
An algorithmic approach to knowledge evolutionAlessio Lomuscio and Mark RyanSchool of Computer ScienceUniversity of BirminghamBirmingham B15 2TT, UKwww.cs.bham.ac.uk/f~arl,~mdrgAbstractIntelligent agents must update their knowledge base as they acquire new information abouttheir environment. The modal logic S5n has been designed for representing knowledge basesin societies of agents. Halpern and Vardi have proposed the notion of re�nement of S5nKripke models in order to solve multi-agent problems in which knowledge evolves. We arguethat there are some problems with their proposal and attempt to solve them by moving fromKripke models to their corresponding trees. We de�ne re�nement of a tree with a formula,show some properties of the notion, and illustrate with the muddy children puzzle. We showhow some diagnosis problems in engineering can be modelled as knowledge-based multi-agentsystems, and hence how our approach can address them.1 Introduction1.1 Temporal epistemic modal logics and their potential for applicationsIn the last few years there is been a growing trend towards applying logical theories (and Multi-Agent theories in general) to the speci�cation and analysis of engineering products. The reasonbehind this trend is that logic is a precise and unambiguous language, and it is increasingly seena useful tool for specifying, reasoning about and validating complex systems.Agent theories (see Wooldridge and Jennings (1995) for a review) aim to represent key prop-erties of an intelligent entity such as its knowledge, beliefs, intentions, desires, actions and mostimportantly its temporal evolution in a changing environment. Although much literature has beenpublished in all of these areas, there is a general consensus about using epistemic and temporalmodal logics, in which much progress has been made.Epistemic modal logics (see Hintikka (1962), Fagin, Halpern, Moses and Vardi (1995), Meyerand van der Hoek (1995)) aim to represent the state of knowledge of an agent and to study whatproperties the state of knowledge should satisfy. This is formally done by using a classical modaloperators de�ned on a Kripke style semantics Kripke (1959). Temporal modal logics (see Gabbay,Hodkinson and Reynolds (1993), Clarke and Emerson (1981), Emerson (1990), Lamport (1994),Pnueli (1977), Shoham (1987)) use a similar technical tool to represent the temporal evolution ofa system and investigate properties of this evolution.In this paper we try to develop further part of this tool and we suggest that this can be provenuseful in a practical example, speci�cally fault diagnosis in a distributed robotics situation. Weexamine a quite well known puzzle studied in computer science known as the muddy childrenpuzzle and demonstrate that this example is conceptually equivalent to integrity self-checking in arobotics plant. We propose a general algorithm that can be applied in similar situations involvingdistributed knowledge among a group of agents.
1

1.2 The theoretical backgroundThe logic S5n models a community of ideal knowledge agents. Ideal knowledge agents have, amongothers, the properties of veridical knowledge (everything they know is true), positive introspection(they know what they know) and negative introspection (they know what they do not know).The modal logic S5n (see for example Popkorn (1994) and Goldblatt (1992)) can be axiomatisedby taking all the propositional tautologies; the schemas of axioms 2i(�))) 2i�) 2i ,2i�) �, 2i�) 2i2i�, 3i�) 2i3i�, where i 2 A represents an agent in the set of agentsA = f1; : : : ; ng; and the inference rules Modus Ponens and Necessitation.The logic S5n has also been extended to deal with properties that arise when we investigatethe state of knowledge of the group. Subtle concepts like common knowledge and distributedknowledge have been very well investigated (as in Fagin et al. (1995)). The logic S5n is a successfultool for the agent theorist also because, even in its extensions to common knowledge and distributedknowledge, it has important meta-properties like closure under substitution, completeness anddecidability (see for example Meyer and van der Hoek (1995)).The standard (consequence relation) approach to using S5n is to describe a situation as a setof formulas �, and to attempt to show that the situation satis�es a property � by establishing� ` � or � � �. Establishing � ` � involves �nding a proof of � from �, while establishing � � �involves reasoning about all (usually in�nitely many) Kripke models satisfying � to show that theyalso satisfy �. The completeness of S5n shows that these two notions are equivalent. However,experience has shown that this approach is computationally very expensive.In order to overcome the intractability of this approach, Halpern and Vardi have proposed touse model checking as an alternative to theorem proving Halpern and Vardi (1991). In the modelchecking approach, the situation to be modelled is codi�ed as a single Kripke model M ratherthan as a set of formulas �. The task of verifying that a property � holds boils down to checkingthat M satis�es �, written M � �. This task is computationally much easier than the theoremproving task, being linear in the size of M and the size of � Halpern and Vardi (1991).Halpern and Vardi informally illustrate their approach by modelling the muddy children puzzle.In that puzzle, there are n children and n atomic propositions p1; p2; : : : ; pn representing whethereach of the children have mud on their faces or not. Various announcements are made, �rst by thefather of the children and then by the children themselves. The children thus acquire informationabout what other children know, and after some time the muddy ones among them are able toconclude that they are indeed muddy. We describe the problem in greater detail below.Halpern and Vardi propose the following way of arriving at the model M to be checked. Theystart with the most general model for the set of atomic propositions at hand. In order to dealwith the announcements made, they successively re�ne the model with formulas expressing theannouncements made. This re�nement process consists of removing some links from the Kripkemodel. At any time during this process, they can check whether child i knows pi (for example),by checking whether the current model satis�es 2ipi.This method is illustrated in the paper Halpern and Vardi (1991) and the book Fagin et al.(1995), but a precise de�nition of the re�nement operation is not given. Our original aim for thispaper was to provide such a de�nition and explore its properties. However, we soon came to theopinion that there is no de�nition of model re�nement on arbitrary S5n Kripke structures thatwill have intuitively acceptable properties. We explain our reasons for this view in section 2. Webelieve the re�nement and model checking ideas can still be made to work, however. In section 3we introduce a structure derived from a Kripke model, which we call a Kripke tree, and de�nethe re�nement operation on Kripke trees. We illustrate this notion using the muddy childrenexample in section 4. We prove some some properties of the re�nement operation on Kripke treesin section 5 and we conclude with some discussion in section 6.This is mainly a theoretical paper. However, we argue that scenarios conceptually equivalentto the muddy children puzzle can occur in robotics. We describe one of these scenarios in section 2and we solve it in section 4 by applying the technical machinery we develop in section 3.2

1.3 Syntax and semanticsWe assume �nite sets P of propositional atoms, and A of agents. Formulas are given by the usualgrammar: � ::= p j :� j �1 ^ �2 j 2i� j C�where p 2 P and i 2 A. Intuitively the formula 2i� represents the assertion that the agent iknows the fact represented by the formula �. The other propositional connectives can be de�nedin the usual way. The modal connectives 3i, E and B are de�ned as:3i� means :2i:�E� means Vi2A2i�B� means :C:�3i� means \it is consistent with i's knowledge that �", E� means that everyone knows �, whileC� is the much stronger statement that � is common knowledge. In a multi-agent setting, aformula � is said to be common knowledge if it is known by all the agents, and moreover that eachagent knows that it is known by all the agents; and moreover, each agent knows that fact, and thatone, etc. An announcement of � results in common knowledge of � among the hearers, becauseas well as hearing � they also see that the others have heard it too (we assume throughout thatall the agents are perceptive, intelligent, truthful). If one agent secretly informs all the others of�, the result will be that everyone knows �, but � will not be common knowledge. B is the dualof C. Although not particularly useful intuitively, we will need it for technical reasons.We will also need the following de�nitions.De�nition 1.1 A formula is universal if it has only the modalities C;E;2i and no negationsoutside them. Formally take � ::= p j :� j �1 ^ �2 j �1 _ �2and de�ne a formula to be universal if it follows the following syntax: ::= � j 1 _ 2 j 1 ^ 2 j 2i j E j C De�nition 1.2 A formula is safe if it is universal and, after negations are pushed inwards, no 2iand no C appears in the scope of _. Formally take� ::= p j :� j �1 ^ �2 j �1 _ �2and de�ne a formula to be safe if it follows the following syntax: ::= � j 1 ^ 2 j 2i j E j C De�nition 1.3 A formula is disjunction-free if it is universal and has no _. Formally take� ::= p j :� j �1 ^ �2and de�ne a formula to be disjunction-free if it follows the following syntax: ::= � j 1 ^ 2 j 2i j E j C De�nition 1.4 An equivalenceKripke model M = (W;�; �; w) of the modal language over atomicpropositions P and agents A is given by:1. A set W , whose elements are called worlds ;2. An A-indexed family of relations � = f�igi2A. For each 1 6 i 6 n, �i is an equivalencerelation on W (�i �W �W), called the accessibility relation;3

3. A function � :W ! P(P), called the assignment function;4. A world w 2W , the actual world.See Figure 1 for an illustration.Let x 2 W . We de�ne the relation of satisfaction of � by M at x, written M j=x �, in theusual way: M j=x p i� p 2 �(x)M j=x :� i� M 6j=x �M j=x � ^ i� M j=x � andM j=x M j=x 2i i� for each y 2W , x �i y implies M j=y M j=x C i� for each k > 0 and i1; i2; : : : ; ik 2 A, we have M j=x 2i1 : : :2ik We say that y is reachable in k steps from x if there are w1; w2; : : : wk�1 2 W and i1; i2; : : : ik inA such that x �i1 w1 �i2 w2 : : : �ik�1 wk�1 �ik y. We also say that y is reachable from x ifthere is some k such that it is reachable in k steps. The following fact is useful for understandingthe technical di�erence between E and C.Theorem 1.5 (Fagin et al. (1995))1. M j=x Ek� i� for all y that are reachable from x in k steps, we have M j=y �.2. M j=x C� i� for all y that are reachable from x, we have M j=y �.2 Re�ning Kripke modelsHalpern and Vardi propose to re�ne Kripke models in order to model the evolution of knowl-edge. They illustrate their method with the muddy children puzzle. This example is particularlyimportant in the literature. We report it in the following.2.1 The muddy children puzzleThere is a large group of children playing in the garden. A certain number (say k) get mud ontheir foreheads. Each child can see the mud (if present) on others but not on his own forehead. Ifk > 1 then each child can see another with mud on its forehead, so each one knows that at leastone in the group is muddy. The father �rst announces that at least one of them is muddy (which,if k > 1, is something they know already); and then he repeatedly asks them `Does any of youknow whether you have mud on your own forehead?' The �rst time they all answer `no'. Indeed,they go on answering `no' to the �rst k� 1 questions; but at the kth those with muddy foreheadsare able to answer `yes'.At �rst sight, it seems rather puzzling that the children are eventually able to answer thefather's question positively. The clue to understanding what goes on lies in the notion of commonknowledge. Although everyone knows the content of the father's initial announcement, the father'ssaying it makes it common knowledge among them, so now they all know that everyone else knowsit, etc. Consider a few cases of k.k = 1, i.e. just one child has mud. That child is immediately able to answer `yes', since she hasheard the father and doesn't see any other child with mud.k = 2, say a and b have mud. Everyone answers `no' the �rst time. Now a thinks: since banswered `no' the �rst time, he must see someone with mud. Well, the only person I cansee with mud is b, so if b can see someone else it must be me. So a answers `yes' the secondtime. b reasons symmetrically about a, and also answers `yes'.4

k = 3, say a; b; c. Everyone answers `no' the �rst two times. But now a thinks: if it was just band c with mud, they would have answered `yes' the second time. So there must be a thirdperson with mud; since I can only see b; c having mud, the third person must be me. So aanswers `yes' the third time. For symmetrical reasons, so do b; c.And similarly for other cases of k.To see that it was not common knowledge before the father's announcement that one of thechildren was muddy, consider again k = 2, say a; b. Of course a and b both know someone ismuddy (they see each other), but, for example, a doesn't know that b knows that someone is dirty.For all a knows, b might be the only dirty one, and therefore not be able to see a dirty child.2.2 An engineering exampleThe muddy children puzzle, together with its many variants like the three wise men puzzle, etc.is popular among computer scientists. The reason is that it encodes subtle properties aboutreasoning, while also being applicable to real life scenarios. We can imagine an example in whichan engineering system could bene�t from being able to cope with muddy-children-like situations.Consider a factory in which similar robots collectively manufacture an object while moving ingroup in a large space. The robots can roughly be thought of being made of two components: thereasoning module and the mechanical actuators, e�ectively operating on the object. We want todesign a fault detection system for the actuators. Given the large area the robots can be in, theinstallation of cameras to monitor the operational status of the robots' arms is not an option.Let us suppose that the robots have a visual system directed towards the other robots thatcan detect faults in their mechanical arms. Note this is quite a reasonable assumption, since itis often problematic to have visual systems that can do self-monitoring as well as monitoring theenvironment. Suppose now that the factory has a quality control mechanism that can detect ifsomething went wrong during the production of the object and assume this device broadcasts analarm every time it notices a defect in the production.This robotic scenario complies with the muddy children example: the children are now robots,the role of the father is taken by the fault detection system. Note that the assumption of communi-cation being common knowledge is not violated because messages are assumed to be broadcastedto all the agents. The task of the robots is then to reason about their status and stop theiroperation in case they come to know that their mechanical arm is faulty. The evolution of theirknowledge proceeds exactly as the case of the muddy children example where we assume the robotsto operate synchronously.Assuming the robots have a reasoning module able to handle the muddy children problem, thegroup of robots is then e�ectively able to do collective diagnosis.In the following we refer our discussion to muddy children, but the above scenario can serveequally well.2.3 Halpern and Vardi's formulationSuppose A = f1; : : : ng and P = fp1; : : : ; png; pi means that the ith child has mud on its forehead.Suppose n = 3. The assumption of this puzzle is that each child can see the other children butcannot see itself, so each child knows whether the others have mud or not, but does not knowabout itself. Under these assumptions, Halpern and Vardi propose the Kripke structure of Figure1 to model the initial situation.Let w be any world in which there are at least two muddy children (i.e. w is one of the fourupper worlds). In w, every child knows that at least one of the children has mud. However, it isnot the case that it is common knowledge that each child has mud, since the world at the bottomof the lattice is reachable (cf. Theorem 1.5).To model the father's announcement, Halpern and Vardi re�ne the model M1 in Figure 1,arriving at M2 in Figure 2 (these �gures also appear in Halpern and Vardi (1991), Fagin et al.(1995)). The re�nement process is not precisely de�ned in Halpern and Vardi (1991), Fagin et al.5

3

p3

p2
p1; p3

3 12
3

1 2
2 11 2p1; p2

p3p1
p2; p3

p1; p2
3

Figure 1: M1: The Kripke model for the muddy children puzzle with n = 3.
3

p3

p2
p1; p3

3 12
32 11 2p1; p2

p3p1
p2; p3

p1; p2

Figure 2: M2: The Kripke structure after the father speaks.6

p1; p2p3

p2
p1; p3

3 12p1; p2
p3p1

p2; p3

Figure 3: M3: The Kripke structure after the children announce that they don't know whetherthey are muddy.(1995), though arguments in favour of the transformation from M1 to M2 are given.Suppose now that the father asks the children whether they know whether they are muddyor not, and the children answer simultaneously that that they do not. Halpern and Vardi arguethat this renders all models in which there is only one muddy child inaccessible, resulting in M3(Figure 3).If there are precisely two children with mud (i.e. the actual world is one of the three in thesecond layer), then each of the muddy children now knows it is muddy. For suppose the actualworld is the left one of those three, i.e. w with �(w) = fp1; p2g. We easily verify thatM3 j=w 21p1and M3 j=w 22p2.If all three children are muddy, i.e. the actual world w is the top one, then we are not yet done,for we do not haveM3 j=w 2ipi for any i. The father again asks each of the children if they knowif they are muddy, and the model is re�ned again according to their answer \no", resulting in M4which is M3 with the last remaining links removed. (M4 is not illustrated.) We can easily checkthat M4 j=w 2ipi for each i.In summary, the method proposed by Halpern and Vardi for solving muddy-children-typepuzzles is the following. Start with a suitably general model M1 re
ecting the initial set-up ofthe puzzle. Re�ne it successively by the announcements made. At the end of the announcements,check formulas against the re�ned model. In the example above, we re�ned M1 �rst by �1 =C(p1 _ p2 _ p3) (the father's announcement), and then twice by�2 = C(:21p1 ^ :21:p1) ^ C(:22p2 ^ :22:p2) ^ C(:23p3 ^ :23:p3)which corresponds to each of the three children announcing that they don't know whether theyare muddy or not.Halpern and Vardi do not precisely de�ne what re�nement by a formula means. The intuitionthey give is that re�nement removes a minimal set of links of the model, so that the model satis�es7

wM5 1 M6 w3 3q qp; qp; q Figure 4: M5 and M6 (Example 2.1)the formula at the actual world. Removing links means that epistemic possibilities are removed,that is, knowledge is gained, so this seems intuitively the right thing to do.2.4 Problems with re�nement of Kripke modelsLet us write M � � to denote the result of re�ning the model M by the formula �. Thus, in theexample above, M2 =M1 � �1, etc.The muddy-children example discussed above naturally lead us to the question of whether itis possible to make precise the notion of re�nement of a Kripke model by a formula, and of whatproperties this would have. Essentially any re�nement procedure will remove the links to thestates that are responsible for the non-satisfaction of the formula we are re�ning with. However,some unexpected problems of any natural procedure operating on Kripke models can be found.Consider the following examples.Example 2.1 Let M5 be the Kripke model illustrated in Figure 4, with the left-hand world wthe actual world, and consider re�ning by 21p. The de�nitions we examined di�ered in subtlecases involving quite complex formulas and models, but they all agreed in this one: the resultingmodel must be M6 (see �gure). What happens is that agent 1 gains the knowledge of p, and somust eliminate the epistemic possibility of :p by removing the link.The counterintuitive property of this example is that M5 j=w 2331p, while M6 6j=w 2331p.Thus, in M5, agent 3 knows that p is consistent with 1's knowledge. But after 1 learns p for surein M6, 3 no longer knows this!Example 2.2 Figure 5 shows a model and (the only) two outcomes one could consider for itsre�nement by 2122(p _ q). One must remove either the 1 link or the 2 link in order to preventthe 1{2 path to the world exhibiting :(p_ q). The choice is which link to remove. Both outcomesreveal undesirable properties of the re�nement operator. In the �rst case, removing the 1 linkadds too much to 1's knowledge (he learns p), while the second case gives us a situation in whicha model satis�es 2332:q but its re�nement by 2122(p _ q) does not. It is counterintuitive that3's knowledge should change in this way when we re�ne by 2122(p _ q).The second case at least has the desirable property that a minimal change of the knowledgeof agents at the actual world w is made, since the set of reachable states from w is maximised(cf. Theorem 1.5).Example 2.3 Re�nement by universal formulas (de�nition 1.1) ought to be cumulative, and suchformulas ought to commute with each other (i.e.M ��� =M � ��). However, another exampleshows that this will be hard to achieve. Consider the model M7 shown at the top of Figure 6,and let � = 21p and = 2122(p _ q). Whatever way one thinks about de�ning �, the result inthe left-hand branch seems clear. Note that M7 �21p already satis�es 2122(p _ q) and thereforeM7 �21p �2122(p _ q) =M7 �21p.An argument for the stated result of M7 �2122(p _ q) was given in Example 2.2, and furtherre�ning by 21p leaves little room for maneuver. However, the resulting models di�er on whetherthey satisfy (for example) 2322q.Example 2.3 shows that even universal formulas, do not enjoy commutativity in any reasonablere�nement setting. However, commutativity for universal formulas seems intuitively correct: theorder in which ideal agents acquire information should not matter. Non-universal formulas are a8

2 331 2w
3 1p; q

qp; qqp; q qFigure 5: Two outcomes for re�nement of the top model by 2122(p _ q) (Example 2.2)

2

231

33
3

w

312
q

qq
q

p; q�21p �2122(p _ q)
p; q

p; q
p; q

q

�21p�2122(p _ q)
p; qFigure 6: Two evolutions of M7 (Example 2.3), showing that M � � � 6=M � � �

9

di�erent matter, since they can express absence of knowledge, and this will not commute with theacquisition of new knowledge.3 Re�ning Kripke treesSome of the problems exhibited by the three examples at the end of the preceding section seemto be due to the following fact: when we remove a link in a Kripke model in order to block acertain path, we also block other paths that used that link. To overcome this problem, we wouldlike to unravel Kripke models into trees, in which each link participates in just one path. At�rst sight this looks like it will destroy the �niteness of our models, a feature on which e�ectivere�nement and model checking operators rely. To retain �niteness, we will need to limit in advancethe maximum nesting of boxes that is allowed, and construct a tree to depth greater than thisnumber. Semantic structures similar to Kripke trees have been de�ned in Hughes and Cresswell(1984). Our de�nition di�ers in detail from the one in Hughes and Cresswell (1984), but it largelyagrees with it in spirit.In this section we de�ne the notion of Kripke tree, show a translation of equivalence Kripkemodels into Kripke trees and de�ne an algorithm for re�ning knowledge structures.3.1 Kripke trees: basic de�nitionsDe�nition 3.1 (Kripke tree) A Kripke tree T = (V;E; �) is� a set V ; elements of V are called vertices ;� an A-indexed family E = fEigi2A of edges Ei � V �V , such that the structure (V;E) formsa tree, that is,{ there is a unique vertex v0 2 V such that for all v 2 V and i 2 A, (v; v0) 62 Ei. Thevertex v0 is called the root of T .{ for every vertex v there is a unique and �nite path from the root to v, i.e. uniquesequences (v0; v1; : : : ; vk) and (i1; : : : ; ik) such that (vj ; vj+1) 2 Eij+1 (0 6 j 6 k) andvk = v.� a function � : P ! 2V .We write E� to mean the transitive closure of the union of relations in E, i.e. (v; v0) 2 E� if thereis a path from v to v0, i.e. sequences(v0; v1; : : : ; vk) and (i1; : : : ; ik) such that (vj ; vj+1) 2 Eij+1 , with 0 6 j 6 k, v0 = v and vk = v0.We also allow the empty tree (?;?;?) which we write as ?. It has no root.De�nition 3.2 (Generated Kripke Tree) Let M = (W;�; �; w0) be an equivalence Kripkemodel. The Kripke tree TM = (V;E; �) generated by M is given as follows:� The set of vertices is the set of paths in M :V = n(w0; i1; w1; : : : ; wk�1; ik; wk) ��� wj �j+1 wj+1; wj 2W; ij 2 A (0 6 j 6 k � 1)o� E is an A-indexed family of sets of edges. For s; s0 2 V , there is an i-edge between s; s0,written (s; s0) 2 Ei, if s0 equals s extended by an i link, i.e. s = (w0; i1; w1; : : : ; wk); s0 =(w0; i1; : : : ; wk; i; w) for some w.� The valuation � is de�ned by �(p) = f(w0; i1; w1; : : : ; wk) j wk 2 �(p)g.The vertex w0 2 V is the root of the tree. 10

When the model M is clear from the context or not relevant we will simply indicate the tree as T .Kripke trees are irre
exive, intransitive, anti-symmetric, anti-convergent and serial.IfM has at least two distinct worlds related by some �i, then TM is in�nite. For our purposesof model re�nement, we usually want to deal with �nite trees. T kM is TM with paths truncated atlength k. Obviously by truncating the tree we will lose seriality.De�nition 3.3 (Truncated tree of depth k) Given a tree T = (V;E; �), the truncated treeof depth k is de�ned as T k = (V 0; E0; �0), where� V 0 = fv 2 V j the distance of v from the root is less or equal than kg.� E0 = EjV 0 is the restriction of E to V 0,� �0 = �jV 0 is the restriction of � to V 0.In�nite and �nite trees satisfy modal formulas in the expected way:De�nition 3.4 (Interpretation) Let � be a formula, and T a tree. The satisfaction of � by Tat vertex v, written T j=v �, is inductively de�ned as follows:� T j=v p if v 2 �(p);� T j=v :� if not T j=v �;� T j=v � ^ if T j=v � and T j=v ;� T j=v 2i� if 8v0 2 V , (v; v0) 2 Ei implies T j=v0 �;� T j=v C� if 8v0 2 V ; (v; v0) 2 E� implies T j=v0 �.The tree T satis�es �, written T j= �, if it satis�es � at its root. The empty tree ? satis�es noformula.An in�nite tree TM is semantically equivalent to its generating modelM as the following shows:Lemma 3.5 Let M = (W;�; �; w0) be an equivalence Kripke model and TM = (V;E; �) itsassociated Kripke tree. Let v = (w0; i1; w1; : : : ; w) be any vertex ending in w, and � any formula.Then: M j=w � if and only if TM j=v �:Proof By induction on the structure of �. The result holds for atoms by construction. For theinductive case observe that there is a one-to-one correspondence between paths in M from w andextensions of the path represented by vertex v. 2Lemma 3.5 generalises into the following:Corollary 3.6 M j= � if and only if TM j= �.For the case of truncated tree, Lemma 3.5 is not valid. However, we can prove a related resultfor formulas up to a certain level of modal nesting.We inductively de�ne the rank of a formula as follows:De�nition 3.7 (Rank of a formula) The rank rank(�) of a formula � is de�ned as follows:� rank(p) = 0, where p is a propositional atom.� rank(:�) = rank(�).� rank(�1 ^ �2) = maxfrank(�1); rank(�2)g.� rank(�1 _ �2) = maxfrank(�1); rank(�2)g.11

� rank(2i�) = rank(�) + 1.� rank(C�) =1.The rank of a formula � intuitively represents the maximum number of nested modalities thatoccur in �. If an operator C occurs in � we take the value of rank(�) to be in�nite. The rank ofa formula re
ects the maximal length of any path that needs to be explored to evaluate � on anin�nite tree. In other words, to evaluate a formula � of rank k at w0 we need not examine worldswhose distance from w0 is greater than k.Lemma 3.8 If rank(�) 6 k, M j= � if and only if T kM j= �.Proof By corollary 3.6, M j= � if and only if TM j= �, but, by induction, the evaluation ofa formula of rank(�) 6 k does not involve the evaluation of nodes of depth greater than k. SoTM j= � if and only if T kM j= �, which gives the result. 2In the following we shift our attention from an equivalence Kripke model to its truncatedgenerated tree. Truncated generated trees satisfy S5n-axioms provided that the rank of the for-mulas is su�ciently small compared to the size on the tree. The following clari�es under whichcircumstances S5n-axioms are satis�ed at the root of the tree and that S5n-inference rules aresound.Lemma 3.9 Let M be an equivalence model and T kM its generated tree truncated at k.1. T kM j= �, where � is a tautology, and rank(�) 6 k.2. T kM j= 2i(�))) 2i�) 2i , where maxfrank(�); rank()g 6 k � 1.3. T kM j= 2i�) �, where rank(�) 6 k � 1.4. T kM j= 2i�) 2i2i�, where rank(�) 6 k � 2.5. T kM j= 3i�) 2i3i�, where rank(�) 6 k � 2.6. If for every vertex v 2 V of T kM , T kM j=v �, then for every v 2 V , T kM j=v 2i�, for any i 2 A.7. If for every vertex v 2 V of T kM , T kM j=v �, and T kM j=v �) then T kM j=v .Proof We prove item number 4; the others can be done similarly. Suppose T kM 6j= 2i�) 2i2i�,where rank(�) 6 k � 2. Since T kM is generated by M , and rank(2i�) 2i2i�) 6 k, then byLemma 3.8 M 6j= 2i�) 2i2i�. But by hypothesis M is an equivalence model. This is absurd.2Before we proceed further, we introduce a few basic de�nitions and operations on subtrees.De�nition 3.10 (Rooted-subtrees) Let T 0 = (V 0; E0; �0), T = (V;E; �) be trees with rootsv00; v0. The tree T 0 is a rooted subtree of T , written T 0 6 T , if v0 2 V 0; V 0 � V , EjV 0 = E0, and�jV 0 = �0.De�nition 3.11 (Intersection of trees) Let T 0 = (V 0; E0; �0) and T = (V;E; �) be trees suchthat �jV 0\V = �0jV 0\V . The intersection of T and T 0 is T u T 0 = (V 0 \ V;E0 \ E; �0jV 0\V).It is easy to see that de�nition 3.11 (when applicable) de�nes a tree.De�nition 3.12 (Restriction of trees) Let T = (V;E; �) be a tree with root v, and V 0 a subsetof V . The restriction of T to V 0, written T jV 0 , is the largest rooted subtree of T generated by vwhose vertices are in V 0. If the root of T is not in V 0, then T jV 0 = ?.12

3.2 Kripke trees: re�nementIn section 2.4, we discussed the di�culties that arise when using equivalence Kripke models asknowledge structures for re�nement. Example 2.3 showed that any straightforward procedure tore�ne an equivalence Kripke model will be non-commutative even for universal formulas, i.e. therewill be universal �; �, such that M � � � � 6�M � � � �.Commutativity for universal formulas can be achieved by shifting to Kripke trees. Before wecan show this, we must de�ne re�nement on Kripke trees.The typical working scenario in which we operate is the same one as that advocated by Halpernand Vardi (1991), except that we re�ne T kM instead of M . It can be described as follows: we aregiven an initial con�guration of a MAS, and a set of formulas f�1; : : : ; �mg that represent theupdate of the scenario. The question is whether the updated con�guration will validate a set offormulas f 1; : : : ; lg. We assume every to have �nite rank, i.e. we cannot check a formulacontaining the operator of common knowledge. There is no restriction on the �s.Our method operates as follows:1. Start from the most general equivalence Kripke model M that represents the MAS.2. Generate the in�nite tree TM , as given in De�nition 3.2.3. Generate from T kM , the truncated tree of depth k, for some su�ciently large k.4. Sequentially re�ne T kM with f�1; : : : ; �mg,5. Check whether the resulting tree structure satis�es f 1; : : : ; lg.The method described above needs some further explanation. First, what is the most generalKripke model representing a MAS con�guration? How are we to build it? Our answer is thesame as that given by Halpern and Vardi. Assume the set of atoms P is �nite, as we set it to bein Section 1.3. We take the model whose universe W is equal to 2P with an interpretation thatcovers all the possible assignments to the atoms. We take �i; i 2 A to be the universal relationson W �W , and w0 to be the actual world of the given MAS.In general we will require thatM is more speci�c than the most general model, e.g. some agentwill have a certain knowledge about the world. We can add all the formulas that need be satis�edto the set of updates f�1; : : : ; �mg. For example in the muddy children example we can start fromthe model with universal relations and add3̂i=1C(pi) Kipi)to the set of updates.We have already explained how to execute steps 1, 2, 3, and 5. We now present a notion ofre�nement to execute step 4.De�nition 3.13 (Re�nement of Kripke tree structures) Given a truncated Kripke tree Tm =(V;E; �), a point v 2 V , and a formula �, the result T 0 = (T; v) � � of re�ning T by � at v isprocedurally de�ned as follows. We assume that the negation symbols in � apply only to atomicpropositions (to achieve this, negations may be pushed inwards using de Morgan laws and dualities2=3 and C=B).� If T = ?, then T 0 = ?.� If T j=v �, then T 0 = T .� Otherwise the result is de�ned inductively on �:{ � = p. T 0 = ?.{ � = :p. T 0 = ?. 13

{ � = ^ �. T 0 = ((T; v) �) u ((T; v) � �).{ � = _�. If (T; v)� 6 (T; v)�� then T 0 = (T; v)��, and if (T; v)�� 6 (T; v)� thenT 0 = (T; v) � . Otherwise T 0 is non-deterministically given as (T; v) � or (T; v) � �.{ � = 2i . T 0 is given by computing as follows:T 0 := T ;for each v0 such that (v; v0) 2 Ei doif (T 0; v0) � = ?, thenT 0 := T 0jV�fv0gelse T 0 := (T 0; v0) � { � = 3i . Let X be the set X = f(T; v0) � j (v; v0) 2 Ei).If X = ?, then T 0 = ?,else T 0 is nondeterministically chosen to be a 6-maximal element of X .{ � = C . T 0 is given by computing as follows:T 0 := T ;for each v0 such that (v; v0) 2 E� doif (T 0; v0) � = ?, thenT 0 := T 0jV�fv0gelse T 0 := (T 0; v0) � { � = B . Let X be the set X = f(T; v0) � j (v; v0) 2 E�g.If X = ?, then T 0 = ?,else T 0 is nondeterministically chosen to be a 6-maximal element of X .T � � means (T; v) � �, where v is the root of T .Lemma 3.14 Given a tree T , a formula � and a point v, (T; v) � � is a tree.Proof It Follows from the fact that if T is a tree then T jV 0 is also a tree. 2The intuition behind (T; v) � � is that it is obtained by removing as small a set of links fromT as possible, in order to satisfy �. Note that, due to the clauses for the connectives _;3i; B,we have that the tree (T; v) � � is not uniquely de�ned. However, we will see that running theprocedure on the muddy children example does not introduce nondeterminism.4 The muddy children puzzle using Kripke treesIn section 2.1, we described the muddy children puzzle and we reported the formalisation that wasgiven in Fagin et al. (1995), Halpern and Vardi (1991). The aim of the present section is to solvean instance of it (where the actual situation is coded by the tuple p1; p2; p3 that we equivalentlywrite as (1; 1; 1); all the children are muddy) by using Kripke trees and the methods we introducedin section 3.We start with the most general model to represent the puzzle: this is the modelM1 of Figure 11.Given M1, we generate the in�nite tree TM1 for M1 and then the truncation T1 of TM1 . In this1According the the notion of most general model as described in section 3.2 the model M should actually beM = (2fp1;p2;p3g; U; �;w), where U is a family of universal relations on W �W , and �(w) = fp1; p2; p3g. Themodel M1 we analyse is the result of the update of M byC(pi) Kjpi) : i 6= j; i; j 2 f1; 2; 3g;where the formula above represents the fact that children can see each other. For brevity (as in Fagin et al. (1995),Halpern and Vardi (1991)) we start our analysis from M1; i.e. rather than building the tree for M and update it�rst by C(pi) Kjpi), we directly build the tree for M1. The reader can check that this leads to the same result.14

example, we only need three levels to be unravelled. The starting tree and the three successivere�nements are in Figure 7, and 8. Let �1 = C(p1_p2_p3) (this is the father's announcement), and�2 = C(:21p1^:21:p1)^C(:22p2^:22:p2)^C(:23p3^:23:p3) (the children's simultaneousreply that they don't know whether or not they are muddy). We now sequentially update T1 by�1 and then by �2 three times. Note that since all children are muddy, they will have to speakthree times before everyone knows he is muddy.Consider the algorithm of De�nition 3.13 and T1. Following the algorithm, the re�ned treeT1 � �1 = T2 in Figure 7 is T1 in which the links to states where no children are muddy have beenremoved. T2 ��2 is then achieved by isolating worlds that do not see two worlds for every relation.In fact, only in this case one of the formulas 3ipi ^3i:pi can fail on a point of T2. We can nowobtain T3, and T4 (shown in Figure 8) similarly.Having made all the re�nements, we can now check whether or not the muddy children knowthat they are muddy. This involves checkingT4 j= 3̂i=1(pi) Kipi);which is indeed the case.Analogously we can prove that the procedure given in Section 3 produces solutions for theother cases of the muddy children.Note that had we decided to consider the Kripke tree truncated at n � 4, the formulaV3i=1(pi) Kipi) would still be satis�ed at the root after three re�nements.Let us now consider the example presented in section 2.2. By following the above describedprocedure with the assumption of synchronicity, the k faulty robots will announce their fault anddisconnect from the system after k rounds, allowing the system to start normal production againand substitute the faulty units.5 Properties of re�nement on Kripke treesIn this section we analyse some more properties of the re�nement procedure that we de�ned inDe�nition 3.13.The �rst remark that we should make is that re�ning a scenario by some agent's knowledgecannot a�ect other agents' knowledge, as was the case in Example 2.1 for Kripke models. Thisis because by unravelling a Kripke model we produce a tree whose leaves are in a bijection withpaths of the original model. We formalise this as follows:Theorem 5.1 Let T be a tree, and �; two formulas, we have the following:If T j= 2i� then T �2j j= 2i�; with i 6= j:Proof Nodes of a Kripke tree are in a bijection with paths of the generating model. Thereforeby removing some j-links we cannot a�ect the interpretation of any modality whose index is notj. The only problematic case would arise if i = j and T � 2j = ?, but this is excluded byhypothesis. 2Although the theorem above refers to in�nite trees, an analogue version can be proved fortruncated trees. In that case we need the rank of the formulas to be less or equal to the depth ofthe truncated tree minus 1.The second point worth stressing is that Kripke trees solve the problem of Example 2.3, i.e. wecan prove commutativity although the result is limited to safe formulas. First, we need to provea few other results.Lemma 5.2 Let T1 = (V1; E1; �1); T2 = (V2; E2; �2) be trees. The following hold.1. (T; v) � � 6 T . 15

111

111

011

101

111

111

110

011

111

111

011

011

001

010

101

101

101

001

110

010

100

110

110

111

1

3

1

3

2

2

1
000

000

000

000

000

100

1

1

2

2

3

3

2

1

1

2

1

1

2

3

3

3

2

3

3

2

2

1

000

111

111

011

101

111

111

110

011

111

111

011

011

001

010

101

101

101

001

110

010

100

110

110

111

1

3

1

3

2

000

000

000

000

000

100

1

1

2

2

3

3

1

2

1

1

2

3

3

3

3

2

2

1

1

2

1

2

2

3

000

Figure 7: T1; T2: The Kripke trees before and after the father speaks.16

1

111

111

011

101

111

111

110

011

111

111

011

011

001

010

101

101

101

001

110

010

100

110

110

111

1

3

1

3

2

100

1

1

2

2

3

3

1

2

1

1

2

3

3

3

3

2

2

1

111

111

011

101

111

111

110

011

111

111

011

011

101

101

101

110

110

110

111

1

3

3

2

1

2

2

3

1

2

1

1

3

3

3

2

Figure 8: T3; T4: The Kripke trees after the children speak the �rst and second time.17

2. If � is disjunction-free, then T1 6 T2 implies (T1; v) � � 6 (T2; v) � �, where v 2 V1 \ V2.3. If � is universal then T j= � and ? 6= T 0 6 T imply T 0 j= �.Proof 1. The procedure for obtaining (T; v) � � only removes links or produces the emptytree. Therefore we have the result.2. We perform structural induction on �. Let T 01 = (T1; v) � � and T 02 = (T2; v) � �. Suppose �is of the form:� � = p. If v 2 �(p) then T 01 = T1, T 02 = T2; else T 01 = T 02 = ?.� � = :p. If v 62 �(p) then T 01 = T 02 = ?; else T 01 = T1, T 02 = T2.� � ^
.(T1; v) � � = (T1; v) � � u (T1; v) �
6 (T2; v) � � u (T2; v) �
 Induction hypothesis= (T2; v) � �� � = 2i�. Set T 01 = T1 and T 02 = T2 and we execute the loops of De�nition 3.13 (2i-case)synchronously. We will show that T 01 6 T 02 is an invariant of the execution.Suppose (v; v0) 2 E2i.{ If (v; v0) 2 E1i, then consider the following cases:� (T 01; v0) � � = ? and (T 02; v0) � � = ?.T 01 := T 01jV�fv0g and T 02 := T 02jV�fv0g, so T 01 6 T 02 is not violated.� (T 01; v0) � � = ? and (T 02; v0) � � 6= ?.T 01 := T 01jV�fv0g and T 02 := (T 02; v0) � �; so T 01 6 T 02.� (T 01; v0) � � 6= ? and (T 02; v0) � � = ?.Contradicts hypothesis that T 01 6 T 02.� (T 01; v0) � � 6= ? and (T 02; v0) � � 6= ?.T 01 := (T 01; v0) � �, T 02 := (T 02; v0) � �, and T 01 6 T 02 by induction hypothesis.{ If (v; v0) 62 E1i then T 01 is unchanged by the body of the loop, while T 02 becomesone of T 02 := T 02jV�fv0g and (T 02; v0) � �. In either case, we are removing links in T2which are not present in T1, so T 01 6 T 02 is preserved.� � = E�. It follows by induction hypothesis by noting that E� = ^ni=1Ki�.� � = C�. Similar to 2i�, but with proofs related to E�.3. It follows from structural induction on �. 2Theorem 5.3 (Success) If � is universal, (T; v) � � = ? or (T; v) � � j=v �.Proof Induction on �. The cases � = p;:p; _ �;2i ;E�;C are straightforward; we provethe case � = ^ �.(T; v)� (^�) = (T; v)� u (T; v)��. But by induction hypothesis we have that (T; v)� j= and that (T; v)�� j= �. Since (T; v)� 6 (T; v)� u(T; v)�� and (T; v)�� 6 (T; v)� u(T; v)��,by part 3 of Lemma 5.2, we have that (T; v)� u (T; v)�� j= and that (T; v)� u (T; v)�� j= �.So we have that (T; v) � u (T; v) � � j= � ^ �. 2Lemma 5.4 If � is safe, then the outcome of (T; v) � � is deterministically de�ned.Proof Suppose � contains no 2i; C operators. Then it is an easy induction to see that (T; v) ��is either T or ?. Now consider (T; v) � (� _), where �; are 2i; C-free. We see that either(T; v) � � 6 (T; v) � or (T; v) � 6 (T; v) � �, so the result is again T or ?. The cases 2i�;C�do not introduce non-determinism. 218

1

1

T5
:p; q

p
T6 = T5 �31:p �21(p _ :q)p p

Figure 9: T5 and T6 discussed in Example 5.8. While T6 = T5 �31:p �21(p _ :q) is de�ned andshown above, T7 = T5 �21(p _ :q) �31:p is unde�ned.We show that, for universal formulas, the change made be a re�nement is the minimal onepossible in order to satisfy the formula:Theorem 5.5 If � is safe, then the tree (T; v)�� is 6-maximum in fT 0 6 T j T 0 j=v � or T 0 = ?g.Proof Let T 0 = (T; v) � �. By part 1 of Lemma 5.2 and Theorem 5.3, we know T 0 is in the set.To prove that it is maximum, take any T 00 in the set; we will show T 00 6 T 0. If T 00 = ? the result isimmediate; otherwise, we have T 00 j=v � and T 00 6 T . Since T 00 6 T , we get (T 00; v)�� 6 (T; v)��by part 2 of Lemma 5.2. But (T 00; v) � � = T 00 (since it is already T 00 j=v �) and (T; v) � � = T 0;so T 00 6 T 0. 2Theorem 5.6 If �; � are safe, then the tree (T; v) � � � � is maximum in fT 0 6 T j T 0 j=v� ^ � or T 0 = ?g.Proof Let T 0 = (T; v)����. By parts 1 and 3 of Lemma 5.2 and Theorem 5.3, we know T 0 is inthe set. The argument that it is maximum is similar to the proof of Theorem 5.5. Take any T 00 inthe set; we will show T 00 6 T 0. If T 00 = ? the result is immediate; otherwise, we have T 00 j=v �^�and T 00 6 T . Since T 00 6 T , we get (T 00; v) � � � � 6 (T; v) � � � � by part 2 of Lemma 5.2.But since T 00 j=v � we have (T 00; v) � � = T 00 and since T 00 j=v � we have (T 00; v) � � = T 00. So(T 00; v) � � � � = T 00 and (T; v) � � � � = T 0. Therefore we have T 00 6 T 0. 2Theorem 5.7 (Commutativity) If �; � are safe, then T � � � � = T � � � �.Proof By Theorem 5.6, T � � � � and T � � � � are maximum in the same set. Therefore theyare equal. 2It is worth mentioning an example of which non-universal formulas can make commutativityto fail, independently of non-determinism.Example 5.8 Commutativity can fail for arbitrary formulas. The problem is that if the formulasare non-universal, the order of updating can play a role in the outcome of the update and we mighthave that one of the two cases fail. We are so far unable to �nd examples in which the two updatessucceed but produce di�erent result. The example we report here is the tree T5, illustrated inFigure 9, where the root is the top vertex. Consider now T6 = T5 �31:p �21(p_:q), illustrated,and T7 = T5 �21(p _ :q) �31:p = ?. 19

6 Conclusions and further workIn this paper we have developed the proposal in Halpern and Vardi (1991) for model re�nementand model checking. We argued that model re�nement could not be de�ned satisfactorily onKripke models, and proposed a de�nition on Kripke trees obtained from Kripke models instead.The shift from Kripke models to Kripke trees let us achieve two main results. First, we showedthat it is possible to re�ne trees by a formula expressing knowledge of a formula without a�ectingthe knowledge of the other agents (Theorem 5.7) - this was not apparently possible on standardKripke models (see Example 2.1). Secondly, while it seems impossible to obtain commutativityfor even safe formulas on Kripke models, we showed this is possible for Kripke trees.Many of the issues we discussed in this note still need investigating and we refer the reader toLomuscio and Ryan (1998) to a list of technical conjectures currently under analysis.Although the attention in this paper is on theoretical issues, in section 2.2 we proposed anexample in which these ideas can be applied. This consisted in a collective diagnosis problemamong a group of homogeneous robots working at a factory. It should be clear that the scenarioscommonly analysed in collective diagnosis research (see for example Fr�ohlich, Nejdl and Schroeder(1998), B�ottcher and Dressler (1993), Jennings and Wittig (1992), Schroeder (1998)) are somehowdi�erent from our example. Our example is much closer to scenarios coming directly from robotics.Nowadays, robots (see McKerrow (1991) for an introduction) regularly substitute humans inmany tasks. Diagnosis and maintenance in hazardous environments is one of the many importantareas in which robots can clearly o�er valuable solutions (NEI (1991)). Indeed the use of robotsin environmental monitoring and cleaning, especially in controlled radiation areas, and in steamgenerators has seen a substantial growth in the last 15 �fteen years (see NEI (1992), Gerriets(1992)) and it is reasonable to assume that more advanced solutions will become increasinglyavailable in the future.In this context we believe that, although our example is not realistic at present (because itpresupposes the availability of complex visual systems, etc.), it is likely and worth advocating thatin the future engineering will be able to pro�t from techniques such as the one presented in thispaper.Our short term research agenda includes an implementation of the algorithm exposed in thispaper and further analysis of its underlying properties.Note A presentation of part of this theory was given at PRR-98, a satellite workshop of ECAI-98.

20

ReferencesB�ottcher, C. and Dressler, O. (1993). Diagnosis process dynamics: Holding the diagnostic track-hound in leash, in R. Bajcsy (ed.), Proceedings of the 13th International Joint Conference onArti�cial Intelligence, Morgan Kau�mann, pp. 1460{1471.Clarke, E. M. and Emerson, E. A. (1981). Design and synthesis of synchronization skeletons usingbranching time temporal logic, Proc. Workshop on Logics of Programs, Vol. 131 of LectureNotes in Computer Science, Springer, pp. 52{71.Emerson, E. A. (1990). Temporal and modal logic, in J. van Leeuwen (ed.), Handbook of TheoreticalComputer Science, Elsevier Science Publishers, chapter 16, pp. 996 { 1071.Fagin, R., Halpern, J. Y., Moses, Y. and Vardi, M. Y. (1995). Reasoning about Knowledge, MITPress, Cambridge.Fr�ohlich, P., Nejdl, W. and Schroeder, M. (1998). Strategies in model-based diagnosis, Journal ofAutomated Reasoning 20(1,2): 81{105.Gabbay, D. M., Hodkinson, I. M. and Reynolds, M. A. (1993). Temporal Logic: Mathemati-cal Foundations and Computational Aspects, Volume 1:Mathematical Foundations, OxfordUniversity Press.Gerriets, W. (1992). TROD cleans up at Nine Mile Point 1, Nuclear Engineering International.Goldblatt, R. (1992). Logics of Time and Computation, Second Edition, Revised and Expanded,Vol. 7 of CSLI Lecture Notes, CSLI, Stanford. Distributed by University of Chicago Press.Halpern, J. and Vardi, M. (1991). Model checking vs. theorem proving: a manifesto, Arti�cialIntelligence and Mathematical Theory of Computation, Academic Press, Inc, pp. 151{176.Hintikka, J. (1962). Knowledge and Belief, an introduction to the logic of the two notions, CornellUniversity Press, Ithaca (NY) and London.Hughes, G. E. and Cresswell, M. J. (1984). A Companion to Modal Logic, Methuen, London.Jennings, N. R. and Wittig, T. (1992). ARCHON: Theory and practice, in N. M. Avouris andL. Gasser (eds), Distributed Arti�cial Intelligence: Theory and Praxis, Kluwer AcademicPress, pp. 179{195.Kripke, S. A. (1959). Semantic analysis of modal logic (abstract), Journal of Symbolic Logic24: 323{324.Lamport, L. (1994). The temporal logic of actions, ACM Transactions on Programming Languagesand Systems 16(3): 872{923.Lomuscio, A. and Ryan, M. (1998). Model checking and re�nement for S5n, Proceedings of theECAI98-workshop on Practical Reasoning and Rationality (PRR98), Brighton.McKerrow, P. J. (1991). Introduction to robotics, Addison-Wesley, Sydney, AU.Meyer, J.-J. C. and van der Hoek, W. (1995). Epistemic Logic for AI and Computer Science,Vol. 41 of Cambridge Tracts in Theoretical Computer Science, Cambdridge University Press.NEI (1991). ROSA III: the Westinghouse workhorse, Nuclear Engineering International.NEI (1992). A brief history of robots in the US, Nuclear Engineering International.Pnueli, A. (1977). The temporal logic of programs, Proceedings of the 18th IEEE Symposium onFoundations of Computer Science, pp. 45{57.21

Popkorn, S. (1994). First Steps in Modal Logic, Cambridge University Press: Cambridge, England.Schroeder, M. (1998). Autonomous, Model-based Diagnosis Agents, Kluwer Academic Publisher.Shoham, Y. (1987). Temporal logics in AI: Semantical and ontological considerations, Arti�cialIntelligence 33: 89{104.Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: Theory and practice, KnowledgeEngineering Review.

22

Author biographiesAlessio Lomuscio (b. 1969) obtained a `Laurea' in Electronic Engineering from Politecnico diMilano (I) in 1995. Since 1996 he has been studying for a PhD at the School of Computer Scienceof the University of Birmingham (UK) under the supervision of Dr Mark Ryan. He is expected tosubmit his PhD thesis on Knowledge sharing in multi-agent systems in the early months of 1999.His research interests focus on logic and its application in arti�cial intelligence. He has presenteda number of articles at international conferences, he is member of several international researchprojects and has served as editor for the the special issue on electronic agents of the ACM journalCrossroads. For further details, see www.cs.bham.ac.uk/~arl.Mark Ryan (b. 1962) is Lecturer in Computer Science at the University of Birmingham (UK).He obtained a BA and MA from the University of Cambridge in 1986 and 1989, and a PhD inComputer Science from Imperial College, University of London, in 1992. His research interestsinclude logic and its applications in computer science and arti�cial intelligence. He is principalinvestigator on several national and international research projects, including Feature Integrationin Requirements Engineering (funded by the European Union), Automatic Veri�cation of Ran-domised Distributed Algorithms (EPSRC), and Feature Speci�cation Languages (British Telecom).For further details, see www.cs.bham.ac.uk/~mdr.

23

