a nonempty (finite or infinite) sequenge = sgs1s2, - ..
wheres; are states an#(s;_1,s;) > 0,7 = 1,2,.... The first state ofr is denoted
by first(r). 7(k) denotes thé + 1-th state ofr. An execution sequence is also
called apath, and afull pathiiff it is infinite. Path,,(s) is the set of full paths with
first(w) = s. Fors € S, let ¥(s) be the smallest-algebra onPath,,(s) which
contains the basic cylindefsr € Path,(s) : pis a prefix ofr} wherep ranges over
all finite execution sequences startingsinThe probability measur&rob on X'(s) is
the unique measure witRrob{ = € Path,(s) : pisaprefixofr } = P(p) where
P(s081...5¢) = P(s0,51) - P(s1,82) ... - P(sg_1,5k)-

Example 1.We consider a simple communication protocol similar to that in [24e T

system consists of three entities: a sender, a medium and a receiver. The samib

a message to the medium, which in turn tries to deliver the message tedhieer.

With probability ﬁ the messages get lost, in which case the medium tries again to

deliver the message. With probabiligf; , the message is corrupted (but delivered); with

probability%, the correct message is delivered. When the (correct or faulty) message

is delivered the receiver acknowledges the receipt of the message. For synpliit

assume that the acknowledgement cannot be corrupted or lost. We deserdystdm

in a simplified way where we omit all irrelevant states (e.g. the stateantherreceiver

acknowledges the receipt of the correct message).

We use the following four states:

sini¢ the state in which the sender passes the messagg
to the medium

sqer  the state in which the medium tries to deliver thel| “*»® @
message

s10st  the state reached when the message is lost

serror the state reached when the message is corrupt

The transitions;.; — sini: Stands for the acknowledgement of the receipt of the correct
messages.,ror — Sinit fOr the acknowledgement of the receipt of the corrupted mes-
sage. We use two atomic propositians a» and the labelling functiod.(s;,;;) = 0,
L(Sdel) = {al s (LQ}, L(Slost) = {GQ}a L(Serror) = {04 } n




3 Probabilistic branching timetemporal logic

In this section we present the syntax and semantics of the logic PCTLa(Biliskic
Computation Tree Logic) introduced by Hansson & Jonssort[FCTL is a proba-
bilistic extension of CTL which allows one to express quantitapik@perties of proba-
bilistic processes such as “the system terminates with probability atdgast PCTL
contains atomic propositions and the operators: next-5tend untilU. The operators
X andU are used in connection with an interval of probabilities. The syntax oflPCT
is as follows:
¢ =t | a | @1 /\@2 | -$ | [X@];p ‘ [@1(]@2];@

wherea is an atomic propositiory € [0,1], 3 is either> or >. Formulas of the
form X& or &, U®,, whered, &, &, are PCTL formulas, are callgghth formulas
PCTL formulas are interpreted over the states of a labelled Markov chain, whetas
formulas are interpreted over paths. The subscrigi denotes that the probability of
paths starting in the current state fulfilling the path formulaig. Thus, PCTL is like
CTL, except that the path operatotandE in CTL have been replaced by the operator
[-]3p- The usual derived constants and operatorsfare: —it, ; V $, = —(=P1 A
=Py), P1 — by = —P; V &,. Operators for modelling “eventually” or “always” can
be derived by[C @5, = [(tU P>, [OD]>, = =[O—=P]s1—p, and similarly for[-] .

Let M = (S,P,L) be a labelled Markov chain. The satisfaction relatienC
S x PCTL is given by
s = ttforalls € S s =& APy iff s =& ands = &,
skE=aiff a € L(s) sE=diff sl &
s = [X®]q, iff Prob{r € Path,(s) :m = X®} Jp
s = [@1U D]y, iff Prob{m € Path,(s):m =& UP>} dp
mEXPiff r(1) = &
7 = &,Ud, iff there existsk > O with (i) = ¢1,i =0,1,...,k—1andn (k) = P..
For a path formuld the se{w € Path,(s) : 7 = f} is measurable [34, 18]. ¥ = &
then we say satisfies® (or ¢ holds ins). The truth value of formulas involving the
linear time quantifiers> andO can be derived:

s |= [O®]5, iff Prob{n € Path,(s) : 7(k) = & forsomek >0} I p

s =[O |o, iff Prob{r € Path,(s) : (k) |= ®forallk >0} I p.
Given a probabilistic proce$8, described by a labelled Markov chalth = (S, P, L)
with an initial states, we sayP satisfies a PCTL formulé iff s = &. For instance, if
a is an atomic proposition which stands for termination &hdatisfieg<a)>, thenP
terminates with probability at leagt

4 Multi-terminal binary decision diagrams

Ordered Binary Decision Diagrams (BDDs) [7, 8, 15, 28] are a compact repatieen
of boolean functiong : {0,1}" — {0, 1}. They are based on the canonical represen-
tation of the binary tree of the function as a directed graph obtainedghréolding

4 For simplicity we omit the bounded ‘until’ operator of [24].



internal nodes representing identical subfunctions (subject to an ogdefrithe vari-
ables to guarantee uniqueness of the representation) and using 0 and 1 asri¢aégs
it is shown how one can generalize BDDs to cogently and efficiently represert@sat
in terms of so-callednulti-terminalbinary decision diagrams (MTBDDS).

Formally, MTBDDs can be defined as follows. Lst, . . . , z,, be distinct variables,
which we order byz; < «z; iff ¢ < j. A multi-terminal binary decision diagram
(MTBDD) over (z1,...,z,) is a rooted, directed graph with vertex détcontain-
ing two types of verticesponterminalandterminal Each nonterminal vertex is la-
belled by a variablear(v) € {z1,...,z,} and two childrerieft(v), right(v) € V.
Each terminal vertex is labelled by a real numberflue(v). For each nonterminal
nodewv, we requirevar(v) < var(left(v)) if left(v) is nonterminal, and similarly,
var(v) < var(right(v)) if right(v) is nonterminal. A suitable adaptation of the op-
eratorREDUCE(-) [7] yields an operator which accepts an MTBDD as its input and
returns the corresponding reduced MTBDD.

Each MTBDDQ over {z1,...,x,} represents a functiody : {0,1}" — IR,
and, vice versa, each functidn: {0,1}" — IR can be described by a unique reduced
MTBDD over(zy,...,z,). Inthe sequel, by the MTBDD for a functidn: {0,1}" —

IR we mean the unique reduced MTBODwith Fy = F. If all terminal vertices are
labelled by O or 1, i.e. if the associated functiBg is a boolean function, the MTBDD
specializes to a BDD ovéry, ..., z,).

MTBDDs are used to represebt-valued matrices as follows. Considexa x 2" —
matrix A. Its elements;; can be viewed as the values of a functjon: {1,...2™} x
{1,...2™} — D, wheref.(i,j) = a;;. Using the standard encodiag {0,1}" —
{1,...2™} of boolean sequences of lengthinto the integers, this function may be
interpreted as @-valued boolean functioff : {0,1}"™ — D where f(z,y) =
fale(z),e(y)) forz = (z1...2m) andy = (y1 ... ym). This transformation now al-
lows matrices to be represented as MTBDDs. In order to obtain an efficient NDFBD
representation, the variables ffare permuted. Instead of the MTBDD f¢(z, ...
Tm, Y1 ---Ym), We use the MTBDD obtained fromfi(z1,y1, Z2, Y2, - - - T, Yim ). This
convention imposes a recursive structure on the matrix from which eficecursive
algorithms for all standard matrix operations are derived [16].

4.1 Representing labelled Markov chainsby MTBDDs

To represent the transition matrix of a labelled Markov chain by a MTBDab&tract
from the names of states and instead, similarly to [8, 15], use binalggwf atomic
propositions that are true in the state. lét= (S, P, L) be a labelled Markov chain.
We fix an enumeration, , ..., a,, of the atomic propositions and identify each state
with the booleam-tuplee(s) = (b1, ...,b,) Whereb; = 1iff a; € L(s). In what fol-
lows, we identifyP with the functionF : {0,1}?" — [0,1], F(z1,Y1,.- -, Tn,Yn) =
P((z1,...,20),(¥1,.-.,yn)), and represend/ by the MTBDD forP over (1,1,
..., Tn,Yyn). The associated MTBDD is denoted By

Example 2.For the system in Example 1 we use the encodidg,;:) = 00, e(s4e1) =
11, e(s105t) = 01 e(serror) = 10. The values of the matri®, the functionF' and the
MTBDD P for F' are are given by:



o if 2y ey € {1011,1110}

010 0O 0 1 F(=x . T, =¢ 190 *
10 1 0 0 0 (T17y11T21y2) % : |f T1Y1T2Y2 = 1010
17/98 1 1 0 : otherwise.

706 100 06 O

102
(The thick lines stand for the “right” edges, the thin lines for thet"lefiges.m

4.2 Operatorson MTBDDs

Our model checking algorithm makes use of several operators on MTBDpeged

in Bryant [7] and Clarkest al[14]. We briefly describe them below.

Operator BDD(-): takes an MTBDDQ and an interval, and returns the BDD rep-
resenting the functiod(z) = 1if Fp(Z) € I, elseF(z) = 0. We obtainB =
BDD(Q,T) from @ by changing the values of the terminal vertices (into 1 or O de-
pending on whether or netalue(v) € I) and applying Bryant's reduction procedure
REDUCE(-). We write BDD(Q, > p) ratherthanrBD D(Q, |p, oo[) andBDD(Q, >

p) ratherthanBDD(Q, [p, oc]).

Operator APPLY (+): allows elementwise application of the binary operajoto two
MTBDDs. If op is a binary operator on reals (e.g. multiplicatioor minus—) and@,

(), are MTBDDs overz then APPLY (Q1, @2, op) yields a MTBDD overz which
represents the functiof(z) = fo, (%) op fo,(T).

Operator COM POSE*(-): This operator allows the composition of a real function
F :{0,1}"** - IR and boolean function§; : {0,1}" — {0,1},i = 1,..., k giving
H(Z) = F(Z,G1(T), ...,Gr(T)).

Matrix and vector operators: The standard operations on matrices and vectors have
corresponding operations on the MTBDDs that represent them [13]. BIOs A
and(@ over2n andn variables represent the matix and vectom respectively, then
MV_MULTI(A, Q) denotes the MTBDD ovet variables that represents the vector
A-q.

Operator SOLV E(-): [8] presents a method to decompose a regular marirto a
lower and upper triangular matrices and a permutation matrix. Using thidécompo-
sition we can obtain an operatSOLV E(A, Q) that takes as its input a MTBDA
over2n variables where the corresponding mathxs regular and a MTBDO) overn
variables which represents a vectpiand returns a MTBD)' overn variables which



represents the unique solution of the linear equation sygem = q. Alternatively,
we can use iterative techniques to solve the equations; our experimeictste that this
performs better.

4.3 Description of (MT)BDDs by relational terms of the p-calculus

We will use theu-calculus as a notation for describing (MT)BDDs. In the algorithm
in the next section, all our (MT)BDDs are either oer variables (in which case they
represen2” x 2" matrices), or over variables (in which case they represent vectors of
length2™). For example, ifB, C' are BDDs ovem variables andi = (u1,...,uy,),

v = (v1,...,0,), thenD = Xuv [B(u) A C(v)] is a BDD over2n variables; if
B, C represent the vector®;).<i<, and(c;)1<i<n respectively, therD represents
the matrix whose element in thiéh row andjth column isb; A ¢;. The BDDE =

Au [B(u) A C(u)] is a BDD ovem variables, representing the vectds A ¢;)1<i<n-

We write T RU E for the BDD overn variables which returns 1 in all cases of its
arguments. We write:B instead of\zZ[-B ()], andB; A B, for the BDDAZ[ B, (T) A
By(Z)]. f T = (z1,...,2,),7 = (v1,-..,yn) thenT = 7y abbreviates the formula
Ni<i<n(®i € yi)-

We require one further operator. If the labelled Markov chigin= (S, P, L) is rep-
resented by a MTBDLDP as described in Section 4.1, aBd, B, are BDDs that repre-
sent the characteristic functions of subsgtsS, of S, thenREACH (B, , By, BDD(P,
> 0)) represents the set of states S from which there exists an execution sequence
s = 89,81,...,5; With & > 0andsg,...,s,_1 € Sy, s € S, and which is used in
the operatot/ NTIL(-) defined in Section 5.

Operator REACH (-) Let By, B, be BDDs withn variables and” a BDD with 2n
variables. We defin EACH (B, B2, T) to be the BDD over variables which is
given by theu-calculus formulauZ Az [Bs(Z) V (B1(Z) A 3g[Z(y) A T'(Z,7)])]. This
operator uses the method of [8] to obtain the BDD for a term involtrggleast fixed
point operatou.

5 Modd checking for PCTL

Our model checking algorithm for PCTL is based on established BDD techniques
(i.e. converting boolean formulas to their BDD representation), whicbritbines with
a new method, namely expressing the probability calculation for tbatilistic for-
mulas in terms of MTBDDs. In the case pX ®|5, the probability is calculated by
multiplying the transition matrix by the boolean vector set to 1li# state satisfies,
whereas fof®, U $,]5, we derive an operator callddNTIL(-), based on [24], which
we express in terms of MTBDDs.

Let M = (S, P, L) be a labelled Markov chain which is represented by a MTBDD
P over2n variables as described in Section 4.1. For each PCTL fordawee define
a BDD B[®] overT = (x1,...,2,) that representSat(®) = {s € S : s |= ¢}. We
compute the BDD representatid|®] of a PCTL formula® by structural induction:
B|tf] =TRUE Bla;] = AT [z;]
B|-®] = ~B[®#] B[&, A®y] = B[®] A B[&,]



B[[X®|5,] = BDD ( MV_.MULTI(P, B[#]), Jp)
B[[#1U®s]5,] = BDD (UNTIL(B[#:], B[$,],P),dp) )

The operatolU NTIL(B[$,], B[®], P) assigns to each statec S the probability
of the set of full paths frons satisfying®, U ®,; formally, it represents the function
S — [0,1], s = ps, wherep, = Prob{r € Path,(s) : 7 E $1U®-}. Our method
for computingp; is based on the partition &f introduced in [24, 18], but we must
compute with BDDs. We first compute the ét= {s € S : p, > 0} and then set
V' =V \ Sat(®,). We then havep, = 1if s | $9; ps = 0if s ¢ V; and for the
remaining cases (i.e. those such that V')

ps= > Plst)p+ > Plst)-p+ > Plst)-pr

tev’ teSat(Pz) teS\V

In the second term, eagh = 1 and in the third term, each; = 0. Thereforep,
(s € V') satisfies dV’|-dimensional equation system of the fosm= A x + b, or
equivalently(I — A) x = b wherel is the|V'| x |V'| identity matrix. One can show
this system has a unique solution using the method in [24, 18].

We now demonstrate hoW NTIL(-) can be expressed in terms of MTBDDs. Let
B; = B[®;],i = 1,2. The sel/ is given by the BDDB = REACH(B;, B2, BDD(P,
> 0)), V' by B' = AT [B(Z) A =B2(Z)]. In order to avoid the BDD for the “new”
transition matrixA with [log, |V'|] variables, we instead reformulate the equation in
terms of the matri®’ = (p) ;)s.+cs Which is given byp; , = P(s, 1) if s,# € V' and
p,, = 0in all other cases. The MTBDI for P’ can be obtained from the MTBDD
P representing the Markov transition matrix. The following lemmavehthatl — P’
is regular (we omit the proof).

Lemmal. LetV’, P’, | be as as above. Theh,~ P’ is regular. The unique solution
X = (z5)ses Of the linear equation systeh — P') - x = q whereq = (¢s), g5 =
Zf,egm‘,(¢2) P(S t) SatiSfiESZL‘s = Ps |f s € I/v’-

The algorithm for the operatdf NTIL(-) is shown in Figure 1. It first calculates the
MTBDDs B andB’, for V andV'. B? is used as a mask to obtal? from P; it sets

to 0 the entries not corresponding to stated’ih We next calculate the MTBD)

for the vectorg, and use the operatStO LV E(+) to obtain the MTBDD(Q' satisfying

Fq (s) = ps forall s € V'. The result, the MTBDIY" for the vectop = (ps)ses, IS
obtained from the MTBDD for the functioR () = max{ Fp, (%), Fo (%) - Fp (T) }
which useg)’ forall s € V' and ensures that 1 is returned as the probability of the states
already satisfyingp,.

Example3.Let & = [ try_to_deliver U correctly_delivered |>0.9 Where
try_to_deliver = as andcorrectly_delivered = —a; A —as. We consider the system
in Example 1. Our algorithm first computes the BDBs for Sat(try_to-deliver) =
{Sdet, S10st },» Ba for Sat(correctly_delivered) = {sinit}, and then applies Algo-
rithm UNTIL(By, Ba, P). V. = {Sinit, Sdel, Siost } 1S represented by the BDIB,
V' = {54e1, s10s¢ } Dy the BDDB'. Thus,B?, P' andA stand for the matrices

0000 0000 1.0 00
B> _ [0101 r_ o001} A _ [0 1 0-1
0000 0000 0 0 10
0101 07500 0—750 1

100



Algorithm: UNTIL(Bs, B>, P)

Input: A labelled Markov chain represented by a MTBBDover2n variables,
BDDs B;, B> overn variables

Output: MTBDD X overn variables which represents the function that assigns t gac
state the probability of a path from the state reachidgy sstate via an executiq
sequence througB, -states

Method: B := REACH (B1, B, BDD(P,> 0)); B' := Xz [ B(T) A =B2(7) |;
B? = A1y ... 20yn [B'(z1,...,20) AB' (y1,...,yn)];
P' .= APPLY (P, B?, %); I := Ax1y1 ... Tuyn [T =T7);
A:= APPLY(I,P',-);Q := MV_MULTI(P, By);
Q' := SOLVE(A,Q); Q" :== APPLY (By, APPLY (Q', B, %), max);
Return@REDUCE(Q")).

=)

Fig. 1. Algorithm UNTIL(Bs, B, P)

B, (viewed as a vector) ig2 = (1,0,0,0). Thus,Q is the MTBDD for the vector
P - q. = (0,0,1,0.98). We solve the linear equation system

1 00 0 0

0 10 -1 _ 0
x =

0 01 0 1

0—55 0 1 28

which yields the solutiox = (0,28, 1, 28) (represented by the MTBDE)'). More-

’ 997 7 99

over, the MTBDDAPPLY (Q', B', ) can be identified with the vectdp, 23,0, 23).
UNTIL(By, By, P) and the BDDB[®] are of the following form.

@ @
g e NG
it \ o

98

Thus,B[®] represents the characteristic function fort () = {sinit, Sdet, Siost }- B

6 Implementing PCTL model checking

We are integrating PCTL symbolic model checking within Verus [9], ahhis a tool
specifically designed for the verification of finite-state real-time systaresis has
been used already to verify several interesting real-time systems: an airarafiltzy,

a medical monitor, the PCI local bus, and a robotics controller. Thesem&ammave not
been originally modeled using probabilities. However, these systghikiebehaviors
which can best be described probabilistically. The integration of PCTdahcheck-
ing with Verus allows us to verify stochastic properties of these ahdrdhteresting
applications.



The Verus language is an imperative language with a syntax resembliraf thatC
language with additional special primitives to express timing aspectsaideadlines,
priorities, and delays. An important feature of Verus is the use ofwiet statement
to control the passage of time. In Verus time only passes when a wait stattésn
executed: non-wait statements execute in zero time. This feature allow®anturate
control of time and leads to models with less states, since consecutiemsetas not
separated bywai t statement are compiled into a single state. To describe probabilistic
transitions we extend the Verus language with the probabibstlcect statement.

From the Verus description of the application, the tool generates altaifaa
labeled state-transition graph and the corresponding transition glidpatatrix using
BDDs and MTBDDs respectively.

The first experimental results of our PCTL symbolic model checking émgnta-
tion are promising: Parrow’s Protocol (which is of a similar size i@fple 1) can be
verified in less than a second. We have modeled a fault tolerant system [B8-fL71]
with three processors that has about 35000 reachable states {oftstates). A safety
property of this system took only a few seconds to check. Next we plavdlate
how well PCTL symbolic model checking performs as a formal verificatiohitoreal
applications by modeling industrial size systems.

7 Concluding remarksand further directions

We have proposed a symbolic model checking procedure for the logit. RGIEh we
are implementing using MTBDDs in Verus, thus forming the basis aéféinient tool
for verifying probabilistic systems. Our algorithm can be extendexater for “bounded
until” of [24] which is useful in timing analysis of systems. We expthat MTBDDs
can be used to derive PCTImodel checking by applying the methods of [18]. Like-
wise, testing of probabilistic bisimulation and simulation [3] £8n be implemented
using MTBDDs. An extension to the case of infinite state systembaperby appropri-
ate combination with induction, as well as a generalization to allow nograéatism,
would be desirable.
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