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the perspective of probabilistic logic, `John is tall' is either true or it is false,but we may have only partial information about his size and on that basis wemay assign to the sentence a number in [0; 1] representing the probability thatit is true. Despite its clear and precise de�nition, Nilsson's probabilistic logicrequires the explicit computation of the truth or falsity of a proposition in allpossible worlds (see section 4 for more details).In this paper we present a generalisation of classical propositional logic,called Minimal Polynomial Logic (MPL), initially developed to facilitate in-cremental searching for solutions to logical problems, which allows handlingcontinuous truth values in the range [0; 1]. The properties of MPL which wewill describe suggest that the most suitable interpretation of such truth valuesis the probability of the assertion being true, as in Nilsson's probabilistic logic.However, unlike probabilistic logic MPL does not require explicit manipulationof all possible worlds.Despite this probabilistic orientation, for speci�c applications in which alogic which respects all logical equivalences is required, the truth values of MPLcould also represent the degree of truth of the assertion, as in fuzzy logic or fuzzycontrol. Unfortunately, when this interpretation is adopted, some identities thatare universally considered fundamental in fuzzy logic (but not in fuzzy control)do not hold.The paper is organised as follows. In Section 2 we introduce PolynomialLogics (PLs), which are simple generalisations of classical predicate logic inwhich propositions are represented by multi-variate polynomials. The simplestform of polynomial logic, which we will denote as PL0, is the precursor of MPLwhich is described (Section 3). Some applications of these two types of logic aswell as their relations with fuzzy logic and probabilistic logic are discussed inSection 4. We make some �nal remarks in Section 5.2 Polynomial LogicsIn classic logic the variables xi which are present in a proposition e can onlytake two values, 0 and 1. Given the standard de�nitions of the connectives ^,_ and : (e.g. x1 ^ x2 = 1 i� x1 = x2 = 1), the same is true of the values takenby e. One way of generalising this kind of binary (or Boolean) logic would beto consider expressions with variables that can take continuous values between0 (false) and 1 (true) and to generalise the ordinary logic connectives.A natural way of generalising such connectives is to consider functions thatcan �t the datapoints represented by the truth tables of the ordinary connect-ives. For example, if we want to generalise the _ function, x1 _ x2, we haveto select a function o(x1; x2) such that o(0; 0) = 0, o(0; 1) = 1, o(1; 0) = 1 ando(1; 1) = 1.A simple form of such functions is obtained by using polynomials that can �tthe truth tables of the ordinary logic connectives. For example, the polynomialsa(x1; x2) = 14x1x2(1 + x1)(1 + x2), o(x1; x2) = 1 � a(1 � x1; 1 � x2) = 1 �14(1 � x1)(1 � x2)(2 � x1)(2 � x2) and n(x1) = (1 � x1)(1 + x1) generalise thelogical connectives ^, _ and :, respectively.1 There are in�nitely many suchgeneralisations.Having de�ned a set of generalised connectives any ordinary logic expressione can be generalised by simply replacing the ordinary connectives with thegeneralised ones. With polynomial connectives an entire class of polynomialpropositional logics, PL, can thus be de�ned.1Other connectives such as! and$ can be obtained likewise using standard equivalences.2



The lowest degree polynomials that can �t the truth-table entries of theordinary logic connectives,o(x1; x2) = x1 _ x2 = 1� (1 � x1)(1 � x2);a(x1; x2) = x1 ^ x2 = x1x2; (1)n(x1) = :x1 = 1� x1;de�ne the most parsimonious (lowest-degree) polynomial logic which we willdenote with the symbol PL0. More formally:De�nition1. Given a propositional formula e, its PL0 version ep is the polyno-mial obtained by replacing the ordinary connectives with those given in Eq. 1.Example 1. Consider the expression e = (x1_ (x2^:x3))^ (x1 ! x2): The PL0version of it is:ep = (1� (1 � x1)(1 � (x2(1� x3))))(1� x1(1� x2))= 2x1x2x3 � x12x2x3 + x12x22x3 � 2x1x2 + 2x12x2 ��x12x22 � x2x3 � x22x3x1 + x1 � x12 + x2 + x1x22:PL0 and classical logic give the same truth values when the propositionalvariables take the values 0 and 1.Theorem2. 8xi 2 f0; 1g, e = ep.Proof. Since the polynomials o(x1; x2), a(x1; x2) and n(x), when evaluated withxi 2 f0; 1g, take the same values of their discrete (binary/Boolean) counterparts,this is also true for the expression ep. 2Example 2. If the original expression e is in conjunctive normal form (CNF), i.e.a conjunction (^) of disjunctions (_) of literals (variables or negated variables)of the form e = M̂i=10@ Ki_j=1 lij1A ; (2)where lij 2 fx1; � � � ; xN ;:x1; � � � ;:xNg, then its PL0 version is given by:ep = MYi=10@1� KiYj=1(1� lc;ij)1A ; (3)where lc;ij 2 fx1; � � � ; xN ; (1 � x1); � � � ; (1 � xN )g. The fact that ep = 1 i�8i 9j : lc;ij = 1 clari�es the equivalence between e and ep in the case of binaryvariables.3 Minimal Polynomial LogicIn the previous section we have introduced the notion of polynomial logics ingeneral and described PL0 in particular. In this section we will obtain from PL0a new form of continuous logic that we call Minimal Polynomial Logic (MPL).De�nition3. Given a propositional formula e, its MPL version em is obtainedfrom the PL0 version ep by distributing + over � throughout and then substi-tuting subexpressions of the form xki (with k > 1) with xi. This substitutionwill be sometimes be denoted with (�)m.3



Example 3. Let us consider the exclusive or function: e = (x1^:x2)_(:x1^x2):Its PL0 and MPL versions are ep = x1 + x2 � 3x1x2 + x21x2 + x1x22 � x21x22 andem = x1 + x2 � 2x1x2; respectively.This simple substitution is one of the main ideas in this paper. As will beseen, it has signi�cant consequences (e.g. Thm. 5).As before this logic agrees with classical logic on the Boolean truth values:Theorem4. 8xi 2 f0; 1g, ep = em = e.Proof. If xi 2 f0; 1g then xki = xi (k > 1), therefore the substitution given inDef. 3 does not change the value of ep. em = e follows from Thm. 2. 2However, MPL has an important property which distinguishes it from otherPLs:Theorem5. Two propositions e and e0 are logically equivalent i� their MPLversions em and e0m are the same polynomial.Proof. ( If em � e0m then, in particular, 8xi 2 f0; 1g em = e0m. Thus, byThm. 4 e � e0.) Suppose em 6� e0m, then there exist some coe�cients ci 6= 0 such thatem � e0m = c1xk11 � � �xk1L1 + � � �+ cDxkD1 � � �xkDLD :Let cm be the coe�cient of any term of minimal degree. Set the variables whichoccur in that term to 1 and all the other variables occurring either in em or e0mto 0. Then em � e0m = cm 6= 0, so by Thm. 4 e 6= e0 for that assignment. 2Corollary6. 1. e is satis�able i� em 6� 0. Moreover, the second part of theproof of Thm 5 gives an assignment making e true.2. e is a tautology i� em � 1. Moreover, if em 6� 1 then the second part ofthe proof of Thm 5 gives an assignment making e false.Example 4. Let us consider again the expression e = (x1_(x2^:x3))^(x1 ! x2):The MPL version of it is: em = x1x2x3 � x2x3 + x2:The lowest degree term of em is x2, therefore, according to the procedure out-lined in the proof of Theorem 5, the assignment x1 = 0, x2 = 1, x3 = 0 satis�ese. This is correct, ase = (0 _ (1 ^ :0)) ^ (0! 1) = (0 _ (1 ^ 1)) ^ 1 = (0 _ 1) ^ 1 = 1 ^ 1 = 1:Example 5. Let us now consider the expression e = x1 ^ x2 ^ (:x1 _ :x2): ThePL0 version of it is: ep = x1x2(1� x1x2) = x1x2 � x21x22;while its MPL version is em = x1x2 � x1x2 � 0which shows that e is unsatis�able. This is correct as can be readily seen byrewriting e = e0 ^ :e0 with e0 = x1 ^ x2.4



This result gives a new and interesting way of checking entailment betweenpropositional formulas:Corollary7. e j= e0 i� em � (eme0m)m.Proof. e j= e0 i� e! e0 � > i� (1� em(1� e0m))m � 1 i� em � (eme0m)m. 2Example 6. Let us consider the expressions e = (x1 _ x2) ^ (:x2 _ x3) ande0 = x1 _ x3. We want to check if e entails e0. As em = x2x3 + x1 � x1x2 ande0m = x1 + x3 � x1x3, simple calculations can show that em � (eme0m)m.The next two lemmas are used for the following decomposition theorem 10and Thm. 17.Lemma8. Let P1; P2 be polynomials.1. (P1 + P2)m � (P1)m + (P2)m.2. (P1P2)m � (P1)m(P2)m if P1 and P2 have no variables in common.Proof. 1. Suppose xki is a subexpression in P1+P2, then it is a subexpression inP1 or P2 or both, and so will be reduced to xi in (P1)m +(P2)m. 2. Suppose P1and P2 have no variables in common and xki is a subexpression in P1P2, then itis a subexpression in P1 or P2, and so will be reduced to xi in (P1)m(P2)m. 2Lemma9. em � x1(e[>=x1])m + (1� x1)(e[?=x1])m.Proof. First note that e � (x1 ^ e[>=x1])_ (:x1 ^ e[?=x1]) therefore:em � ((x1 ^ e[>=x1]) _ (:x1 ^ e[?=x1]))m Thm: 5� (1 � (1� x1e[>=x1]p)(1� (1� x1)e[?=x1]p))m� (x1e[>=x1]p + (1� x1)e[?=x1]p+x1(1� x1)e[>=x1]pe[?=x1]p)m� (x1e[>=x1]p)m + ((1 � x1)e[?=x1]p)m+(x1(1� x1)e[>=x1]pe[?=x1]p)m Lemma 8� x1(e[>=x1]p)m + (1� x1)(e[?=x1]p)m Lemma 8x1does not occur in e[�=x1](x1(1� x1))m � 0� x1e[>=x1]m + (1� x1)e[?=x1]m 2The following theorem shows how an MPL expression can be decomposedas a linear combination of orthogonal basis of MPL expressions.Theorem10. em =P2Ni=1 yi(ei)m, wherey1 = x1x2 � � �xN ;y2 = (1� x1)x2 � � �xN ;y3 = x1(1� x2) � � �xN ;: : :y2N = (1� x1)(1� x2) � � � (1� xN );are an orthogonal basis for MPL with the scalar product hyi; yji = (yiyj)m ande1 = e[>=x1;>=x2; : : : ;>=xN];e2 = e[?=x1;>=x2; : : : ;>=xN];e3 = e[>=x1;?=x2; : : : ;>=xN];: : :e2N = e[?=x1;?=x2; : : : ;?=xN]:5



Proof. Apply Lemma 9 recursively to all the variables in e. 2Using the results just introduced, we are now able to give an alternativecharacterisation of entailment:Theorem11. e j= e0 i� em � e0m; 8xi 2 [0; 1].Proof. ( immediate.) em � e0m =Pi yi((ei)m � (e0i)m) � 0 as (ei)m � (e0i)m. 24 Applications and Relations with Other Logics4.1 Use and Interpretations of PL0In addition of being the precursor of MPL, PL0 can have practical applicationson its own.4.1.1 Algebraic Logical Calculus.As a �rst application, PL0 can be used to study or to teach classical logic byusing only (or mostly) familiar algebraic techniques. The two theorems and thecorollary given in this section are an example of this.2The following de�nition and lemma are required for the next two theorems.De�nition12. The dual ê of e is the expression obtained by exchanging ^ with_ and ? with > in e.Lemma13. e is unsatis�able i� its dual ê is a tautologyProof. The duality theorem [11, p.26] states that any two expressions e and e0are logically equivalent i� their duals ê and ê0 are logically equivalent. Therefore,e is unsatis�able i� e � ? i� ê � >. 2Theorem14. Let e be a proposition in CNF such as Equation 2. e is unsatis-�able i� 8(x1; : : : ; xN ) 2 f0; 1gN ; 9i 8j lij = 1.Proof. If ê is the dual of e, i.e. ê = WMi=1 �VKij=1 lij�, thenêp = 1� MYi=10@1� KiYj=1 lc;ij1A :By Lemma and Thm. 2, e is unsatis�able i� 8(x1; : : : ; xN) 2 f0; 1gN êp = 1 i�8(x1; : : : ; xN ) 2 f0; 1gN ; 9i QKij=1 lc;ij = 1 i� 8(x1; : : : ; xN) 2 f0; 1gN ; 9i 8j lij =1. 2Corollary15. Let e be a proposition in CNF.1. If 8i 9j such that lij 2 f:x1; � � � ;:xng then e is satis�able.2. If 8i 9j such that lij 2 fx1; � � � ; xng then e is satis�able.Proof. For 1. (x1; : : : ; xN ) = (0; : : : ; 0) and for 2. (x1; : : : ; xN ) = (1; : : : ; 1). 2Theorem16. Let e be a proposition in Disjunctive Normal Form (DNF), i.e.e = WMi=1 �VKij=1 lij�. e is unsatis�able i� 8(x1; : : : ; xN) 2 f0; 1gN ; 8i 9j lij = 1.Proof. The PL0 version of the dual ê of e is êp = QMi=1 �1�QKij=1(1� lc;ij)�.8(x1; : : : ; xN ) 2 f0; 1gN êp = 1 i� 8(x1; : : : ; xN) 2 f0; 1gN ; 8i 9j lij = 1. 22Of course, there are direct proofs based on classical logic only for the results obtainedwith PL0. 6



4.1.2 Relations with Probability.If we interpret the variables occurring in the polynomial ep as probabilities ofbeing true of the corresponding atomic propositions in e, then the value takenby ep can be interpreted as the probability that e is true.To illustrate this, let us consider the expression e = x1 _ x2 and imaginethat x1, x2 and consequently e are stochastic binary variables. If we denotewith P(x1), P(x2) and P(e) the probability of the events fx1 = 1g, fx2 = 1gand fe = 1g, then on the hypothesis that x1 and x2 are independent variableswe can write:P(e) = Prfe = 1g= Prfx1 _ x2 = 1g= Prfx1 = 1g+ Prfx2 = 1g � Prfx1 = 1gPrfx2 = 1g= P(x1) + P(x2)� P(x1)P(x2)= 1� (1� P(x1))(1 �P(x2))This expression is formally identical to the PL0 form of e, namely ep = 1� (1�x1)(1 � x2), provided that ep, x1 and x2 are interpreted as the probability ofbeing true of the related binary counterparts. The same observation is valid forthe : and ^ polynomial functions.However, as already mentioned in this example, the probabilistic interpret-ation of the polynomial connectives is correct only on the hypothesis of inde-pendent arguments. As a result, the probabilistic interpretation of ep is correctif no variable occurs more than once in e. Nonetheless, in many cases ep can beconsidered as a reasonable approximation of the exact probability and thereforeused for many practical purposes. An example of this is given is in the followingsubsection.Towards an explanation for GSAT. The problem of deciding if a proposi-tion is satis�able is a well known NP-complete problem for which time requiredfor exact solutions is an exponential function of the number of variables [2].This imposes a serious limit to the number of variables of the expression tobe checked. For example, it is reported in the literature that one of the bestknown exact algorithms for satis�ability checking, the Davis-Putnam proced-ure [2], cannot practically handle expressions with more than a few hundred ofvariables [10].Recently a new, very promising approach to the solution of hard satis�abilityproblems has been proposed which is based on greedy local search procedures(GSAT) [10, 5]. Given an expression e in CNF such as Eq. 2, GSAT works asfollows:1. Randomly initialise the variables in e.2. If e = > then return(>).3. Select a variable such that a change in its truth assignment gives thelargest increase in the total number of clauses of e that are satis�ed andreverse its assignment.4. Iterate steps 2{3 for Nips times.5. Iterate steps 1{4 for Ntries times.This procedure allows �nding solutions for satis�ability problems including sev-eral hundred (or even thousands) of variables. Although a theoretical analysis7



of the the algorithm has been undertaken [5], the reason why the simple op-timisation of the number of true clauses in an expression leads so frequently to�nding an assignment that satis�es such an expression is actually not completelyunderstood. PL0 provides a possible explanation for this.If ep is the PL0 version of an expression e in CNF such as Eq. 2, thenlog(ep) = MXi=1 log0@ Ki_j=1 lij1ApNote that log�WKij=1 lij�p 2 [0;�1]. However, to understand GSAT we imaginethat log(0) = �K, for some suitably large number K. On this hypothesis, givenany (binary) assignment of the variables,log(ep) = �K �M? = K � (M> �M );M> and M? being the number of true and false clauses in e, respectively. Beingthe logarithm a monotonic increasing function, the probabilistic interpretationof this equation is: maximising the number of true clauses in e (e.g. usingthe GSAT algorithm) is equivalent to maximising an approximation (ep) of theprobability of being true of e in the corners of the hypercube [0; 1]N. Searchingfor the maxima of ep moving only on the corners of the hypercube is overcon-straining, and GSAT can therefore be generalised and improved by using anyoptimisation procedure (e.g. gradient ascent or a genetic algorithm) working in[0; 1]N.4.1.3 Relations with Fuzzy Logic.If we interpret the variables occurring in the polynomial ep as the degree of truthof the corresponding atomic propositions in e, then the value taken by ep can beinterpreted as the degree of truth of e. In this sense, PL0 is actually equivalentto a well-known form of fuzzy logic which is often used in fuzzy control [6].The disadvantages of PL0 are: a) unlike min/max-based fuzzy logic, it does notrespect idempotency properties (x1 ^ x1 � x1 and x1 _ x1 � x1), b) like fuzzylogic, it fails to respect some other logical equivalences such as(:(x1 ^ :x2))p � 1� x1(1� x2)6� 1� x1 � x2 + 2x1x2 + x22 � x1x22� (x2 _ (:x1 ^ :x2))p:An advantage of PL0 as a fuzzy logic is that it is minimally sensitive to errorsin the estimation of the degrees of truth of atomic sentences [7].4.2 Use and Interpretations of MPLThe examples given in Section 3 show how MPL can be used to e�ectively andnaturally answer questions about satis�ability and entailment in classical logicby using algebraic manipulations.As in the case of MPL, the variables in em can be interpreted either asprobabilities or fuzzy truth values. In the following we will show how in the�rst case MPL overcomes all the independency requirements of PL0, while inthe second case it further departs from the usual features of min/max fuzzylogic. 8



4.2.1 Relations with Probability.The probabilistic interpretation of MPL requires additional work carried out inthe following theorem.Theorem17. P(e) = em[P(xi)=xi]:Proof. Induction on the number of variables in e.Base case: 0 variables. Trivial.Inductive case: Suppose there are k variables in e and the theorem holds for allexpressions with k � 1 variables. Let x1 be any variable.P(e) = Prfx1 = 1gPrfe = 1 j x1 = 1g+Prfx1 = 0gPrfe = 1 j x1 = 0g= P(x1)P(e[>=x1]) + (1� P(x1))P(e[?=x1])= P(x1)(e[>=x1])m[P(xi)=xi]+(1 �P(x1))(e[?=x1])m[P(xi)=xi] Ind. Hyp.= (x1e[>=x1]m + (1� x1)e[?=x1]m)[P(xi)=xi]= em[P(xi)=xi] Lemma 9 2Example 7. If e = (x1 _ (x2 ^ :x3)) ^ (x1 ! x2), then the probability ofe being true is P(e) = em[P(xi)=xi] = (x1x2x3 � x2x3 + x2)[P(xi)=xi] =P(x1)P(x2)P(x3) �P(x2)P(x3) + P(x2).As clari�ed by the previous results, MPL yields the correct probability of anexpression being true, even in the case of dependent subexpressions (i.e. reusedvariables).4.2.2 Relations with Nilsson's Probabilistic Logic.In probabilistic logic, each world wi is an assignment for the variables presentin a proposition e to which a probability pi of being the case is associated. Theprobability of e being true is then represented byPrfe = 1g =Xi piwi(e); (4)where wi(e) is the result of evaluating e in wi. This expression shows thatNilsson's probabilistic logic requires the explicit computation of the truth orfalsity of a proposition in all possible worlds.The relation between probabilistic logic and (the probabilistic interpretationof) MPL is clari�ed by the followingCorollary18. P(e) = P2Ni=1 yi[P(xi)=xi](ei)m where yi and ei are de�ned asin Thm. 10.Proof. Apply Thm. 17 to em expressed as in Thm. 10. 2By considering for example that y1[P(xi)=xi] = P(x1 ^ x2 ^ : : : ^ xN ) =Prfx1 = >; x2 = >; : : : ; xN = >g, it can be easily understood that yi[P(xi)=xi] =Prfwig = pi: On the other hand (ei)m = wi(e); and therefore the last corollarycan be reformulated as P(e) = 2NXi=1 piwi(e);which is exactly the same expressions as in Eq. 4.This clari�es how (the probabilistic interpretation of) MPL generalises prob-abilistic logic as the atoms it adopts are are not entire worlds but the sentencescomposing such worlds. 9



4.2.3 Relations with Fuzzy Logic.Let us now reconsider the interpretation of MPL as fuzzy logic. Thm. 5 guar-antees that MPL respects logical equivalence. For example, (x1 ^ x1)m � x1 �(x1)m, (x1 _ x1)m � x1 � (x1)m,(:(x1 ^ :x2))m � 1� x1 + x1x2� (x2 _ (:x1 ^ :x2))m;(x1^:x1)m � 0 � (?)m and (x1_:x1)m � 1 � (>)m. Note that the last threeequivalences are not valid in the various forms of fuzzy logic.However, while on the one hand the fuzzy interpretation of MPL seems tohave better properties than fuzzy logic, on the other hand it departs even morethan PL0 from the behaviour of the standard min/max fuzzy logic. An exampleof this is the expression x1^:x1 which evaluates to something in [0:5; 1] in fuzzylogic, to something in [0; 0:5] in PL0, and to 0 in MPL. This would certainly beconsidered an anomalous result if the expression represents the degree of truthof the fact that some property is partly present and partly not present at thesame time.5 ConclusionsIn this paper we have presented minimal polynomial logic, a generalisation ofclassical propositional logic which allows continuous truth values.In its non-minimal form PL0, our logic can be used either as a fuzzy logic oras an approximate probabilistic logic. We have used this form of logic to provesome results about classical logic, which are transparent in MPL. The proofs ofsuch results are based on a natural integration of calculus and standard logicaltechniques. In addition, with a simple logarithm transformation PL0 providesa long-sought explanation for the enigmatic GSAT algorithm [4].MPL has all these properties but it also respects logical equivalence (The-orem 5). This means that whatever we can prove to be true for MPL, forexample using calculus, is true in classical logic and vice versa. An applicationof this theorem, Corollary 6, provides a new way of checking the satis�abilityof a proposition based only on algebraic manipulations. Thanks to Cor. 7 andThm. 11, the same is also true for checking entailment.Finally, the probabilistic interpretation of MPL, supported by Thm. 17, givesthe probability of a proposition being true even in the case in which there are re-peated variables. This does not require the explicit evaluation of the expressionin all possible worlds needed by Nilsson's probabilistic logic. However, Thm.10guarantees that the probabilities computed with MPL and probabilistic logicare the same.AcknowledgementsThe authors thank Alan P. Sexton of the School of Computer Science, TheUniversity of Birmingham, for useful discussions and suggestions. The secondauthor acknowledges partial support from Esprit WG ModelAge (8319).References[1] J. C. Bezdek. Fuzzy models { what are they and why? IEEE Transactionson Fuzzy Systems, 1(1):1{6, 1993.10



[2] M. D. Davis and E. J. Weyuker. Computability, Complexity and Languages.Academic Press, London, 1983.[3] C. Elkan. The paradoxical success of Fuzzy Logic. IEEE Expert, 9(4):3{8,August 1994.[4] I. Gent and T. Walsh. The enigma of SAT hill-climbing procedures. Tech-nical Report 605, Department of Arti�cial Intelligence, University of Edin-brugh, 1992.[5] I. P. Gent and T. Walsh. An empirical analysis of search in GSAT. Journalof Arti�cial Intelligence Research, 1:47{59, 1993.[6] V. Kreinovich, C. Quintana, R. Lea, O. Fuentes, A. Lokshin, S. Kumar,L. Boricheva, and L. Reznik. What non-linearity to choose? A mathemat-ical foundation of fuzzy control. In Proceedings International Conferenceon Fuzzy Systems and Intelligent Control, pages 349{412, Louisville, KY,1992.[7] H. T. Nguyen, V. Kreinovich, and D. Tolbert. A measure of average sensit-ivity for fuzzy logics. International Journal of Uncertainty, Fuzziness, andKnowledge-Based Systems, 2(4):361{375, 1994.[8] N. J. Nilsson. Probabilistic logic. Arti�cial Intelligence, 28:71{87, 1986.[9] N. J. Nilsson. Probabilistic logic revisited. Arti�cial Intelligence, 59(1{2):39{42, 1993.[10] B. Selman, H. Levesque, and D. Mitchel. A new method for solving hardsatis�ability problems. In Proc. 10-th National Conference of Arti�cialIntelligence AAAI'92, pages 440{446, San Jose, CA, July 1992.[11] D. van Dalen. Logic and Structure. Universitext. Springer Verlag, thirdedition, 1994.

11


