
Model re�nement and model checking for S5nAlessio Lomuscio and Mark RyanSchool of Computer ScienceUniversity of BirminghamBirmingham B15 2TT, UKwww.cs.bham.ac.uk/f�arl,�mdrg8 August 1998AbstractHalpern and Vardi have proposed the notion of re�nement of S5n Kripke models inorder to solve multi-agent problems in which knowledge evolves. We argue that there aresome problems with their proposal and attempt to solve them by moving from Kripkemodels to their corresponding trees. We de�ne re�nement of a tree with a formula, showsome properties of the notion, and illustrate with the muddy children puzzle.1 IntroductionThe modal logic S5n (see for example [HC96]), also known as KT45n, has been used to modelknowledge in multi-agent systems (MAS) for some years now [Hin62, FHMV95]. S5n is aclassical modal logic containing n modalities expressing private knowledge, and operators forexpressing common knowledge and distributed knowledge within a group.The standard (consequence relation) approach to using S5n is to describe a situation asa set of formulas �, and to attempt to show that the situation satis�es a property � byestablishing � ` � or � � �. Establishing � ` � involves �nding a proof of � from �,while establishing � � � involves reasoning about all (usually in�nitely many) Kripke modelssatisfying � to show that they also satisfy �. The completeness of S5n shows that these twonotions are equivalent. However, experience has shown that this approach is computationallyvery expensive.In order to overcome the intractability of this approach, Halpern and Vardi have proposedto use model checking as an alternative to theorem proving [HV91]. In the model checkingapproach, the situation to be modelled is codi�ed as a single Kripke model M rather than asa set of formulas �. The task of verifying that a property � holds boils down to checking thatM satis�es �, written M � �. This task is computationally much easier than the theoremproving task, being linear in the size of M and the size of � [HV91].Halpern and Vardi informally illustrate their approach by modelling the muddy childrenpuzzle. In that puzzle, there are n children and n atomic propositions p1; p2; : : : ; pn represent-ing whether each of the children have mud on their faces or not. Various announcements aremade, �rst by the father of the children and then by the children themselves. The childrenthus acquire information about what other children know, and after some time the muddyones among them are able to conclude that they are indeed muddy. We describe the problemin greater detail below. 1



Halpern and Vardi propose the following way of arriving at the model M to be checked.They start with the most general model for the set of atomic propositions at hand. Inorder to deal with the announcements made, they successively re�ne the model with formulasexpressing the announcements made. This re�nement process consists of removing some linksfrom the Kripke model. At any time during this process, they can check whether child i knowspi (for example), by checking whether the current model satis�es 2ipi.This method is illustrated in the paper [HV91] and the book [FHMV95], but a precisede�nition of the re�nement operation is not given. Our original aim for this paper was toprovide such a de�nition and explore its properties. However, we soon came to the opinionthat there is no de�nition of model re�nement on arbitrary S5n Kripke structures that willhave intuitively acceptable properties. We explain our reasons for this view in section 2.We believe the re�nement and model checking ideas can still be made to work, however.In section 3 we introduce a structure derived from a Kripke model, which we call a Kripketree, and de�ne the re�nement operation on Kripke trees. We illustrate this notion using themuddy children example in section 4. In section 5 we state and prove some properties of there�nement operation on Kripke trees, and conclude in section 6.1.1 Syntax and semanticsWe assume �nite sets P of propositional atoms, and A of agents. Formulas are given by theusual grammar: � ::= p j :� j �1 ^ �2 j 2i� j C�where p 2 P and i 2 A. Intuitively the formula 2i� represents the situation in which theagent i knows the fact represented by the formula �. The other propositional connectives canbe de�ned in the usual way. The modal connectives 3i, E and B are de�ned as:3i� means :2i:�E� means Vi2A2i�B� means :C:�3i� means \it is consistent with i's knowledge that �", E� means that everyone knows �,while C� is the much stronger statement that � is common knowledge. In a multi-agentsetting, a formula � is said to be common knowledge if it is known by all the agents, andmoreover that each agent knows that it is known by all the agents; and moreover, each agentknows that fact, and that one, etc. An announcement of � results in common knowledge of� among the hearers, because as well as hearing � they also see that the others have heardit too (we assume throughout that all the agents are perceptive, intelligent, truthful). If oneagent secretly informs all the others of �, the result will be that everyone knows �, but � willnot be common knowledge. B is the dual of C. Although not particularly useful intuitively,we will need it for technical reasons.De�nition 1.1 A formula is universal if it has only the modalities C;E;2i and no negationsoutside them.De�nition 1.2 An S5n Kripke model M = (W;�; �; w) of the modal language over atomicpropositions P and agents A is given by:1. A set W , whose elements are called worlds;2



2. An A-indexed family of relations � = f�igi2A. For each 1 6 i 6 n, �i is an equivalencerelation on W (�i �W �W ), called the accessibility relation;3. A function � : W ! P(P ), called the assignment function;4. A world w 2W , the actual world.See �gure 1 for an illustration.Let x 2W . We de�ne the relation of satisfaction of � by M at x, writtenM j=x �, in theusual way: M j=x p i� p 2 �(x)M j=x :� i� M 6j=x �M j=x � ^  i� M j=x � andM j=x  M j=x 2i i� for each y 2W , x �i y implies M j=y  M j=x C i� for each k > 0 and i1; i2; : : : ; ik 2 A, we have M j=x 2i1 : : :2ik We say that y is reachable in k steps from x if there are w1; w2; : : : wk�1 2W and i1; i2; : : : ikin A such that x �i1 w1 �i2 w2 : : : �ik�1 wk�1 �ik y. We also say that y is reachablefrom x if there is some k such that it is reachable in k steps. The following fact is useful forunderstanding the technical di�erence between E and C.Theorem 1.3 ([FHMV95])1. M j=x Ek� i� for all y that are reachable from x in k steps, we have M j=y �.2. M j=x C� i� for all y that are reachable from x, we have M j=y �.2 Re�ning Kripke modelsHalpern and Vardi propose to re�ne Kripke models in order to model the evolution of knowl-edge. They illustrate their method with the muddy children puzzle.2.1 The muddy children puzzleThere is a large group of children playing in the garden. A certain number (say k) get mudon their foreheads. Each child can see the mud (if present) on others but not on his ownforehead. If k > 1 then each child can see another with mud on its forehead, so each oneknows that at least one in the group is muddy. The father �rst announces that at least oneof them is muddy [which, if k > 1, is something they know already]; and then he repeatedlyasks them `Does any of you know whether you have mud on your own forehead?' The �rsttime they all answer `no'. Indeed, they go on answering `no' to the �rst k � 1 questions; butat the kth those with muddy foreheads are able to answer `yes'.At �rst sight, it seems rather puzzling that the children are eventually able to answer thefather's question positively. The clue to understanding what goes on lies in the notion ofcommon knowledge. Although everyone knows the content of the father's initial announce-ment, the father's saying it makes it common knowledge among them, so now they all knowthat everyone else knows it, etc. Consider a few cases of k.3



k = 1, i.e. just one child has mud. That child is immediately able to answer `yes', since shehas heard the father and doesn't see any other child with mud.k = 2, say a and b have mud. Everyone answers `no' the �rst time. Now a thinks: since banswered `no' the �rst time, he must see someone with mud. Well, the only person Ican see with mud is b, so if b can see someone else it must be me. So a answers `yes'the second time. b reasons symmetrically about a, and also answers `yes'.k = 3, say a; b; c. Everyone answers `no' the �rst two times. But now a thinks: if it was justb and c with mud, they would have answered `yes' the second time. So there must be athird person with mud; since I can only see b; c having mud, the third person must beme. So a answers `yes' the third time. For symmetrical reasons, so do b; c.And similarly for other cases of k.To see that it was not common knowledge before the father's announcement that one ofthe children was muddy, consider again k = 2, say a; b. Of course a and b both know someoneis muddy (they see each other), but, for example, a doesn't know that b knows that someoneis dirty. For all a knows, b might be the only dirty one, and therefore not be able to see adirty child.2.1.1 The formalisation in [HV91]Suppose A = f1; : : : ng and P = fp1; : : : ; png; pi means that the ith child has mud on itsforehead. Suppose n = 3. The assumption of this puzzle is that each child can see the otherchildren but cannot see itself, so each child knows whether the others have mud or not, butdoes not know about itself. Under these assumptions, Halpern and Vardi propose the Kripkestructure of �gure 1 to model the initial situation.Let w be any world in which there are at least two muddy children (i.e. w is one of the fourupper worlds). In w, every child knows that at least one of the children has mud. However,it is not the case that it is common knowledge that each child has mud, since the world atthe bottom of the lattice is reachable (cf. theorem 1.3).To model the father's announcement, Halpern and Vardi re�ne the model M1 in �gure 1,arriving at M2 in �gure 2 (these �gures also appear in [HV91, FHMV95]). The re�nementprocess is not precisely de�ned in [HV91, FHMV95], though arguments in favour of thetransformation from M1 to M2 are given.Suppose now that the father asks the children whether they know whether they are muddyor not, and the children answer simultaneously that that they do not. Halpern and Vardiargue that this renders all models in which there is only one muddy child inaccessible, resultingin M3 (�gure 3).If there are precisely two children with mud (i.e. the actual world is one of the three inthe second layer), then each of the muddy children now knows it is muddy. For suppose theactual world is the left one of those three, i.e. w with �(w) = fp1; p2g. We easily verify thatM3 j=w 21p1 and M3 j=w 22p2.If all three children are muddy, i.e. the actual world w is the top one, then we are not yetdone, for we do not have M3 j=w 2ipi for any i. The father again asks each of the children ifthey know if they are muddy, and the model is re�ned again according to their answer \no",resulting in M4 which is M3 with the last remaining links removed. (M4 is not illustrated.)We can easily check that M4 j=w 2ipi for each i.4
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Figure 1: M1: The Kripke model for the muddy children puzzle with n = 3.
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Figure 2: M2: The Kripke structure after the father speaks.
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Figure 3: M3: The Kripke structure after the children announce that they don't know whetherthey are muddy.In summary, the method proposed by Halpern and Vardi for solving muddy-children-typepuzzles is the following. Start with a suitably general model M1 reecting the initial set-up of the puzzle. Re�ne it successively by the announcements made. At the end of theannouncements, check formulas against the re�ned model. In the example above, we re�nedM1 �rst by �1 = C(p1 _ p2 _ p3) (the father's announcement), and then twice by�2 = C(:21p1 ^ :21:p1) ^ C(:22p2 ^ :22:p2) ^ C(:23p3 ^ :23:p3)which corresponds to each of the three children announcing that they don't know whetherthey are muddy or not.Halpern and Vardi do not precisely de�ne what re�nement by a formula means. Theintuition they give is that re�nement removes a minimal set of links of the model, so thatthe model satis�es the formula at the actual world. Removing links means that epistemicpossibilities are removed, that is, knowledge is gained, so this seems intuitively the right thingto do.2.2 Problems with re�nement of Kripke modelsLet us write M � � to denote the result of re�ning the model M by the formula �. Thus, inthe example above, M2 =M1 � �1, etc.Our original aim was to make precise this notion of re�nement of a Kripke model bya formula, and to investigate its properties. We investigated several possible de�nitions:essentially a re�nement procedure will remove the links to the states that are responsible forthe non-satisfaction of the formula we are re�ning with. However, we quickly came uponexamples which showed that it will not be easy to achieve all the reasonable properties onecould wish for.Example 2.1 Let M5 be the Kripke model illustrated in �gure 4, with the left-hand worldw the actual world, and consider re�ning by 21p. The de�nitions we examined di�ered in6



M6 w 3M5 13w q p; qp; q qFigure 4: M5 and M6 (example 2.1)
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p; q q p; q qp; qFigure 5: Two outcomes for re�nement of the top model by 2122(p _ q) (example 2.2)subtle cases involving quite complex formulas and models, but they all agreed in this one: theresulting model must be M6 (see �gure). What happens is that agent 1 gains the knowledgeof p, and so must eliminate the epistemic possibility of :p by removing the link.The counterintuitive property of this example is thatM5 j=w 2331p, whileM6 6j=w 2331p.Thus, in M5, agent 3 knows that p is consistent with 1's knowledge. But after 1 learns p forsure in M6, 3 no longer knows this!Example 2.2 Figure 5 shows a model and (the only) two outcomes one could consider forits re�nement by 2122(p _ q). One must remove either the 1 link or the 2 link in order toprevent the 1{2 path to the world exhibiting :(p _ q). The choice is which link to remove.Both outcomes reveal undesirable properties of the re�nement operator. In the �rst case,removing the 1 link adds too much to 1's knowledge (he learns p), while the second casegives us a situation in which a model satis�es 2332:q but its re�nement by 2122(p_ q) doesnot. It is counterintuitive that 3's knowledge should change in this way when we re�ne by2122(p _ q).The second case at least has the desirable property that a minimal change of the knowledgeof agents at the actual world w is made, since the set of reachable states from w is maximised(cf. theorem 1.3).Example 2.3 Re�nement by universal formulas (de�nition 1.1) ought to be cumulative, andsuch formulas ought to commute with each other (i.e. M � � �  = M �  � �). However,another example shows that this will be hard to achieve. Consider the model M7 shown atthe top of �gure 6, and let � = 21p and  = 2122(p _ q). Whatever way one thinks aboutde�ning �, the result in the left-hand branch seems clear. Note thatM7 �21p already satis�es2122(p _ q) and therefore M7 �21p �2122(p _ q) =M7 � 21p.An argument for the stated result of M7 � 2122(p _ q) was given in example 2.2, and7



31 2

23

w

3123
3

qp; q
qq

qp; q q

�21p �2122(p _ q)
p; qp; q

�21p�2122(p _ q)
p; qFigure 6: Two evolutions of M7 (example 2.3), showing that M � � �  6=M �  � �further re�ning by 21p leaves little room for maneuver. However, the resulting models di�eron whether they satisfy (for example) 2322q.Example 2.3 shows that even universal formulas, do not enjoy commutativity in any rea-sonable re�nement setting. However, commutativity for universal formulas seems intuitivelycorrect: the order in which ideal agents acquire information should not matter. Non-universalformulas are a di�erent matter, since they can express absence of knowledge, and this willnot commute with the acquisition of new knowledge.3 Re�ning Kripke treesSome of the problems exhibited by the three examples at the end of the preceding sectionseem to be due to the following fact: when we remove a link in a Kripke model in order toblock a certain path, we also block other paths that used that link. To overcome this problem,we would like to unravel Kripke models into trees, in which each link participates in just onepath. At �rst sight this looks like it will destroy the �niteness of our models, a feature onwhich e�ective re�nement operators and model checking operators rely. To retain �niteness,we will need to limit in advance the maximum nesting of boxes that is allowed, and constructa tree to depth greater than this number. Semantic structures similar to Kripke trees havebeen de�ned in [HC84]. Our de�nition di�ers in detail from the one in [HC84], but it largely8



agrees with it in spirit.In this section we de�ne the notion of Kripke tree, show a translation of equivalence Kripkemodels into Kripke trees, de�ne and algorithm for re�ning knowledge structures and prove afew properties about it.3.1 Kripke trees: basic de�nitionsDe�nition 3.1 (Kripke tree) A Kripke tree T = (V;E; �) is� a set V , of vertices;� an A-indexed family E of edges: Ei � V � V , such that the structure (V;E) forms atree, that is,{ there is a unique vertex v0 2 V such that for all v 2 V and i 2 A, (v; v0) 62 Ei. v0is called the root of T .{ for every vertex v there is a unique and �nite path from the root to v, i.e. uniquesequences (v1; : : : ; vk) and (i1; : : : ; ik) such that (vi; vi+1) 2 Ei+1 (i � 0) andvk = v. The distance of v from the root is k.� a function � : V ! P(P ).We write E� to mean the transitive closure of the union of relations in E, i.e. (v; v0) 2 E� ifthere is a path from v to v0, i.e. sequences (v1; : : : ; vk) and (i1; : : : ; ik�1) such that (vi; vi+1) 2Ei, v1 = v and vk = v0.We also allow the empty tree (?;?;?) which we write as ?. It has no root.De�nition 3.2 (Generated Kripke Tree) LetM = (W;�; �; w0) be an S5n Kripke model.The Kripke tree TM = (V;E; �) generated by M is given as follows:� The set of vertices is the set of paths in M :V = n(w0; i1; w1; : : : ; wk�1; ik; wk) ��� 8j: wj 2W; ij 2 A; wj �j+1 wj+1o� E is an A-indexed family of sets of edges. For s; s0 2 V , there is an i-edge between s; s0,written (s; s0) 2 Ei, i� s0 equals s extended by an i link, i.e. s = (w0; i1; w1; : : : ; wk); s0 =(w0; i1; : : : ; wk; i; w) for some w.� The valuation � is de�ned by �((w0; i1; w1; : : : ; wk)) = �(wk).The vertex w0 2 V is the root of the tree. When the model M is clear from the context ornot relevant we will simply indicate the tree as T .Kripke trees are irreexive, intransitive, anti-symmetric, anti-convergent and serial.If M has at least two distinct worlds related by some �i, then TM is in�nite. For ourpurposes of model re�nement, we usually want to deal with �nite trees. T kM is TM with pathstruncated at length k. Obviously by truncating the tree we will lose seriality.De�nition 3.3 (Truncated tree of depth k) Given a tree T = (V;E; �), the truncatedtree of depth k is de�ned as T k = (V 0; E0; �0), where9



� V 0 = fv 2 V j the distance of v from the root � kg.� E0 = EjV 0 is the restriction of E to V 0,� �0 = �jV 0 is the restriction of � to V 0.In�nite and �nite trees satisfy modal formulas in the expected way:De�nition 3.4 (Interpretation) Let � be an S5n formula, and T a tree. The satisfactionof � by T at vertex v, written T j=v �, is inductively de�ned as follows:� T j=v p if p 2 �(v);� T j=v :� if not T j=v �;� T j=v � ^  if T j=v � and T j=v  ;� T j=v 2i� if 8v0 2 V , (v; v0) 2 Ei implies T j=v0 �;� T j=v C� if 8v0 2 V ; (v; v0) 2 E� implies T j=v0 �.The tree T satis�es �, written T j= �, if it satis�es � at its root. The empty tree ? satis�esno formula.An in�nite tree TM is semantically equivalent to its generating model M as the followingshows:Lemma 3.5 Let M = (W;�; �; w0) be an equivalence Kripke model and TM = (V;E; �) itsassociated Kripke tree. Let v = (w0; i1; w1; : : : ; w) be any vertex ending in w, and � anyformula. Then: M j=w � i� TM j=v �:Proof There is a one-to-one correspondence between paths in M from w and extensions ofthe path v. 2Corollary 3.6 M j= � if and only if TM j= �.For the case of truncated tree, Lemma 3.5 is not valid. However, we can prove a relatedresult for formulas up to a certain level of modal nesting.We inductively de�ne the rank of a formula as follows:De�nition 3.7 (Rank of a formula) The rank rank(�) of a formula � is de�ned as follows:� rank(p) = 0, where p is a propositional atom.� rank(:�) = rank(�).� rank(�1 ^ �2) = maxfrank(�1); rank(�2)g.� rank(�1 _ �2) = maxfrank(�1); rank(�2)g.� rank(2i�) = rank(�) + 1.� rank(C�) =1. 10



The rank of a formula � intuitively represents the maximum number of nested modalities thatoccur in �. If an operator C occurs in � we take the value of rank(�) to be in�nite. The rankof a formula reects the maximal length of any path that needs to be explored to evaluate� on an in�nite tree. In other words, to evaluate a formula � of rank k at w0 we need notexamine worlds whose distance from w0 is greater than k, where distance here is the numberof points which appear in the minimal path connecting the two points. The following lemmaformalises this.Lemma 3.8 If rank(�) 6 k, M j= � if and only if T kM j= �.Proof By corollary 3.6, M j= � if and only if TM j= �, but, by induction, the evaluation ofa formula of rank(�) 6 k does not involve the evaluation of nodes of depth greater than k.So TM j= � if and only if T kM j= �, which gives the result. 2In the following we shift our attention from an equivalence Kripke model to its truncatedgenerated tree. Truncated generated trees satisfy S5n-axioms as the following shows:Lemma 3.9 Let M be an equivalence model and T kM its generated model truncated at k.1. T kM j= �, where � is a tautology, and rank(�) 6 k.2. T kM j= 2i(�)  )) 2i�) 2i , where maxfrank(�); rank( )g 6 k � 1.3. T kM j= 2i�) �, where rank(�) 6 k � 1.4. T kM j= 2i�) 2i2i�, where rank(�) 6 k � 2.5. T kM j= 3i�) 2i3i�, where rank(�) 6 k � 2.6. If for every vertex v 2 V of T kM , T kM j=v �, then T kM j=v 2i�, for any i 2 A.7. If for every vertex v 2 V of T kM , T kM j=v �, and T kM j= �v )  then T kM j=v  .Proof We prove item number 5. The others can be done similarly. Suppose T kv 6j= 2i� )2i2i�, where rank(�) 6 k � 2. Since T k is generated by M , and rank(2i� ) 2i2i�) 6 k,then by lemma 3.8 M 6j= 2i�) 2i2i�. But by hypothesis M is an equivalence model. Thisis absurd. 2So Kripke trees are models for S5n.Before we proceed further, we introduce a few basic de�nitions and operations on subtrees.De�nition 3.10 (Rooted-subtrees) Let T 0 = (V 0; E0; �0), T = (V;E; �) be trees withroots v00; v0. T 0 is a rooted subtree of T , written T 0 6 T , if v0 2 V 0 � V , and EjV 0 = E0, and�jV 0 = �0.De�nition 3.11 (Intersection of trees) Let T 0 = (V 0; E0; �0) and T = (V;E; �) be treessuch that �jV 0\V = �0jV 0\V . The intersection of T and T 0 is T uT 0 = (V 0\V;E0\E; �0jV 0\V ).It is easy to see that de�nition 3.11 (when applicable) de�nes a tree.De�nition 3.12 (Restriction of trees) Let T = (V;E; �) be a tree with root v, and V 0a subset of V . The restriction of T to V 0, written T jV 0 , is the largest rooted subtree of Tgenerated by v whose vertices are in V 0. If the root of T is not in V 0, then T jV 0 = ?.11



3.2 Kripke trees: re�nementIn section 2.2, we discussed the di�culties that arise when using S5n Kripke models as knowl-edge structures for re�nement. Example 2.3 showed that any straightforward procedure tore�ne an equivalence Kripke model will be non-commutative even for universal formulas, i.e.there will be universal �; �, such that M � � � � 6�M � � � �.Commutativity for universal formulas can be achieved by shifting to Kripke trees. Beforewe can show this, we must de�ne re�nement on Kripke trees.The typical working scenario in which we operate is the same one as that advocated by[HV91], except that we re�ne T kM instead ofM . It can be described as follows: we are given aninitial con�guration of a MAS, and a set of formulas f�1; : : : ; �mg that represent the updateof the scenario. The question is whether the updated con�guration will validate a set offormulas f 1; : : : ;  lg. We assume every  to have �nite rank, i.e. we cannot check a formulacontaining the operator of common knowledge. There is no restriction on the �s.Our method operates as follows:1. Start from the most general equivalence Kripke model M that represents the MAS.2. Generate the in�nite tree TM , as given in De�nition 3.2.3. Generate from T kM , the truncated tree of depth k, for some su�ciently large k.4. Sequentially re�ne T kM with f�1; : : : ; �mg,5. Check whether the resulting tree structure satis�es f 1; : : : ;  lg.The method describes above needs some further explanation. First, what is the mostgeneral Kripke model representing a MAS con�guration? How are we to build it? Ouranswer is the same as that given by Halpern and Vardi. Assume the set of atoms P is �nite.We take the model whose universeW is equal to 2P , i.e. the universe will cover all the possibleassignments to the atoms. We take �i; i 2 A to be the universal relations on W �W , and w0to be the actual world of the given MAS.In general we will require that M is more speci�c than the most general model, e.g. someagent will have a certain knowledge about the world. We can add all the formulas that needbe satis�ed to the set of updates f�1; : : : ; �mg. For example in the muddy children examplewe can start from the model with universal relations and add3̂i=1C(pi ) Kipi)to the set of updates.We have already explained how to execute steps 1, 2, 3, and 5. We now present a notionof re�nement to execute step 4.De�nition 3.13 (Re�nement of Kripke tree structures) Given a truncated Kripke treeTm = (V;E; �), a point v 2 V , and a formula �, the result T 0 = (T; v) � � of re�ning T by �at v is procedurally de�ned as follows. We assume that the negation symbols in � apply onlyto atomic propositions (to achieve this, negations may be pushed inwards using de Morganlaws and dualities 2=3 and C=B).� If T = ?, then T 0 = ?. 12



� If T j=v �, then T 0 = T .� Otherwise the result is de�ned inductively on �:{ � = p. If p 2 �(v), then T 0 = T , else T 0 = ?.{ � = :p. If p 62 �(v) then T 0 = T , else T 0 = ?.{ � =  ^ �. T 0 = ((T; v) �  ) u ((T; v) � �).{ � =  _�. If (T; v)� 6 (T; v)�� then T 0 = (T; v)��, and if (T; v)�� 6 (T; v)� then T 0 = (T; v) �  . Otherwise T 0 is non-deterministically given as (T; v) �  or(T; v) � �.{ � = 2i . T 0 is given by computing as follows:T 0 := T ;for each v0 such that (v; v0) 2 Ei doif (T 0; v0) �  = ?, thenT 0 := T 0jV�fv0gelse T 0 := (T 0; v0) �  { � = 3i . Let X be the set X = f(T; v0) � � j (v; v0) 2 Ei).If X = ?, then T 0 = ?,else T 0 is nondeterministically chosen to be a 6-maximal element of X.{ � = C . T 0 is given by computing as follows:T 0 := T ;for each v0 such that (v; v0) 2 E� doif (T 0; v0) �  = ?, thenT 0 := T 0jV�fv0gelse T 0 := (T 0; v0) �  { � = B . Let X be the set X = f(T; v0) � � j v0 2 V g.If X = ?, then T 0 = ?,else T 0 is nondeterministically chosen to be a 6-maximal element of X.T � � means (T; v) � �, where v is the root of T .Lemma 3.14 Given a tree T , a formula � and a point v, (T; v) � � is a tree.Proof Follows from the fact that if T is a tree then T jV 0 is also a tree. 2The intuition behind (T; v) � � is that it is obtained by removing as small a set of linksfrom T as possible, in order to satisfy �. Note that, due to the clauses for _;3i; B, (T; v)�� isnot uniquely de�ned. However, we will see that running the procedure on the muddy childrenexample does not introduce nondeterminism.
13



4 The muddy children puzzle using Kripke treesIn section 2.1, we described the muddy children puzzle and we reported the formalisationthat was given in [FHMV95, HV91]. The aim of the present section is to solve an instanceof it (where the actual situation is coded by the tuple p1; p2; p3 that we equivalently write as(1; 1; 1) - all the children are muddy) by using Kripke trees and the methods we introducedin section 3.We start with the most general model to represent the puzzle: this is the model M1 of�gure 11. Given M1, we generate the in�nite tree TM1 for M1 and then the truncation T1 ofTM1 . In this example, we only need three levels to be unravelled. The starting tree and thethree successive re�nements are in �gure 7, and 8. Let �1 = C(p1_p2_p3) (this is the father'sannouncement), and �2 = C(:21p1 ^:21:p1) ^C(:22p2 ^ :22:p2) ^C(:23p3 ^ :23:p3)(the children's simultaneous reply that they don't know whether or not they are muddy). Wenow sequentially update T1 by �1 and then by �2 three times. Note that since all childrenare muddy, they will have to speak three times before everyone knows he is muddy.Consider the algorithm of de�nition 3.13 and T1. Following the algorithm, the re�ned treeT1 � �1 = T2 in �gure 7 is T1 in which the links to states where no children are muddy havebeen removed. T2 � �2 is then achieved by isolating worlds that do not see two worlds forevery relation. In fact, only in this case one of the formulas 3ipi ^3i:pi can fail on a pointof T2. We can now obtain T3, and T4 (shown in �gure 8) similarly.Having made all the re�nements, we can now check whether or not the muddy childrenknow that they are muddy. This involves checkingT4 j= pi ) Kipi;which is indeed the case.Analogously we can prove that the procedure given in section 3 produces solutions for theother cases of the muddy children.Note that had we decided to consider the Kripke tree truncated at n � 4, the formulaV3i=1 pi would still be satis�ed at the root after three re�nements.5 Properties of re�nement on Kripke treesIn the rest of the paper we analyse some more properties of the re�nement procedure that wede�ned in de�nition 3.13.The �rst remark that we should make is that re�ning a scenario by some agent's knowledgecannot a�ect other agents' knowledge, as was the case in example 2.1 for Kripke models. Thisis because by unravelling a Kripke model we produce a tree whose leaves are in a bijectionwith paths of the original model. We formalise this as follows:1According the the notion of most general model as described in section 3.2 the model M should actuallybe M = (2fp1;p2;p3g; U; �; w), where U is the universal relation on W �W , and �(w) = fp1; p2; p3g. The modelM1 we analyse is the result of the update of M byC(pi ) Kjpi) : i 6= j; i; j 2 f1; 2; 3g;where the formula above represents the fact that children can see each other. For brevity (as in [FHMV95,HV91]) we start our analysis from M1; i.e. rather than building the tree for M and update it �rst by C(pi )Kjpi), we directly build the tree for M1. The reader can check that this leads to the same result.14
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Theorem 5.1 Let T be a tree, and �;  two formulas. Then:T j= 2i� implies (T � 2j j= 2i�); with i 6= j:Proof Nodes of a Kripke tree are in a bijection with paths of the generating model. Thereforeby removing some j-links we cannot a�ect the interpretation of any modality whose index isnot j. 2Although the theorem above refers to in�nite trees, an analogue version can be provedfor truncated trees. In that case we need the rank of the formulas to be less or equal to thedepth of the truncated tree minus 1.The second point worth stressing is that Kripke trees solve the problem of example 2.3,i.e. we can prove commutativity although the result is limited to safe formulas:De�nition 5.2 A formula is safe if it is universal and, after negations are pushed inwards,no 2i and no C appears in the scope of _. A formula is disjunction-free if it is universal and,after negations are pushed inwards, has no _.We need a few results before proving commutativity of safe formulas.Lemma 5.3 Let �; � be any formula and v any point of T .1. (T; v) � � 6 T .2. If � is disjunction-free, T1 6 T2 implies (T1; v) � � 6 (T2; v) � �, where v 2 V1 \ V2.3. If � is universal then T j= � and ? 6= T 0 6 T imply T 0 j= �.Proof 1. The procedure for obtaining (T; v) � � only removes links.2. Induction on �. We assume all negations pushed inwards. Let T 01 = (T1; v) � � andT 02 = (T2; v) � �. Suppose � is of the form:� p. If p 2 �(v) then T 01 = T1, T 02 = T2; else T 01 = T 02 = ?.� :p. Similar.� � ^ .(T1; v) � � = (T1; v) � � u (T1; v) � 6 (T2; v) � � u (T2; v) �  IH= (T2; v) � �� 2i�. Set T 01 = T1 and T 02 = T2 and we execute the loops of de�nition 3.13 (2i-case)synchronously. We will show that T 01 6 T 02 is an invariant of the execution.Suppose (v; v0) 2 E2i.{ If (v; v0) 2 E1i, then consider the following cases:� (T1; v0) � � = ? and (T2; v0) � � = ?.T 01 := T 01jV�fv0g and T 02 := T 02jV�fv0g, so T 01 6 T 02 is not violated.� (T1; v0) � � = ? and (T2; v0) � � 6= ?.T 01 := T 01jV�fv0g and T 02 := (T 02; v0) � �, and T 01 6 T 02.17



� (T1; v0) � � 6= ? and (T2; v0) � � = ?.Contradicts hypothesis that T 01 6 T 02.� (T1; v0) � � 6= ? and (T2; v0) � � 6= ?.T 01 := (T 01; v0) � �, T 02 := (T 02; v0) � �, and T 01 6 T 02 by induction hypothesis.{ If If (v; v0) 62 E1i then T 01 is unchanged by the body of the loop, while T 02becomes one of T 02 := T 02jV�fv0g and (T 02; v0)��. In either case, we are removinglinks in T2 which are not present in T1, so T 01 6 T 02 is preserved.� C�. Similar to 2i�.3. Induction on �. 2Theorem 5.4 (Success) If � is universal, (T; v) � � = ? or (T; v) � � j=v �.Proof Induction on �. The cases � = p;:p;  _ � are straightforward; the case � =  ^ �requires part 3 of lemma 5.3. 2Lemma 5.5 If � is safe, then the outcome of (T; v) � � is deterministically de�ned.Proof Suppose � contains no 2i; C. Then it's an easy induction to see that (T; v) � � iseither T or ?. Now consider (T; v) � (� _  ), where �;  are 2i; C-free. We see that either(T; v) � � 6 (T; v) �  or (T; v) �  6 (T; v) � �, so the result is again T or ?. 2We show that, for universal formulas, the change made be a re�nement is the minimalone possible in order to satisfy the formula:Theorem 5.6 If � is safe, (T; v) � � is 6-maximum in fT 0 6 T j T 0 j=v � or T 0 = ?g.Proof Let T 0 = (T; v) � �. By part 1 of lemma 5.3 and theorem 5.4, we know T 0 is in theset. To prove that it is maximum, take any T 00 in the set; we will show T 00 6 T 0. If T 00 = ?the result is immediate; otherwise, we have T 00 j=v � and T 00 6 T . Since T 00 6 T , we get(T 00; v) � � 6 (T; v) � � by part 2 of lemma 5.3. But (T 00; v) � � = T 00 (since T 00 j=v �) and(T; v) � � = T 0, so T 00 6 T 0. 2Theorem 5.7 If �; � are safe (T; v)���� is maximum in fT 0 6 T j T 0 j=v �^� or T 0 = ?g.Proof Let T 0 = (T; v) � � � �. By parts 1 and 3 of lemma 5.3 and theorem 5.4, we know T 0is in the set. The argument that it is maximum is similar to the proof of theorem 5.6. Takeany T 00 in the set; we will show T 00 6 T 0. If T 00 = ? the result is immediate; otherwise, wehave T 00 j=v �^ � and T 00 6 T . Since T 00 6 T , we get (T 00; v) �� � � 6 (T; v) �� � � by part 2of lemma 5.3. But (T 00; v) � � � � = T 00 (since T 00 j=v �, (T 00; v) � � = T 00, and since T 00 j=v �,(T 00; v) � � = T 00), and (T; v) � � � � = T 0, so T 00 6 T 0. 2Theorem 5.8 (Commutativity) If �; � are safe, then T � � � � = T � � � �.Proof By theorem 5.7, T ���� and T �� �� are maximum in the same set. Therefore theyare equal. 2We conjecture that the premise can be relaxed to universal formulas. It is worth mention-ing an example of which non-universal formulas can make commutativity to fail.18



T51p p
:p; q1p

T6 = T5 �31:p �21(p _ :q)
Figure 9: T5 and T6 discussed in example 5.9. While T6 = T5 �31:p � 21(p _ :q) is de�nedand shown above, T7 = T5 � 21(p _ :q) �31:p is unde�ned.Example 5.9 Commutativity can fail for arbitrary formulas. The problem is that if theformulas are non-universal, the order of updating can play a role in the outcome of the updateand we might have that one of the two cases fail. We are so far unable to �nd examples inwhich the two updates succeed but produce di�erent result (we conjecture this is impossible;see also conclusions about this). The example we report here is the tree T5, illustrated in�gure 9, where the root is the top vertex. Consider now T6 = T5�31:p�21(p_:q), illustrated,and T7 = T5 � 21(p _ :q) �31:p = ?.6 Conclusions and further workIn [Woo97] Mike Wooldridge, discussing the problems of using possible worlds semantics asformal speci�cation for MAS, writes:[: : : possible worlds semantics are generally ungrounded. That is, there is usu-ally no precise relationship between the abstract accessibility relations that areused to characterise an agent's state and any concrete computational model: : :this makes it di�cult to go from a formal speci�cation of a system in terms ofbeliefs, desires, and so on, to a concrete computational system: : :] (page 9)This is indeed very often the case and this line of research aims at bringing us a step towardsthe use of possible worlds semantics as speci�cation and reasoning tool for MAS.In this paper we have developed the proposal in [HV91] for model re�nement and modelchecking. We argued that model re�nement could not be de�ned satisfactorily on Kripkemodels, and proposed a de�nition on Kripke trees obtained from Kripke models instead.The shift from Kripke models to Kripke trees let us achieve two main results. First, weshowed that it is possible to re�ne trees by a formula expressing knowledge of a formulawithout a�ecting the knowledge of the other agents (theorem 5.8) - this was not apparentlypossible on standard Kripke models (see example 2.1). Secondly, while it seems impossible19



to obtain commutativity for even safe formulas on Kripke models, we showed this is possiblefor Kripke trees.Many of the issues we discussed in this note still need investigating. The following is alist of conjectures that we have not proved (or refuted) yet.1. If T � � �  6= ?, and T �  � � 6= ?, then T � � �  � T �  � �.2. If �;  are universal (not necessarily safe) then T � � � � T � ��. This is implied by1.3. Let T = M0, where M0 is the most general model and �1; : : : ; �n be S5n-consistentformulas. Then T � �1 � : : : � �n 6= ?. (Item 2 implies they would commute).4. � �  implies T � � � T �  .Further work will be focused on proving the above and trying to address the followingmore general issues:� What is the appropriate level of truncation that we need apply? Is there a mathematicalformula that can compute it?� Although every generated tree will satisfy S5n, an update of it in general will not. Isthis a strong point against model re�nement as it is de�ned here?� We have proved that model re�nement satis�es the properties like success (theorem 5.4),commutativity (theorem 5.8). Are there other important properties that we shouldcheck or advocate, for example the ones discussed in [G�ar88] and [KM91]?References[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.MIT Press, Cambridge, 1995.[G�ar88] P. G�ardenfors. Knowledge in Flux: Modelling the Dynamics of Epistemic States.MIT Press, 1988.[HC84] G. E. Hughes and M. J. Cresswell. A Companion to Modal Logic. Methuen,London, 1984.[HC96] G. E. Hughes and M. J. Cresswell. A new introduction to modal logic. Routledge,New York, 1996.[Hin62] J. Hintikka. Knowledge and Belief, an introduction to the logic of the two notions.Cornell University Press, Ithaca (NY) and London, 1962.[HV91] Joseph Halpern and Moshe Vardi. Model checking vs. theorem proving: a mani-festo, pages 151{176. Arti�cial Intelligence and Mathematical Theory of Compu-tation. Academic Press, Inc, 1991.[KM91] Hirofumi Katsuno and Alberto O. Mendelzon. Propositional knowledge base revi-sion and minimal change. Arti�cial Intelligence, 3(52):263{294, December 1991.20
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