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Abstract. We compare Kripke models and hypercube systems, a sim-
plified notion of Interpreted Systems, as semantic structures for reasoning
about knowledge. Our method is to define a map from the class of hy-
percube systems to the class of Kripke frames, another in the opposite
direction, and study their properties and compositions. We show that it
is possible to characterise semantically the frames that are images of the
hypercube systems.

1 Introduction

The need for specifications of complex systems in Artificial Intelligence (AI), as
in mainstream computer science, has brought forward the use of logic as formal
tool for reasoning and proving properties about systems. In this respect, Multi-
Agent Systems (MAS) constitute no exception and in the last thirty years many
logics for modelling MAS have been proposed.

The design of a knowledge based agent is a central issue in agent theory,
as knowledge is a key property of any intelligent system. Arguably the most
successful approach is the modal logic S5,,, which was first proposed in Philo-
sophical Logic by Hintikka ([Hin62]) and later used in Distributed Computing
Theory by Halpern and Moses ([HF85]) and others.

The logic S5,, models a community of ideal knowledge agents. Ideal knowl-
edge agents have, among others, the properties of veridical knowledge (every-
thing they know is true), positive introspection (they know what they know)
and negative introspection (they know what they do not know). The modal
logic S5,, (see for example [HC96] and [Gol87]) can be axiomatised by taking all
the propositional tautologies; the schemas of axioms

Ki(p =) = Kip = Kpp Distribution of knowledge over implication
Kip=¢ Veridical knowledge

Ki¢p = K;K;¢ Positive introspection

—Ki¢p = Ki=K;¢ Negative introspection



where i € A represents an agent in the set of agents A = {1,...,n}; and the
inference rules Modus Ponens and Necessitation.

The logic S5,, has also been extended to deal with properties that arise
when we investigate the state of knowledge of the group. Subtle concepts like
common knowledge and distributed knowledge have been very well investigated
([FHMV95]). The logic S5y, is a successful tool for the agent theorist also because,
even in its extensions to common knowledge and distributed knowledge, it has
important meta-properties like completeness and decidability (see for example
[MvdH95]).

Two apparently different semantic treatments are available in symbolic AI
to interpret the language of modal logic: interpreted systems and Kripke models.

Interpreted systems were first proposed by Fagin, Halpern, Moses and Vardi
[HF85] to model distributed systems. The growing interest in complex MAS and
in their specifications has brought forward the concept of interpreted system as
useful formal tool to model key characteristics of the agents, such as the evolu-
tion of their knowledge, communication, etc. This work has culminated in the
publication of [FHMV95] in which the authors use the notion of interpreted sys-
tem to explore systematically fundamental classes of MAS (such as synchronous,
asynchronous, with perfect recall ability, etc.) by the use of interpreted systems.

Kripke models [Kri59] were first proposed in Philosophical Logic and later
used in Logic for AT as semantic structures for logics for belief, logics for knowl-
edge, temporal logics, logics for actions, etc, all of which are modal logics. Over
the last thirty years, many formal techniques have been developed for the study
of modal logics grounded on Kripke semantics, such as completeness proofs via
canonical models, decidability via the finite model property [HC96], and more
recently, techniques for combining logics [KW91, Gab96].

The two approaches have different advantages and disadvantages. On the one
hand, interpreted systems are more intuitive to model real MAS, on the other
hand Kripke models come with a heritage of fundamental techniques (see for
example [Gol87, HC96] that can allow the user to prove properties about his or
her specification.

Given the common purpose of the two approaches, some questions arise nat-
urally. Is one of the approaches more specialised than the other? What is the
difference between the two generated logics? Is it possible to use the powerful
techniques developed for Kripke models to MAS defined in terms of the more
intuitive systems? Is it possible to identify in terms of frames key MAS usu-
ally defined in terms of interpreted systems? The rest of the paper answers only
partially to some of these questions, but tries to bring us a step further in our
understanding of the two notions.

In the article we isolate and study a special class of interpreted systems that
we call hypercube systems or simply hypercubes, which are defined by taking not
an arbitrary subset (as interpreted systems are defined) but the full Cartesian
product of the local states for the agents. We show that hypercube systems
are semantically equivalent to a special class of frames defined on equivalence
relations commonly used to interpret an epistemic language.



Hypercube systems are a special case of interpreted systems but we hope
that the methods we introduce to analyse them can be extended to analyse
interpreted systems in the general settings.

The paper is organised as follows: In Section 2 we remind the reader of
some basic mathematical notions that we will use throughout the paper. In
Section 3 we define interpreted systems, Kripke models, and hypercube systems.
In section 4 we define maps between hypercubes and Kripke models. In Section 5
we analyse the composition of these maps and we present results that relate the
two semantics. In Section 6 we draw our conclusions and we suggest further
work. Proofs of all theorems and lemmas are given in the Appendix.

2 Mathematical Preliminaries

We assume a modal propositional language, defined in the usual way from a set
of propositional variables by the use of classical connectives, the operators K;
and Dpg. The index 7 varies over a set A = {1,...,n}, representing the agents of
the system and B varies over subsets of A. The modal operator K; represents
the knowledge of the agent i, while Dp represents the distributed knowledge
among the group B (the reader is referred to [FHMV95] for an introduction to
this terminology). We use the standard definitions for satisfaction for formulas
on states, and validity for formulas on frames, on models, on class of frames,
and on class of models - see [HC96] for details. If W is a set, idw is the identity
relation on W. If ~ is an equivalence relation on W and w € W, then W/~ is
the set of equivalence classes, and [w]~ is the equivalence class containing w.

3 Hypercube systems

We briefly remind the key definitions of Kripke frames and interpreted systems;
then we define hypercube systems.

3.1 Kripke models

Kripke models are the fundamental semantic structures used in modal logic to
reason about possibilities, necessities, knowledge, obligation, etc. In the case
of epistemic logic the usual approach is to take Kripke models grounded on
equivalence relations so that they constitute a complete semantics for the logic
S5, described above. We report here the key definition.

Definition 1 (Equivalence frames). An equivalence frame F = (W, ~q,...,
~y,) is a tuple where W is a non-empty set and for every i in A, ~; is an
equivalence relation over W x W. Elements of W are called worlds and are
denoted as: wy,ws,... F denotes the class of frames.

Intuitively points of W represent epistemic alternatives, i.e. possible configura-
tions. Relations represent epistemic possibility between points; for example with



w ~; w' we capture the fact that “w’ is possible according to i’s knowledge in
the state w”.

An equivalence Kripke model M = (F, ) is a pair, where F' is an equivalence
frame and 7 is an interpretation for the atoms of the language.

For ease of reference, we state here the notion of validity on a class of frames.

Definition 2 (Validity on Kripke frames). A formula ¢ is valid on a class
F of Kripke frames if for any frame F' € F for any valuation 7, (F,7) = ¢.

3.2 Interpreted systems

Interpreted systems can be defined as follows ([FHMV95]). Consider n sets of
local states, one for every agent of the MAS, and a set of states for the environ-
ment.

Definition 3 (Global states of interpreted systems). A set of global states
for an interpreted system is a subset S of the Cartesian product L, x Ly X+« X L,
where L., Ly,..., L, are non-empty sets. The set L; represents the local states
possible for agent i and L, represents the possible states of the environment.

A global state represents the configuration of all the agents and of the en-
vironment at a particular instant of time. The idea behind considering a subset
is that some of the tuples that originate from the Cartesian product might not
be possible because of explicit constraints present in the MAS. By considering
functions (runs) r : N — S from the natural numbers to the set of global states,
it is possible to represent the temporal evolution of the system. An interpreted
system IS = (R,7) is a set of functions R = {r : N — S} on the global states
with a valuation 7 for the atoms of the language. Since here we carry out an
analysis of the static properties of knowledge, we will not consider runs explicitly
and we will consider interpreted systems to be pairs IS = (S, 7).

Interpreted systems can represent the knowledge of the MAS by considering
two global states to be indistinguishable for an agent if its local state is the same
in the two global states. Thus, a set of global states S denotes the Kripke frame
F=W,~q, . oymn), W =S, (lh, .. 0n) ~ (I, 0), i L =10 € A

3.3 Hypercube systems

Given n sets of local states for the agents of the MAS, the interpreted systems we
analyse in this paper and that we call hypercube systems or hypercubes, result
by considering the admissible state space of the MAS to be described by the
full Cartesian product of its sets of local states. This means that every global
state is in principle possible, i.e. there are no mutually exclusive configurations
between such local states. Various scenarios comply with this specification, such
as distributed systems that have just crashed, and more generally in MAS in



which no information is available about their configuration®. In these cases the
state space of the system is the whole full Cartesian product of the sets of locals
states for the agents.

With hypercubes we are imposing a further simplification on the notion pre-
sented in Definition 3: in the tuples representing the configuration of the system
we do not consider a slot for the environment. The presence of the environment
in the notion of Fagin et al. is motivated in order to keep track of the changes
in the system and in general to represent everything that cannot be captured by
the local states of the single agents (most importantly messages in transit, etc.).
By neglecting the dimension of the environment or, which comes to be the same
thing, by treating it as a constant, we are projecting the notion of Fagin et al.
of a time-dependent interpreted system to the product of its local states. Since
we are focusing on a static case, in a way we can see this restriction as fixing the
environment at the time in analysis, and investigate the possible configurations
of the states of the agents. We formally define hypercube systems.

Definition4 (Global states of hypercube systems). A hypercube system,
or hypercube, is a Cartesian product H = Ly X---x L,,, where Lq,..., L, are non-
empty sets. The set L; represents the local states possible for agent i. Elements
of a local state L will be indicated with [1,1ls, ... The class of hypercube systems

is denoted by H.

Aim of the paper is to relate hypercube systems to Kripke models. More
specifically we would like to identify the class of Kripke models that satisfy ex-
actly the same formulas satisfied by the hypercubes. Given the notion of validity
of formulas on interpreted systems and Kripke models, it is appropriate to com-
pare the two underlying semantic structures: Kripke frames and global states
of hypercube systems. This is what we do in the next two Sections, where, for
brevity, we will use the terms “hypercube systems” and “hypercubes” also to
refer to sets of global states of hypercube systems as in Definition 4.

4 Mappings between hypercubes and frames

Although hypercubes are intuitively a special class of Kripke frames, it is clear
that they are not simply a subset. In order to clarify the relationship, we have
to use the construction given implicitly in [FHMV95] for obtaining a frame
from a system. Our framework will be the following (proofs are reported in the
Appendix):

— We define the class of hypercubes H, and the class of Kripke frames F.

— We define two maps, H ENYS (based on [FHMV95)) and F 2 H.
— We analyse the compositions of the maps f and g.

! It has also been suggested by Ron van der Meyden that there may be a connection
between the full Cartesian product and the states of knowledge in certain classes of
broadcast systems.



— We isolate the images of H in F.

Hypercubes and frames are always defined over a set A of n agents, which
we assume as given.
Every hypercube generates a frame ([FHMV95]):

Definition 5 (Hypercubes to frames). f:H — F is the function that maps
the system H onto a Kripke frame in the following way:

IfH=1Li X -XLp, f(H) = (L1 X -+ X Lp,~1,...,~p), where ~; is defined
as: (I, ..., 0n) ~; (IY,..., 1) if and only if I; =1}.

Lemma6. If H is a hypercube system, and f(H) = (W, ~1,...,~,) is the frame
defined from it by Definition 5, then

1. ﬂieA ~; = Zdw,’
2. For any wy,...,wy, in W there exists a W such that w ~; w;, i =1,...,n.

The proof of this (and other) results is given in the Appendix.

This shows that Kripke frames that we build from the hypercubes by means
of the standard technique ([FHMV95]) constitute a subset of all the possible
reflexive, symmetric and transitive Kripke frames. To relate the two semantic
classes, we have to analyse the properties of Lemma 6.

The first one expresses the fact that in the images of the hypercubes there
cannot be two states related by all the equivalence relations. This is a peculiarity
of the construction f given in [FHMV95].

The second property reflects the fact that hypercubes are defined on full
Cartesian products. The property expresses the circumstance that for every pair
of points in the n dimensions space of the images of the hypercubes, there are n!
ways to connect them in two steps. In particular, we can change n—1 coordinates
in n possible ways and change the last one in the last step.

Given these differences between the class of hypercubes and equivalence
frames, it is likely that the two semantic structures satisfy different formulas. In
fact we have the following.

Condition 1 of Lemma 6 imposes the following Lemma.

Lemma 7. Consider a frame F = (W, ~1,...,~,).
Nica ~i = idw if and only if F' |= ¢ & Dad.

Corollary 8. If H is a hypercube system, f(H) = ¢ <& Da¢.

This means that on hypercubes the notion of truth of a formula collapses to the
one of distributed knowledge of the formula.

Condition 2 of Lemma 6 forces the frames generated from hypercubes to
satisfy the following formula.

Lemma9. If H is a hypercube system, f(H) = -K;=K;¢ = K;—~K;~¢$, where
i .



The formula in Lemma 9 is an axiom that relates private knowledge between
two arbitrary agents of the model.

It is easy to check that Formulas in Lemmas 7 and 9 are not generally valid on
the class F of frames. In Figure 1 M; does not validate the Formula in Lemma 7
and M does not validate the Formula in Lemma 9. In fact wg in M; does not
satisfy p < D ap, where D 4p is as usual computed by taking the equivalence
relation defined by the intersection of the equivalence relations ~q,~s. In My,
wo does not satisfy K- Kop = Ko—Ki—p.

1,2

p

1.9 1,2

M

1,2

b

1,2
Cr—2a )

wo

My

Fig. 1. Equivalence models not satisfying Formulas in Lemma 7 and Lemma 9

It is also possible to generate a system from a frame:

Definition 10 (Frames to hypercubes). g : F — H is the function that
maps a frame F' = (W, ~q,...,~,) onto the hypercubes g(F) = W/~ X --- %
W/~

We now have defined maps between the two semantic structures. Our aim
is to use them to identify the class of equivalence frames that are semantically
equivalent, i.e. that satisfy the same formulas, to the hypercubes. In order to do



Fig. 2. Preservation of isomorphisms under the maps

so, we introduce a notion of isomorphism on F and H. Many notions (such as
p-morphisms or bisimulations for frames) may be appropriate for this task, but
for our aims we need a strong equivalence between the structures.

Consider two MAS. If we can draw a bijection between the agents of the
MAS such that the local states of the corresponding agents are themselves in
a bijection, then in a way we can think that one MAS can simulate the other,
and so the two MAS can be thought as being equivalent. We formalise this as
follows:

Definition 11 (Isomorphism of hypercubes). Two hypercubes H = L; x
- X Ly, H = L} x --- x L] are isomorphic (H =4 H') if |L;| = |L}| for
1=1,...,n.

To reason about equivalent frames we take the standard notion of isomor-
phism.

Definition 12 (Isomorphism of frames). Two frames F' = (W, ~q,...,~,),
F'= (W' ~4, ...,~!) are isomorphic (F =z F") if and only if:

n

— There exists a bijection b: W — W',
— For all s, € W, and all i € A, s ~; ¢ if and only if b(s) ~ b(¢).



We can prove that the maps we defined preserve isomorphisms:
Lemma 13. If H =4 H', then f(H) =z f(H').
Lemmal4. If F =z F', then g(F) =4 g(F").

Figure 2 shows the preservation of isomorphisms under f and g between
frames and hypercubes as proved Lemmas 13 and 14. Since we want to import
and export results from one structure into the other, this is the result we need.

5 Characterisation of the class of hypercube systems

We now investigate the extent to which the composition of f with g (or g with
f) results in a hypercube (frame) which is isomorphic to the one we started with.
We do this for two reasons. First we want to check whether by going back and
forth between the two class of structures we are going to lose information, i.e. the
structure we obtain satisfies different formulas from the original one. Secondly,
this will help us prove a result on the correspondence of the hypercubes into a
subclass of frames. We operate as follows.

Given a hypercube H = Ly X - - - X L, consider the image under f of H, f(H).
Let H = (Ly x -+ x Ly)/~1 x -+ x (L1 X --- X L,)/~, be the image under g
of f(H). We want to investigate the relationship between H and H'.

Theorem 15. For any system H in H, H =4, go f(H)).

In other words, if we start from a system H, build the corresponding Kripke
frame f(H), it is still possible to extract all the information from the frame by
applying the function g that produces another system H', which is in a bijection
with the original H.

We now investigate the other side of the relation. Consider a frame F' and
its image under g, g(F). If we take the image under f of g(F'), that frame will
satisfy the property stated by Lemma 6 and therefore will not in general be
isomorphic to F. As we made clear in the previous Section, property one of
Lemma 6 corresponds to the validity of a formula on such frames. Therefore,
f(g(F)) is not only non-isomorphic to F, but it is not even even a p-morphic
image of F.

What we can prove is the following:

Lemma 16. If F' is a frame such that there exists a system H, with F* =& f(H),
then F 2z f o g(F).

If we consider a frame F' = (W, ~1,. .., ~y) such that (. , ~;=idw, fog(F)
will not in general be isomorphic to F'. As an example, consider:

F = ({wy,wa}, {(w1,w1), (wa,ws2) }, {(wy,w1), (we, wz)}).

We need to restrict our attention to both the properties inherited from the map-
ping from hypercubes. Results of Lemmas 15 and 16 are shown in Figure 3.



Fig. 3. Compositions of maps between frames and hypercubes as in Theorem 15 and
Lemma 16

Theorem 17. If F = (W, ~1,...,~y) is a frame such that:

— Ywy, ..., wy, 3w such that w ~; w;, i =1,...,n;
then F 2z fo g(F).

Theorem 17 and Lemma 6 allows us to characterise the frames that are images
of some system:

Theorem 18. Let F = (W, ~1,...,~y) be a frame. The following are equiva-
lent:

1. N; ~i=idw and Vwy, ..., w,, 30 such that W ~; w;, i =1,...,n;
2. there exists an H, such that F = f(H).

Theorem 18 characterises the frames that we obtain by applying the map f
to the class of hypercubes. Every member of this class of frames is isomorphic
to a system and a frame not included in this class is not.

We can now identify a class of frames which is semantically equivalent to
hypercube systems. To do this, we remind that satisfaction on a system H is
defined by considering the image under f of H. In this context we need the
notion of validity on a system:



Definition 19. A formula ¢ is valid on a system H, (H |= ¢), if f(H) = ¢.

Validity of ¢ on the frame f(H) in Definition 19 was defined in Definition 2.
We can no prove that:

Theorem 20. Let G be the class of equivalence frames that satisfy property 1
and 2 of Lemma 6, then Vo(H = ¢ if and only if G E ¢).

Proof: From right to left. If G |= @, then, since f(H) C G, f(H) & ¢. So, by
Definition 19 H |= ¢.

From left to right. Assume H = ¢, i.e. f(H) E ¢, we want to show that for
any F € G, F = ¢. By Lemma 17 and Theorem 18, F' = f(g(F')). But then
F |= ¢ if and only if f(g(F)) E ¢. But g(F) € H, and so f(g(F)) | ¢, and so
F |= ¢. 0

Theorems 18 and 20 completely characterise the hypercubes we focus in this
note in terms of Kripke frames.

6 Conclusions and further work

Interpreted systems are a useful formalism for representing MAS knowledge. In
this note we have analysed their relation with Kripke models in a simplified
setting by looking at the case of hypercube systems.

We have defined mappings between hypercube systems and Kripke frames
and we have completely characterised the Kripke structures which are semanti-
cally equivalent to hypercubes.

The methodology we presented here to map hypercubes into Kripke models
suggests that further research could be undertaken to attempt to have a general
methodology for translating interesting classes of interpreted systems into classes
of Kripke models. This would help in the process of axiomatising key MAS
defined in terms of interpreted systems as the analysis could be carried out in
the class of Kripke models.

Should such a general methodology for inter-translating the two classes be
achieved, this may also help in the attempt to apply combining logics techniques
for modal logics (for example [KW91]) to the case of complex MAS defined in
terms of systems. The idea is that complex MAS specifications would benefit
from an approach focused on the identification of classes of interactions between
basic and well-understood modal logics with respect to the transfer of important
properties such as completeness (see [LR97a] for details).

Hypercubes seem to capture an interesting property concerning the rela-
tion between private knowledge of the agents of the group. Given the semantic
equivalence expressed by Theorem 20 it is possible to axiomatise hypercubes
by analysing the corresponding Kripke frames. This was presented in [LRI7b]
where a sound and complete axiomatisation for equivalence frames that satisfy
properties 1 and 2 of Lemma 6 is shown.
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A Proofs of theorems

Lemma 6 If H is a system, and f(H) = (W, ~1,...,~y) is the frame defined
from it by Definition 5, then

1. ﬂieA ~i = idw,’

2. For any wy,...,w, tn W there exists a w such thatw ~; w;, 1 =1,...,n.
Proof: For 1, Consider any two elements w = (l1,...,1,),w' = (l},...,0},) in W
such that w((;c 4 ~i)w'. Then foralliin A, (I;,...,1,) ~; (I1,...,1;,). Therefore
by definition, for all i in A, I; =1}, that is w = w'.

For 2, consider any wy = (l1,...,1n),...,wn = (m1,...,my). Now let w =
(l1,...,my). By definition 5, the element w is in W and for each i, W ~; w;. O



Lemma 7 Consider a frame F' = (W, ~1,...,~,). (;ca ~i = idw if and only
if F = ¢ Dag.

Proof. Left to right. Let M be a model based on F such that M =, ¢. Since
Nica ~i= idw, then M =, Da¢. Analogously, suppose M [, Da¢. Since
w((V;eq ~i)w' implies w = w', then M =, ¢.

Right to left. Suppose F = ¢ < Da¢ and for all i w; ~; wy. Take a valuation
m such that 7(p) = {w;}. Since F,7 =y, p < Dap and F,7 |=,, p, we have
F,7m Euw, Dap and so F,m =,, p. But since w(p) = {w;}, it must be that
w1, = Ws. O

Lemma 9 If H is a system, f(H) | ~K;—~K;¢ = K;=K;~¢, where i # j.

Proof: For a contradiction suppose that f(H) = —~K;—K;¢ = K;—~K;—¢. Then
there exists a point w and a valuation m such that (F,7) |=, —K;=K;¢p A
—K;=K;—¢. Therefore there must exist two points w; and wy such that w ~; w;
and w ~; wo and (F,7) |=y, K¢ and (F,7) =y, K;—¢. But by property 2.
of Lemma 6 there exists a point w such that W ~; wy; and W ~; w,. Since
(F,7) [=w, K;¢ and the relations are symmetric, we have (F, ) =4 ¢, but this
contradicts (F, ) ., K;—¢ that requires w to satisfy —¢. O

Lemma 13 If H =4, H', then f(H) = f(H').

Proof: Let H =1Ly x -+ X Ly, and H' = L} x --- x L] . Since H =4, H' there is
a family of bijections b; : L; — L,. Consider b = by X --- x b,. The function b is
a bijection, and therefore the universes of the frames f(H) and f(H') are in a
bijection.

Consider now s = (I, ..., l;,...,ln),s" = (11,...,1},...,1;) such that s,s' € H,
and s ~; s’ on f(H). Consider b(s) = (b1(l1),...,b;(l;),...,bn(l)) and b(s') =
(b (1)), .., bi (1Y), ..., bn(1))). Since, by definition, I; = I}, then b;(I;) = b;(I}) and
therefore b(s) ~! b(s').

Let now be b(s) ~} b(s"). Then, by definition b;(1;) = b;(l}) and then I; = I}, that

implies s ~; s'. O

Lemma 14 If F = F', then g(F) =4 g(F").

Proof: Consider two isomorphic frames F' = (W, ~q,...,~,), F' = (W' ~}
y--y~0) such that b: W — W' is a bijection. We want to prove that there is a
family of bijections ¢; between the components of g(F) = W/~ x --- x W/~,
and g(F') = W'/~ x -+ x W'/~! . Let ¢; :+ W/~; — W'/~! such that
ci([w]~,) = [b(w)]wg.

The function ¢; is well defined. In fact, let [w]., = [w']~;, with w,w’ € W. Then
¢i([wl~;) = [b(w)]v;, = [bw')]~ = ci(fw']~,)-

The function ¢; is injective. ¢;([w]~;) = ci([w']~;), then [b(w)]., = [b(w')]<;,
that is b(w) ~; b(w'), w ~; w' and then [w]., = [w]...

The function ¢; is surjective. Consider [w'].;, such that w' € W' and let w € W
be such that b(w) = w'. Then ¢;([w].,) = [w']<:. O

Theorem 15 For any system H in H, H =4, go f(H)).
Proof: We prove that the function b; : L; — (L X --- X Ly)/~;, defined as
bi(li) =[(h,-.. Ly ..., In)]~;, where I, 4 # j, is any element in L;, is a bijection.



The function b; is well defined. In fact, let I; =1}. So b;(I;) = [(Li, .., by oo 1))~
and b;(1}) = [(11,--- U, 0]~ But (I, .. 0y o0y

and therefore b;(l;) = b;(1}).

The function b; is an injection: let b;(l;) = b;(l}), so [(I1,.. ., liy. o In)]~; =
(1, .. 0 )]~ that implies I; = 1.

The function b; is a surjection. In fact, consider any [(I1,...,l;,...,ln)]~, €
(Ly X oo X L) /i b)) = [0 -l U)o = [y iy oo 1) s O

Theorem 17 If F = (W,~1,...,~y) is a frame such that:

— Ywy,...,w,, 3w such that W ~; w;, 1 =1,...,n;

then F 2z f o g(F).

Proof: Consider the frame f o g(F) = (W/~1 X --- X W/~p,~1, ..., ~1) built
according to Definition 10 and Definition 5. Let now h be a mapping h : W —
W)~y X - x W/~ defined by h(w) = ([w]~,, ..., [w]~,). We prove that h is
a bijection.

Injective: suppose h(wy) = h(wa), so ([wi]~y, .-, [wi]~,) = (wa]ey, - -, [we]~,).
Therefore, for all 4, [wq] ~; [w,], but since [, ~;= idw, it must be w; = ws.
Surjective: consider any element ([wi]~,,...,[wp]~,) In W/~y X oo X W/~

By Hypothesis on F', there exists a world w in W, such that [@]., = [w;]~,, for
each i = 1,...,n. Therefore ([wi]~,, ..., [wnl~,) = ([W]~,, ..., [W]~,) = h(w).
Now we prove that wy ~; wy in F if and only if h(wy) ~; h(ws) in f o g(F).
Suppose wq ~; wa, that is [wi]~, = [wa]~,; by definition of ~;, this is equivalent
0 ([W1]nys oo [01]y) ~ (3]s 3] ).

This proves that F' and f o g(F') are isomorphic. O

Theorem 18 Let F' = (W, ~y,...,~y) be a frame. The following are equivalent:

1. ; ~i=tdw and Yw,, ..., Wy, FW such that W ~; w;, i =1,...,n;
2. there exists an H, such that F =¢ f(H)

Proof: 1 implies 2: Under these conditions by Theorem 17, F' =& f o g(F'). That
is: H = g(F).

2 implies 1: By Lemma 6 the frame f(H) has the properties expressed by propo-
sition 1. But F' is isomorphic to f(H) and therefore it has those properties as
well. O
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