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Abstract. The logic S5n is widely used as the logic of knowledge for ideal a-
gents in a multi-agent system. Some extensions of S5n have been proposed for
expressing knowledge sharing between the agents, but no systematic exploration
of the possibilities has taken place. In this paper we present a spectrum of de-
grees of knowledge sharing by examining and classifying axioms expressing the
sharing. We present completeness results and a diagram showing the relations be-
tween some of the principal extensions of S52 and discuss their usefulness. The
paper considers the case of a group of two agents of knowledge.

1 Introduction

The modal logic S5n (see for example [18, 17]), whose mono-modal fragment S5 was
first proposed in [7] to represent knowledge, has been used tomodel knowledge in
multi-agent systems (MAS) for some years now [4]. The logic S5n is a classical modal
logic containingn modalities�i, wherei is in a setA of agents, expressing the private
knowledge of agenti. Results that extend the logic S5n to model group properties such
as common knowledge and distributed knowledge within a group of agents are also well
known ([4, 17]).

The logic S5n models anideal set of agents, in particular agents enjoy positive and
negative introspection and their knowledge is closed underimplication; in other words
they areperfect reasoners.

A peculiarity of the logic S5n, is that there is noa priori relationship between the
knowledge of the various agents. In some applications, however, this might not be what
is desired. For example, a central processing unitj of a collective map making ([3])
robotic MAS should be told of any knowledge acquired by any other agent. Therefore
the agentj should know everything that is known by any agent. In the formal language
of modal logic, under the usual assumptions of ideality, this scenario can be represented
by S5n enriched by the axiom:�ip) �jp, for all i 2 A:
Another example of knowledge sharing between agents concerns a MAS whose agents
(databases in this example) have computation capabilitiesthat can be ordered. If the



agents are executing the same program on the same data then itis reasonable to model
the MAS by enriching the logic S5n by:�ip) �jp; i � j
where� expresses the order in the computational power at disposal of the agents. In
these two cases, some information is being shared among the agents of the group.

A third example of sharing in the literature is the axiom�i�jp) �j�ip; i 6= j
[2] which says that:if agenti considers possible that agentj knowsp then agentj must
know that agenti considers possible thatp is the case.

It is easy to imagine other meaningful axioms that expressinteractionsbetween
the agents in the system; clearly there is aspectrumof possible degrees of knowledge
sharing. At one end of the spectrum is S5n, with no sharing at all. At the other end,
there is S5n together with �ip, �jp; for all i; j 2 A;
saying that the agents have precisely the same knowledge (total sharing). The three
examples mentioned above exist somewhere in the (partiallyordered) spectrum between
these two extremes.

Some instances of such systems have already been identified in [2, 1, 15] and in
other papers. Our aim in this paper is to explore the spectrumsystematically. We restrict
our attention to the case of two agents (i.e. to extensions ofS52), and explore axiom
schemas of the forms �p) �p�p) �� p�� p) �p�� p) �� p
where each occurrence of� is in the setf�1;�1;�2;�2g.

Technically we will prove correspondence properties and completeness for exten-
sions of S52 with axioms of these forms. Naturally, this will not give thecomplete
picture: there may be interesting axioms of other forms thanthose listed above. Howev-
er, analysis of the literature certainly suggests that mostaxioms studied for this purpose
are of one of these forms. They are sufficient for expressing how knowledge and facts
considered possible are related to each other up to a level ofnesting of two, which is
already significant for human intuition. Note also that the examples above are included
in the axiom patterns.

The rest of this paper is organised as follows. In Section 1.1we fix the notation
and recall two known results that we will extensively use in the following. In Section 2
we analyse and discuss the interaction axiom schema the form�p) �p. We will then
move to Section 3 where we discuss the case of the consequent composed by two modal
operators. In Section 4 we will analyse the interaction axioms resulting from two nested
modalities both in the antecedent and in the consequent. Finally in Section 5 we present
the spectrum of interaction axioms that is generated.



1.1 Preliminaries

Our syntax is the standard bi-modal languageL, defined from a setP of propositional
variables: � ::= p j :� j �1 ^ �2 j �i�
wherep 2 P; i 2 f1; 2g.

As standard, we use bi-modal Kripke framesF = (W;R1; R2) and modelsM =(W;R1; R2; �) ([13]) to interpret the languageL. Interpretation, satisfaction and valid-
ity are defined as standard (see for example [10]).

The paper is devoted to extensions of S52, which is defined by the following Hilbert
style axioms and inference rules.

Taut `S52 t, wheret is any propositional tautology
K `S52 �i(p) q)) (�ip) �iq)
T `S52 �ip) p
4 `S52 �ip) �i�ip
5 `S52 �ip) �i�ip
US If `S52 �, then`S52 �[ 1=p1; : : : ;  n=pn℄
MP If `S52 � and`S52 �)  , then`S52  
Nec If `S52 �, then`S52 �i�

In the above the indexi is in f1; 2g.
The symbol̀ means provability in that logic, or in the extension under considera-

tion. By S52 + f�g we denote the extension ofS52 in which the formula� is added to
the axioms.

The following is also widely known.

Theorem 1. The logic S52 is sound and complete with respect to equivalence framesF = (W;�1;�2).
We will always be working in the classFE of equivalence frames.

We also recall a standard lemma that we will use in this paper.

Lemma 1. For any � 2 L, we havè �i� , �i�i� , �i�i� and ` �i� ,�i�i�, �i�i� wherei 2 A.

2 Interaction axioms of the form�p) �p
We start with extensions of S52 with respect to interaction axioms that can be expressed
as: ��) ��, where� 2 f�1;�2;�1;�2g: (1)

There are 16 axioms of this form; factoring 1-2 symmetries reduces this number to 8,
of which 4 are already consequences of S52 and therefore do not generate proper exten-
sions1. The remaining 4 are proper extensions of S52 and give rise to correspondence
properties as described in Fig. 1.

1 The four are�1p) �1p,�1p) �1p,�1p) �2p, and�1p) �1p.



Interaction AxiomsCompleteness�1p) �2p �2��1�1p) �1p �1= idW�1p) �2p �1=�2= idW�1p) �2p �1��2
Fig. 1. Proper extensions of S52 generated by axioms of the form�� ) ��. Formulas not
included in the table but which are instances of this schema give completeness with respect to
equivalence frames.

Theorem 2. An equivalence frameF validates one of the axioms in Figure 1 if and
only ifF has the corresponding property.

Theorem 3. All the logics S52+ f�g, where� is a conjunction of formulas expressible
from axiom schema 1 are sound and complete with respect to theintersection of the
respective class of frames reported in Fig. 1.

The results of Theorem 3 are quite well known. The most important logic is prob-
ably the one that forces the knowledge of an agent to be a subset of the knowledge
of another. In Section 1 we have discussed two scenarios in which this can be proven
useful. Stronger logics can be defined by assuming that the modal component for one
of the agents collapses onto the propositional calculus. When this happens we are in
a situation in which “being possible according to one agent”is equivalent to “being
known” and this in turn is equivalent to “being true”. It is clear that this is indeed a very
strong constraint which limits the expressivity of our language. Still these logics can be
proven to be consistent.

The strongest consistent logic is Triv22 that can be defined from S52 by adding the
axiom�1p) �2p to S52 or equivalently by adding both�1p) �1p and�2p) �2p.
In this logic the two agents have equal knowledge that is equivalent to the truth on the
world of evaluation.

3 Interaction axioms of the form�p) � � p
There are 64 axioms of the shape��) �� � where� 2 f�1;�2;�1;�2g: (2)

Factoring 1-2 symmetries reduces this number to 32. Again, many of these (14 in num-
ber) do not generate proper extensions of S523. For the remaining 18, the completeness
results for the extension they generate are more complicated than the ones in the previ-
ous section. We present one result in detail (the reader is referred to [14] for the other
proofs): it concerns the axiom �1p) �1�2p:

2 Triv2 is the logic obtained from S52 by adding�1p, p and�2p, p.
3 �1p ) �1�1p, �1p ) �1�1p,�1p ) �1�2p, �1p ) �1�1p,�1p ) �1�1p, �1p )�1�2p, �1p ) �2�1p, �1p ) �2�1p, �1p ) �2�2p, �1p ) �2�2p, �2p ) �1�2p,�2p) �2�1p, �2p) �2�2p, and�2p) �2�2p.



Lemma 2. Let F be an equivalence frame.F j= �1p ) �1�2p if and only ifF is
such that8w9w0 2 [w℄�1 : [w0℄�2 � [w℄�1 .

([w℄�1 is the�1-equivalence class ofw.)

Proof. From right to left; consider any modelM and a pointw in it such thatM j=w�1p. So, for every pointw0 such thatw �1 w0 we haveM j=w0 p. But, by assumption,
there exists a pointw0 2 [w℄�1 such that[w0℄�2 � [w℄�1 . So,p holds at any point of
the equivalence class[w0℄�2 , and soM j=w0 �2p. ThereforeM j=w �1�2p.

For the converse, suppose the relational property above does not hold. Then there
exists a frameF and a pointw in F such that for anyw0 2 [w℄�1 we have[w0℄�2 6�[w℄�1 , i.e. we have the existence of a pointw00 2 [w0℄�2 such thatw00 =2 [w℄�1 . Con-
sider a valuation� such that�(p) = fw0 j w �1 w0g. We have(F; �) j=w �1p and(F; �) 6j=w00 p. So(F; �) 6j=w0 �2p. So we have(F; �) 6j=w �1�2p which is absurd.

Lemma 3. The logic S52 + f�1p ) �1�2pg is sound and complete with respect to
equivalence frames satisfying the property8w9w0 2 [w℄�1 : [w0℄�2 � [w℄�1 .

Proof. Soundness was proven in first part of Lemma 2.
For completeness we prove that the logic S52 + f�1p ) �1�2pg is canonical. In

order to do that, suppose, by contradiction, that the frame of the canonical model does
not satisfy the relational property above. Then, it must be that there exists a pointw
such that: 8w0 2 [w℄�1 9w00 : w0 �2 w00 andw 6�1 w00:
Call w01; : : : ; w0n; : : : the points in[w℄�1 , andw00i the point in[w0i℄�2 such thatw 6�1w00i ; i = 1; : : : ; n; : : :. Recall (for example see [10], page 118) thatw �1 w0 on the
canonical model is defined as8� 2 L (�i� 2 w implies� 2 w0); w 6�j w0 is de-
fined as9� 2 L (�j� 2 w and:� 2 w0). So we can find some formulas�i 2L; i = 1; : : : ; n; : : : such that�1�i 2 w;�i 2 w0i;:�i 2 w00i ; i = 1; : : : ; n; : : :
Call � = ^ni=1�i; we have�1�i 2 w; i = 1; : : : ; n; : : :. So�1� 2 w. But :� 2w00i ; i = 1; : : : ; n; : : :. So�2� 2 w0i for every i in f1; : : : ; n; : : :g. So�1�2:� 2 w,
i.e.:�1�2� 2 w. But�1� 2 w and` �1� ) �1�2�, sow would be inconsistent.
Therefore the canonical frame must satisfy the property above and the logic is complete
with respect to equivalence frames satisfying the property8w9w0 2 [w℄�1 : [w0℄�2 �[w℄�1 .

Similar results hold for the other 17 axioms of the form 2, andthe situation is sum-
marised in Fig. 2. See [14] for full details.

Theorem 4. All the logics S52+ f�g, where� is a conjunction of formulas expressible
from axiom schema 2 are sound and complete with respect to theintersection of the
respective class of frames reported in Fig. 2.

Among all these axioms, the most intuitive ones in terms of knowledge are probably�1p) �2�1p and its “dual”�2p) �1�2p, in which one agent knows that the other
knows something every time this happens to be the case. It is interesting to see that this
is equivalent to one agent knowing everything known by the other agent.



Interaction Axioms Completeness�1p) �1�2p 8w9w0 2 [w℄�1 : [w0℄�2 � [w℄�1�1p) �2�1p �2��1�1p) �2�2p �2��1�1p) �2�1p �2��1�1p) �1�2p �2��1�1p) �2�2p �2��1�1p) �1�1p �1= idW�1p) �1�2p �2= idW�1p) �1�1p �1= idW�1p) �1�2p �1=�2= idW�1p) �1�2p �1��2�1p) �2�1p �1= idW�1p) �2�2p �1=�2= idW�1p) �2�2p �1��2�1p) �2�1p �2=�1= idW�1p) �2�2p �1=�2= idW�1p) �2�1p �2��1�1p) �2�2p �1��2
Fig. 2. Proper extensions of S52 generated by axioms of the form�� ) � � �. Formulas not
included in the table but which are instances of the schema give completeness with respect to
equivalence frames.

A more subtle, independent axiom expressed by axiom schema 2is the formula4:

�1p) �1�2p;
which reads “If agent 1 knowsp, then he considers possible that agent 2 also knowsp”.
The above is an axiom that regulates a natural kind of “prudence” assumption of agent
1 in terms of what knowledge agent 2 may have. This is meaningful in MAS in which
agents have similar characteristics. In these scenarios when an agent knows a fact, it
may be appropriate to assume that the other agent, by acquiring the same information
from the environment and by following her same reasoning, could have reached the
same conclusion. Note that very often humans act as if they followed this axiom.

We leave it to the reader to explore other interactions from the table above.

Note that by taking the contrapositive of axiom schema 2 we can express axioms of
the form��p) �p. So all those axioms are also covered in this section. For simplicity
we do not report the case of antecedents indexed as 2, but by applying symmetry it is
straightforward to generate the corresponding axioms.

4 The technical details of this formula have been discussed inLemma 2 and Lemma 3.



4 Interaction axioms of the form� � p) � � p
We now discuss the most complex class of axioms we will see in this paper, i.e. exten-
sions of S52 with interaction axioms expressible as:�� �) �� �, where� 2 f�1;�2;�1;�2g: (3)

Of the 256 such axioms, we lose half by 1-2 symmetry; of the remaining 128, 64 of
them begin with�i�j with i = j, which, by well known S5 equivalences (Lemma 1)
collapse to a case of the previous section. The remaining 64 axioms divide into 26 which
do not induce proper extensions of S525 and 38 axioms which do. Figure 3 summarises
the result for the proper extensions.

Some results for axioms of the form of axiom schema 3 are already available in the
literature:

Lemma 4 ([2]). The logic S52 + f�1�2p ) �2�1pg is sound and complete with
respect to frames satisfying the property: for allw;w1; w2 2 W such thatw �1 w1,w �2 w2 there exists a pointw such thatw1 �2 w;w2 �1 w.

Figure 3 shows that many of the extensions are equivalent to some logic examined
in the previous sections. For example, we have the following.

Lemma 5. The logic S52+f�1�2p) �1�2pg is sound and complete with respect to
equivalence frames such that�1��2.
Proof. We show that the logic S52 + f�1�2p ) �1�2pg is equivalent to the logic
S52 + f�2p) �1pg. In order to see this, we prove that:`S52+f�1�2p)�1�2pg �2p) �1p and `S52+f�2p)�1pg �1�2p) �1�2p;
where S52+� is the logic (closed under uniform substitution) obtained from S52 by
adding the formula�.

From left to right. Suppose�1�2p ) �1�2p. We have�1p ) �1�2p by T.
But since, by contraposition of the hypothesis, we have�1�2p ) �1�2p, we obtain�1p) �1�2p, which in turn implies�1p) �2p.

From right to left. Suppose�1p ) �2p and substitute�2p for p in it. We obtain�1�2p ) �2�2p, which is equivalent to�1�2p ) �2p. Now, by necessitating by�1 and distributing the box by using axiom K, we obtain�1�1�2p) �1�2p, which,
given Lemma 1 gives us to the result�1�2p) �1�2p.

Since each of the two formulas above can be proven from the other within S52, we
have that any proof of a formula in one logic can be repeated inthe other. Now, since
S52+f�1p) �2pg is complete (see Figure 1) with respect to equivalence frames such
that�1��2, then also S52 + f�1�2p) �1�2pg is sound and complete with respect
to the same class of frames.

5 �1�2p ) �1�1p, �1�2p ) �1�2p, �1�2p ) �1�1p, �1�2p ) �1�2p, �1�2p )�1�1p, �1�2p ) �1�2p, �1�2p ) �1�1p, �1�2p ) �1�2p, �1�2p ) �2�1p,�1�2p ) �2�2p, �1�2p ) �2�1p, �1�2p ) �2�2p, �1�2p ) �2�2p, �1�2p )�2�1p, �1�2p ) �2�2p, �1�2p ) �1�2p, �1�2p ) �1�1p, �1�2p ) �1�2p,�1�2p ) �1�1p, �1�2p ) �2�1p, �1�2p ) �1�2p, �1�2p ) �1�2p, �1�2p )�1�2p,�1�2p) �2�1p,�1�2p) �2�2p and�1�2p) �2�2p.



Interaction Axioms Completeness�1�2p) �1�1p 8w9w0 2 [w℄�1 : [w0℄�2 � [w℄�1�1�2p) �1�1p 8w9w0 2 [w℄�1 : [w0℄�2 � [w℄�1�1�2p) �1�2p ?8w9w0 2 [w℄�1 : [w0℄�2 = fw0g�1�2p) �2�1p �1= idW�1�2p) �1�1p �1��2�1�2p) �1�1p �1��2�1�2p) �1�2p �1��2�1�2p) �1�2p �1��2�1�2p) �2�1p �1��2�1�2p) �2�2p �1��2�1�2p) �2�2p �1��2�1�2p) �2�1p �1��2�1�2p) �2�2p �1��2�1�2p) �2�2p �1��2�1�2p) �1�2p �1��2�1�2p) �2�2p �1��2�1�2p) �2�2p �1��2�1�2p) �1�1p �1=�2= idW�1�2p) �1�2p �1=�2= idW�1�2p) �2�1p �1=�2= idW�1�2p) �2�2p �1=�2= idW�1�2p) �1�1p �1=�2= idW�1�2p) �2�2p �1=�2= idW�1�2p) �1�1p �2= idW�1�2p) �1�1p �2= idW�1�2p) �2�1p �2��1�1�2p) �1�1p �2��1�1�2p) �2�1p �2��1�1�2p) �1�1p �2��1�1�2p) �1�2p �2= idW�1�2p) �2�1p �2= idW�1�2p) �2�2p �2= idW�1�2p) �2�2p �2= idW�1�2p) �1�2p �2= idW�1�2p) �2�1p w �1 w1; w �2 w2 ) 9w :w1 �2 w; w2 �1 w�1�2p) �2�1p w �1 w1; w �2 w2 ) 9w :w1 �2 w; w2 �1 w�1�2p) �2�1p w �1 w1; w �2 w2 ) 9w :w1 �2 w; w2 �1 w�1�2p) �2�1p ? Either�1= idW or�2= idW
Fig. 3. Proper extensions of S52 generated by axioms of the form� � � ) � � �. For axioms
listed with “?” correspondence is proved but completeness is only conjectured.



Axioms of shape 3 are intrinsically much harder (from a model-theoretic point of
view) to examine with the basic tools than any other examinedso far because they can
express antecedents of the form�1�2. These axioms represent knowledge of agent 1
about facts considered possible by agent 2. Technically, these formulas reminds us of
the the McKinsey axiom of mono-modal logic, which has represented a challenging
problem for logicians for many years and has been solved not too long ago by Goldblatt
[5].

Consider axiom�1�2p) �1�2p. With this axiom we rule out situations in which
agent 1 knows thatp is considered possible by agent 2 and agent 1 also knows that:p
is considered possible by agent 2.

Definition 1. A point w 2 W is called ani-dead-end if for allw0 2 W we havew �i w0 impliesw = w0.
Lemma 6. Given a frameF = (W;�1;�2) and a pointw on it,w is ani-dead-end if
any only if for any valuation�, we have(F; �) j=w p) �ip.

We can then prove the results for this axiom.

Lemma 7. F j= �1�2p) �1�2p if and only ifF is such that every pointw is related
by relation 1 to a 2-dead-end; i.e. for allw 2W there exists aw0 2W , w �1 w0 such
that [w0℄�2 = fw0g.
Proof. From right to left; consider any modelM such that every point sees via 1 a 2-
dead-end. SupposeM j=w �1�2p; so for every pointw0 such thatw �1 w0 we have
that there must be aw00 such thatw0 �2 w00 andM j=w00 p. But by assumption one
of thew0 is a 2-dead-end, so we have the existence of a pointw 2 [w℄�1 such that (by
Lemma 6)M j=w �2p. ThenM j=w �1�2p.

For the converse, consider any equivalence frameF , such thatF j= �1�2p )�1�2p and suppose by contradiction that the property above does not hold. Consider
the setX = [w℄�1 , the equivalence relation� = �1 \ �2 and the quotient setX=�.
Consider now the setY constructed by taking one and only one representativew for
each class[w℄� in X=�. Consider a valuation�(p) = Y and consider the modelM =(W;�1;�2; �). By construction we haveM j=w �1�2p. Then by our assumption we
also haveM j=w �1�2p. So there must be a pointw0 such thatw �1 w0 such thatM j=w0 �2p. But sincew0 by assumption is not a 2-dead-end, the equivalence class[w0℄�2 must contain more thanw0 itself and by constructionp is true only at one point
in that class and false for everyy =2 X. So we haveM 6j=w0 �2p for everyw0 2 [w℄�1
and soM 6j=w �1�2p, which is absurd. So for every pointw 2 W there must be a
2-dead-end accessible from it.

Completeness for the above remains an open problem.

Conjecture 1.The logic S52+f�1�2p) �1�2pg is sound and complete with respect
to equivalence frames such that every point is related by relation 1 to a 2-dead-end; i.e.
for all w 2W there exists aw0 2W , w �1 w0 such that[w0℄�2 = fw0g.

The same happens for the axiom�1�2p ) �2�1p. This axiom represents the
situation in which it cannot be that agent 1 knows that agent 2considers possiblep
while agent 2 knows that agent 1 considers possible:p.



Lemma 8. F j= �1�2p ) �2�1p if and onlyF is such that if in every connected
sub-frame either�1= idW or �2= idW .

Proof. From left to right. This part of the proof is structured as follows:

1. We prove thatF j= �1�2p ) �2�1p implies that any pointw 2 W either sees
via 1 a 2-dead-end, or the pointw sees via 2 a 1-dead-end.

2. We prove that if on a frameF such thatF j= �1�2p ) �2�1p and there is
pointw which is ani-dead-end, then�i= idW on the whole connected sub-frame
generated byw; wherei 2 f1; 2g.

3. The two facts above together prove that ifF j= �1�2p ) �2�1p, then in every
connected sub-frame either�1= idW or�2= idW .

1) By contradiction, consider any connected equivalence frameF , in which aw 2 W
does not see viai anyj-dead end, i.e.8w0 2 [w℄�i ; [w0℄�j 6= fw0g; i 6= j; i; j 2 f1; 2g;
we prove thatF 6j= �1�2p) �2�1p. To see this, consider the setX = [w℄�1[[w℄�2 nfwg, the equivalence relation� = �1\�2 and the quotient setX=�. Consider now the
setY defined by taking one representativey for every equivalence class[y℄� 2 X=�:
the setY is such that8y1; y2 2 Y we have[y1℄� \ [y2℄� = ; and

Sy2Y [y℄� =X. Consider now the modelM = (F; �), by taking the valuation�(p) = Y . By
construction, in the modelM for anyx 2 X, there is a point accessible fromx via�2
which satisfiesp, and since by hypothesisw is neither a 1-dead-end nor a 2-dead-end
(as otherwise it would see itself as dead-end) we haveM j=w �1�2p. So by the validity
of the axiom we also haveM j=w �2�1p, i.e. there must be aw0 2 [w℄�2 , such thatM j=w0 �1p, but this is impossible because by hypothesis[w0℄�1 6= fw0g, and by
constructionp is true at just one point in[w0℄�1 \ [w0℄�2 , and false at every point not inX. See Figure 4.

2) Consider now a connected frameF such thatF j= �1�2p ) �2�1p and
suppose for example thatw is a 1-dead-end, we want to prove that�1= idW on the
connected sub-frame generated byw6. If w is also a 2-dead-end, then�1=�2= idW
on the generated frame which gives us the result. If not, suppose that�1 6= idW ; so
there must be two pointsw0; w00 2 W ;w0 6= w00, such thatw0 �1 w00. So, since the
frame is connected, without loss of generality assumew �2 w0. Consider now valu-
ation �(p) = fx j x 2 [w℄�2 ; x 6= w0g [ fw00g and the modelM = (F; �) built
on F from �. So, we haveM j=w �2�1p, and so, by validity of the axiom, we also
haveM j=w �1�2p. So we must haveM j=w �2p, which is a contradiction becauseM j=w0 :p.

So we have that if the axiom is valid, then in every connected component one of the
two relations is the identity.

From right to left. Consider any equivalence modelM whose underlying frame
satisfies the property above and suppose thatM j=w �1�2p.

Suppose�1= idW andM j=w �1�2p, so there is aw0 2 [w℄�2 , such thatM j=w0p. But since�1= idW on the connected part, we also haveM j=w0 �1p. SoM j=w0�2�1p. Suppose now�2= idW andM j=w �1�2p. So for everyw0 2 [w℄�1 we haveM j=w0 p. But then we also haveM j=w �2�1p.
6 If w is a 2-dead-end then the argument is symmetric.



[w00℄�1 \ [w00℄�2p :p

w
[w℄�1 [ [w℄�2

p
:p
:p

[w0℄�1 \ [w0℄�2

Fig. 4. A model not satisfying the property of Lemma 8. Note that[w℄�1 6= fwg and[w℄�2 6=fwg.
Again we can only conjecture completeness with respect to the above class of

frames.

Conjecture 2.The logic S52+f�1�2p) �2�1pg is sound and complete with respect
to equivalence frames such that either�1= idW or�2= idW on every connected sub-
frame.

5 Conclusions

We have identified a number of non-trivial single-axiom extensions of S52 which spec-
ify a mode of interaction between two agents, and proved correspondence, soundness
and completeness with respect to the appropriate classes offrames. The main contribu-
tion of this paper lies in the identification of a spectrum of interactions above S52.

Figure 5 represents graphically all the logics discussed sofar together with the cor-
responding semantic classes (the ones for which we only conjectured completeness are
not included). In the figure, the logics are ordered strength-wise. So, the strongest logic
is of course Triv2 (represented as S52 + f�1p ) �2pg), the weakest simply S52. In
between we have a few logic systems, the weakest of which are Catach’s logic, and the
two axioms that we examined in Theorem 2 and Theorem 3. Note that these three logics
are independent. Stronger extensions include logics in which the knowledge of an agent
is included in the knowledge of the other and combination of these.



A

S52

S52 + f�2p) �2�1pg
S52 + f�1�2p) �2�1pg

S52 + f�1p) �1�2pg

S52 + f�2p) �1pg

S52 + f�2p) �2pgS52 + f�1p, �2pgS52 + f�1p) �1pg

S52 + f�1p) �2pg

S52 + f�1p) �2pg

Fig. 5. The independent extensions of S52 that can be obtained by adding axioms of the shapes�� ) �� and�� ) � � � and the corresponding classes of frames. Formulas not included
in the table but obtainable from the schema above give completeness with respect to equivalence
frames. The logics for which results are only conjectured are not included in the figure.



The fairly exhaustive analysis carried out in this paper permits the AI-user with an
interaction axiom in mind to refer to the above tables to identify the class of Kripke
frames that gives completeness. For most of the logics abovedecidability also follows
because most of them have the finite model property.

We have given conjectures about the two McKinsey axioms (Conjecture 1, Con-
jecture 2). In private correspondence Van der Hoek [9] has communicated a proof of
Conjecture 1, but the other axiom is still an open problem at this stage. Solving this
issue is part of our future work.

The results presented in this paper conceptually belong to afamily of works in
which the relation between different modalities in a single- or multi-agent setting is
explored. Among the many in the literature that deal with theinteraction between dif-
ferent internal mental states, we would like to cite [8] in which van der Hoek, building
upon a previous work [12] by Kraus and Lehmann, extensively explores the relation
between knowledge and belief. Turning to the relation between agent and environment,
in this proceedings Wooldridge and Lomuscio capture the relation between visibility,
perception, and knowledge by means of formal tools very similar to ones presented in
these pages [19]. Although the logics presented in those works aim at capturing stat-
ic properties, an interesting line of research concerns designing algorithms defined on
Kripke structures that model the evolution of internal mental states [6, 16, 11].
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