Model refinement and model checking for S5"

Alessio Lomuscio and Mark Ryan
School of Computer Science
University of Birmingham

Birmingham B15 2TT, UK
www.cs.bham.ac.uk/{~arl, mdr}

8 August 1998

Abstract

Halpern and Vardi have proposed the notion of refinement of S5 Kripke models in
order to solve multi-agent problems in which knowledge evolves. We argue that there are
some problems with their proposal and attempt to solve them by moving from Kripke
models to their corresponding trees. We define refinement of a tree with a formula, show
some properties of the notion, and illustrate with the muddy children puzzle.

1 Introduction

The modal logic S5" (see for example [HC96]), also known as KT45", has been used to model
knowledge in multi-agent systems (MAS) for some years now [Hin62, FHMV95]. S5” is a
classical modal logic containing n modalities expressing private knowledge, and operators for
expressing common knowledge and distributed knowledge within a group.

The standard (consequence relation) approach to using S5 is to describe a situation as
a set of formulas I', and to attempt to show that the situation satisfies a property ¢ by
establishing I' = ¢ or ' F ¢. Establishing ' ¢ involves finding a proof of ¢ from T,
while establishing I E ¢ involves reasoning about all (usually infinitely many) Kripke models
satisfying I' to show that they also satisfy ¢. The completeness of S5” shows that these two
notions are equivalent. However, experience has shown that this approach is computationally
very expensive.

In order to overcome the intractability of this approach, Halpern and Vardi have proposed
to use model checking as an alternative to theorem proving [HV91]. In the model checking
approach, the situation to be modelled is codified as a single Kripke model M rather than as
a set of formulas I'. The task of verifying that a property ¢ holds boils down to checking that
M satisfies ¢, written M F ¢. This task is computationally much easier than the theorem
proving task, being linear in the size of M and the size of ¢ [HV91].

Halpern and Vardi informally illustrate their approach by modelling the muddy children
puzzle. In that puzzle, there are n children and n atomic propositions py, ps, ..., p, represent-
ing whether each of the children have mud on their faces or not. Various announcements are
made, first by the father of the children and then by the children themselves. The children
thus acquire information about what other children know, and after some time the muddy
ones among them are able to conclude that they are indeed muddy. We describe the problem
in greater detail below.

Halpern and Vardi propose the following way of arriving at the model M to be checked.
They start with the most general model for the set of atomic propositions at hand. In
order to deal with the announcements made, they successively refine the model with formulas
expressing the announcements made. This refinement process consists of removing some links
from the Kripke model. At any time during this process, they can check whether child i knows
p; (for example), by checking whether the current model satisfies O;p;.

This method is illustrated in the paper [HV91] and the book [FHMV95], but a precise
definition of the refinement operation is not given. Our original aim for this paper was to
provide such a definition and explore its properties. However, we soon came to the opinion
that there is no definition of model refinement on arbitrary S5 Kripke structures that will
have intuitively acceptable properties. We explain our reasons for this view in section 2.
We believe the refinement and model checking ideas can still be made to work, however.
In section 3 we introduce a structure derived from a Kripke model, which we call a Kripke
tree, and define the refinement operation on Kripke trees. We illustrate this notion using the
muddy children example in section 4. In section 5 we state and prove some properties of the
refinement operation on Kripke trees, and conclude in section 6.

1.1 Syntax and semantics

We assume finite sets P of propositional atoms, and A of agents. Formulas are given by the
usual grammar:

¢ u=pl-¢|d1Ada | Did | C¢

where p € P and i € A. Intuitively the formula O;¢ represents the situation in which the
agent i knows the fact represented by the formula ¢. The other propositional connectives can
be defined in the usual way. The modal connectives <;, £ and B are defined as:

Cip means —0;—¢

E¢ means N\, ,0i¢
B¢ means —-C-¢

;¢ means “it is consistent with i’s knowledge that ¢”, E¢ means that everyone knows ¢,
while C'¢ is the much stronger statement that ¢ is common knowledge. In a multi-agent
setting, a formula ¢ is said to be common knowledge if it is known by all the agents, and
moreover that each agent knows that it is known by all the agents; and moreover, each agent
knows that fact, and that one, etc. An announcement of ¢ results in common knowledge of
¢ among the hearers, because as well as hearing ¢ they also see that the others have heard
it too (we assume throughout that all the agents are perceptive, intelligent, truthful). If one
agent secretly informs all the others of ¢, the result will be that everyone knows ¢, but ¢ will
not be common knowledge. B is the dual of C'. Although not particularly useful intuitively,
we will need it for technical reasons.

Definition 1.1 A formula is universal if it has only the modalities C, F/, O; and no negations
outside them.

Definition 1.2 An S5" Kripke model M = (W, ~, m,w) of the modal language over atomic
propositions P and agents A is given by:

1. A set W, whose elements are called worlds;

2. An A-indexed family of relations ~ = {~;};c 4. For each 1 < i < n, ~; is an equivalence
relation on W (~; C W x W), called the accessibility relation;

3. A function 7 : W — P(P), called the assignment function;
4. A world w € W, the actual world.

See figure 1 for an illustration.
Let x € W. We define the relation of satisfaction of ¢ by M at x, written M |=, ¢, in the
usual way:

M, p iff p€n(x)
M ‘::1: —¢ it M l#m ¢
ME, oAy ff M=, ¢pand M =, 9
M =, O;¢ iff for each y € W, z ~; y implies M =, 1
M =, Cv¢ iff for each k > 0 and 41,49, ...,i; € A, we have M |=, O;, ... Oix1)

We say that y is reachable in k steps from 1z if there are wy, wo, ... wi_1 € W and iy, 19,.. .1
in A such that £ ~; wy ~;, wo ... ~;, |, wp—1 ~;, y. We also say that y is reachable
from z if there is some k such that it is reachable in k steps. The following fact is useful for
understanding the technical difference between £ and C.

Theorem 1.3 ([FHMYV95])
1. M |=, EF¢ iff for all y that are reachable from x in k steps, we have M =y ¢

2. M =, C¢ iff for all y that are reachable from z, we have M =, ¢.

2 Refining Kripke models

Halpern and Vardi propose to refine Kripke models in order to model the evolution of knowl-
edge. They illustrate their method with the muddy children puzzle.

2.1 The muddy children puzzle

There is a large group of children playing in the garden. A certain number (say k) get mud
on their foreheads. Each child can see the mud (if present) on others but not on his own
forehead. If £ > 1 then each child can see another with mud on its forehead, so each one
knows that at least one in the group is muddy. The father first announces that at least one
of them is muddy [which, if £ > 1, is something they know already]; and then he repeatedly
asks them ‘Does any of you know whether you have mud on your own foreheadl” The first
time they all answer ‘no’. Indeed, they go on answering ‘no’ to the first £ — 1 questions; but
at the kth those with muddy foreheads are able to answer ‘yes’.

At first sight, it seems rather puzzling that the children are eventually able to answer the
father’s question positively. The clue to understanding what goes on lies in the notion of
common knowledge. Although everyone knows the content of the father’s initial announce-
ment, the father’s saying it makes it common knowledge among them, so now they all know
that everyone else knows it, etc. Consider a few cases of k.

k =1, i.e. just one child has mud. That child is immediately able to answer ‘yes’, since she
has heard the father and doesn’t see any other child with mud.

k = 2, say a and b have mud. Everyone answers ‘no’ the first time. Now « thinks: since b
answered ‘no’ the first time, he must see someone with mud. Well, the only person I
can see with mud is b, so if b can see someone else it must be me. So a answers ‘yes’
the second time. b reasons symmetrically about a, and also answers ‘yes’.

k =3, say a, b, c. Everyone answers ‘no’ the first two times. But now a thinks: if it was just
b and ¢ with mud, they would have answered ‘yes’ the second time. So there must be a
third person with mud; since I can only see b, ¢ having mud, the third person must be
me. So a answers ‘yes’ the third time. For symmetrical reasons, so do b, c.

And similarly for other cases of k.

To see that it was not common knowledge before the father’s announcement that one of
the children was muddy, consider again k = 2, say a, b. Of course a and b both know someone
is muddy (they see each other), but, for example, a doesn’t know that b knows that someone
is dirty. For all a knows, b might be the only dirty one, and therefore not be able to see a
dirty child.

2.1.1 The formalisation in [HV91]

Suppose A = {1,...n} and P = {p1,...,pn}; p; means that the ith child has mud on its
forehead. Suppose n = 3. The assumption of this puzzle is that each child can see the other
children but cannot see itself, so each child knows whether the others have mud or not, but
does not know about itself. Under these assumptions, Halpern and Vardi propose the Kripke
structure of figure 1 to model the initial situation.

Let w be any world in which there are at least two muddy children (i.e. w is one of the four
upper worlds). In w, every child knows that at least one of the children has mud. However,
it is not the case that it is common knowledge that each child has mud, since the world at
the bottom of the lattice is reachable (cf. theorem 1.3).

To model the father’s announcement, Halpern and Vardi refine the model M; in figure 1,
arriving at My in figure 2 (these figures also appear in [HV91, FHMV95]). The refinement
process is not precisely defined in [HV91, FHMV95], though arguments in favour of the
transformation from M; to My are given.

Suppose now that the father asks the children whether they know whether they are muddy
or not, and the children answer simultaneously that that they do not. Halpern and Vardi
argue that this renders all models in which there is only one muddy child inaccessible, resulting
in M3 (figure 3).

If there are precisely two children with mud (i.e. the actual world is one of the three in
the second layer), then each of the muddy children now knows it is muddy. For suppose the
actual world is the left one of those three, i.e. w with 7(w) = {p1,p2}. We easily verify that
M;y |:w Uypy and M3 ‘:w Oopa.

If all three children are muddy, i.e. the actual world w is the top one, then we are not yet
done, for we do not have M3 =, O;p; for any 7. The father again asks each of the children if
they know if they are muddy, and the model is refined again according to their answer “no”,
resulting in My which is M3 with the last remaining links removed. (My is not illustrated.)
We can easily check that My |=,, O;p; for each 1.

Figure 1: M;p: The Kripke model for the muddy children puzzle with n = 3.

Figure 2: My: The Kripke structure after the father speaks.

%, P3

& @
O ® @Y
® @

Figure 3: M3: The Kripke structure after the children announce that they don’t know whether
they are muddy.

In summary, the method proposed by Halpern and Vardi for solving muddy-children-type
puzzles is the following. Start with a suitably general model M; reflecting the initial set-
up of the puzzle. Refine it successively by the announcements made. At the end of the
announcements, check formulas against the refined model. In the example above, we refined
M, first by ¢1 = C(p1 V p2 V p3) (the father’s announcement), and then twice by

¢o = C(—O1p1 A ~O1=p1) A C(=0Opa A =O=pa) A C(—Ozpz A =Uz—p3)

which corresponds to each of the three children announcing that they don’t know whether
they are muddy or not.

Halpern and Vardi do not precisely define what refinement by a formula means. The
intuition they give is that refinement removes a minimal set of links of the model, so that
the model satisfies the formula at the actual world. Removing links means that epistemic
possibilities are removed, that is, knowledge is gained, so this seems intuitively the right thing
to do.

2.2 Problems with refinement of Kripke models

Let us write M * ¢ to denote the result of refining the model M by the formula ¢. Thus, in
the example above, My = M * ¢, etc.

Our original aim was to make precise this notion of refinement of a Kripke model by
a formula, and to investigate its properties. We investigated several possible definitions:
essentially a refinement procedure will remove the links to the states that are responsible for
the non-satisfaction of the formula we are refining with. However, we quickly came upon
examples which showed that it will not be easy to achieve all the reasonable properties one
could wish for.

Example 2.1 Let M5 be the Kripke model illustrated in figure 4, with the left-hand world
w the actual world, and consider refining by O;p. The definitions we examined differed in

w 1 w
M Mo
E—
3 3

Figure 4: M5 and Mg (example 2.1)

w

OO e O

Figure 5: Two outcomes for refinement of the top model by O;05(p V q) (example 2.2)

subtle cases involving quite complex formulas and models, but they all agreed in this one: the
resulting model must be Mg (see figure). What happens is that agent 1 gains the knowledge
of p, and so must eliminate the epistemic possibility of —p by removing the link.

The counterintuitive property of this example is that M5 |=,, O3O1p, while Mg £, O301p.
Thus, in M5, agent 3 knows that p is consistent with 1’s knowledge. But after 1 learns p for
sure in Mg, 3 no longer knows this!

Example 2.2 Figure 5 shows a model and (the only) two outcomes one could consider for
its refinement by O;09(p V ¢). One must remove either the 1 link or the 2 link in order to
prevent the 1-2 path to the world exhibiting —=(p V ¢). The choice is which link to remove.
Both outcomes reveal undesirable properties of the refinement operator. In the first case,
removing the 1 link adds too much to 1’s knowledge (he learns p), while the second case
gives us a situation in which a model satisfies d3O9—g but its refinement by 0;09(p V q) does
not. It is counterintuitive that 3’s knowledge should change in this way when we refine by
0:09(p V q).

The second case at least has the desirable property that a minimal change of the knowledge
of agents at the actual world w is made, since the set of reachable states from w is maximised
(cf. theorem 1.3).

Example 2.3 Refinement by universal formulas (definition 1.1) ought to be cumulative, and
such formulas ought to commute with each other (i.e. M x ¢ x 1) = M x 1) x ¢). However,
another example shows that this will be hard to achieve. Consider the model M7 shown at
the top of figure 6, and let ¢ = Oyp and ¢» = O;09(p V ¢). Whatever way one thinks about
defining *, the result in the left-hand branch seems clear. Note that M7 Oyp already satisfies
0,09(p V q) and therefore M7 x Oyp x O0109(p V q) = M7 * Oyp.

An argument for the stated result of M7 x O0;09(p V q) was given in example 2.2, and

w

1
*D]i/ *5152(1?\/@
1
O

*0102(p V q) *Oip

0 o O
Figure 6: Two evolutions of My (example 2.3), showing that M x ¢ x 1) # M *x) * ¢

further refining by O;p leaves little room for maneuver. However, the resulting models differ
on whether they satisfy (for example) O30qq.

Example 2.3 shows that even universal formulas, do not enjoy commutativity in any rea-
sonable refinement setting. However, commutativity for universal formulas seems intuitively
correct: the order in which ideal agents acquire information should not matter. Non-universal
formulas are a different matter, since they can express absence of knowledge, and this will
not commute with the acquisition of new knowledge.

3 Refining Kripke trees

Some of the problems exhibited by the three examples at the end of the preceding section
seem to be due to the following fact: when we remove a link in a Kripke model in order to
block a certain path, we also block other paths that used that link. To overcome this problem,
we would like to unravel Kripke models into trees, in which each link participates in just one
path. At first sight this looks like it will destroy the finiteness of our models, a feature on
which effective refinement operators and model checking operators rely. To retain finiteness,
we will need to limit in advance the maximum nesting of boxes that is allowed, and construct
a tree to depth greater than this number. Semantic structures similar to Kripke trees have
been defined in [HC84]. Our definition differs in detail from the one in [HC84], but it largely

agrees with it in spirit.

In this section we define the notion of Kripke tree, show a translation of equivalence Kripke
models into Kripke trees, define and algorithm for refining knowledge structures and prove a
few properties about it.

3.1 Kripke trees: basic definitions
Definition 3.1 (Kripke tree) A Kripke tree T = (V,E,0) is

e a set V, of vertices;

e an A-indexed family E of edges: E; C V x V, such that the structure (V, E) forms a
tree, that is,

— there is a unique vertex vy € V such that for all v € V and i € A, (v,v0) € E;. v
is called the root of T

— for every vertex v there is a unique and finite path from the root to v, i.e. unique
sequences (v1,...,vx) and (i1,...,7;) such that (v;,v;11) € Fipq (i > 0) and
v = v. The distance of v from the root is k.

e a function o : V. — P(P).

We write E* to mean the transitive closure of the union of relations in E, i.e. (v,v") € E* if
there is a path from v to v', i.e. sequences (vy,...,vx) and (i1, ...,49_1) such that (v;,v; 1) €
E;, v1 =v and v, = v'.

We also allow the empty tree (&, &, &) which we write as —. It has no root.

Definition 3.2 (Generated Kripke Tree) Let M = (W, ~, m, wg) be an S5" Kripke model.
The Kripke tree Ty = (V, E, o) generated by M is given as follows:

e The set of vertices is the set of paths in M:

V= {(w0,i1,w1,---,wk—laikawk) Vjwj e W,ij € A, wj ~ji wj+1}

e E is an A-indexed family of sets of edges. For s, s’ € V, there is an i-edge between s, s,

written (s, s') € E;, iff s’ equals s extended by an i link, i.e. s = (wq, i1, w1, ..., wg), s =
(wo, 41, ..., wg,i,w) for some w.
e The valuation o is defined by o((wq, i1, w1, ..., wg)) = w(wy).

The vertex wg € V is the root of the tree. When the model M is clear from the context or
not relevant we will simply indicate the tree as T

Kripke trees are irreflexive, intransitive, anti-symmetric, anti-convergent and serial.

If M has at least two distinct worlds related by some ~;, then T, is infinite. For our
purposes of model refinement, we usually want to deal with finite trees. T]’f/, is Ty with paths
truncated at length k. Obviously by truncating the tree we will lose seriality.

Definition 3.3 (Truncated tree of depth k) Given a tree T' = (V, E,0), the truncated
tree of depth k is defined as T% = (V' E', 0'), where

e V' = {v € V| the distance of v from the root < k}.
e E' = E|y» is the restriction of E to V”,

e o' = o|y is the restriction of o to V'.
Infinite and finite trees satisfy modal formulas in the expected way:

Definition 3.4 (Interpretation) Let ¢ be an S5” formula, and 7" a tree. The satisfaction
of ¢ by T at vertex v, written T' |=, ¢, is inductively defined as follows:

o T'|=,pifp€o(v);

« Ty —¢ifnot T =y ¢

« Ty pAYIET =y dand T b, 4

e Tl=, 0,0 if V' €V, (v,0') € E; implies T |=, ¢;
e Tl=, Copif V' €V, (v,0") € E* implies T |=, ¢.

The tree T satisfies ¢, written T' = ¢, if it satisfies ¢ at its root. The empty tree — satisfies
no formula.

An infinite tree Ty is semantically equivalent to its generating model M as the following
shows:

Lemma 3.5 Let M = (W, ~,m, wg) be an equivalence Kripke model and Ty = (V, E, 0) its
associated Kripke tree. Let v = (wyg,41,w1,...,w) be any vertex ending in w, and ¢ any

formula. Then:
M |:1u ¢ iff TM |:1) (l)

Proof There is a one-to-one correspondence between paths in M from w and extensions of
the path v. O

Corollary 3.6 M |= ¢ if and only if T, = ¢

For the case of truncated tree, Lemma 3.5 is not valid. However, we can prove a related
result for formulas up to a certain level of modal nesting.
We inductively define the rank of a formula as follows:

Definition 3.7 (Rank of a formula) The rank rank(¢) of a formula ¢ is defined as follows:
e rank(p) = 0, where p is a propositional atom.
e rank(—¢) = rank(¢).
e rank($) A ¢2) = maz{rank(¢1), rank(ps)}.
o rank(¢; V ¢2) = maz{rank(¢;), rank(¢9)}.
e rank(d;¢) = rank(¢) + 1.
(C

e rank

¢) =

10

The rank of a formula ¢ intuitively represents the maximum number of nested modalities that
occur in ¢. If an operator C occurs in ¢ we take the value of rank(¢) to be infinite. The rank
of a formula reflects the maximal length of any path that needs to be explored to evaluate
¢ on an infinite tree. In other words, to evaluate a formula ¢ of rank k£ at wy we need not
examine worlds whose distance from wy is greater than k, where distance here is the number
of points which appear in the minimal path connecting the two points. The following lemma
formalises this.

Lemma 3.8 If rank(¢) < k, M |= ¢ if and only if TF, = ¢.

Proof By corollary 3.6, M = ¢ if and only if T |= ¢, but, by induction, the evaluation of
a formula of rank(¢) < k does not involve the evaluation of nodes of depth greater than k.
So T [= ¢ if and only if T¥, = ¢, which gives the result. O

In the following we shift our attention from an equivalence Kripke model to its truncated
generated tree. Truncated generated trees satisfy Sb"-axioms as the following shows:

Lemma 3.9 Let M be an equivalence model and T]’f/l its generated model truncated at k.

1. T¥, = ¢, where ¢ is a tautology, and rank(¢) < k.

2. T, = O;(¢ =) = O;¢ = 0,4, where max{rank(¢), rank(¢))} < k — 1.

3. T]I\C/[= O;¢ = ¢, where rank(¢) < k — 1.
4. T]I\C/[= O;¢ = 0;0;¢, where rank(¢) < k — 2.
5. T | ©ip = 0;0,¢, where rank(¢) < k — 2.

6. If for every vertex v € V of TX,, T¥, |=, ¢, then T¥, |=, 0;¢, for any i € A.
7. If for every vertex v € V of T%,, T%, =, ¢, and T¥, = ¢, = ¢ then T¥, =, 1.

Proof We prove item number 5. The others can be done similarly. Suppose TF [~ 0;¢ =
0,0,¢, where rank(¢) < k — 2. Since T* is generated by M, and rank(d;¢ = 0;0;¢) < k,
then by lemma 3.8 M [~ O;¢ = 0;0;¢. But by hypothesis M is an equivalence model. This
is absurd. O

So Kripke trees are models for S5,,.
Before we proceed further, we introduce a few basic definitions and operations on subtrees.

Definition 3.10 (Rooted-subtrees) Let 7" = (V',E',¢'), T = (V,E,0) be trees with
roots v, vg. T" is a rooted subtree of T, written T' < T, if vy € V! C V', and E|y» = E', and
oly =d.

Definition 3.11 (Intersection of trees) Let 7' = (V' E',¢') and T = (V, E,0) be trees
such that oly:ny = 0’|y The intersection of T and T" is TNT' = (V' NV, E'NE, o'|yvinv).

It is easy to see that definition 3.11 (when applicable) defines a tree.

Definition 3.12 (Restriction of trees) Let T = (V, E,0) be a tree with root v, and V'
a subset of V. The restriction of T' to V', written T'|y-, is the largest rooted subtree of T
generated by v whose vertices are in V. If the root of T' is not in V', then T'|y» = —.

11

3.2 Kripke trees: refinement

In section 2.2, we discussed the difficulties that arise when using S5,, Kripke models as knowl-
edge structures for refinement. Example 2.3 showed that any straightforward procedure to
refine an equivalence Kripke model will be non-commutative even for universal formulas, i.e.
there will be universal «, 3, such that M x ax 8 Z M * 0 * «.

Commutativity for universal formulas can be achieved by shifting to Kripke trees. Before
we can show this, we must define refinement on Kripke trees.

The typical working scenario in which we operate is the same one as that advocated by
[HV91], except that we refine T%, instead of M. It can be described as follows: we are given an
initial configuration of a MAS, and a set of formulas {¢1,..., ¢} that represent the update
of the scenario. The question is whether the updated configuration will validate a set of
formulas {¢1,...,1;}. We assume every 1 to have finite rank, i.e. we cannot check a formula
containing the operator of common knowledge. There is no restriction on the ¢s.

Our method operates as follows:

1. Start from the most general equivalence Kripke model M that represents the MAS.
2. Generate the infinite tree Ty, as given in Definition 3.2.

3. Generate from T]’f/,, the truncated tree of depth k, for some sufficiently large k.

4. Sequentially refine T%, with {¢1,...,dm},

5. Check whether the resulting tree structure satisfies {1,...,9;}.

The method describes above needs some further explanation. First, what is the most
general Kripke model representing a MAS configuration’ How are we to build itI' Our
answer is the same as that given by Halpern and Vardi. Assume the set of atoms P is finite.
We take the model whose universe W is equal to 27, i.e. the universe will cover all the possible
assignments to the atoms. We take ~;,7 € A to be the universal relations on W x W, and wg
to be the actual world of the given MAS.

In general we will require that M is more specific than the most general model, e.g. some
agent will have a certain knowledge about the world. We can add all the formulas that need
be satisfied to the set of updates {¢1,..., ¢, }. For example in the muddy children example
we can start from the model with universal relations and add

3
N C(pi = Kip:)
i=1
to the set of updates.
We have already explained how to execute steps 1, 2, 3, and 5. We now present a notion
of refinement to execute step 4.

Definition 3.13 (Refinement of Kripke tree structures) Given a truncated Kripke tree
™ = (V,E,0), a point v € V, and a formula ¢, the result 77 = (T, v) * ¢ of refining T by ¢
at v is procedurally defined as follows. We assume that the negation symbols in ¢ apply only
to atomic propositions (to achieve this, negations may be pushed inwards using de Morgan
laws and dualities O/< and C/B).

e If "= —, then T' = —.

12

e If T, ¢, then T' =T.
e Otherwise the result is defined inductively on ¢:

—¢p=p UUpeo(v), then T' =T, else T' = —.
—¢p=-p. lpdgo) then T =T, else T' = —.
— =9 Ax. T =((T,v) x4) N ((T,v) * x).

— o=y Vyx. If (T,v)*1p < (T,v)*x then T' = (T, v)* x, and if (T,v)*x < (T,v)*1)
then T" = (T, v) * 1. Otherwise T" is non-deterministically given as (T,v) * 9 or

(T, v) * x.
— ¢ = O;p. T is given by computing as follows:
T :=T;
for each v’ such that (v,v') € E; do
if (T",v') x4 = —, then
T =Ty _{
else

T = (T, v") x4
— ¢ =), Let X be the set X = {(T,v') x ¢ | (v,0") € E;).

If X =@, then T' = —,
else T" is nondeterministically chosen to be a <-maximal element of X.

— ¢ = C1. T' is given by computing as follows:

T :=T;
for each v' such that (v,v') € E* do
if (T",v') x4 = —, then
T = TI|V7{1J’}
else

T = (T",v") x 9
— ¢ = Bt. Let X be theset X = {(T,v')x ¢ | v € V}.

If X =@, then T' = —,
else T" is nondeterministically chosen to be a <-maximal element of X.

T % ¢ means (T,v) * ¢, where v is the root of T'.

Lemma 3.14 Given a tree T, a formula a and a point v, (T,v) * « is a tree.

Proof Follows from the fact that if T is a tree then T'|y» is also a tree. O
The intuition behind (7',v) * ¢ is that it is obtained by removing as small a set of links

from T as possible, in order to satisfy ¢. Note that, due to the clauses for vV, ;. B, (T, v)* ¢ is

not uniquely defined. However, we will see that running the procedure on the muddy children
example does not introduce nondeterminism.

13

4 The muddy children puzzle using Kripke trees

In section 2.1, we described the muddy children puzzle and we reported the formalisation
that was given in [FHMV95, HV91]. The aim of the present section is to solve an instance
of it (where the actual situation is coded by the tuple pi,py, ps that we equivalently write as
(1,1,1) - all the children are muddy) by using Kripke trees and the methods we introduced
in section 3.

We start with the most general model to represent the puzzle: this is the model My of
figure 1'. Given M, we generate the infinite tree T, for M; and then the truncation 7T} of
T, - In this example, we only need three levels to be unravelled. The starting tree and the
three successive refinements are in figure 7, and 8. Let ¢1 = C(p; Vp2 Vp3) (this is the father’s
announcement), and ¢y = C(=O1p; A =0O1-p1) A C(=Ogpy A =Og—pg) A C(—O3pz A =O3-p3)
(the children’s simultaneous reply that they don’t know whether or not they are muddy). We
now sequentially update 77 by ¢1 and then by ¢9 three times. Note that since all children
are muddy, they will have to speak three times before everyone knows he is muddy.

Consider the algorithm of definition 3.13 and T3. Following the algorithm, the refined tree
Ty % ¢y = Ty in figure 7 is T in which the links to states where no children are muddy have
been removed. Ty * ¢9 is then achieved by isolating worlds that do not see two worlds for
every relation. In fact, only in this case one of the formulas <;p; A $;—p; can fail on a point
of Ty. We can now obtain T3, and Ty (shown in figure 8) similarly.

Having made all the refinements, we can now check whether or not the muddy children
know that they are muddy. This involves checking

Ty = pi = Kip;.

which is indeed the case.

Analogously we can prove that the procedure given in section 3 produces solutions for the
other cases of the muddy children.

Note that had we decided to consider the Kripke tree truncated at n > 4, the formula
/\?:1 p; would still be satisfied at the root after three refinements.

5 Properties of refinement on Kripke trees

In the rest of the paper we analyse some more properties of the refinement procedure that we
defined in definition 3.13.

The first remark that we should make is that refining a scenario by some agent’s knowledge
cannot affect other agents’ knowledge, as was the case in example 2.1 for Kripke models. This
is because by unravelling a Kripke model we produce a tree whose leaves are in a bijection
with paths of the original model. We formalise this as follows:

! According the the notion of most general model as described in section 3.2 the model M should actually
be M = (2{P1P2:73} [J 7 w), where U is the universal relation on W x W, and w(w) = {p1, p, p3}. The model
M, we analyse is the result of the update of M by

C(pi = Kjpi) 11 # j3i,5 € {1,2,3},

where the formula above represents the fact that children can see each other. For brevity (as in [FHMV95,
HV91]) we start our analysis from Mi; i.e. rather than building the tree for M and update it first by C(p; =
K;p;), we directly build the tree for M;. The reader can check that this leads to the same result.

14

CE
@E:
(i
@)z
O
@E:

ORI ORC O RO OROR RC

2GE.
i}’

==
_—

" =

¢ Eﬁ

®

@F
oa
A AL @

2@
\g)
\,

@ Ly

3@

1

@
05
©5

o
o5

Figure 7: T1,Ty: The Kripke trees before and after the father speaks; and after the children
speak the first time.

15

N
e AE‘Q: 2@ 2@ ﬁ,‘ A“H: A“Hlxj‘”‘ i h“j: A“H: A“H: [NI A“H:

DE &6 @m@f@

f

Figure 8: T3,Ty: The Kripke trees after the children speak the second and third time.

Theorem 5.1 Let T be a tree, and ¢, two formulas. Then:
T = O;¢ implies (T « 04 |= O;¢), with i # .

Proof Nodes of a Kripke tree are in a bijection with paths of the generating model. Therefore
by removing some j-links we cannot affect the interpretation of any modality whose index is
not j. O

Although the theorem above refers to infinite trees, an analogue version can be proved
for truncated trees. In that case we need the rank of the formulas to be less or equal to the
depth of the truncated tree minus 1.

The second point worth stressing is that Kripke trees solve the problem of example 2.3,
i.e. we can prove commutativity although the result is limited to safe formulas:

Definition 5.2 A formula is safe if it is universal and, after negations are pushed inwards,
no O; and no C appears in the scope of V. A formula is disjunction-free if it is universal and,
after negations are pushed inwards, has no V.

We need a few results before proving commutativity of safe formulas.

Lemma 5.3 Let ¢, @ be any formula and v any point of T.
1. (Ty,v)*x¢p<T.
2. If v is disjunction-free, 71 < Ty implies (11, v) x a < (T, v) * a, where v € V1 N V5.

3. If & is universal then T' |= o and — # 7" < T imply 7" = .

Proof 1. The procedure for obtaining (7', v) * ¢ only removes links.

2. Induction on a. We assume all negations pushed inwards. Let T{ = (T},v) * o and
Ty = (T, v) * . Suppose « is of the form:

e p. Ifpeo(v) thenT| =Ty, T = T; else T| =T = —.

e —p. Similar.

o BA7.

(Ty,v) x (Th,v) x B (Ty,v) x~

(T27,U) * /6 r (T27,U) *y IH

(Ty,v) *x

e ;5. Set T} = Ty and Ty = T, and we execute the loops of definition 3.13 (O;-case)
synchronously. We will show that 7] < T4 is an invariant of the execution.

AN

Suppose (v,v") € Ey;.
— If (v,v") € Ey;, then consider the following cases:
x (Th,v")* f=—and (Ty,v') x = —.
1] := Tily gy and Ty := Ty|y 4y, so T] < Ty is not violated.

x (Ty,v") * f=— and (Ty,v') x B # —.
Ty :=T{|ly_gpy and Ty := (Ty,v') * B, and Ty < T;.

17

x (Th,v') * 8 # — and (Ty,v') x § = —.
Contradicts hypothesis that T} < T3.
x (Th,v") * 8 # — and (Ty,v') x B # —.
T] := (T],v") * B, Ty := (Ty,v") x B, and T{ < Ty by induction hypothesis.
— If If (v,v") & Ey; then Ty is unchanged by the body of the loop, while T}
becomes one of Ty := Ty|y_qyy and (Ty,v") # 3. In either case, we are removing
links in 7% which are not present in Ty, so T| < T} is preserved.

e Cf. Similar to O;3.

3. Induction on a.

Theorem 5.4 (Success) If « is universal, (T,v) xa = — or (T,v) * a =, .

Proof Induction on a. The cases a = p, —p, 9 V x are straightforward; the case @ = 1 A x
requires part 3 of lemma 5.3. O

Lemma 5.5 If « is safe, then the outcome of (T',v) * « is deterministically defined.

Proof Suppose ¢ contains no O;,C. Then it’s an easy induction to see that (T,v) * ¢ is
either T' or —. Now consider (T,v) x (¢ V), where ¢,1) are O;, C-free. We see that either
(T,v) % p < (T,v) x1p or (T,v) x1p < (T,v) * ¢, so the result is again T or —. O

We show that, for universal formulas, the change made be a refinement is the minimal
one possible in order to satisfy the formula:

Theorem 5.6 If « is safe, (T, v) * a is <-maximum in {T" < T |T' |, aor T' = —}.

Proof Let T' = (T,v) x . By part 1 of lemma 5.3 and theorem 5.4, we know 7" is in the
set. To prove that it is maximum, take any 7" in the set; we will show 7" < T". If T" = —
the result is immediate; otherwise, we have T" =, o and T" < T. Since T" < T, we get
(T",v) xa < (T,v) * a by part 2 of lemma 5.3. But (T",v) * « = T" (since T" =, a) and
(T,v)xa=T soT"<T. O

Theorem 5.7 If «, 8 are safe (T,v) xax (3 is maximum in {T' < T |T' =, aAfor T = —}.

Proof Let T" = (T,v) x ax (3. By parts 1 and 3 of lemma 5.3 and theorem 5.4, we know T"
is in the set. The argument that it is maximum is similar to the proof of theorem 5.6. Take
any T" in the set; we will show T" < T'. If T" = — the result is immediate; otherwise, we
have T" =, a AB and T" < T. Since T" < T, we get (T",v) xax 3 < (T,v) xa* (3 by part 2
of lemma 5.3. But (T",v) xax 3 =T" (since T" =, a, (T",v) * « = T", and since T" |=, 3,
(T".v)*B=T"), and (T,v) xa*xB =T soT" <T. O

Theorem 5.8 (Commutativity) If o, are safe, then T xax =T * 3 * .

Proof By theorem 5.7, T'x ax 3 and T * 3 * @ are maximum in the same set. Therefore they
are equal. O

We conjecture that the premise can be relaxed to universal formulas. It is worth mention-
ing an example of which non-universal formulas can make commutativity to fail.

18

() 1
Ts =T5 % O1=px Oy (p V —q) @
1

Figure 9: T5 and Ty discussed in example 5.9. While T = T5 * $1-p « O1(p V —q) is defined
and shown above, T7; = T5 * Oy (p V —q) * ©1—p is undefined.

Example 5.9 Commutativity can fail for arbitrary formulas. The problem is that if the
formulas are non-universal, the order of updating can play a role in the outcome of the update
and we might have that one of the two cases fail. We are so far unable to find examples in
which the two updates succeed but produce different result (we conjecture this is impossible;
see also conclusions about this). The example we report here is the tree T5, illustrated in
figure 9, where the root is the top vertex. Consider now Tg = T5+<1—px 0y (pV—q), illustrated,
and T7 = Ts « O1(p V —q) * O1—p = —.

6 Conclusions and further work

In [Wo097] Mike Wooldridge, discussing the problems of using possible worlds semantics as
formal specification for MAS, writes:

[... possible worlds semantics are generally ungrounded. That is, there is usu-
ally no precise relationship between the abstract accessibility relations that are
used to characterise an agent’s state and any concrete computational model. ..
this makes it difficult to go from a formal specification of a system in terms of
beliefs, desires, and so on, to a concrete computational system...] (page 9)

This is indeed very often the case and this line of research aims at bringing us a step towards
the use of possible worlds semantics as specification and reasoning tool for MAS.

In this paper we have developed the proposal in [HV91] for model refinement and model
checking. We argued that model refinement could not be defined satisfactorily on Kripke
models, and proposed a definition on Kripke trees obtained from Kripke models instead.

The shift from Kripke models to Kripke trees let us achieve two main results. First, we
showed that it is possible to refine trees by a formula expressing knowledge of a formula
without affecting the knowledge of the other agents (theorem 5.8) - this was not apparently
possible on standard Kripke models (see example 2.1). Secondly, while it seems impossible

19

to obtain commutativity for even safe formulas on Kripke models, we showed this is possible
for Kripke trees.

Many of the issues we discussed in this note still need investigating. The following is a
list of conjectures that we have not proved (or refuted) yet.

1. U Tx¢pxtp£—, and Txpxp# —, then T xpx1p =T %1 x ¢.

2. If ¢, ¢ are universal (not necessarily safe) then T x ¢ * 1) = T x 1) * ¢. This is implied by
1.

3. Let T' = My, where Mj is the most general model and ¢4, ...,¢, be Sb"”-consistent
formulas. Then T * ¢y * ... * ¢, # —. (Item 2 implies they would commute).

4. ¢ = implies T x ¢ =T * 1.

Further work will be focused on proving the above and trying to address the following
more general issues:

e What is the appropriate level of truncation that we need applyl Is there a mathematical
formula that can compute itI’

e Although every generated tree will satisfy S5”, an update of it in general will not. Is
this a strong point against model refinement as it is defined herel’

e We have proved that model refinement satisfies the properties like success (theorem 5.4),
commutativity (theorem 5.8). Are there other important properties that we should
check or advocate, for example the ones discussed in [Gar88] and [KM91|I"

References

[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge, 1995.

[Gar8s] P. Gardenfors. Knowledge in Flux: Modelling the Dynamics of Epistemic States.
MIT Press, 1988.

[HC84] G. E. Hughes and M. J. Cresswell. A Companion to Modal Logic. Methuen,
London, 1984.

[HCI6] G. E. Hughes and M. J. Cresswell. A new introduction to modal logic. Routledge,
New York, 1996.

[Hin62] J. Hintikka. Knowledge and Belief, an introduction to the logic of the two notions.
Cornell University Press, Ithaca (NY) and London, 1962.

[HVI1] Joseph Halpern and Moshe Vardi. Model checking vs. theorem proving: a mani-
festo, pages 151 176. Artificial Intelligence and Mathematical Theory of Compu-
tation. Academic Press, Inc, 1991.

[KM91] Hirofumi Katsuno and Alberto O. Mendelzon. Propositional knowledge base revi-
sion and minimal change. Artificial Intelligence, 3(52):263 294, December 1991.

20

[Wo097] M. Wooldridge. Agent-based software engineering. IEE Proceedings Software
Engineering, 144(1):26-37, 1997.

21

