
In Advances in Computer Science, 1999, to appear.SFI: a Feature Integration Tool?Malte Plath and Mark Ryan1 IntroductionThe concept of feature has emerged in telephone systems analysis as a wayof describing optional services to which telephone users may subscribe. Featureso�ered by telephone companies include call-forwarding, automatic-call-back, andvoice-mail. Features are not restricted to telephone systems, however. Any partor aspect of a speci�cation which the user perceives as having a self-containedfunctional role is a feature. For example, a printer may exhibit such features as:ability to understand PostScript; Ethernet card; ability to print double-sided;having a serial interface; and others. The ability to think in terms of features isimportant to the user, who often understands a complex system as a basic systemplus a number of features. It is also an increasingly common way of designingproducts.To support this way of building a system from a basic system by successivelyadding features, we have developed the tool SFI (`SMV feature integrator') thatautomates the integration of features into a formal description of the system. Themain aim of our approach of extending a speci�cation and veri�cation languagewith a feature construct is to provide a `plug-and-play' system for experimentingwith features and witnessing their interactions. We handle the potential incon-sistency between a feature and the base system by allowing features to overrideexisting behaviour in a tightly controlled way.As a �rst case study, we have analysed the lift system and its features. Thebase lift system consists of a lift which responds to requests made by pressingbuttons by moving up and down between oors and opening its doors. It worksaccording to an algorithm known as Single Button Collective Control (SBCC)(Barney and dos Santos 1985). We present another case study, based on the tele-phone system, in a related paper (Plath and Ryan 1998).We have used our method and tool to extend the basic lift system with severalfeatures that are found in more sophisticated lift systems, such as: parking onthe ground oor in anticipation of demand; detecting overloads; executive oorpriorities; etc. Our method can be used to investigate the circumstances suchfeatures conict, or do not work as intended.The remainder of the paper is structured as follows. The next section de-scribes our approach to features and feature-integration. In section 3, we brieyintroduce SMV; the reader is referred to other papers for a fuller explanation.Section 4 contains details of our tool, called SFI, and section 5 describes a casestudy in detail. We conclude in section 6.? Financial support from the European Union through Esprit working groups FIRE-works (23531) and ASPIRE (22704), and from British Telecom and the Nu�eldFoundation in the UK, is gratefully acknowledged.1



2 Features and feature-integrationA feature is a small increment in functionality to a base system. For example,the lift's ability to detect that it is overloaded, and to behave di�erently in thosecircumstances, is a feature for the basic lift system. Software systems are oftenupgraded by adding features.The idea of our approach is to describe features formally as units of function-ality which can be understood without detailed knowledge of the base system.These are then automatically integrated into the system. Feature descriptionstry to avoid making assumptions about the architecture of the base system inquestion.In our approach, features are de�ned as self-contained textual units, in amanner which makes them easy to understand in isolation. A feature descriptioncan be seen as a prescription for changing and extending the basic system. Theprocess of integrating a feature into an existing system is automatic, rather likeapplying a patch. Thus, they are easy to add to a system, or to remove, or tore-specify. A feature usually overrides some old behaviour of the system; ourapproach provides a clear mechanism for this. A feature may be thought of as aparticular case of superimposition (Katz 1993).Features are intended to be used for structuring a system description like(optional) modules, only that they lack their compositional character (\modu-larity"). The speci�er/developer of a feature ideally should refer only to the codefor the base system in the development of the feature. (Unless, of course, thefeature builds on an already feature-extended version of that system.)The tool SFI is designed for use with the SMV description language (see(Clarke et al. 1993) or (McMillan 1993)). That is, SFI takes a base system de-scription written in SMV and some features written in the extension of SMVthat we de�ne here, and returns a description in SMV representing the integra-tion of the features into the base system. Our approach is quite general, however,and need not be tied to any particular system description language. A similartool could be developed for other description languages.We chose the SMV language as the starting point for our approach, for thefollowing reasons:{ It is designed and optimised for concurrent, reactive systems, such as the tele-phone system and the lift system. The feature interaction problem, whichwe wish to investigate with our approach, arose originally in such systems.(Cf. (Gri�eth 1992), (Bouma and Velthuijsen 1994), (Cheng and Ohta 1995),(Dini et al. 1997) and (Kimbler and Bouma 1998)){ The SMV tool (McMillan 1993) can check temporal properties of systemsdescribed using the SMV language. This enables rapid development of rig-orous and accurate examples. We use the SMV tool both before and afterfeature integration with SFI.Feature integration is the process by which a new system is constructed froman old system and a feature; this is carried out automatically by our tool SFI.Automating this process means that we can study questions such as: is a given



feature compatible with this system (i.e. is the integration possible)? Does itmatter in what order we integrate two features into a system? (The answer isusually yes; a negative answer would show that the two features are in some senseindependent with respect to the system.) Does integrating feature A prevent orinterfere with the later integration of feature B? Does the integration of B breakthe functionality provided by a previously integrated feature A? These questionsare made precise below in section 5.3.3 A very short introduction to SMVBefore we explain how feature integration with SFI works, we should say afew words about SMV2. We apologise for leaving this very sketchy and refer theinterested reader to (Clarke et al. 1993) and (McMillan 1993) for a more detailedaccount. SMV is a CTL3 model checker for (unlabelled) �nite automata. It takesthe description of an automaton in the SMV language and some properties inthe form of CTL formulae. The following is one of the examples distributed withthe SMV system. (The line numbers are not part of the code.)1: MODULE main2: VAR3: request : boolean;4: state : {ready,busy};5: ASSIGN6: init(state) := ready;7: next(state) := case8: state = ready & request : busy;9: 1 : {ready,busy};10: esac;11: SPEC AG(request -> AF state = busy)Fig. 1. A system description for SMVThis piece of code de�nes a non-deterministic automaton with four states(f0; 1g�fready; busyg). There are transitions from every state to every state, ex-cept for the state (1; ready) from which only transitions to (1; busy) and (0; busy)are allowed. The initial states are (1; ready) and (0; ready).Generally, a model description for SMV consists of a list of modules withparameters. Each module may contain variable declarations (VAR), macro def-initions (DEFINE) and assignments (ASSIGN). Possible types for variables areboolean, enumerations (e.g. state), or �nite ranges of integers. For declaredvariables (as opposed to DEFINEd ones, which are merely macros) we may assign2 Symbolic Model Veri�er3 Computational Tree Logic



the initial value (e.g. line 6) and the next value (e.g. lines 7{10), or alternatively,the current value. The expressions that are assigned to variables may be non-deterministic as in line 9: if state is not ready or request equals 0, the nextvalue of state can be both ready or busy. (Since request is not determined atall by the description, it, too, will assume values non-deterministically.) It is im-portant to bear in mind that all assignments are evaluated in parallel. However,modules can be composed both asynchronously and synchronously.After de�ning a system in the SMV language, we formulate the propertiesto be veri�ed in the temporal logic CTL (SPEC, e.g. line 11). The propositionalatoms for these formulae are boolean expressions over the variables of the system.Given a set of propositional atoms P , CTL formulas are given by the followingsyntax:' ::= p j > j :' j '1 ^ '2 j AX' j EX' j AG' j EG' j AF' j EF' jA['1 U '2] j E['1 U '2]:where p 2 P . (The other boolean operators (_;!;$;?) are de�ned in terms of^;: in the usual way. In the machine readable form &,| and ! are used insteadof ^;_ and :, respectively.)Notice that CTL temporal operators come in pairs. The �rst of the pair is oneof A and E. A means `along all paths' (inevitably), and E means `along at leastone path' (possibly). The second one of the pair is X, F,G, orU, meaning `neXtstate', `some Future state', `all future states (Globally)', and `Until' respectively.Notice thatU is binary. The pair of operators in E['1 U '2], for example, is EU .Details of CTL are widely available in the papers by E. Clarke and others (forexample (Clarke et al. 1993) and (McMillan 1993)), and also in the forthcomingintroductory text (Huth and Ryan 1998).A useful derived connective isAW , which uses the `weak until' connectiveW,which is similar to U, but '1W'2 does not require that '2 eventually becometrue if '1 is inde�nitely true. One de�nes A['1W'2] as :E[:'2U:('1 _ '2)].4 SFI { a feature integration toolIn this section, we present an extension of the SMV syntax for describing fea-tures. We describe SFI, our tool for compiling programs written in the extendedSMV into pure SMV, thus giving semantics to the feature construct. We illus-trate its semantics by developing the examples of features for the lift system.4.1 Syntax and semantics of the feature constructA formal speci�cation of the syntax is given in �gure 2. There are three main sec-tions of the feature construct, introduced by the keywords REQUIRE, INTRODUCEand CHANGE.The REQUIRE and INTRODUCE sections deal with the vocabulary used by thefeature. The REQUIRE section stipulates what entities are required to be presentin the base program in order for the feature to be applicable. A collection of



FEATURE feature-name[ REQUIREf MODULE module-name [ (parameter-list) ]VAR variable-declarations g�][ INTRODUCEf MODULE module-nameVAR variable-declarationsASSIGN assignmentsDEFINE de�nitionsf SPEC formula g� g�][ CHANGEf MODULE module-name[ IF condition THEN ][ impose-clause j treat-clause ] g�]where:impose-clause stands forIMPOSE assignmentstreat-clause stands forTREAT var1 = expr1 [, : : : varn = exprn ][ ] stands for `optional'[ j j ] stands for `one of'f g* stands for `several'Fig. 2. The syntax of the feature constructmodules and variables in modules may be speci�ed there. The INTRODUCE sectionstates what new modules or new variables within old modules are introduced byintegrating the feature into a program. SMV DEFINE and ASSIGN clauses may alsobe given, and CTL formulas in SPEC clauses may be given. These are textuallyadded to the program at integrate-time. All old modules and variables that areused in the INTRODUCE section should be REQUIREd, and their absence will leadto an error.The CHANGE section speci�es what the feature actually does, by introducinga mask or wrap on top of the base program's code. It allows the programmer todescribe certain kinds of changes to the program by a�ecting the way variablesare read and written. The CHANGE section gives a number of TREAT or IMPOSEclauses, which may be guarded by a condition. These clauses allow the featureto interfere with variables maintained by the base system. The IMPOSE clauseallows a feature to overwrite the current value of a variable with another value.The TREAT clause enables a feature to mask the actual value of a variable with adi�erent value. It does not change the actual value, but arranges matters so thatwhen the variable is accessed (and the guarding condition is true), the actual



value is hidden and a di�erent value is returned. The precise meaning of TREATand IMPOSE is given below.4.2 What SFI doesSFI takes a base system description written in SMV and a feature written usingthe syntax of �gure 2, and returns a new SMV description which represents theintegration of the feature into the base. It checks the presence of the entitiesspeci�ed in the REQUIRE section, and inserts the code given in the INTRODUCEsection in the appropriate places. It then alters the code of the base system inthe way prescribed by the CHANGE section of the feature, as follows:{ For CHANGEs of the formIF cond THEN TREAT x = exprReplace all right-hand-side occurrences of x bycasecond : expr;1 : x;esacThis means that whenever x is read, the value returned is not x's value, butthe value of this expression. Thus, when cond is true, the value returned is e.In short, when cond is true, we treat x as if it had the value given by expr.Note that we require expr to be deterministic.{ For CHANGEs of the formIF cond THEN IMPOSE x := exprIn assignments x:= oldexpr or next(x) := oldexpr, replace oldexpr bycasecond : expr;1 : oldexpr;esacWhereas TREAT just deals with expressions reading the value of x, i.e. occur-rences on the right-hand-side of an assignment to another variable, IMPOSEdeals with assignments to the variable x. It has the e�ect that, while condis true, x is only assigned the value of expr; but when cond is false, x isassigned the value that it would have been assigned in the original program.{ For CHANGEs that are not guarded by IF cond THEN, the case statementsare of course omitted, and the variable, or respectively, the expression arereplaced directly by the new expression (expr).The feature integration is deemed successful if the following are true:{ The elements stipulated in the REQUIRE section were present in the baseprogram; and{ After the textual substitutions have been performed, the resulting programsatis�es the CTL formulas introduced in the feature.



The semantics of TREAT and IMPOSE can also be given directly in termsof the automaton, rather than in terms of the SMV text. This is mainly oftheoretical interest and we omit it for the sake of brevity.We have implemented the integrator in C. It accepts as input SMV text andfeature descriptions; it performs the necessary checks and substitutions and thenwrites out a new SMV source �le.5 The lift system Case study and experimental resultsAs a �rst case study, we have analysed the lift system and its features. We �rstdescribe the base lift system; then we look at its features.5.1 The base system, SBCCThe base lift system consists of a single lift. It accepts requests made by userspressing buttons on the oor landings and from inside the lift. It moves up anddown between oors and opens and closes its doors in response to those requests.It works according to an algorithm known as Single Button Collective Control(SBCC) (Barney and dos Santos 1985). In essence, the lift travels in its currentdirection to the next oor at which there is a request, and opens its doors; thenit closes its doors and continues in the current direction, until there are no morerequests pending in that direction. Then it reverses its direction of travel, andproceeds as before. Notice that the SBCC algorithm stipulates only one buttonon each landing, rather than the conventional two. Passengers press the button,but they are not guaranteed that the lift will be willing to go in the directionthey wish to travel.The SMV code for the base lift system is shown in �gures 3 to 5, adapted from(Berry 1996). The module main (�gure 3) declares �ve instances (one for eachlanding) of the module button (passing to each one as argument the conditionsunder which that button should cancel itself). It also declares one instance oflift, to which it passes a parameter whose value at any time is the next landingin the current direction of the lift which has requested the lift, and anotherparameter whose value at any time expresses whether there is a landing request.The liftmodule (�gure 5) declares the variables floor, door and directionas well as a further 5 buttons, this time those inside the lift.By inspecting the buttonmodule (�gure 4), one �nds that it sets its variablepressed to false if the reset parameter is true; otherwise, if it was pressedbefore, it persists in that state; otherwise, it non-deterministically becomes trueor false. This non-determinism is to model the fact that a user may come alongand press the button at any time. In common with most actual lift systems,the user may not un-press the button; once pressed, it remains pressed until theconditions to reset it arise inside the lift system.



MODULE main
VAR
  landingBut1 : button ((lift.floor=1) & (lift.door=open));
  landingBut2 : button ((lift.floor=2) & (lift.door=open));
  landingBut3 : button ((lift.floor=3) & (lift.door=open));
  landingBut4 : button ((lift.floor=4) & (lift.door=open));
  landingBut5 : button ((lift.floor=5) & (lift.door=open));

  lift     : lift (landing_call, no_call);

DEFINE
 landing_call :=
         case
           lift.direction = down : 
                   case
                     landingBut5.pressed & lift.floor>4 : 5;
                     landingBut4.pressed & lift.floor>3 : 4;
                     landingBut3.pressed & lift.floor>2 : 3;
                     landingBut2.pressed & lift.floor>1 : 2;
                     landingBut1.pressed                : 1;
                     1                                  : 0;
                   esac;
           lift.direction = up   : 
                   case
                     landingBut1.pressed & lift.floor<2 : 1;
                     landingBut2.pressed & lift.floor<3 : 2;
                     landingBut3.pressed & lift.floor<4 : 3;
                     landingBut4.pressed & lift.floor<5 : 4;
                     landingBut5.pressed                : 5;
                     1                                  : 0;
                   esac;
         esac;

  no_call := (!landingBut1.pressed &
              !landingBut2.pressed &
              !landingBut3.pressed &
              !landingBut4.pressed &
              !landingBut5.pressed);Fig. 3. The SMV code for the module main in the lift system.

MODULE button (reset)
VAR
  pressed : boolean;
ASSIGN
  init (pressed) := 0;
  next (pressed) := case
                      reset     : 0;
                      pressed   : 1;
                      1         : {0,1};
                    esac;Fig. 4. The SMV code for the module button in the lift system.



MODULE lift (landing_call, no_call)
VAR
  floor         : {1,2,3,4,5};
  door          : {open,closed};
  direction     : {up,down};
  liftBut5      : button (floor=5 & door=open);
  liftBut4      : button (floor=4 & door=open);
  liftBut3      : button (floor=3 & door=open);
  liftBut2      : button (floor=2 & door=open);
  liftBut1      : button (floor=1 & door=open);

DEFINE
  idle         := (no_call & !liftBut1.pressed & !liftBut2.pressed & 
                   !liftBut3.pressed & !liftBut4.pressed & !liftBut5.pressed);
  lift_call := case
            direction = down : 
                case
                   liftBut5.pressed & floor>4 : 5;
                   liftBut4.pressed & floor>3 : 4;
                   liftBut3.pressed & floor>2 : 3;
                   liftBut2.pressed & floor>1 : 2;
                   liftBut1.pressed           : 1;
                   1                          : 0;
                 esac;
            direction = up   : 
                case
                   liftBut1.pressed & floor<2 : 1;
                   liftBut2.pressed & floor<3 : 2;
                   liftBut3.pressed & floor<4 : 3;
                   liftBut4.pressed & floor<5 : 4;
                   liftBut5.pressed           : 5;
                   1                          : 0;
                esac;
         esac;
ASSIGN
  door         := case
                    floor=lift_call     : open;
                    floor=landing_call  : open;
                    1                   : closed;
                  esac;
  init (floor) := 1;
  next (floor) := case
                    door=open                    : floor;
                    lift_call=0 & landing_call=0 : floor;
                    direction=up & floor<5       : floor + 1;
                    direction=down & floor>1     : floor − 1;
                    1                            : floor;
                  esac;
  init (direction) := down;
  next (direction) := case
                        idle         : direction;
                        floor = 5    : down;
                        floor = 1    : up;
                        lift_call=0 & landing_call=0 & direction=down : up;
                        lift_call=0 & landing_call=0 & direction=up   : down;
                        1            : direction;
                     esac;Fig. 5. The SMV code for the module lift in the lift system.



Properties for basic lift system. Before any features are added, we may use SMVto check the following basic properties of the lift system.4 These properties arealso checked against the featured systems, to test whether the features violatethem. (See also table 1.)1. Pressing a landing button guarantees that the lift will arrive at that landingand open its doors:AG (landingButi.pressed-> AF (lift.floor=i & lift.door=open))2. If a button inside the lift is pressed, the lift will eventually arrive at thecorresponding oor.AG (lift.liftButi.pressed-> AF (lift.floor=i & lift.door=open))3. The lift will not change its direction while there are calls in the directionit is travelling. The �rst part of the formula is for upwards travel, and thesecond part for downwards travel:AG(8i < j: (floor=i & liftButj.pressed & direction=up-> A[direction=up U floor=j])& 8i > j: (floor=i & liftButj.pressed & direction=down-> A[direction=down U floor=j]))4. If the door closes, it may remain closed.!AG (door=closed -> AF door=open)5. The lift may remain idle with its doors closed at oor i.EF (floor=i & door=closed & idle)AG (lift.floor=i & lift.idle & lift.door=closed-> EG (lift.floor=i & lift.door=closed))6. The lift may stop at oors 2, 3, and 4 for landing calls when travellingupwards:8i 2 f2; 3; 4g: !AG ((floor=i & !liftButi.pressed& direction=up) -> door=closed)7. The lift may stop at oors 2, 3, and 4 for landing calls when travelling ordownwards:8i 2 f2; 3; 4g: !AG ((floor=i & !liftButi.pressed& direction=down) -> door=closed)4 To enhance the readability of the speci�cations we present them in a meta-notation, using variables and quanti�ers which SMV does not allow; translat-ing this into pure SMV notation is purely mechanical. In these examples, anyfree variables are universally quanti�ed. For example, if we expand the �rstspeci�cation below to pure SMV, we obtain the conjunction of the formulas:AG (landingBut1.pressed -> AF (lift.floor=1 & lift.door=open))throughAG (landingBut5.pressed -> AF (lift.floor=5 & lift.door=open))



5.2 Features of the lift systemThe following features of the lift system were described using our feature con-struct, and then integrated into the base system using the feature integrator:Parking. When a lift is idle, it goes to a speci�ed oor (typically the groundoor) and opens its doors, in order to optimise performance. This is becausethe next request is anticipated to be at the speci�ed oor. The parkingoor may be di�erent at di�erent times of the day, anticipating upwards-travelling passengers in the morning and downwards-travelling passengers inthe evening. Code for the parking feature is given in �gure 6. In our example,it parks on the ground oor (i.e. oor number 1) by treating the situationas if there was a call to that oor whenever there are no pending requests.Lift- 23 -full. When the lift detects that it is more than two-thirds full, it doesnot stop in response to landing calls, since it is unlikely to be able to acceptmore passengers. Instead, it gives priority to passengers already inside thelift, as serving them will help reduce its load.Overloaded. When the lift is overloaded, the doors will not close. Some passen-gers must get out. The code for this feature is given in �gure 7. It introducesa new boolean variable overload (signifying that the lift is overloaded) andimposes that the doors are always open when overload is true.Empty. When the lift is empty, it cancels any calls which have been made insidethe lift. Such calls were made by passengers who changed their mind andexited the lift early, or by practical jokers who pressed lots of buttons andthen got out.Executive Floor. The lift gives priority to calls from the executive oor.Our method provides a framework to plug these di�erent features into the liftsystem, and by examining the result, to witness interactions and interferencesbetween features. The SFI tool integrates one or more of the features, in a givenorder, into the base system. The result of our experimentation with the featuresfor the lift system is summarised in table 1.Each row represents a combination of the base system and some features, andeach column represents a property which SMV has checked against the relevantsystems. The �rst row is the unfeatured lift system; rows 2{6 represent the basesystem with just one feature, and the remaining rows represent the base systemwith two features. The order in which two features are added matters in general.In those cases where exactly the same speci�cations are satis�ed, we list just oneordering. (Thus, inspection of the table reveals that the only features which donot commute are Lift- 23 -full and Executive Floor.)The properties, represented by columns in the table, are divided into twogroups. To the left of the double line are properties (1{7) which apply to anylift system (featured or not), and have been described above. We can see whichproperties are broken by the addition of various features. To the right of thedouble line are the properties (8{14) which are designed to test the integrationof speci�c features.



FEATURE park
REQUIRE
   MODULE main  −− require all landing buttons
   VAR
     landingBut1.pressed : boolean; landingBut2.pressed : boolean;
     landingBut3.pressed : boolean; landingBut4.pressed : boolean;
     landingBut5.pressed : boolean;
   MODULE lift  −− require all lift buttons and the variable floor
   VAR
     floor            : {1,2,3,4,5};
     liftBut1.pressed : boolean; liftBut2.pressed : boolean;
     liftBut3.pressed : boolean; liftBut4.pressed : boolean;
     liftBut5.pressed : boolean;

INTRODUCE
   MODULE lift  −− no new variables introduced
   SPEC −− lift parks at floor 1:
      AG (floor=4 & idle −> E [idle U floor=1])
   SPEC −− lift cannot park at floor 3:
      AG (!EG(floor=3 & door=closed))

CHANGE
   MODULE main
   IF !lift.floor=1 &
      !( landingBut1.pressed | lift.liftBut1.pressed |
         landingBut2.pressed | lift.liftBut2.pressed |
         landingBut3.pressed | lift.liftBut3.pressed |
         landingBut4.pressed | lift.liftBut4.pressed |
         landingBut5.pressed | lift.liftBut5.pressed )
      THEN TREAT landingBut1.pressed = 1
END Fig. 6. The code for the Parking featureWhenever a property is violated by a (featured) system, SMV prints out atrace showing how the violation can occur. In most cases such traces illustratepossible \pathological" behaviours quite succinctly.In the following we list the properties which were checked for the featuredsystems. Each property corresponds to a requirement of a feature and henceserves to test the correct operation of that feature.Properties for the featured lift system.8. Empty:The lift will not arrive empty at a oor unless the button on that landingwas pressed.AG (lift.floor=i & lift.door=open & lift.empty-> landingButi.pressed)9. Empty:The lift will honour requests from within the lift as long as it is not empty.AG 8i: (lift.liftButi.pressed & !lift.empty)-> AF ((lift.floor=i & lift.door=open) | lift.empty)



FEATURE overloaded
REQUIRE 
  MODULE lift
  VAR door : {open, closed};
      floor : 1..4;

INTRODUCE
  MODULE lift
  VAR overload : boolean;
  ASSIGN overload := case
                       door = closed : overload;
                       1             : {0,1};
                     esac;
  −− the lift will not move while overloaded
  SPEC  AG (floor=1 & overload −> A [floor=1 U !overload])
  −− the doors cannot be closed if the lift is overloaded
  SPEC  !EF (overload & door=closed)

CHANGE
  MODULE lift
  IF overload THEN IMPOSE door:=open;Fig. 7. The code for the Overloaded featurePropertyFeature 1 Feature 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14none none p p p p p p p | | | | | | |Empty none p � � p p p p p p | | | | |Overloaded none � � � p p p p | | p p | | |Parking none p p p p � p p | | | | p | |Lift- 23 -full none � p p p p p p | | | | | p |Exec. Floor none � � p p p p p | | | | | | pOverloaded Empty � � � p p p p � � p p | | |Parking Empty p � � p � p p | | | | p | |Lift- 23 -full Empty � � � p p p p p p | | | � |Exec. Floor Empty � � � p p p p p � | | | | pParking Overloaded � � � p � p p | | p p p | |Lift- 23 -full Overloaded � � � p p p p | | p p | � |Exec. Floor Overloaded � � � p p p p | | p p | | �Lift- 23 -full Parking � p p p � p p | | | | p p |Exec. Floor Parking � � p p p p p | | | | p | pExec. Floor Lift- 23 -full � � p p p p p | | | | | p �Lift- 23 -full Exec. Floor � � p p � p p | | | | | � �Explanation of symbols: p property holds� property violated| property not applicableProperties are numbered as in sections 5.1 and 5.2Table 1. Feature interactions for the lift system



10. Overloaded:The doors of the lift cannot be closed when the lift is overloaded.!EF (overload & door=closed)11. Overloaded:The lift will not move while it is overloaded.AG (lift.floor=i & lift.overload-> A[ lift.floor=i W !lift.overload ])12. Parking:The lift will not remain idle inde�nitely at any oor other than oor 1.AG 8i 6= 1: !EG(floor=i & door=closed)13. Lift- 23 -full:Lift calls have precedence when the lift is 23 full (indicated by the agtt-full).AG 8i 6= j: ((lift.tt-full &lift.liftButi.pressed & !lift.liftButj.pressed)-> A [!(lift.floor=j & lift.door=open)U ((lift.floor=i & door=open)| !lift.cp | lift.liftButj.pressed)])14. Executive Floor:The lift will answer requests from the executive oor (lift.ef).AG (lift.ef=i-> A[ (landingButi.pressed -> AF(lift.floor=i))W !lift.ef=i ])5.3 Feature interactionA signi�cant motivation for the feature construct introduced in this paper isthe concept of feature interaction. When several features are integrated ontop of a base system, they may interfere with each other, or interact in wayswhich are hard to predict. This problem has been dubbed the feature interac-tion problem in the literature on telecommunications. A series of workshops isdedicated to feature interaction: (Gri�eth 1992), (Bouma and Velthuijsen 1994),(Cheng and Ohta 1995), (Dini et al. 1997) and (Kimbler and Bouma 1998).We write S+F for the result of integrating the feature F into the base systemS; and we write S � ' to mean that the system S satis�es the property '. Ourmethod and tool can detect the following kinds of feature interaction.Non-commutativity of features. If the order of integration matters, i.e. if(S + F1) + F2 and (S + F2) + F1 satisfy di�erent speci�cations, we say thatF1 and F2 are not commutative with respect to S.In the case of the lift system, every pair of features is commutative exceptLift- 23 -full and Executive-oor. As shown in table 1, integrating Executive-oor �rst and then Lift- 23 -full satis�es the speci�cation that lift calls takeprecedence when the lift is 23 -full; but integrating them the other way arounddoes not. Intuitively, this is because, in the second case, an executive maycall the lift when it is 23 -full, and that request will satis�ed. Indeed, the traceoutput by SMV for this property failure shows such a scenario.



Violation of a property introduced by another feature. Let '1 and '2be properties introduced by features F1 and F2, respectively. Independentlyof whether F1 and F2 commute or not, we may �nd that{ S + F1 � '1, but (S + F1) + F2 6� '1. In this case, F2 interferes with apreviously applied feature, F1, preventing it from working correctly.{ S + F2 � '2, but (S + F1) + F2 6� '2. In this case, F1 prevents thesuccessful integration of a later feature F2.The non-commuting pair of features Lift- 23 -full and Executive-oor are anexample of the �rst kind of these interactions. The pairs(Overloaded, Empty),(Lift- 23 -full, Empty),(Executive-oor, Empty),(Lift- 23 -full, Overloaded),(Executive-oor, Overloaded),are each commutative, and are examples of both these types of interaction.Joint violation of base property. This kind of interference occurs if (S +F1)+F2 violates speci�cations of the base system that hold for both S+F1and S + F2. The features Lift- 23 -full and ExecutiveFloor are an exampleof such an interaction; when integrated in that order, the resulting systemviolates the property that the lift can remain idle at any oor.6 Conclusions and future workWe support the user's natural tendency to think of a sophisticated softwaresystem as a base system together with a collection of features, by providing afeature construct for the SMV description language. We have implemented atool, called SFI, which compiles the feature construct into pure SMV. The liftsystem provides a case study, for which we specify �ve features and exploretheir behaviours and interferences using SFI. Our method detects a variety ofinteractions.The construct for de�ning features has proved to be both intuitive and pow-erful; witness the variety of features we have de�ned. The TREAT and IMPOSEclauses are able to express the impact the feature has on the underlying code ina natural way, and the feature speci�er is not too tied to details of the underlyingbase system. This is in part due to the simple and intuitive syntax and semanticsof SMV; we anticipate that de�ning a feature construct for more sophisticatedlanguages will be more complicated.ReferencesBarney, G. C. and dos Santos, S. M. (1985). Elevator Analysis, Design and Control.IEE Control Engineering Series 2. Peter Peregrinus Ltd.Berry, M. (1996). Proving properties of the lift system. Master's thesis, School ofComputer Science, University of Birmingham.



Bouma, L. G. and Velthuijsen, H., editors (1994). Feature Interactions in Telecommu-nications Systems, Amsterdam, The Netherlands. IOS Press.Cheng, K. E. and Ohta, T., editors (1995). Feature Interactions in TelecommunicationsIII, Tokyo, Japan. IOS Press.Clarke, E., Grumberg, O., and Long, D. (1993). Veri�cation tools for �nite-state con-current systems. In A Decade of Concurrency, number 803 in Lecture Notes inComputer Science, pages 124{175. Springer Verlag.Dini, P. et al., editors (1997). Feature Interactions in Telecommunications and Dis-tributed Systems IV, Montreal, Canada. IOS Press.Gri�eth, N., editor (1992). 1st International Workshop on Feature Interactions inTelecommunications Software Systems, St. Petersburg, Florida, USA.Huth, M. R. and Ryan, M. D. (1998). Logic in Computer Science: modelling and rea-soning about systems. Cambridge University Press. Book in preparation.Katz, S. (1993). A superimposition control construct for distributed systems. ACMTransactions on Programming Languages and Systems, 15(2):337{356.Kimbler, K. and Bouma, L. G., editors (1998). Feature Interactions in Telecommuni-cations and Software Systems V, Lund, Sweden. IOS Press.McMillan, K. L. (1993). Symbolic Model Checking. Kluwer Academic Publishers.Plath, M. C. and Ryan, M. D. (1998). Plug-and-play features. In(Kimbler and Bouma 1998), pages 150{164.


