In Advances in Computer Science, 1999, to appear.

SFI: a Feature Integration Tool*

Malte Plath and Mark Ryan

1 Introduction

The concept of feature has emerged in telephone systems analysis as a way
of describing optional services to which telephone users may subscribe. Features
offered by telephone companies include call-forwarding, automatic-call-back, and
voice-mail. Features are not restricted to telephone systems, however. Any part
or aspect of a specification which the user perceives as having a self-contained
functional role is a feature. For example, a printer may exhibit such features as:
ability to understand PostScript; Ethernet card; ability to print double-sided;
having a serial interface; and others. The ability to think in terms of features is
important to the user, who often understands a complex system as a basic system
plus a number of features. It is also an increasingly common way of designing
products.

To support this way of building a system from a basic system by successively
adding features, we have developed the tool SFI (‘SMV feature integrator’) that
automates the integration of features into a formal description of the system. The
main aim of our approach of extending a specification and verification language
with a feature construct is to provide a ‘plug-and-play’ system for experimenting
with features and witnessing their interactions. We handle the potential incon-
sistency between a feature and the base system by allowing features to override
existing behaviour in a tightly controlled way.

As a first case study, we have analysed the lift system and its features. The
base lift system consists of a lift which responds to requests made by pressing
buttons by moving up and down between floors and opening its doors. It works
according to an algorithm known as Single Button Collective Control (SBCC)
(Barney and dos Santos 1985). We present another case study, based on the tele-
phone system, in a related paper (Plath and Ryan 1998).

We have used our method and tool to extend the basic lift system with several
features that are found in more sophisticated lift systems, such as: parking on
the ground floor in anticipation of demand; detecting overloads; executive floor
priorities; etc. Our method can be used to investigate the circumstances such
features conflict, or do not work as intended.

The remainder of the paper is structured as follows. The next section de-
scribes our approach to features and feature-integration. In section 3, we briefly
introduce SMV; the reader is referred to other papers for a fuller explanation.
Section 4 contains details of our tool, called SFI, and section 5 describes a case
study in detail. We conclude in section 6.

* Financial support from the European Union through Esprit working groups FIRE-
works (23531) and ASPIRE (22704), and from British Telecom and the Nuffield
Foundation in the UK is gratefully acknowledged.

2 Features and feature-integration

A feature is a small increment in functionality to a base system. For example,
the lift’s ability to detect that it is overloaded, and to behave differently in those
circumstances, is a feature for the basic lift system. Software systems are often
upgraded by adding features.

The idea of our approach is to describe features formally as units of function-
ality which can be understood without detailed knowledge of the base system.
These are then automatically integrated into the system. Feature descriptions
try to avoid making assumptions about the architecture of the base system in
question.

In our approach, features are defined as self-contained textual units, in a
manner which makes them easy to understand in isolation. A feature description
can be seen as a prescription for changing and extending the basic system. The
process of integrating a feature into an existing system is automatic, rather like
applying a patch. Thus, they are easy to add to a system, or to remove, or to
re-specify. A feature usually overrides some old behaviour of the system; our
approach provides a clear mechanism for this. A feature may be thought of as a
particular case of superimposition (Katz 1993).

Features are intended to be used for structuring a system description like
(optional) modules, only that they lack their compositional character (“modu-
larity”). The specifier/developer of a feature ideally should refer only to the code
for the base system in the development of the feature. (Unless, of course, the
feature builds on an already feature-extended version of that system.)

The tool SFI is designed for use with the SMV description language (see
(Clarke et al. 1993) or (McMillan 1993)). That is, SFI takes a base system de-
scription written in SMV and some features written in the extension of SMV
that we define here, and returns a description in SM'V representing the integra-
tion of the features into the base system. Our approach is quite general, however,
and need not be tied to any particular system description language. A similar
tool could be developed for other description languages.

We chose the SMV language as the starting point for our approach, for the
following reasons:

— It is designed and optimised for concurrent, reactive systems, such as the tele-
phone system and the lift system. The feature interaction problem, which
we wish to investigate with our approach, arose originally in such systems.
(Cf. (Griffeth 1992), (Bouma and Velthuijsen 1994), (Cheng and Ohta 1995),

(Dini et al. 1997) and (Kimbler and Bouma 1998))

— The SMV tool (McMillan 1993) can check temporal properties of systems
described using the SMV language. This enables rapid development of rig-
orous and accurate examples. We use the SMV tool both before and after

feature integration with SFI.

Feature integration is the process by which a new system is constructed from
an old system and a feature; this is carried out automatically by our tool SFI.
Automating this process means that we can study questions such as: is a given

feature compatible with this system (i.e. is the integration possible)? Does it
matter in what order we integrate two features into a system? (The answer is
usually yes; a negative answer would show that the two features are in some sense
independent with respect to the system.) Does integrating feature A prevent or
interfere with the later integration of feature B? Does the integration of B break
the functionality provided by a previously integrated feature A7 These questions
are made precise below in section 5.3.

3 A very short introduction to SMV

Before we explain how feature integration with SFI works, we should say a
few words about SMV?2. We apologise for leaving this very sketchy and refer the
interested reader to (Clarke et al. 1993) and (McMillan 1993) for a more detailed
account. SMV is a CTL? model checker for (unlabelled) finite automata. It takes
the description of an automaton in the SMV language and some properties in
the form of CTL formulae. The following is one of the examples distributed with
the SMV system. (The line numbers are not part of the code.)

1: MODULE main

2: VAR

3: request : boolean;

4: state : {ready,busy};

5: ASSIGN

6: init(state) := ready;

7: next(state) := case

8: state = ready & request : busy;
9: 1 : {ready,busy};
10: esac;

11: SPEC AG(request -> AF state = busy)

Fig. 1. A system description for SMV

This piece of code defines a non-deterministic automaton with four states
({0, 1} x {ready, busy}). There are transitions from every state to every state, ex-
cept for the state (1, ready) from which only transitions to (1, busy) and (0, busy)
are allowed. The initial states are (1,ready) and (0, ready).

Generally, a model description for SMV consists of a list of modules with
parameters. Fach module may contain variable declarations (VAR), macro def-
initions (DEFINE) and assignments (ASSIGN). Possible types for variables are
boolean, enumerations (e.g. state), or finite ranges of integers. For declared

variables (as opposed to DEFINEd ones, which are merely macros) we may assign

2 Symbolic Model Verifier
Computational Tree Logic

the initial value (e.g. line 6) and the next value (e.g. lines 7-10), or alternatively,
the current value. The expressions that are assigned to variables may be non-
deterministic as in line 9: if state is not ready or request equals 0, the next
value of state can be both ready or busy. (Since request is not determined at
all by the description, it, too, will assume values non-deterministically.) It is im-
portant to bear in mind that all assignments are evaluated in parallel. However,
modules can be composed both asynchronously and synchronously.

After defining a system in the SMV language, we formulate the properties
to be verified in the temporal logic CTL (SPEC, e.g. line 11). The propositional
atoms for these formulae are boolean expressions over the variables of the system.

Given a set of propositional atoms P, CTL formulas are given by the following
syntax:

pu=p|T|=plp1Aps | AXp | EXp | AGy | EGy | AFp | EFp |
Alp1 U o] | E[p1 U go].

where p € P. (The other boolean operators (V, —, >, 1) are defined in terms of
A, = in the usual way. In the machine readable form &,| and ! are used instead
of A,V and —, respectively.)

Notice that CTL temporal operators come in pairs. The first of the pair is one
of A and E. A means ‘along all paths’ (inevitably), and E means ‘along at least
one path’ (possibly). The second one of the pair is X, F, G, or U, meaning ‘neXt
state’, ‘some Future state’, ‘all future states (Globally)’, and ‘Until’ respectively.
Notice that U is binary. The pair of operators in E[p; U -], for example, is EU .
Details of CTL are widely available in the papers by E. Clarke and others (for
example (Clarke et al. 1993) and (McMillan 1993)), and also in the forthcoming
introductory text (Huth and Ryan 1998).

A useful derived connective is AW , which uses the ‘weak until’ connective W,
which is similar to U, but ¢; Wy, does not require that ¢, eventually become
true if ; is indefinitely true. One defines Afp; Wa] as “E[-p2 U= (@1 V ¢2)].

4 SFI — a feature integration tool

In this section, we present an extension of the SMV syntax for describing fea-
tures. We describe SFI, our tool for compiling programs written in the extended
SMYV into pure SMV, thus giving semantics to the feature construct. We illus-
trate its semantics by developing the examples of features for the lift system.

4.1 Syntax and semantics of the feature construct

A formal specification of the syntax is given in figure 2. There are three main sec-
tions of the feature construct, introduced by the keywords REQUIRE, INTRODUCE
and CHANGE.

The REQUIRE and INTRODUCE sections deal with the vocabulary used by the
feature. The REQUIRE section stipulates what entities are required to be present
in the base program in order for the feature to be applicable. A collection of

FEATURE feature-name
[REQUIRE
{ MODULE module-name [(parameter-list)]
VAR variable-declarations }x

]

[INTRODUCE
{ MODULE module-name
VAR wvariable-declarations
ASSIGN assignments
DEFINE definitions
{ SPEC formula }x }x

]

[CHANGE
{ MODULE module-name
[IF condition THEN]
[impose-clause | treat-clause | }x

]

where:
impose-clause stands for
IMPOSE asstgnments
treat-clause stands for
TREAT var: = expri [, ...var, = expry, |
[] stands for ‘optional’
[| |] stands for ‘one of’
{ }* stands for ‘several’

Fig. 2. The syntax of the feature construct

modules and variables in modules may be specified there. The INTRODUCE section
states what new modules or new variables within old modules are introduced by
integrating the feature into a program. SMV DEFINE and ASSIGN clauses may also
be given, and CTL formulas in SPEC clauses may be given. These are textually
added to the program at integrate-time. All old modules and variables that are
used in the INTRODUCE section should be REQUIREd, and their absence will lead
to an error.

The CHANGE section specifies what the feature actually does, by introducing
a mask or wrap on top of the base program’s code. It allows the programmer to
describe certain kinds of changes to the program by affecting the way variables
are read and written. The CHANGE section gives a number of TREAT or IMPOSE
clauses, which may be guarded by a condition. These clauses allow the feature
to interfere with variables maintained by the base system. The IMPOSE clause
allows a feature to overwrite the current value of a variable with another value.
The TREAT clause enables a feature to mask the actual value of a variable with a
different value. It does not change the actual value, but arranges matters so that
when the variable is accessed (and the guarding condition is true), the actual

value is hidden and a different value is returned. The precise meaning of TREAT
and IMPOSE is given below.

4.2 What SFI does

SFT takes a base system description written in SMV and a feature written using
the syntax of figure 2, and returns a new SMV description which represents the
integration of the feature into the base. It checks the presence of the entities
specified in the REQUIRE section, and inserts the code given in the INTRODUCE
section in the appropriate places. It then alters the code of the base system in
the way prescribed by the CHANGE section of the feature, as follows:

— For CHANGES of the form
IF cond THEN TREAT z = expr
Replace all right-hand-side occurrences of x by
case
cond : expr;
1 : T
esac
This means that whenever z is read, the value returned is not z’s value, but
the value of this expression. Thus, when cond is true, the value returned is e.
In short, when cond is true, we treat z as if it had the value given by expr.
Note that we require expr to be deterministic.
— For CHANGES of the form
IF cond THEN IMPOSE z := expr
In assignments z:= oldexpr or next(z) := oldexpr, replace oldexpr by
case
cond : expr;
1 : oldexpr;
esac
Whereas TREAT just deals with expressions reading the value of z, i.e. occur-
rences on the right-hand-side of an assignment to another variable, IMPOSE
deals with assignments to the variable z. It has the effect that, while cond
is true, x is only assigned the value of expr; but when cond is false, z is
assigned the value that it would have been assigned in the original program.
— For CHANGEs that are not guarded by IF cond THEN, the case statements
are of course omitted, and the variable, or respectively, the expression are
replaced directly by the new expression (expr).

The feature integration is deemed successful if the following are true:

— The elements stipulated in the REQUIRE section were present in the base
program; and

— After the textual substitutions have been performed, the resulting program
satisfies the CTL formulas introduced in the feature.

The semantics of TREAT and IMPOSE can also be given directly in terms
of the automaton, rather than in terms of the SMV text. This is mainly of
theoretical interest and we omit it for the sake of brevity.

We have implemented the integrator in C. It accepts as input SMV text and
feature descriptions; it performs the necessary checks and substitutions and then
writes out a new SMV source file.

5 The lift system Case study and experimental results

As a first case study, we have analysed the lift system and its features. We first
describe the base lift system; then we look at its features.

5.1 The base system, SBCC

The base lift system consists of a single lift. It accepts requests made by users
pressing buttons on the floor landings and from inside the lift. It moves up and
down between floors and opens and closes its doors in response to those requests.
It works according to an algorithm known as Single Button Collective Control
(SBCC) (Barney and dos Santos 1985). In essence, the lift travels in its current
direction to the next floor at which there is a request, and opens its doors; then
it closes its doors and continues in the current direction, until there are no more
requests pending in that direction. Then it reverses its direction of travel, and
proceeds as before. Notice that the SBCC algorithm stipulates only one button
on each landing, rather than the conventional two. Passengers press the button,
but they are not guaranteed that the lift will be willing to go in the direction
they wish to travel.

The SMV code for the base lift system is shown in figures 3 to 5, adapted from
(Berry 1996). The module main (figure 3) declares five instances (one for each
landing) of the module button (passing to each one as argument the conditions
under which that button should cancel itself). It also declares one instance of
1lift, to which it passes a parameter whose value at any time is the next landing
in the current direction of the lift which has requested the lift, and another
parameter whose value at any time expresses whether there is a landing request.

The 1ift module (figure 5) declares the variables floor, door and direction
as well as a further 5 buttons, this time those inside the lift.

By inspecting the button module (figure 4), one finds that it sets its variable
pressed to false if the reset parameter is true; otherwise, if it was pressed
before, it persists in that state; otherwise, it non-deterministically becomes true
or false. This non-determinism is to model the fact that a user may come along
and press the button at any time. In common with most actual lift systems,
the user may not un-press the button; once pressed, it remains pressed until the
conditions to reset it arise inside the lift system.

MODULEmain
VAR

landingBut1 : button ((lift.floor=1) & (lift.door=open));
landingBut2 : button ((lift.floor=2) & (lift.door=open));
landingBut3 : button ((lift.floor=3) & (lift.door=open));
landingBut4 : button ((lift.floor=4) & (lift.door=open));
landingBut5 : button ((lift.floor=5) & (lift.door=open))

lit : lift (landing_call, no_call);

DEFI NE
landing_call 1=
case
lift.direction = down :
case
landingBut5.pressed & lift.floor>4 : 5;
landingBut4.pressed & lift.floor>3 : 4;
landingBut3.pressed & lift.floor>2 : 3;
landingBut2.pressed & lift.floor>1 : 2;
landingBut1.pressed 1
1 :0;
esac;
lift.direction = up :
case

landingButl.pressed & lift.floor<2 : 1;

landingBut2.pressed & lift.floor<3 : 2;

landingBut3.pressed & lift.floor<4 : 3;

landingBut4.pressed & lift.floor<5 : 4;

landingBut5.pressed . 5;

1 :0;

esac;
esac;
no_call . = (NlandingButl.pressed &

llandingBut2.pressed &
llandingBut3.pressed &
llandingBut4.pressed &
llandingBut5.pressed);

Fig. 3. The SMV code for the module main in the lift system.

MCDULEbutton (reset)
VAR
pressed : bool ean;
ASSI GN
i nit (pressed) :=0;
next (pressed) 1= case
reset :0;
pressed :1;
1 :{0,1};
esac;

Fig. 4. The SMV code for the module button in the lift system.

MODULE ift (landing_call, no_call)

VAR
floor :{1,2,3,4,5};
door : {open,closed};
direction : {up,down};
liftButs : button (floor=5 & door=open);
liftBut4 : button (floor=4 & door=open);
liftBut3 : button (floor=3 & door=open);
liftBut2 : button (floor=2 & door=open);
liftButl : button (floor=1 & door=open);
DEFI NE
idle . = (no_call & lliftButl.pressed & lliftBut2.pressed &
lliftBut3.pressed & !liftBut4.pressed & !liftBut5.pressed);
lift_call 1= case
direction = down :
case
liftBut5.pressed & floor>4 : 5;
liftBut4.pressed & floor>3 : 4;
liftBut3.pressed & floor>2 : 3;
liftBut2.pressed & floor>1 : 2;
liftButl.pressed 1
1 :0;
esac;
directon=up :
case
liftButl.pressed & floor<2 : 1;
liftBut2.pressed & floor<3: 2;
liftBut3.pressed & floor<4 : 3;
liftBut4.pressed & floor<5 : 4;
liftBut5.pressed .5
1 :0;
esac;
esac;
ASSI GN
door .= case
floor=lift_call : open;
floor=landing_call : open;
1 : closed;
esac;
i nit (floor) 1=1
next (floor) 1= case
door=open : floor;
lift_call=0 & landing_call=0 : floor;
direction=up & floor<5 - floor + 1;
direction=down & floor>1 : floor - 1,
1 : floor;
esac;
i nit (direction) : = down;
next (direction) 1= case
idle : direction;
floor=5 :down;
floor=1 :up;

lift_call=0 & landing_call=0 & direction=down : up;
lift_call=0 & landing_call=0 & direction=up : down;
1 : direction;

esac;

Fig. 5. The SMV code for the module 1ift in the lift

system.

Properties for basic lift system. Before any features are added, we may use SMV
to check the following basic properties of the lift system.* These properties are
also checked against the featured systems, to test whether the features violate
them. (See also table 1.)

1. Pressing a landing button guarantees that the lift will arrive at that landing

4

and open its doors:

AG (landingButi.pressed
-> AF (lift.floor=i & lift.door=open))

. If a button inside the lift is pressed, the lift will eventually arrive at the

corresponding floor.

AG (1ift.liftButi.pressed
-> AF (lift.floor=:¢ & lift.door=open))

. The lift will not change its direction while there are calls in the direction

it is travelling. The first part of the formula is for upwards travel, and the
second part for downwards travel:
AG(Vi < j. (floor=; & liftButj.pressed & direction=up
-> A[direction=up U floor=j])
& Vi > j. (floor=:¢ & liftButj.pressed & direction=down
-> A[direction=down U floor=;5]))

. If the door closes, it may remain closed.

'AG (door=closed -> AF door=open)

. The lift may remain idle with its doors closed at floor i.

EF (floor=i & door=closed & idle)
AG (lift.floor=i & lift.idle & lift.door=closed
-> EG (lift.floor=¢ & lift.door=closed))

. The lift may stop at floors 2, 3, and 4 for landing calls when travelling

upwards:
Vi e {2,3,4}. 'AG ((floor=i & !1liftButi.pressed
& direction=up) -> door=closed)
The lift may stop at floors 2, 3, and 4 for landing calls when travelling or
downwards:
Vi e {2,3,4}. 'AG ((floor=i & !1liftButi.pressed
& direction=down) -> door=closed)

To enhance the readability of the specifications we present them in a meta-

notation, using variables and quantifiers which SMV does not allow; translat-
ing this into pure SMV notation is purely mechanical. In these examples, any
free variables are universally quantified. For example, if we expand the first
specification below to pure SMV, we obtain the conjunction of the formulas:

AG (landingButl.pressed -> AF (lift.floor=1 & lift.door=open))

through

AG (landingButb5.pressed -> AF (lift.floor=5 & lift.door=open))

5.2 Features of the lift system

The following features of the lift system were described using our feature con-
struct, and then integrated into the base system using the feature integrator:

Parking. When a lift is idle, it goes to a specified floor (typically the ground
floor) and opens its doors, in order to optimise performance. This is because
the next request is anticipated to be at the specified floor. The parking
floor may be different at different times of the day, anticipating upwards-
travelling passengers in the morning and downwards-travelling passengers in
the evening. Code for the parking feature is given in figure 6. In our example,
it parks on the ground floor (i.e. floor number 1) by treating the situation
as if there was a call to that floor whenever there are no pending requests.

Lift-%-full. When the lift detects that it is more than two-thirds full, it does
not stop in response to landing calls, since it is unlikely to be able to accept
more passengers. Instead, it gives priority to passengers already inside the
lift, as serving them will help reduce its load.

Overloaded. When the lift is overloaded, the doors will not close. Some passen-
gers must get out. The code for this feature is given in figure 7. It introduces
a new boolean variable overload (signifying that the lift is overloaded) and
imposes that the doors are always open when overload is true.

Empty. When the lift is empty, it cancels any calls which have been made inside
the lift. Such calls were made by passengers who changed their mind and
exited the lift early, or by practical jokers who pressed lots of buttons and
then got out.

Executive Floor. The lift gives priority to calls from the executive floor.

Our method provides a framework to plug these different features into the lift
system, and by examining the result, to witness interactions and interferences
between features. The SFI tool integrates one or more of the features, in a given
order, into the base system. The result of our experimentation with the features
for the lift system is summarised in table 1.

Each row represents a combination of the base system and some features, and
each column represents a property which SMV has checked against the relevant
systems. The first row is the unfeatured lift system; rows 2—6 represent the base
system with just one feature, and the remaining rows represent the base system
with two features. The order in which two features are added matters in general.
In those cases where exactly the same specifications are satisfied, we list just one
ordering. (Thus, inspection of the table reveals that the only features which do
not commute are Lift-2-full and Executive Floor.)

The properties, represented by columns in the table, are divided into two
groups. To the left of the double line are properties (1-7) which apply to any
lift system (featured or not), and have been described above. We can see which
properties are broken by the addition of various features. To the right of the
double line are the properties (8-14) which are designed to test the integration
of specific features.

FEATURE park

REQUI RE
MODULEmain -- require all landing buttons
VAR
landingButl.pressed : bool ean; landingBut2.pressed : bool ean;
landingBut3.pressed : bool ean; landingBut4.pressed : bool ean;
landingBut5.pressed : bool ean;
MODULEIift -~ require all lift buttons and the variable floor
VAR
floor :{1,2,3,4,5};
liftButl.pressed : bool ean; liftBut2.pressed : bool ean;
liftBut3.pressed : bool ean; liftBut4.pressed : bool ean;
liftBut5.pressed : bool ean;

| NTRODUCE

MODULEIift —- no new variables introduced
SPEC-- lift parks at floor 1:

AG (floor=4 & idle —> E [idle U floor=1])
SPEC-- lift cannot park at floor 3:

AG ('EG(floor=3 & door=closed))

CHANGE

MODULEmain

| Fllift.floor=1 &

I(landingButl.pressed | lift.liftButl.pressed |
landingBut2.pressed | lift.liftBut2.pressed |
landingBut3.pressed | lift.liftBut3.pressed |
landingBut4.pressed | lift.liftBut4.pressed |
landingBut5.pressed | lift.liftBut5.pressed)

THEN TREAT landingButl.pressed = 1
END

Fig. 6. The code for the Parking feature

Whenever a property is violated by a (featured) system, SMV prints out a
trace showing how the violation can occur. In most cases such traces illustrate
possible “pathological” behaviours quite succinctly.

In the following we list the properties which were checked for the featured
systems. Each property corresponds to a requirement of a feature and hence
serves to test the correct operation of that feature.

Properties for the featured lift system.

8. Empty:
The lift will not arrive empty at a floor unless the button on that landing
was pressed.
AG (lift.floor=¢ & lift.door=open & lift.empty
-> landingButi.pressed)
9. Empty:
The lift will honour requests from within the lift as long as it is not empty.
AG Vi. (1ift.liftButi.pressed & !lift.empty)
-> AF ((lift.floor=¢ & lift.door=open) | lift.empty)

FEATURE overloaded

REQUI RE
MODUL Elift
VARdoor : {open, closed};
floor : 1..4;
| NTRODUCE
MODULEift
VAR overload : boolean;
ASSI GNoverload := case
door = closed : overload;
1 :{0,1};
esac;

-~ the lift will not move while overloaded
SPEC AG (floor=1 & overload —> A [floor=1 U !overload])
—-the doors cannot be closed if the lift is overloaded
SPEC !EF (overload & door=closed)

CHANGE
MODUL Elift

| F overload

THEN | MPCSEdoor:=open;

Fig. 7. The code for the Overloaded feature

Property

Feature 1 [Feature 2 [[1]2[3]4]5]6]7] 8] 9[10[11]12[13[14]
none [none IVIVIVIVIVIVIVI T [[[| []
Empty none VIX | x IVIVIVIVIVIVI————|—
Overloaded |none x| x| X |V IVIVIVII—— V|V |—|—|—
Parking none VIVIVIVIX VIV Vv
Lift-2-full |none < VIV IVIVIVIVII—————|V|—
Exec. Floor|none x| % V|V IVIVIVII—————|—|V
Overloaded |[Empty x | X | x [V[VIVIVI X | > V|V |—|—|—
Parking Empty VIX | x VX VIVII————|V|—|—
Lift-2-full [Empty x| x| x|V [VIVIVIVIV X
Exec. Floor|Empty x | x| x [V[VIVIVIV]* |———|—|V
Parking Overloaded || x | x | x [/ X |V [V|[—|—| V|V |V |—|—
Lift-2-full [Overloaded || x|x|x[v|V|V|V VIV X
Exec. Floor|Overloaded || x | x | x |/|/|V|V||—|—| V|V |—|—| %
Lift-2-full [Parking < IV IVIVIX|VIVII————|V IV |—
Exec. Floor|Parking x| x VIVIVIVIV VARV
Exec. Floor|Lift-2-full [[x|x[v/|V|VIV|V V[x
Lift-2-full [Exec. Floor||x|x|/|V/|x|V|V|[—|—|—|—|—| x| x

Explanation of symbols:

v/ property holds
x property violated

— property not applicable
Properties are numbered as in sections 5.1 and 5.2

Table 1. Feature interactions for the lift system

10. Overloaded:
The doors of the lift cannot be closed when the lift is overloaded.
'EF (overload & door=closed)
11. Overloaded:
The lift will not move while it is overloaded.
AG (lift.floor=i & lift.overload
-> A[1lift.floor=¢ W !1lift.overload])
12. Parking:
The lift will not remain idle indefinitely at any floor other than floor 1.
AG Vi #1. 'EG(floor=i & door=closed)
13. Llf‘r———full
Lift calls have precedence when the lift is '— full (indicated by the flag
tt-full).
AG Vi #j. ((1ift.tt-full &
lift.liftButi.pressed & !lift.liftButj.pressed)
-> A ['(Q1ift.floor=j & lift.door=open)
U ((lift.floor=i & door=open)
| '1ift.cp | 1lift.liftButj.pressed)])
14. Executive Floor:
The lift will answer requests from the executive floor (1ift.ef).
AG (lift.ef=:
-> A[(landingButi.pressed -> AF(lift.floor=i))
W llift.ef=i 1)

5.3 Feature interaction

A significant motivation for the feature construct introduced in this paper is
the concept of feature interaction. When several features are integrated on
top of a base system, they may interfere with each other, or interact in ways
which are hard to predict. This problem has been dubbed the feature interac-
tion problem in the literature on telecommunications. A series of workshops is
dedicated to feature interaction: (Griffeth 1992), (Bouma and Velthuijsen 1994),
(Cheng and Ohta 1995), (Dini et al. 1997) and (Kimbler and Bouma 1998).

We write S+ F for the result of integrating the feature F' into the base system
S; and we write S F ¢ to mean that the system S satisfies the property ¢. Our
method and tool can detect the following kinds of feature interaction.

Non-commutativity of features. If the order of integration matters, i.e. if
(S+ F1) + F> and (S + Fy) + F; satisfy different specifications, we say that
F| and F5 are not commutative with respect to S.
In the case of the lift system, every pair of features is commutative except
L1ft———fu11 and Executive-floor. As shown in table 1, integrating Executive-
floor’ ﬁrst and then Llft———full satisfies the spec1ﬁcat10n that lift calls take
precedence when the lift is £ full but integrating them the other way around
does not. Intuitively, this 19 because, in the second case, an executive may
call the lift when it is = 2 -full, and that request will satlsﬁed Indeed, the trace
output by SMV for thls property failure shows such a scenario.

Violation of a property introduced by another feature. Let ¢, and ¢,
be properties introduced by features F; and Fy, respectively. Independently
of whether F} and F» commute or not, we may find that

— S+ Fi F g1, but (S+ Fi) + Fy 7 ¢1. In this case, F5 interferes with a
previously applied feature, F, preventing it from working correctly.
— S+ Fy F o, but (S+ Fi) + F> ¥ p2. In this case, Fy prevents the
successful integration of a later feature F.
The non-commuting pair of features Lift—%—full and Executive-floor are an
example of the first kind of these interactions. The pairs

(Overloaded, Empty),
(Lift—%—full, Empty),
(Executive-floor, Empty),
(Lift-2-full, Overloaded),
(Executive-floor, Overloaded),

are each commutative, and are examples of both these types of interaction.

Joint violation of base property. This kind of interference occurs if (S +
Fy) + F, violates specifications of the base system that hold for both S+ F;
and S + F,. The features Lift—%—full and ExecutiveFloor are an example
of such an interaction; when integrated in that order, the resulting system
violates the property that the lift can remain idle at any floor.

6 Conclusions and future work

We support the user’s natural tendency to think of a sophisticated software
system as a base system together with a collection of features, by providing a
feature construct for the SMV description language. We have implemented a
tool, called SFI, which compiles the feature construct into pure SMV. The lift
system provides a case study, for which we specify five features and explore
their behaviours and interferences using SFI. Our method detects a variety of
interactions.

The construct for defining features has proved to be both intuitive and pow-
erful; witness the variety of features we have defined. The TREAT and IMPOSE
clauses are able to express the impact the feature has on the underlying code in
a natural way, and the feature specifier is not too tied to details of the underlying
base system. This is in part due to the simple and intuitive syntax and semantics
of SMV; we anticipate that defining a feature construct for more sophisticated
languages will be more complicated.

References

Barney, G. C. and dos Santos, S. M. (1985). Elevator Analysis, Design and Control.
IEE Control Engineering Series 2. Peter Peregrinus Ltd.

Berry, M. (1996). Proving properties of the lift system. Master’s thesis, School of
Computer Science, University of Birmingham.

Bouma, L. G. and Velthuijsen, H., editors (1994). Feature Interactions in Telecommu-
nications Systems, Amsterdam, The Netherlands. IOS Press.

Cheng, K. E. and Ohta, T., editors (1995). Feature Interactions in Telecommunications
I1I, Tokyo, Japan. IOS Press.

Clarke, E., Grumberg, O., and Long, D. (1993). Verification tools for finite-state con-
current systems. In A Decade of Concurrency, number 803 in Lecture Notes in
Computer Science, pages 124-175. Springer Verlag.

Dini, P. et al., editors (1997). Feature Interactions in Telecommunications and Dis-
tributed Systems IV, Montreal, Canada. IOS Press.

Griffeth, N., editor (1992). 1st International Workshop on Feature Interactions in
Telecommunications Software Systems, St. Petersburg, Florida, USA.

Huth, M. R. and Ryan, M. D. (1998). Logic in Computer Science: modelling and rea-
soning about systems. Cambridge University Press. Book in preparation.

Katz, S. (1993). A superimposition control construct for distributed systems. ACM
Transactions on Programming Languages and Systems, 15(2):337 356.

Kimbler, K. and Bouma, L. G., editors (1998). Feature Interactions in Telecommuni-
cations and Software Systems V, Lund, Sweden. IOS Press.

MecMillan, K. L. (1993). Symbolic Model Checking. Kluwer Academic Publishers.

Plath, M. C. and Ryan, M.D. (1998). Plug-and-play features. In
(Kimbler and Bouma 1998), pages 150-164.

