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Abstract

Intelligent agents must update their knowledge base as they acquire new information about
their environment. The modal logic S5 has been designed for representing knowledge bases
in societies of agents. Halpern and Vardi have proposed the notion of refinement of S5"
Kripke models in order to solve multi-agent problems in which knowledge evolves. We argue
that there are some problems with their proposal and attempt to solve them by moving from
Kripke models to their corresponding trees. We define refinement of a tree with a formula,
show some properties of the notion, and illustrate with the muddy children puzzle. We show
how some diagnosis problems in engineering can be modelled as knowledge-based multi-agent
systems, and hence how our approach can address them.

1 Introduction

1.1 Temporal epistemic modal logics and their potential for applications

In the last few years there is been a growing trend towards applying logical theories (and Multi-
Agent theories in general) to the specification and analysis of engineering products. The reason
behind this trend is that logic is a precise and unambiguous language, and it is increasingly seen
a useful tool for specifying, reasoning about and validating complex systems.

Agent theories (see Wooldridge and Jennings (1995) for a review) aim to represent key prop-
erties of an intelligent entity such as its knowledge, beliefs, intentions, desires, actions and most
importantly its temporal evolution in a changing environment. Although much literature has been
published in all of these areas, there is a general consensus about using epistemic and temporal
modal logics, in which much progress has been made.

Epistemic modal logics (see Hintikka (1962), Fagin, Halpern, Moses and Vardi (1995), Meyer
and van der Hoek (1995)) aim to represent the state of knowledge of an agent and to study what
properties the state of knowledge should satisfy. This is formally done by using a classical modal
operators defined on a Kripke style semantics Kripke (1959). Temporal modal logics (see Gabbay,
Hodkinson and Reynolds (1993), Clarke and Emerson (1981), Emerson (1990), Lamport (1994),
Pnueli (1977), Shoham (1987)) use a similar technical tool to represent the temporal evolution of
a system and investigate properties of this evolution.

In this paper we try to develop further part of this tool and we suggest that this can be proven
useful in a practical example, specifically fault diagnosis in a distributed robotics situation. We
examine a quite well known puzzle studied in computer science known as the muddy children
puzzle and demonstrate that this example is conceptually equivalent to integrity self-checking in a
robotics plant. We propose a general algorithm that can be applied in similar situations involving
distributed knowledge among a group of agents.



1.2 The theoretical background

The logic S5™ models a community of ideal knowledge agents. Ideal knowledge agents have, among
others, the properties of veridical knowledge (everything they know is true), positive introspection
(they know what they know) and negative introspection (they know what they do not know).
The modal logic S5™ (see for example Popkorn (1994) and Goldblatt (1992)) can be axiomatised
by taking all the propositional tautologies; the schemas of axioms O;(¢ = ¢) = O;¢0 = 0;0,
;0 = ¢, 0,0 = 0;0;¢0, O;0 = 0;0;0, where i € A represents an agent in the set of agents
A ={1,...,n}; and the inference rules Modus Ponens and Necessitation.

The logic S5™ has also been extended to deal with properties that arise when we investigate
the state of knowledge of the group. Subtle concepts like common knowledge and distributed
knowledge have been very well investigated (as in Fagin et al. (1995)). The logic S5 is a successful
tool for the agent theorist also because, even in its extensions to common knowledge and distributed
knowledge, it has important meta-properties like closure under substitution, completeness and
decidability (see for example Meyer and van der Hoek (1995)).

The standard (consequence relation) approach to using S5” is to describe a situation as a set
of formulas I'; and to attempt to show that the situation satisfies a property ¢ by establishing
'k ¢ or T F ¢. Establishing I' - ¢ involves finding a proof of ¢ from I'; while establishing I' F ¢
involves reasoning about all (usually infinitely many) Kripke models satisfying I' to show that they
also satisfy ¢. The completeness of S5" shows that these two notions are equivalent. However,
experience has shown that this approach is computationally very expensive.

In order to overcome the intractability of this approach, Halpern and Vardi have proposed to
use model checking as an alternative to theorem proving Halpern and Vardi (1991). In the model
checking approach, the situation to be modelled is codified as a single Kripke model M rather
than as a set of formulas I'. The task of verifying that a property ¢ holds boils down to checking
that M satisfies ¢, written M E ¢. This task is computationally much easier than the theorem
proving task, being linear in the size of M and the size of ¢ Halpern and Vardi (1991).

Halpern and Vardi informally illustrate their approach by modelling the muddy children puzzle.
In that puzzle, there are n children and n atomic propositions py, po, . .., p, representing whether
each of the children have mud on their faces or not. Various announcements are made, first by the
father of the children and then by the children themselves. The children thus acquire information
about what other children know, and after some time the muddy ones among them are able to
conclude that they are indeed muddy. We describe the problem in greater detail below.

Halpern and Vardi propose the following way of arriving at the model M to be checked. They
start with the most general model for the set of atomic propositions at hand. In order to deal
with the announcements made, they successively refine the model with formulas expressing the
announcements made. This refinement process consists of removing some links from the Kripke
model. At any time during this process, they can check whether child 7 knows p; (for example)
by checking whether the current model satisfies O;p;.

This method is illustrated in the paper Halpern and Vardi (1991) and the book Fagin et al.
(1995), but a precise definition of the refinement operation is not given. Our original aim for this
paper was to provide such a definition and explore its properties. However, we soon came to the
opinion that there is no definition of model refinement on arbitrary S5” Kripke structures that
will have intuitively acceptable properties. We explain our reasons for this view in section 2. We
believe the refinement and model checking ideas can still be made to work, however. In section 3
we introduce a structure derived from a Kripke model, which we call a Kripke tree, and define
the refinement operation on Kripke trees. We illustrate this notion using the muddy children
example in section 4. We prove some some properties of the refinement operation on Kripke trees
in section 5 and we conclude with some discussion in section 6.

This is mainly a theoretical paper. However, we argue that scenarios conceptually equivalent
to the muddy children puzzle can occur in robotics. We describe one of these scenarios in section 2
and we solve it in section 4 by applying the technical machinery we develop in section 3.



1.3 Syntax and semantics

We assume finite sets P of propositional atoms, and A of agents. Formulas are given by the usual
grammar:

¢ = plo| ¢ Agy|Bid| Co

where p € P and i € A. Intuitively the formula O;¢ represents the assertion that the agent i
knows the fact represented by the formula ¢. The other propositional connectives can be defined
in the usual way. The modal connectives ¢;, F and B are defined as:

O means —0;—¢

E¢ means A, D¢
B¢ means —-C-¢

Oy means “it is consistent with i’s knowledge that ¢”, E¢ means that everyone knows ¢, while
C¢ is the much stronger statement that ¢ is common knowledge. In a multi-agent setting, a
formula ¢ is said to be common knowledge if it is known by all the agents, and moreover that each
agent knows that it is known by all the agents; and moreover, each agent knows that fact, and that
one, etc. An announcement of ¢ results in common knowledge of ¢ among the hearers, because
as well as hearing ¢ they also see that the others have heard it too (we assume throughout that
all the agents are perceptive, intelligent, truthful). If one agent secretly informs all the others of
¢, the result will be that everyone knows ¢, but ¢ will not be common knowledge. B is the dual
of C. Although not particularly useful intuitively, we will need it for technical reasons.
We will also need the following definitions.

Definition 1.1 A formula is universal if it has only the modalities C, F,0; and no negations
outside them. Formally take

¢ = plog|d1t ANda| PV ha

and define a formula v to be universal if it follows the following syntax:

Y ou= @[ Vo | Adhy [Bip | EY [ Cy

Definition 1.2 A formula is safe if it is universal and, after negations are pushed inwards, no O;
and no C appears in the scope of V. Formally take

¢ = plog|dr ANda| PV ha

and define a formula v to be safe if it follows the following syntax:
Y o= ¢ A | Oip | EY | CY
Definition 1.3 A formula is disjunction-free if it is universal and has no V. Formally take
¢ u=pld| g1 Ao

and define a formula v to be disjunction-free if it follows the following syntax:

Y o= @ Ape | Opp | By | Cp

Definition 1.4 An equivalence Kripke model M = (W, ~, 7w, w) of the modal language over atomic
propositions P and agents A is given by:

1. A set W, whose elements are called worlds;

2. An A-indexed family of relations ~ = {~;};ca. For each 1 < i < n, ~; is an equivalence
relation on W (~; CW x W), called the accessibility relation;



3. A function 7 : W — P(P), called the assignment function;
4. A world w € W, the actual world.

See Figure 1 for an illustration.
Let z € W. We define the relation of satisfaction of ¢ by M at z, written M =, ¢, in the
usual way:

ME,p iff pen(x)
M=, ¢ iff M £, ¢
M=, ¢ At iff M =, ¢and M =, o
M =, O iff for each y € W, z ~; y implies M =, ¢
M =, Cy iff for each k > 0 and iq,14,...,ix € A, we have M |=, O;, ... Oige)

We say that y is reachable in k steps from z if there are wy,ws,... wx_1 € W and iy,19,...10 in
A such that & ~;, wy ~j, wo ... ~i_, wr_1 ~;, y. We also say that y is reachable from z if
there is some k such that it is reachable in k& steps. The following fact is useful for understanding

the technical difference between E and C.
Theorem 1.5 (Fagin et al. (1995))
1. M =, E*¢ iff for all y that are reachable from z in k steps, we have M =, ¢.

2. M =, C¢ iff for all y that are reachable from z, we have M =, ¢.

2 Refining Kripke models

Halpern and Vardi propose to refine Kripke models in order to model the evolution of knowl-
edge. They illustrate their method with the muddy children puzzle. This example is particularly
important in the literature. We report it in the following.

2.1 The muddy children puzzle

There is a large group of children playing in the garden. A certain number (say k) get mud on
their foreheads. Each child can see the mud (if present) on others but not on his own forehead. If
k > 1 then each child can see another with mud on its forehead, so each one knows that at least
one in the group is muddy. The father first announces that at least one of them is muddy (which,
if k£ > 1, is something they know already); and then he repeatedly asks them ‘Does any of you
know whether you have mud on your own foreheadI” The first time they all answer ‘no’. Indeed,
they go on answering ‘no’ to the first £ — 1 questions; but at the kth those with muddy foreheads
are able to answer ‘yes’.

At first sight, it seems rather puzzling that the children are eventually able to answer the
father’s question positively. The clue to understanding what goes on lies in the notion of common
knowledge. Although everyone knows the content of the father’s initial announcement, the father’s
saying it makes it common knowledge among them, so now they all know that everyone else knows
it, etc. Consider a few cases of k.

k =1, i.e. just one child has mud. That child is immediately able to answer ‘yes’, since she has
heard the father and doesn’t see any other child with mud.

k = 2, say a and b have mud. Everyone answers ‘no’ the first time. Now a thinks: since b
answered ‘no’ the first time, he must see someone with mud. Well, the only person I can
see with mud is b, so if b can see someone else it must be me. So a answers ‘yes’ the second
time. b reasons symmetrically about a, and also answers ‘yes’.



k = 3, say a,b,c. Everyone answers ‘no’ the first two times. But now a thinks: if it was just b
and ¢ with mud, they would have answered ‘yes’ the second time. So there must be a third
person with mud; since I can only see b, ¢ having mud, the third person must be me. So a
answers ‘yes’ the third time. For symmetrical reasons, so do b, c.

And similarly for other cases of k.

To see that it was not common knowledge before the father’s announcement that one of the
children was muddy, consider again k = 2, say a,b. Of course a and b both know someone is
muddy (they see each other), but, for example, a doesn’t know that b knows that someone is dirty.
For all a knows, b might be the only dirty one, and therefore not be able to see a dirty child.

2.2 An engineering example

The muddy children puzzle, together with its many variants like the three wise men puzzle, etc.
is popular among computer scientists. The reason is that it encodes subtle properties about
reasoning, while also being applicable to real life scenarios. We can imagine an example in which
an engineering system could benefit from being able to cope with muddy-children-like situations.

Consider a factory in which similar robots collectively manufacture an object while moving in
group in a large space. The robots can roughly be thought of being made of two components: the
reasoning module and the mechanical actuators, effectively operating on the object. We want to
design a fault detection system for the actuators. Given the large area the robots can be in, the
installation of cameras to monitor the operational status of the robots’ arms is not an option.

Let us suppose that the robots have a visual system directed towards the other robots that
can detect faults in their mechanical arms. Note this is quite a reasonable assumption, since it
is often problematic to have visual systems that can do self-monitoring as well as monitoring the
environment. Suppose now that the factory has a quality control mechanism that can detect if
something went wrong during the production of the object and assume this device broadcasts an
alarm every time it notices a defect in the production.

This robotic scenario complies with the muddy children example: the children are now robots,
the role of the father is taken by the fault detection system. Note that the assumption of communi-
cation being common knowledge is not violated because messages are assumed to be broadcasted
to all the agents. The task of the robots is then to reason about their status and stop their
operation in case they come to know that their mechanical arm is faulty. The evolution of their
knowledge proceeds exactly as the case of the muddy children example where we assume the robots
to operate synchronously.

Assuming the robots have a reasoning module able to handle the muddy children problem, the
group of robots is then effectively able to do collective diagnosis.

In the following we refer our discussion to muddy children, but the above scenario can serve
equally well.

2.3 Halpern and Vardi’s formulation

Suppose A = {1,...n} and P = {p1,...,pn}; p; means that the ith child has mud on its forehead.
Suppose n = 3. The assumption of this puzzle is that each child can see the other children but
cannot see itself, so each child knows whether the others have mud or not, but does not know
about itself. Under these assumptions, Halpern and Vardi propose the Kripke structure of Figure
1 to model the initial situation.

Let w be any world in which there are at least two muddy children (i.e. w is one of the four
upper worlds). In w, every child knows that at least one of the children has mud. However, it is
not the case that it is common knowledge that each child has mud, since the world at the bottom
of the lattice is reachable (cf. Theorem 1.5).

To model the father’s announcement, Halpern and Vardi refine the model M; in Figure 1,
arriving at M, in Figure 2 (these figures also appear in Halpern and Vardi (1991), Fagin et al.
(1995)). The refinement process is not precisely defined in Halpern and Vardi (1991), Fagin et al.



Figure 1: M;: The Kripke model for the muddy children puzzle with n = 3.

Figure 2: Ms: The Kripke structure after the father speaks.
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Figure 3: Mj3: The Kripke structure after the children announce that they don’t know whether
they are muddy.

(1995), though arguments in favour of the transformation from M; to M, are given.

Suppose now that the father asks the children whether they know whether they are muddy
or not, and the children answer simultaneously that that they do not. Halpern and Vardi argue
that this renders all models in which there is only one muddy child inaccessible, resulting in M3
(Figure 3).

If there are precisely two children with mud (i.e. the actual world is one of the three in the
second layer), then each of the muddy children now knows it is muddy. For suppose the actual
world is the left one of those three, i.e. w with w(w) = {p1,p2}. We easily verify that M3 =, O1p;
and M3 ‘:w Oops.

If all three children are muddy, i.e. the actual world w is the top one, then we are not yet done,
for we do not have M3 |=,, O;p; for any i. The father again asks each of the children if they know
if they are muddy, and the model is refined again according to their answer “no”, resulting in My
which is M3 with the last remaining links removed. (M, is not illustrated.) We can easily check
that My |=,, O;p; for each i.

In summary, the method proposed by Halpern and Vardi for solving muddy-children-type
puzzles is the following. Start with a suitably general model M; reflecting the initial set-up of
the puzzle. Refine it successively by the announcements made. At the end of the announcements,
check formulas against the refined model. In the example above, we refined M; first by ¢; =
C(p1 V p2 V p3) (the father’s announcement), and then twice by

¢2 = C(=O1p1 A=01=p1) A C(=0gps A =Oy=p2) A C(=Osps A ~Oz—ps3)

which corresponds to each of the three children announcing that they don’t know whether they
are muddy or not.

Halpern and Vardi do not precisely define what refinement by a formula means. The intuition
they give is that refinement removes a minimal set of links of the model, so that the model satisfies



Figure 4: M5 and Mg (Example 2.1)

the formula at the actual world. Removing links means that epistemic possibilities are removed,
that is, knowledge is gained, so this seems intuitively the right thing to do.

2.4 Problems with refinement of Kripke models

Let us write M * ¢ to denote the result of refining the model M by the formula ¢. Thus, in the
example above, My = M * ¢y, etc.

The muddy-children example discussed above naturally lead us to the question of whether it
is possible to make precise the notion of refinement of a Kripke model by a formula, and of what
properties this would have. Essentially any refinement procedure will remove the links to the
states that are responsible for the non-satisfaction of the formula we are refining with. However,
some unexpected problems of any natural procedure operating on Kripke models can be found.

Consider the following examples.

Example 2.1 Let M;5 be the Kripke model illustrated in Figure 4, with the left-hand world w
the actual world, and consider refining by O;p. The definitions we examined differed in subtle
cases involving quite complex formulas and models, but they all agreed in this one: the resulting
model must be Mg (see figure). What happens is that agent 1 gains the knowledge of p, and so
must eliminate the epistemic possibility of =p by removing the link.

The counterintuitive property of this example is that M5 =, O3 1p, while Mg [, O301p.
Thus, in M5, agent 3 knows that p is consistent with 1’s knowledge. But after 1 learns p for sure
in Mg, 3 no longer knows this!

Example 2.2 Figure 5 shows a model and (the only) two outcomes one could consider for its
refinement by 0;09(p V ¢). One must remove either the 1 link or the 2 link in order to prevent
the 1-2 path to the world exhibiting =(pV ¢). The choice is which link to remove. Both outcomes
reveal undesirable properties of the refinement operator. In the first case, removing the 1 link
adds too much to 1’s knowledge (he learns p), while the second case gives us a situation in which
a model satisfies 039 but its refinement by O;0,(p V q) does not. It is counterintuitive that
3’s knowledge should change in this way when we refine by 0;05(p V q).

The second case at least has the desirable property that a minimal change of the knowledge
of agents at the actual world w is made, since the set of reachable states from w is maximised
(cf. Theorem 1.5).

Example 2.3 Refinement by universal formulas (definition 1.1) ought to be cumulative, and such
formulas ought to commute with each other (i.e. M *¢*1) = M x1)x¢). However, another example
shows that this will be hard to achieve. Consider the model M; shown at the top of Figure 6,
and let ¢ = Oyp and ¢ = O;05(p V q). Whatever way one thinks about defining *, the result in
the left-hand branch seems clear. Note that My * O;p already satisfies 0;02(p V ¢) and therefore
M7+ O1px 0;0s(p V q) = M7 * Oyp.

An argument for the stated result of M * O;05(p V ¢) was given in Example 2.2, and further
refining by O p leaves little room for maneuver. However, the resulting models differ on whether
they satisfy (for example) O304g.

Example 2.3 shows that even universal formulas, do not enjoy commutativity in any reasonable
refinement setting. However, commutativity for universal formulas seems intuitively correct: the
order in which ideal agents acquire information should not matter. Non-universal formulas are a
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different matter, since they can express absence of knowledge, and this will not commute with the
acquisition of new knowledge.

3 Refining Kripke trees

Some of the problems exhibited by the three examples at the end of the preceding section seem
to be due to the following fact: when we remove a link in a Kripke model in order to block a
certain path, we also block other paths that used that link. To overcome this problem, we would
like to unravel Kripke models into trees, in which each link participates in just one path. At
first sight this looks like it will destroy the finiteness of our models, a feature on which effective
refinement and model checking operators rely. To retain finiteness, we will need to limit in advance
the maximum nesting of boxes that is allowed, and construct a tree to depth greater than this
number. Semantic structures similar to Kripke trees have been defined in Hughes and Cresswell
(1984). Our definition differs in detail from the one in Hughes and Cresswell (1984), but it largely
agrees with it in spirit.

In this section we define the notion of Kripke tree, show a translation of equivalence Kripke
models into Kripke trees and define an algorithm for refining knowledge structures.

3.1 Kripke trees: basic definitions
Definition 3.1 (Kripke tree) A Kripke tree T = (V,E,0) is

e aset V; elements of V' are called vertices;

e an A-indexed family E = {E;};c of edges E; CV xV, such that the structure (V, E) forms
a tree, that is,

— there is a unique vertex vg € V such that for all v € V and i € A, (v,v9) € E;. The
vertex vg is called the root of T.

— for every vertex v there is a unique and finite path from the root to v, i.e. unique
sequences (vo,v1,...,vx) and (i,...,dx) such that (v;,v;11) € E;,, (0 < j < k) and
Vp = V.

e a function o : P — 2V.

We write E* to mean the transitive closure of the union of relations in F, i.e. (v,v") € E* if there
is a path from v to v', i.e. sequences

(vo,v1,...,vx) and (i1, ..., i) such that (v;,vj41) € E with 0 < j < k,vo =vand v, =v'.

(ZERR)
We also allow the empty tree (&, @, &) which we write as —. It has no root.

Definition 3.2 (Generated Kripke Tree) Let M = (W,~, 7, wy) be an equivalence Kripke
model. The Kripke tree Ty = (V, E, o) generated by M is given as follows:

e The set of vertices is the set of paths in M:

V= {(wg,il,wl, e Wh—1, b, W) | Wi~ Wi, wj € Wi, € A0 <k — 1)}

e F is an A-indexed family of sets of edges. For s,s' € V, there is an i-edge between s, s',

written (s,s') € E;, if s’ equals s extended by an i link, i.e. s = (wg,i1,w1,...,wg),s" =

(wo,i1,...,w, i, w) for some w.
e The wvaluation o is defined by o(p) = {(wo,i1,wn,...,w) | wi € 7(p)}.

The vertex wg € V is the root of the tree.

10



When the model M is clear from the context or not relevant we will simply indicate the tree as T'.
Kripke trees are irreflexive, intransitive, anti-symmetric, anti-convergent and serial.
If M has at least two distinct worlds related by some ~;, then T, is infinite. For our purposes
of model refinement, we usually want to deal with finite trees. T]’\Z is Thy with paths truncated at
length k. Obviously by truncating the tree we will lose seriality.

Definition 3.3 (Truncated tree of depth k) Given a tree T' = (V, E,0), the truncated tree
of depth k is defined as T* = (V', E', '), where

e V' ={v € V| the distance of v from the root is less or equal than k}.
e E' = Ely is the restriction of E to V',

e o' = o|y- is the restriction of o to V.
Infinite and finite trees satisfy modal formulas in the expected way:

Definition 3.4 (Interpretation) Let ¢ be a formula, and T' a tree. The satisfaction of ¢ by T
at vertex v, written T |=, ¢, is inductively defined as follows:

o Tlypifvea(p);

e T, ~¢ifnot T =, ¢;

o Ty ¢ AYif T =y ¢ and T |2,

e T, Oipif Vo' € V, (v,v') € E; implies T =, ¢;
o T'l=, Copif Vo' €V, (v,0") € E* implies T' =, ¢.

The tree T satisfies ¢, written T |= ¢, if it satisfies ¢ at its root. The empty tree — satisfies no
formula.

An infinite tree T, is semantically equivalent to its generating model M as the following shows:

Lemma 3.5 Let M = (W,~,m,wy) be an equivalence Kripke model and Ty = (V, E,0) its
associated Kripke tree. Let v = (wg, 1, w1, ...,w) be any vertex ending in w, and ¢ any formula.
Then:

M =y ¢ ifand only if T =, ¢.

Proof By induction on the structure of ¢. The result holds for atoms by construction. For the
inductive case observe that there is a one-to-one correspondence between paths in M from w and
extensions of the path represented by vertex v. O

Lemma 3.5 generalises into the following:
Corollary 3.6 M |= ¢ if and only if Ty = ¢.

For the case of truncated tree, Lemma, 3.5 is not valid. However, we can prove a related result
for formulas up to a certain level of modal nesting.
We inductively define the rank of a formula as follows:

Definition 3.7 (Rank of a formula) The rank rank(¢) of a formula ¢ is defined as follows:
e rank(p) = 0, where p is a propositional atom.
e rank(—¢) = rank(¢).

e rank(¢; A ¢2) = maz{rank(¢;),rank(¢s)}.

e rank(¢; V ¢2) = max{rank(¢; ), rank(d2)}.

11



e rank(0;¢) = rank(¢) + 1.
e rank(C¢) = oc.

The rank of a formula ¢ intuitively represents the maximum number of nested modalities that
occur in ¢. If an operator C' occurs in ¢ we take the value of rank(¢) to be infinite. The rank of
a formula reflects the maximal length of any path that needs to be explored to evaluate ¢ on an
infinite tree. In other words, to evaluate a formula ¢ of rank k& at wy we need not examine worlds
whose distance from wy is greater than k.

Lemma 3.8 If rank(¢) < k, M | ¢ if and only if Tk, = ¢.

Proof By corollary 3.6, M = ¢ if and only if Ty = ¢, but, by induction, the evaluation of
a formula of rank(¢) < k does not involve the evaluation of nodes of depth greater than k. So
Tw [ ¢ if and only if T, = ¢, which gives the result. 0

In the following we shift our attention from an equivalence Kripke model to its truncated
generated tree. Truncated generated trees satisfy S5,-axioms provided that the rank of the for-
mulas is sufficiently small compared to the size on the tree. The following clarifies under which
circumstances S5,-axioms are satisfied at the root of the tree and that S5,-inference rules are
sound.

Lemma 3.9 Let M be an equivalence model and T%, its generated tree truncated at k.
1. T¥ = ¢, where ¢ is a tautology, and rank(¢) < k.
2. Tk = O;(¢ = ¢) = O;¢ = O;¢p, where max{rank(¢), rank(y))} < k — 1.

T, |E O:¢6 = ¢, where rank(¢) < k — 1.

- w

Tk, |E 0,6 = 0;0,¢, where rank(¢) < k — 2.
5 Tk E ©i¢ = 0;0,¢, where rank(¢) < k — 2.
6. If for every vertex v € V of Tk, T%, |=, ¢, then for every v € V., TF, |=, 0;¢, for any i € A.

7. If for every vertex v € V of TX,, T% =, ¢, and T¥, =, ¢ = o then T%, =, .

Proof We prove item number 4; the others can be done similarly. Suppose T]’\‘/[ O = 00,0,
where rank(¢) < k — 2. Since T%¥, is generated by M, and rank(d;¢ = 0;0;¢) < k, then by
Lemma 3.8 M [£ O;¢ = 0,;0;¢. But by hypothesis M is an equivalence model. This is absurd.

O

Before we proceed further, we introduce a few basic definitions and operations on subtrees.

Definition 3.10 (Rooted-subtrees) Let 7" = (V' E',¢'), T = (V,E,0) be trees with roots
vg,vo. The tree T' is a rooted subtree of T', written T < T, if vg € V', V' CV, EJy» = E', and
oy =da'.

Definition 3.11 (Intersection of trees) Let 7' = (V',E’,¢') and T = (V, E, o) be trees such
that o|y:ny = ¢'|yav. The intersection of T and TV is TNT' = (V' NV, E'NE,d'|yav).

Tt is easy to see that definition 3.11 (when applicable) defines a tree.

Definition 3.12 (Restriction of trees) Let T' = (V, E, o) be a tree with root v, and V' a subset
of V. The restriction of T' to V', written T'|y-, is the largest rooted subtree of T' generated by v
whose vertices are in V'. If the root of T is not in V', then T}y = —.
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3.2 Kripke trees: refinement

In section 2.4, we discussed the difficulties that arise when using equivalence Kripke models as
knowledge structures for refinement. Example 2.3 showed that any straightforward procedure to
refine an equivalence Kripke model will be non-commutative even for universal formulas, i.e. there
will be universal «, 3, such that M xax 3 # M * 3 x a.

Commutativity for universal formulas can be achieved by shifting to Kripke trees. Before we
can show this, we must define refinement on Kripke trees.

The typical working scenario in which we operate is the same one as that advocated by Halpern
and Vardi (1991), except that we refine T, instead of M. It can be described as follows: we are
given an initial configuration of a MAS, and a set of formulas {¢1,..., ¢} that represent the
update of the scenario. The question is whether the updated configuration will validate a set of
formulas {¢1,...,¢¥;}. We assume every v to have finite rank, i.e. we cannot check a formula
containing the operator of common knowledge. There is no restriction on the ¢s.

Our method operates as follows:

1. Start from the most general equivalence Kripke model M that represents the MAS.
2. Generate the infinite tree T, as given in Definition 3.2.

3. Generate from T¥,, the truncated tree of depth k, for some sufficiently large k.

4. Sequentially refine T¥, with {¢1,..., ¢},

5. Check whether the resulting tree structure satisfies {¢1,...,¢;}.

The method described above needs some further explanation. First, what is the most general
Kripke model representing a MAS configurationI' How are we to build itl' Our answer is the
same as that given by Halpern and Vardi. Assume the set of atoms P is finite, as we set it to be
in Section 1.3. We take the model whose universe W is equal to 2F with an interpretation that
covers all the possible assignments to the atoms. We take ~;,i € A to be the universal relations
on W x W, and wq to be the actual world of the given MAS.

In general we will require that M is more specific than the most general model, e.g. some agent
will have a certain knowledge about the world. We can add all the formulas that need be satisfied
to the set of updates {¢1, ..., ¢m }. For example in the muddy children example we can start from

the model with universal relations and add

3
N\ Cvi = Kipi)

i=1

to the set of updates.
We have already explained how to execute steps 1, 2, 3, and 5. We now present a notion of
refinement to execute step 4.

Definition 3.13 (Refinement of Kripke tree structures) Given a truncated Kripke tree T =
(V,E,o0), a point v € V, and a formula ¢, the result 7' = (T, v) * ¢ of refining T by ¢ at v is
procedurally defined as follows. We assume that the negation symbols in ¢ apply only to atomic

propositions (to achieve this, negations may be pushed inwards using de Morgan laws and dualities
0/<¢ and C/B).

e If = —, then T" = —.

e If T, ¢, then T'=T.

e Otherwise the result is defined inductively on ¢:
—¢=p. T =—.
—¢p=—p. T = —.
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—o=9Ax. T =((T,v) x) T (T, v) * x).
—¢o=yYVyx. If (T,v)xp < (T,v)xx then T' = (T,v)*x, and if (T,v)*x < (T,v)*1) then
T' = (T,v) x . Otherwise T" is non-deterministically given as (T, v) x ¢ or (T, v) * x.

— ¢ = 0O;¢p. T' is given by computing as follows:

T =T,
for each v’ such that (v,v') € E; do
if (T",v") %4 = —, then
T =Ty oy
else

T = (T',v") ¢
— ¢ =0, Let X be the set X = {(T,v") x¢ | (v,v') € E;).

If X =2, then T' = —,
else T' is nondeterministically chosen to be a <-maximal element of X.
— ¢ = Cq. T' is given by computing as follows:
T =T,
for each v’ such that (v,v') € E* do
if (T",v") x4 = —, then
Tl = T"V?{Ul}
else
T = (T"v") x4

— ¢ = By. Let X be the set X = {(T,v") ¢ | (v,v") € E*}.

If X =2, then T' = —,
else T" is nondeterministically chosen to be a <-maximal element of X.

T % ¢ means (T, v) * ¢, where v is the root of T
Lemma 3.14 Given a tree T, a formula a and a point v, (T,v) * « is a tree.
Proof It Follows from the fact that if 7' is a tree then T'|y- is also a tree. |

The intuition behind (T, v) * ¢ is that it is obtained by removing as small a set of links from
T as possible, in order to satisfy ¢. Note that, due to the clauses for the connectives Vv, <;, B,
we have that the tree (T,v) % ¢ is not uniquely defined. However, we will see that running the
procedure on the muddy children example does not introduce nondeterminism.

4 The muddy children puzzle using Kripke trees

In section 2.1, we described the muddy children puzzle and we reported the formalisation that was
given in Fagin et al. (1995), Halpern and Vardi (1991). The aim of the present section is to solve
an instance of it (where the actual situation is coded by the tuple p1, p2, ps that we equivalently
write as (1,1, 1); all the children are muddy) by using Kripke trees and the methods we introduced
in section 3.

We start with the most general model to represent the puzzle: this is the model M; of Figure 1'.
Given M;, we generate the infinite tree Th, for M; and then the truncation 7y of Ty, . In this

TAccording the the notion of most general model as described in section 3.2 the model M should actually be
M = (2tr1:p2:p3} U, 7, w), where U is a family of universal relations on W x W, and w(w) = {p1,p2,p3}. The
model M1 we analyse is the result of the update of M by

C(pi = Kjp;) 11 # ;4,5 € {1,2,3},

where the formula above represents the fact that children can see each other. For brevity (as in Fagin et al. (1995),
Halpern and Vardi (1991)) we start our analysis from Mi; i.e. rather than building the tree for M and update it
first by C'(p; = Kjp;), we directly build the tree for M;. The reader can check that this leads to the same result.
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example, we only need three levels to be unravelled. The starting tree and the three successive
refinements are in Figure 7, and 8. Let ¢y = C(p1 Vp2Vps) (this is the father’s announcement), and
@2 = C(=01p1 A=O1 =1 ) AC(=0a9pa A=Og—pe ) AC (=03 p3 A—=Oz-p3) (the children’s simultaneous
reply that they don’t know whether or not they are muddy). We now sequentially update T by
¢1 and then by ¢, three times. Note that since all children are muddy, they will have to speak
three times before everyone knows he is muddy.

Consider the algorithm of Definition 3.13 and 73. Following the algorithm, the refined tree
Ty % ¢1 = T3 in Figure 7 is T} in which the links to states where no children are muddy have been
removed. Ts % ¢ is then achieved by isolating worlds that do not see two worlds for every relation.
In fact, only in this case one of the formulas <;p; A &;—p; can fail on a point of 7. We can now
obtain T3, and Ty (shown in Figure 8) similarly.

Having made all the refinements, we can now check whether or not the muddy children know
that they are muddy. This involves checking

3
Ty E /\(1% = K;pi),

i=1

which is indeed the case.

Analogously we can prove that the procedure given in Section 3 produces solutions for the
other cases of the muddy children.

Note that had we decided to consider the Kripke tree truncated at n > 4, the formula
/\?:] (pi = Kip;) would still be satisfied at the root after three refinements.

Let us now consider the example presented in section 2.2. By following the above described
procedure with the assumption of synchronicity, the k faulty robots will announce their fault and
disconnect from the system after k rounds, allowing the system to start normal production again
and substitute the faulty units.

5 Properties of refinement on Kripke trees

In this section we analyse some more properties of the refinement procedure that we defined in
Definition 3.13.

The first remark that we should make is that refining a scenario by some agent’s knowledge
cannot affect other agents’ knowledge, as was the case in Example 2.1 for Kripke models. This
is because by unravelling a Kripke model we produce a tree whose leaves are in a bijection with
paths of the original model. We formalise this as follows:

Theorem 5.1 Let T be a tree, and ¢,y two formulas, we have the following;:
If T |=0;¢ then T+« O;¢ |= O;¢, with i # j.

Proof Nodes of a Kripke tree are in a bijection with paths of the generating model. Therefore
by removing some j-links we cannot affect the interpretation of any modality whose index is not
j. The only problematic case would arise if i = j and T % O;¢ = —, but this is excluded by
hypothesis. |

Although the theorem above refers to infinite trees, an analogue version can be proved for
truncated trees. In that case we need the rank of the formulas to be less or equal to the depth of
the truncated tree minus 1.

The second point worth stressing is that Kripke trees solve the problem of Example 2.3, i.e. we
can prove commutativity although the result is limited to safe formulas. First, we need to prove
a few other results.

Lemma 5.2 Let T = (Vi, E1,01),To = (Va, B, 09) be trees. The following hold.
1. (T,v)*x¢ < T.
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2. If « is disjunction-free, then 77 < Tb implies (T, v) x a < (T2, v) * a, where v € V1 N V5.

3. If o is universal then T'|= o and — # 7' < T imply T' = .

Proof 1. The procedure for obtaining (T',v) % ¢ only removes links or produces the empty
tree. Therefore we have the result.

2. We perform structural induction on a. Let T} = (T1,v) * a and Ty = (T5,v) * a. Suppose «
is of the form:

ea=p Ifveo(p) then T, =T, Ty =Ty else T = T4 = —.
p p 1 » 42 ) 1 2

e a=-p Ifvgo(p) then T] =T5 = —; else T =Ty, Ty = Ts.
o BAn.
(Ty,v)*a = (Th,v)*p0(Th,v) xy
< (Ty,v) * BN (Ty,v) ¥y Induction hypothesis

(Ts,v) *x
e a=0;8. Set T{ =Ty and Ty = T, and we execute the loops of Definition 3.13 (O;-case)
synchronously. We will show that T < T4 is an invariant of the execution.
Suppose (v,v') € Es;.
— If (v,v") € Ey;, then consider the following cases:
x (T],v")* f=—and (Ty,v")x 3= —.
T :=T{|y_qyy and Ty := T3]y _gyy, so T] < Ty is not violated.
x (T],v")* f=—and (Ty,v") x 3 # —.
T :=Ti|ly_qvy and Ty := (T3, v") * B; 50 T{ < Ty.
x (T],v")* B # — and (Ty,v") x 3 = —.
Contradicts hypothesis that T} < Ty.
x (T],v")* B # — and (T3,v") x 8 # —.
T := (T],v") % B8, Ty := (T4,v') % 8, and T] < T4 by induction hypothesis.
— If (v,v") & Ey; then T is unchanged by the body of the loop, while T3 becomes
one of Ty := Ty|y gy and (T3,2") * 3. In either case, we are removing links in T
which are not present in T, so T} < T is preserved.

o o = Ef. It follows by induction hypothesis by noting that ES = A}, K;(.
e a = (Cf. Similar to 0,8, but with proofs related to E*.

3. It follows from structural induction on a.

Theorem 5.3 (Success) If o is universal, (T,v) xa = — or (T,v) *a |&, a.

Proof Induction on a. The cases @ = p,—p, ¥ V x,0;0, E¢, C)p are straightforward; we prove
the case a = ¢ A x.

(T,v)*(YAx) = (T,v)« 1 (T,v) *x. But by induction hypothesis we have that (T, v) x4 |= ¢
and that (T, v)*x = x. Since (T,v)*¢ < (T,v)xpN(T,v)*x and (T,v)xx < (T,v)* 1 (T,v)*x,
by part 3 of Lemma 5.2, we have that (T, v) x4 (T,v) * x |E ¢ and that (T,v)*¢¥ 1 (T,v)*x E x.
So we have that (T,v) * ¢ N (T,v) * x = ¢ A x. |

Lemma 5.4 If « is safe, then the outcome of (7', v) * o is deterministically defined.

Proof Suppose ¢ contains no O;, C operators. Then it is an easy induction to see that (T, v) * ¢
is either T' or —. Now consider (T,v) * (¢ V 9), where ¢,4 are O;, C-free. We see that either
(T,v)* ¢ < (T,v) xp or (T,v) x1p < (T,v) * ¢, so the result is again T or —. The cases 0;¢,C'¢
do not introduce non-determinism. a
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() 1
Ts =T5 % O1—p Oy (p V —q) @

)

Figure 9: T5 and Tg discussed in Example 5.8. While Tg = T5 x O1—p x Oy (p V —q) is defined and
shown above, T; = T5 * Oy (p V —q) *x 1 —p is undefined.

We show that, for universal formulas, the change made be a refinement is the minimal one
possible in order to satisfy the formula:

Theorem 5.5 If « is safe, then the tree (T, v)*a is <-maximum in {T' < T |T' E, aor T' = —}.

Proof Let T' = (T,v) * a. By part 1 of Lemma 5.2 and Theorem 5.3, we know 7" is in the set.
To prove that it is maximum, take any 7" in the set; we will show T" < T". If T" = — the result is
immediate; otherwise, we have T" |=, @ and T" < T'. Since T" < T, we get (T",v)xa < (T,v) *x«
by part 2 of Lemma 5.2. But (T",v) * @ = T" (since it is already T" =, a) and (T,v) xa = T";
soT" < T O

Theorem 5.6 If a, 3 are safe, then the tree (T,v) *x a * § is maximum in {T' < T | T' =,
aANforT =—}.

Proof LetT' = (T,v)*ax[. By parts 1 and 3 of Lemma 5.2 and Theorem 5.3, we know 7" is in
the set. The argument that it is maximum is similar to the proof of Theorem 5.5. Take any 7" in
the set; we will show T"" < T'. If T"" = — the result is immediate; otherwise, we have T"' =, a A
and T" < T. Since T" < T, we get (T",v) *xaxf < (T,v) * a x 8 by part 2 of Lemma 5.2.
But since 7" |, a we have (T",v) * « = T" and since T" =, 8 we have (T",v)« 8 =T". So
(T",v)*axB=T" and (T,v) * a* 3 = T'. Therefore we have T" < T". O

Theorem 5.7 (Commutativity) If «, 3 are safe, then T xax 8 =T x 3 x a.

Proof By Theorem 5.6, T x a % § and T * 3 * @ are maximum in the same set. Therefore they
are equal. O

It is worth mentioning an example of which non-universal formulas can make commutativity
to fail, independently of non-determinism.

Example 5.8 Commutativity can fail for arbitrary formulas. The problem is that if the formulas
are non-universal, the order of updating can play a role in the outcome of the update and we might
have that one of the two cases fail. We are so far unable to find examples in which the two updates
succeed but produce different result. The example we report here is the tree T5, illustrated in
Figure 9, where the root is the top vertex. Consider now Ts = T5 * O1—p* O (p V —q), illustrated,
and Ty =T x O, (pV —q) *x O1—p = —.
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6 Conclusions and further work

In this paper we have developed the proposal in Halpern and Vardi (1991) for model refinement
and model checking. We argued that model refinement could not be defined satisfactorily on
Kripke models, and proposed a definition on Kripke trees obtained from Kripke models instead.

The shift from Kripke models to Kripke trees let us achieve two main results. First, we showed
that it is possible to refine trees by a formula expressing knowledge of a formula without affecting
the knowledge of the other agents (Theorem 5.7) - this was not apparently possible on standard
Kripke models (see Example 2.1). Secondly, while it seems impossible to obtain commutativity
for even safe formulas on Kripke models, we showed this is possible for Kripke trees.

Many of the issues we discussed in this note still need investigating and we refer the reader to
Lomuscio and Ryan (1998) to a list of technical conjectures currently under analysis.

Although the attention in this paper is on theoretical issues, in section 2.2 we proposed an
example in which these ideas can be applied. This consisted in a collective diagnosis problem
among a group of homogeneous robots working at a factory. It should be clear that the scenarios
commonly analysed in collective diagnosis research (see for example Frohlich, Nejdl and Schroeder
(1998), Bottcher and Dressler (1993), Jennings and Wittig (1992), Schroeder (1998)) are somehow
different from our example. Our example is much closer to scenarios coming directly from robotics.

Nowadays, robots (see McKerrow (1991) for an introduction) regularly substitute humans in
many tasks. Diagnosis and maintenance in hazardous environments is one of the many important
areas in which robots can clearly offer valuable solutions (NEI (1991)). Indeed the use of robots
in environmental monitoring and cleaning, especially in controlled radiation areas, and in steam
generators has seen a substantial growth in the last 15 fifteen years (see NEI (1992), Gerriets
(1992)) and it is reasonable to assume that more advanced solutions will become increasingly
available in the future.

In this context we believe that, although our example is not realistic at present (because it
presupposes the availability of complex visual systems, etc.), it is likely and worth advocating that
in the future engineering will be able to profit from techniques such as the one presented in this
paper.

Our short term research agenda includes an implementation of the algorithm exposed in this
paper and further analysis of its underlying properties.

Note A presentation of part of this theory was given at PRR-98, a satellite workshop of ECAI-98.
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