
Plug-and-play features�Malte Plath Mark RyanSchool of Computer ScienceUniversity of BirminghamBirmingham B15 2TTUKhttp://www.cs.bham.ac.uk/f~mcp,~mdrgMay 7, 1998AbstractWe propose a feature construct for de�ning features, and use it to provide a plug-and-play framework for exploring feature interactions. Our approach to the feature interactionproblem has the following characteristics:� Features are treated as �rst-class objects during the development phase;� A method for integrating a feature into a system description is described. It allowsfeatures to override existing behaviour of the system being developed;� A prototype tool has been developed for performing the integration;� Our approach allows interactions between features to be witnessed.In principle, our approach is quite general and need not be tied to any particular systemdescription language. In this paper, however, we develop the approach in the context ofthe SMV model checking system.We describe two case studies in detail: the lift system, and the telephone system.1 IntroductionThe concept of feature has emerged in telephone systems analysis as a way of describingoptional services to which telephone users may subscribe. Features o�ered by telephonecompanies include Call Forwarding, Automatic Call Back, and Voice Mail. Features are notrestricted to telephone systems, however. Any part or aspect of a speci�cation which theuser perceives as having a self-contained functional role is a feature. For example, a printermay exhibit such features as: ability to understand PostScript; Ethernet card; ability to printdouble-sided; having a serial interface; and others. The ability to think in terms of featuresis important to the user, who often understands a complex system as a basic system plus anumber of features. It is also an increasingly common way of designing products.Just as features are not restricted to telecommunication systems, the feature interactionproblem can be observed in other contexts as well. To mention but a few examples, systemextensions for Windows and Mac OS, packages for GNU Emacs and LATEX styles may not�Financial support from the EU through Esprit working groups ASPIRE (22704) and FIREworks (23531),and from British Telecom and the Nu�eld Foundation in the UK is gratefully acknowledged.1

work as intended when loaded in the wrong order, or in some cases not be compatible at all.These `interactions' can usually be traced down to the fact that two `features' manipulate thesame entities in the base system, and in doing so violate some underlying assumptions aboutthese entities that the other `features' rely on. An example of interfering LATEX styles aregerman.sty and amstex.sty (loaded in this order): when amstex.sty applies its changes,it is not aware of the alterations which german.sty has made, leading to undesirable results.In this case, luckily, reversing the loading order solves the problem, since german.sty waswritten to respect amstex.sty.Feature interaction seems unavoidable as soon as the structure of data becomes
exibleand the `features' are not just �lters on a one-way stream of data.1 When a feature addsconceptually new information to a system or the data it works on, other features may besubverted. For example, if Call Waiting introduces a new state for which none of the otherfeatures have been prepared, their actions may not have the desired e�ect. But that is thecentral point of features: they may add functionality to a system which was not conceivedwhen the system was designed. Thus feature interaction will occur in any su�ciently
exiblesystem.Since there is no way of avoiding feature interaction short of rigidly restricting the set ofpotential features, it is reasonable to analyse potential interactions as early as possible in thelife-cycle of a new feature, and to interleave all steps in the development of new services withfurther analysis.Our approach addresses the early stages of speci�cation, and enables the speci�er toidentify problems with little more than the requirements to work from. That is to say, givena model of the basic system, the features are easy to specify, to add, and to remove or tore-specify, should interferences with other features arise.We model the basic system and its features as di�erent textual units, and integrate thefeatures into the basic system, producing an extended system. We check for interactions byverifying the extended system. This approach works in principle with any modelling languageand veri�cation method. In this paper, however, we `instantiate' the approach by workingwith the SMV model checker developed at Carnegie Mellon University [4, 7]. SMV canautomatically check whether a system description satis�es its speci�cation, expressed as atemporal logic formula. It does so by exhaustive state enumeration. A short introduction toSMV is provided in the appendix.We have extended the SMV language with a new construct for describing features. Wehave built a tool called SFI (\SMV Feature Integrator") which compiles descriptions in thisextended language into pure SMV, ready for veri�cation by the SMV model checker. Wepresent details of this extension and integration in the remainder of the paper, along withtwo substantial case studies of feature integration.The structure of this paper is as follows: in the following section we describe the ideasbehind our approach. This is followed by an explanation of our feature construct in section 3.Sections 4 and 5 are devoted to our two case studies, the lift system and the telephone systemrespectively. We conclude our paper by summing up our experiences with this approach insection 6.There are three appendices. The �rst one, section A, is a a short introduction to the SMVsystem. Appendices B and C provide extra details of the case studies which space does not1The structure of plug-in architectures for software usually enforces exactly this discipline: only one featuremay manipulate the data at any one time, and the data has to be in a strictly de�ned format before and after.2

permit to be included in the body of the paper.2 Features and feature-integrationThe general idea of our approach is to describe features formally as units of functionalitywhich can be understood without detailed knowledge of the base system. These are thenautomatically integrated into the system, and the resulting extended system is veri�ed. Wedo not assume any particular architecture of the base system in question, and (theoretically)as much or as little as one wants can be modelled. To make model checking viable, however,the system should be modelled in a rather abstract way, in order to keep the state space toa reasonable size. Since our approach aims at exposing logical interactions (e.g., inconsisten-cies), this is an advantage rather than a shortcoming, for at a high level of abstraction thelogical interactions become more visible.A feature description can be seen as a prescription for extending and changing the basicsystem. A feature description can usually be applied to di�erent system descriptions, re
ect-ing the fact that most features are quite generic, and only their implementations for di�erentsystems need to be adjusted to the precise underlying system.The main aim of our approach of extending a speci�cation and veri�cation language witha feature construct is to provide a `plug-and-play' system for experimenting with features andwitnessing their interactions. Features can override existing behaviour of the base system ina tightly controlled way.In this paper, we apply our approach to the SMV modelling language and veri�cationtool [4, 7]. We extend the SMV language with a feature construct, thus making featuresself-contained textual units. These are integrated into the system description automaticallyby our tool, SFI (\SMV Feature Integrator"), and the resulting system can then be validatedwith the SMV model checker. We believe our approach is quite general, however. A similartool could be developed for other description languages.We chose SMV as the starting point for our approach for the following reasons:� The SMV language is designed and optimised for concurrent, reactive systems, such asthe telephone system.� The SMV tool can check temporal properties of systems described using the SMVlanguage. This enables rapid development of rigorous and accurate examples.Our concept of feature makes it a special case of superimposition [6]. A superimposition isa syntactic device for adding extra code to a given program, usually to make it better behavedwith respect to other concurrently running programs. In the classic example of superimposi-tion, extra code is added to enable processes to respond to interrogations from a supervisoryprocess about whether they are awaiting further input, and this enables smooth termination ofthe system. The superimposition construct proposed in [6] is suited to imperative languages,and therefore cannot be used directly for SMV.3 The feature construct for SMVIn this section, we present an extension of the SMV syntax for describing features. We alsoshow how model descriptions written in the extended SMV can be compiled into pure SMV,3

FEATURE feature-name[REQUIREf MODULE module-name [(parameter-list)]VAR variable-declarations g�][INTRODUCEf MODULE module-name[VAR variable-declarations][ASSIGN assignments][DEFINE de�nitions][f SPEC formula g�] g�][CHANGEf MODULE module-name[IF condition THEN][impose-clause j treat-clause] g�]ENDwhere: impose-clause stands for: IMPOSE assignmentstreat-clause stands for: TREAT var1 = expr1 [, : : : varn = exprn][] stands for `optional'[j j] stands for `one of'f g* stands for `several'Figure 1: The syntax of the feature constructthus giving semantics to the feature construct. We will illustrate its use with some examplesin the following two sections.A formal speci�cation of the syntax of the feature construct is given in �gure 1. There arethree main sections of the feature construct, introduced by the keywords REQUIRE, INTRODUCEand CHANGE.The REQUIRE section stipulates what entities are required to be present in the base programin order for the feature to be applicable. A collection of modules and variables in modulesmay be speci�ed there. All old modules and variables that are used in the INTRODUCE andCHANGE sections should be REQUIREd, and their absence will lead to an error.The INTRODUCE section states what new modules or new variables within old modules areintroduced by the integration of the feature into a program. DEFINE and ASSIGN clauses mayalso be given, and CTL formulas in SPEC clauses may be given. These are textually added tothe SMV text at integrate-time.The CHANGE section speci�es what the feature actually does. It gives a number of TREATor IMPOSE clauses, which may be guarded by a condition. This is where the behaviour of theoriginal system is altered.Given an SMV text representing the base system, and a feature description, our integrationtool SFI does the following:� It checks that the REQUIREd entities are present in the base system, and reports an errorif they are not. 4

� It inserts text for the new modules or variables declared in the INTRODUCE section.� For CHANGEs of the formIF cond THEN TREAT x = exprit replaces all right-hand-side occurrences of x bycasecond : expr;1 : x;esacThis means that whenever x is read, the value returned is not x's value, but the valueof this expression. Thus, when cond is true, the value returned is expr. In short, whencond is true, we treat x as if it had the value given by expr. Note that we require exprto be deterministic.� For CHANGEs of the formIF cond THEN IMPOSE x := expr;In assignments x := oldexpr or next(x) := oldexpr, it replaces oldexpr bycasecond : expr;1 : oldexpr;esacWhereas TREAT just deals with expressions reading the value of x, i.e. occurrences of x onthe right-hand-side of an assignment to another variable, IMPOSE deals with assignmentsto the variable x. It has the e�ect that, when cond is true, x is assigned the value ofexpr; but when cond is false, x is assigned the value that it would have been assignedin the original program. In an IMPOSE statement, expr may be non-deterministic.� For CHANGEs that are not guarded by IF cond THEN, the case statements are of courseomitted, and the variable, or respectively, the expression (x or oldexpr, respectively)are replaced directly by the new expression (expr).The feature integration is deemed successful if the following are true:� The modules and variables stipulated in the REQUIRE section were present in the baseprogram; and� After the textual substitutions have been performed, the resulting program satis�es theCTL formulas in the INTRODUCE section of the feature.The semantics of TREAT and IMPOSE can also be given directly in terms of the automaton,rather than in terms of the SMV text. This is mainly of theoretical interest and we omit itfor the sake of brevity.4 Case study 1: the lift systemAs a �rst case study, we have analysed the lift system and its features. For the base systemwe have adapted the lift system description written by Mark Berry [2]. The SMV code for asingle lift travelling between 5
oors is given in the appendix (section B). It consists of about5

120 lines of SMV code.Before any features are added, we may use SMV to check basic properties of the lift system.For example, the following CTL speci�cation in the module main is satis�ed: pressing alanding button guarantees that the lift will arrive at that landing and open its doors. In CTL2:AG (landingButi.pressed -> AF (lift.floor=i & lift.door=open))In the Appendix (section B) we list a further 6 properties of the basic lift system, and theirCTL formulations.Features of the lift system. The following features of the lift system were described usingour feature construct, and then integrated into the base system using the feature integrator:Parking. When a lift is idle, it goes to a speci�ed
oor (typically the ground
oor) andopens its doors. This is because the next request is expected to be at the speci�ed
oor. The parking
oor may be di�erent at di�erent times of the day, anticipatingupwards-travelling passengers in the morning and downwards-travelling passengers inthe evening.Lift-23-full. When the lift detects that it is more than two-thirds full, it does not stop inresponse to landing calls, since it is unlikely to be able to accept more passengers.Instead, it gives priority to passengers already inside the lift, as serving them will helpreduce its load.Overloaded. When the lift is overloaded, the doors will not close. Some passengers mustget out.Empty. When the lift is empty, it cancels any calls which have been made inside the lift.Such calls were made by passengers who changed their mind and exited the lift early,or by practical jokers who pressed lots of buttons and then got out.Executive Floor. The lift gives priority to calls from the executive
oor.By way of illustration, we give the code for the parking feature in �gure 2. The parkingfeature introduces the speci�cationAG 8i 6= 1: !EG(floor=i & door=closed)which says that the lift will not remain idle inde�nitely at any
oor other than
oor 1.The other features mentioned introduce other speci�cations; these are listed in the ap-pendix (section B).Our method provides a framework to plug these di�erent features into the lift system, andby examining the result, to witness feature interactions. Our SFI tool integrates one or more2To enhance the readability of the speci�cations we present them in a meta-notation, using variablesand quanti�ers which SMV does not allow. Translating this into pure SMV notation is purely mechanical,though. In these examples, any free variables are universally quanti�ed. For example, if we expand the abovespeci�cation to pure SMV, we obtain the conjunction of the formulas:AG (landingBut1.pressed -> AF (lift.floor=1 & lift.door=open))through AG (landingBut5.pressed -> AF (lift.floor=5 & lift.door=open))6

FEATURE park
REQUIRE
 MODULE main −− require all landing buttons
 VAR
 landingBut1.pressed : boolean; landingBut2.pressed : boolean;
 landingBut3.pressed : boolean; landingBut4.pressed : boolean;
 landingBut5.pressed : boolean;
 MODULE lift −− require all lift buttons and the variable floor
 VAR
 floor : {1,2,3,4,5};
 liftBut1.pressed : boolean; liftBut2.pressed : boolean;
 liftBut3.pressed : boolean; liftBut4.pressed : boolean;
 liftBut5.pressed : boolean;

INTRODUCE
 MODULE lift −− no new variables introduced
 SPEC −− lift parks at floor 1:
 AG (floor=4 & idle −> E [idle U floor=1])
 SPEC −− lift cannot park at floor 3:
 AG (!EG(floor=3 & door=closed))

CHANGE
 MODULE main
 IF !lift.floor=1 &
 !(landingBut1.pressed | lift.liftBut1.pressed |
 landingBut2.pressed | lift.liftBut2.pressed |
 landingBut3.pressed | lift.liftBut3.pressed |
 landingBut4.pressed | lift.liftBut4.pressed |
 landingBut5.pressed | lift.liftBut5.pressed)
 THEN TREAT landingBut1.pressed = 1
END Figure 2: The code for the Parking featureof the features, in a given order, into the base system. The result of our experimentation withthe features for the lift system is summarised in table 1.Each row represents a combination of the base system and some features, and each columnrepresents a property which SMV has checked against the relevant systems. The �rst rowis the unfeatured lift system; rows 2{6 represent the base system with just one feature, andthe remaining rows represent the base system with two features. The order in which twofeatures are added matters in general. In those cases where exactly the same speci�cationsare satis�ed, we list just one ordering. (Thus, inspection of the table reveals that the onlyfeatures which do not commute are Lift-23 -full and Executive Floor.)The properties, represented by columns in the table, are divided into two groups. To theleft of the double line are properties which apply to any lift system (featured or not). Wecan see which properties are broken by the addition of various features. To the right of thedouble line are the properties which are designed to test the integration of speci�c features.

7

Feature(s) Property(see
appendixB)

Landingbutto
nguarantuees
service

Liftbuttongu
arantueesserv
ice

Liftdoesn'tch
angedir.while
callsahead

Liftdoormay
remainclosed

Liftmaypark
atany
oor

Liftmaystop
forlandingca
lls(up)

Liftmaystop
forlandingca
lls(down)

Lifttravelsem
ptyonlyforla
ndingcalls

Liftbtn.guara
nteesserviceu
nlessempty

Doorswillnot
closeifoverloa
ded

Liftwillnotm
ovewhileover
loaded

Liftwillpark
at
oor1

Carcallstake
precedencewh
en2 3full

Btn.onexec.

oorguarantu
eesservice

no features p p p p p p p | | | | | | |Empty p � � p p p p p p | | | | |Overloaded � � � p p p p | | p p | | |Parking p p p p � p p | | | | p | |Lift- 23 -full � p p p p p p | | | | | p |Exec. Floor � � p p p p p | | | | | | pOverloaded+ Empty � � � p p p p � � p p | | |Parking+ Empty p � � p � p p | | | | p | |Lift- 23 -full+ Empty � � � p p p p p p | | | � |Exec. Floor+ Empty � � � p p p p p � | | | | pParking+ Overloaded � � � p � p p | | p p p | |Lift- 23 -full+ Overloaded � � � p p p p | | p p | � |Exec. Floor+ Overloaded � � � p p p p | | p p | | �Lift- 23 -full+ Parking � p p p � p p | | | | p p |Exec. Floor+ Parking � � p p p p p | | | | p | pExec. Floor+ Lift- 23 -full � � p p p p p | | | | | p �Lift- 23 -full+ Exec. Floor � � p p � p p | | | | | � �Table 1: Feature interactions for the lift system
8

5 Case study 2: the telephone systemOur second case study is a simple version of the Plain Old Telephone System (POTS). Featureswe have modelled for integration into our model of POTS include:Call Waiting (CW) When the subscriber is engaged in a call, and there is a second incom-ing call the subscriber is noti�ed and the second call is put on hold. The subscriber canswitch between the two calls at will. A caller will hear an announcement to indicatethat her call is being held.Call Forward Unconditional (CFU) All calls to the subscriber's phone are diverted toanother phone.Call Forward on Busy (CFB) All calls to the subscriber's phone are diverted to anotherphone, if and when the subscriber's line is busy.Call Forward on No Reply (CFNR) All calls to the subscriber's phone which are notanswered after a certain amount of time, are diverted to another phone.Ring Back When Free (RBWF) If the user gets the busy-tone on calling another line,she can choose to activate RBWF, which will attempt to establish a connection withthat line as soon as it becomes idle.Terminating Call Screening (TCS) This feature inhibits calls to the subscriber's phonefrom any number on the screening list chosen by the subscriber. The caller will hear anannouncement to the e�ect that her call is being rejected.Originating Call Screening (OCS) This feature inhibits calls from the subscriber's phoneto any number from a set chosen by the subscriber. Any attempt to ring such a numberwill yield an announcement.Automatic Call Back (ACB) This feature records the number of the last caller to thesubscriber's phone, which the subscriber can choose to ring directly.5.1 The base system (POTS)We have built an SMV description of four synchronous phones. The behaviour of each phoneis given by the �nite automaton shown in �gure 3, plus one variable, dialled, which indicateswhich other phone it is connected to (or trying to connect to). `Idle' is the usual state ofthe phone; from there, it may move to `ringing' (if someone rings it) or to `dialt' (if someonelifts the handset). `Dialt', `ringingt', and `busyt' abbreviate dial-tone, ringing-tone, and busy-tone. `Talking' represents the state in which the phone is connected in a conversation whichit initiated, while `Talked' means that the conversation was initiated by someone else. `ended'means that the person we were talking to (or being talked to by) has hung up.The dotted lines indicate that the transition must synchronise with a certain transition in acertain other phone. (For example, the transition from `trying' to `ringingt' must synchronisewith the transition from `idle' to `ringing' in the phone we are trying to call.) The variabledialled determines which other copy of the phone automaton it has to synchronise with. Userinput is simulated by non-determinism: the number to be dialled is non-deterministicallychosen, and when there is more than one transition from a state, one is chosen at non-deterministically. If a transition has to synchronise (indicated by a dotted line in the diagram)with a transition in another phone, it can only be chosen if the other phone chooses the9

corresponding transition. A piece of the code for the phone module can be seen in �gure 4.In this piece of code one can also see how the synchronisation mechanism helps to avoid therace condition arising when several phones try to contact the same line at the same time.

ringingidle

ended

talking

ringingt

dialt

busyt

talked

trying

(Dotted lines indicate synchronising transitions.)Figure 3: The automaton for a single phone.As it turned out, this model quickly grew to large to verify when we added features, sinceevery phone was extended with the features. Therefore we proceeded to a reduced model withonly two complete phones and one terminating and one originating phone (thus, still four intotal). In the diagram (�gure 3), the left hand side represents the originating line, and theright hand side the terminating line, both including the states `idle' and `ended', of course.Additionally each feature was only added to one of the phones. A positive side-e�ect of thisdi�erentiation is that it makes it easy to distinguish the interactions according to how featuresare distributed over the system. This goes some way towards the distinction between SUSC,SUMC, MUSC and MUMC (Single/Multiple User { Single/Multiple Component) interactionsas introduced in [3], even at this rather high level of abstraction.5.2 Integrating features into the telephone systemAs an illustration of the feature construct we show the Ring Back When Free feature in �gure 5.When looking at this example the reader should keep in mind that this code was written withthe goal to run it through a model checker { and that the syntax which SMV accepts is ratherlimited. So for e�ciency reasons, RBWF will only store one number at a time, and we don'tallow cancelling RBWF once it is activated, until a call between the subscribed phone andthe phone with the stored number has been established.The REQUIRE section states that the feature needs a MODULE phone with at least the namedparameters, and within that module, variables dialled and st are required, and the domainof dialled has to include at least the values 0 through 4, and that of st the values idle,trying, busyt, talking and talked.The code given in the INTRODUCE section declares two new variables, rbwf-number andrbwf-use, and de�nes which number to store in rbwf-number, and when RBWF may beactivated (rbwf-use=1) and deactivated (rbwf-use=0).10

init(st) := idle;
next(st) :=
 case
 −− (...) −−
 st=dialt : {idle, dialt, trying};
 st=trying :
 case
 dialled=2 & p[2].st=idle & next(p[2].st)=ringing
 & ((p[3].st=trying & p[3].dialled=2)−> next(p[3].st)=busyt)
 & ((p[4].st=trying & p[4].dialled=2)−> next(p[4].st)=busyt) :ringingt;

dialled=3 & p[3].st=idle & next(p[3].st)=ringing
& ((p[2].st=trying & p[2].dialled=3)−> next(p[2].st)=busyt)
& ((p[4].st=trying & p[4].dialled=3)−> next(p[4].st)=busyt) :ringingt;

 dialled=4 & p[4].st=idle & next(p[4].st)=ringing
 & ((p[2].st=trying & p[2].dialled=4)−> next(p[2].st)=busyt)
 & ((p[3].st=trying & p[3].dialled=4)−> next(p[3].st)=busyt) :ringingt;
 1 :busyt;
 esac;
 −− (...) −−
 esac;Figure 4: An extract from the code for the phone automatonFinally, in the CHANGE section we de�ne how the new variables interact with those ofthe base system. For the RBWF feature, the CHANGE section states that when both thesubscriber's phone and the phone whose number was stored are idle, the subscriber's phoneshould try to connect to the phone with the stored number.We do not model the subscriber's phone ringing to alert her to the fact that the RBWFcall is being attempted, although this would not be di�cult. It would, however, slow downthe model checking signi�cantly, as we would have to introduce another variable to indicatethe special ringing. In fact this could be implemented as another feature.Properties. Some generic properties which we have veri�ed for the (unfeatured) phone aregiven in section C. Apart from these generic properties, we also want to verify that the basesystem with the feature actually behaves as the feature speci�cation demand. For example,in the case of RWBF we also demand the following (omitted in �gure 5):1. If RBWF is active, the stored number will be dialled as soon as possible (as long asRBWF is active).AG ((ph[i].rbwf-use & ph[i].rbwf-number=j)-> A[(ph[i].st=idle & ph[j].st=idle -> AX ph[i].dialled=j)W !ph[i].rbwf-use])(The `Weak until' connective, W, is similar to U but '1W'2 does not requirethat '2 eventually become true if '1 is inde�nitely true. One de�nes A['1W'2] as:E[:'2U:('1 _ '2)].)2. The stored number is reset when a call to the stored number is completed.AG 8i 6= j: ((ph[i].rbwf-number=j& ph[i].st=talking & ph[i].dialled=j)-> AF ph[i].rbwf-number=0)The stored number is also reset when the target party calls.11

FEATURE rbwf −− Ring Back When Free
REQUIRE
 MODULE phone(X,B,C,D,p) −− req’d parameters: our number and those of the
 VAR −− other phones, and the array of phones
 dialled : {0,1,2,3,4};
 st : {idle,trying,busyt,talking,talked};

INTRODUCE
 MODULE phone
 VAR
 rbwf−number : {0,1,2,3,4}; −− to store the number we’re trying to reach
 rbwf−use : boolean; −− true if RBWF activated
 ASSIGN
 init(rbwf−number) := 0;
 next(rbwf−number) :=
 case
 rbwf−number=0 −− don’t allow changing the stored number
 & st=busyt & rbwf−use : dialled;
 !rbwf−use : 0 −− reset stored number on deactivation
 1 : rbwf−number;
 esac;
 init(rbwf−use) := 0;
 next(rbwf−use) :=
 case
 rbwf−use −− only deactivate if call established (either way)
 &((dialled=rbwf−number & st=talking)
 |(st=talked
 &(rbwf−number=B & p[B].st=talking & p[B].dialled=X)
 &(rbwf−number=C & p[C].st=talking & p[C].dialled=X)
 &(rbwf−number=D & p[D].st=talking & p[D].dialled=X))) : 0;
 !rbwf−use & st=busyt : {0,1}; −− may activate RBWF on busy−tone
 1 : rbwf−use; −− otherwise, keep same value
 esac;

CHANGE
 MODULE phone
 IF (rbwf−use & st=idle −− if RBWF is active and our phone is idle
 &((rbwf−number=B & p[B].st=idle) −− and the stored phone is idle,
 |(rbwf−number=C & p[C].st=idle) −− try to connect to it
 |(rbwf−number=D & p[D].st=idle)))
 THEN IMPOSE next(dialled) := rbwf−number;
 next(st) := trying;

END Figure 5: The code for the Ring Back When Free feature
12

AG 8i 6= j: ((ph[i].rbwf-number=j & ph[i].st=talked& ph[j].dialled=i & ph[j].st=talking)-> AF ph[i].rbwf-number=0)3. RBWF is deactivated when a call to the stored number is completed.AG 8i 6= j: ((ph[i].rbwf-number=j& ph[i].st=talking & ph[i].dialled=j)-> AF ph[i].rbwf-use=0)RBWF is also deactivated when the target party calls.AG 8i 6= j: ((ph[i].rbwf-number=j & ph[i].st=talked& ph[j].dialled=i & ph[j].st=talking)-> AF ph[i].rbwf-use=0)As expected the base system plus the Ring Back When Free feature satis�es these speci-�cations. After all, these were the requirements for the feature. We also found that RBWFdoes not violate any of the properties that we stipulated for the base system. (See table 3,and section C in the appendix.)5.3 More features for the telephone systemMore interesting with view to feature interaction is the question if adding other featuresleads to violations of the speci�cations which the base system plus RBWF satis�es, or ofspeci�cations which are satis�ed by the base system plus the respective other features.For example, when we added CFB to POTS+RBWF, the only properties that were notpreserved, were already violated by CFB on its own:� lines calling the CFB subscriber do not have to go immediately from state trying tostate busyt or ringingt because the diversion takes one execution step;� the dialled number may change without replacing the hand-set when it is updated bythe forwarding feature.The same was true when we added the features in the opposite order (�rst CFB, then RBWF)and irrespective of whether the same phone subscribed to both of these features or they wereactivated for two di�erent phones. This leads us to the conclusion that Call Forwarding onBusy and Ring Back When Free do not interfere with each other, at least with respect to ourspeci�cation of the system.With other features, however, RBWF is not always so well behaved. When we added CallWaiting to POTS+RBWF, we found that a number of requirements were violated. The �rstthing to notice was that CW did not respect the speci�cations introduced for RBWF. Buton top of that, this combination of features also violated some of the requirements for CW.The violated requirements were concerned with the number of phones connected to anotherphone, for example: when there are two callers to a CW subscriber, exactly one of them ison hold at any given time.AG (ph[2].st=talking & ph[2].dialled=1 &ph[3].st=talking & ph[3].dialled=1-> (ph[2].cw-msg <-> !ph[3].cw-msg))13

CW CFU CFB RBWF RBWF1 TCS OCSCW | � � � p � �CFU � | � p p p pCFB � � | p p (p) (p)RBWF � p p | p p pRBWF1 p p p p | p pTCS � p (p) p p | pOCS � p (p) p p p |Table 2: Interferences between features for the phone systemwhere ph[1] is the phone subscribing to CW and the
ag cw-msg indicates whether therespective phone is on hold. The trace3 that SMV produces as a counter-example shows upthe following behaviour:1. ph[1] tries to ring ph[4] when ph[4] is busy, and ph[1] activates RBWF;2. ph[1] then calls ph[2] (successfully);3. using CW, ph[1] accepts an incoming call from ph[3], which is put on hold;4. �nally ph[1] hangs up on ph[2], while the call from ph[3] is on hold and ph[4] is idle.5. At this moment RBWF takes action: RBWF assumes that ph[1] is now idle and readyto complete the call to ph[4], while, in fact, CW should let the subscriber know thatshe still has a call on hold.At �rst sight the trace that SMV produced looked rather pathological, but that is just becausea counter-example has to be a \worst case" scenario. CW may still work correctly as may bechecked byEG (ph[2].st=talking & ph[2].dialled=1 &ph[3].st=talking & ph[3].dialled=1-> (ph[2].cw-msg <-> !ph[3].cw-msg))which turns out to be true. However, this only happens when RBWF is not activated as canbe veri�ed by checkingEG ((ph[2].st=talking & ph[2].dialled=1 &ph[3].st=talking & ph[3].dialled=1-> (ph[2].cw-msg <-> !ph[3].cw-msg)) -> rbwf-use=0)which also holds.If, on the other hand, we integrate CW �rst and then RBWF, the system violates theRBWF requirements, namely that call completion will be attempted whenever both the sub-scriber's phone and the phone which RBWF should monitor become idle. This is in a sensesymmetrical to the above interference, since now CW overrides RBWF in case both featuresare activated.Table 2 indicates interferences between features for the phone system. A plain tick denotes3This trace has 17 states and is about 130 lines long!14

Feature(s) Property(see
appendixC)

Callfromany
phonetoany
otherphonep
ossible

Everycallwill
end`symmetri
cally'

Busy-toneorr
inging-tonedi
rectlyfollowt
rying

Orig.linetalk
ingimpliester
m.linetalked
to

Aphonecanh
aveonlyonei
/ccallatatim
e

Diallednumbe
rcannotchan
gew/outhang
ingup

CFU:phonew
illneverring

CFB:ifengag
ed,i/ccallsw
illterm.atoth
erline

CW:atmost
onepartyhear
sonholdmsg.

CW:the`activ
e'partyisnev
eronhold

RBWF:callco
mpletionwill
beattempted

RBWF:stored
numberisrese
toncallcomp
letion

TCS:screened
callsarenever
accepted

OCS:screened
numberscann
otbecontacte
d

POTS p p p p p p | | | | | | | |CW p � � � � � | | p p | | | |CFU � p � p p � p | | | | | | |CFB p p � p p � | p | | | | | |RBWF p p p p p p | | | | p p | |TCS � p p p p p | | | | | | p |OCS � p p p p p | | | | | | | pCW + CFU � � � � � � p | p p | | | |CFU + CW � � � � � � p | p � | | | |CW + CFB p � � p � � | p p p | | | |CFB + CW p � � p � � | � p � | | | |CW + RBWF p � � � � � | | � p p p | |RBWF + CW p � � � � � | | p p � p | |CW * RBWF1 p � � � � � | | p p p p | |CW + TCS � � � � � � | | p p | | p |TCS + CW p � � � � � | | p p | | � |CW * OCS � � � � � � | | �4 p | | | pCFU + CFB � p � p p � | p p | | | | |CFB + CFU � p � p p � | p � | | | | |RBWF * CFU � p � p p � p | | | p p | |TCS * CFU2 � p � p p � p | | | | | p |OCS * CFU2 � p � p p � p | | | | | | pRBWF * CFB p p � p p � | p | | p p | |TCS * CFB2 � p � p p � | � | | | | p |OCS * CFB2 � p � p p � | � | | | | | pTCS * RBWF3 � p p p p p | | | | p p p |OCS * RBWF3 � p p p p p | | | | p p | pTable 3: Feature interactions for the telephone system
15

that there is no interference, i.e. that both features work correctly together and it does notmatter in what order they are integrated. A tick in brackets indicates that the featurescommute (i.e. the integration order makes no di�erence) but that the features interfere witheach other; and a cross means that they interfere and do not commute.Table 3 summarises our experimental �ndings. Again, rows and columns representfeature combinations and properties respectively. A `+' between two features indicates thatthe order they are integrated into the system matters, i.e. di�erent properties are satis�edby the two di�erent orderings; while a `�' indicates that the order does not matter. In thesetables, all features are subscribed to by the same phone, unless stated otherwise (see below).The following notes interpret the superscripted numbers:1 Ring Back When Free subscribed to by a di�erent phone.2 Call forwarding on Busy/Unconditional subscribed to by two phones.3 Call Screening subscribed to by two phones.4 This is clearly an artifact, generated by the use that Call Waiting makes of the variabledialled.6 ConclusionsOur approach to the feature-interaction problem gives to features the status of �rst-classcitizens; we could think of this as feature orientation. Concretely, this means that they arecompact textual units in a speci�cation or program, and that they are as independent aspossible of the base system description. In this way, we develop a framework for plug-and-play features: features can be added, removed, re-ordered or re-designed in order to exploreand resolve feature interactions.Concerning the idea of a feature construct and feature integration in general, withoutspeci�c reference to SMV, one may draw the following conclusions. Our case studies haveshown features to be a useful design modularisation concept; we have described and veri�eda range of features. Our plug-and-play approach allowed us to explore feature interactionswith an open mind, and we have witnessed surprising results. A negative point, however,visible even at this level of generality, is the dependence feature descriptions have on the basesystem.From our experience of SMV, and our decision to de�ne the feature construct for theSMV language, we draw mixed conclusions. On the positive side, the simple and intuitivesyntax and semantics of SMV meant that our feature construct could also be simple andintuitive. However, SMV is not very expressive, and that also limits the expressiveness of thefeature construct. Another problem with SMV was the state-space explosion problem: thetime and space complexity of veri�cations is exponential in the number of variables, and thisseverely hampered our second case study (the phones). We were sometimes forced to be moreabstract than we wanted to, in order to keep the veri�cation tractable, and this meant weobtained some interactions which are really an artifact of our coding, while we missed someclassical ones (namely those between Call Forwarding features and Call Screening Features).We nevertheless have obtained novel and signi�cant data, and expect that our approach willbene�t from advances in veri�cation technology.
16

References[1] G. C. Barney and S. M. dos Santos. Elevator Analysis, Design and Control. IEE ControlEngineering Series 2. Peter Peregrinus Ltd., 1985.[2] M. Berry. Proving properties of the lift system. Master's thesis, School of ComputerScience, University of Birmingham, 1996.[3] E.J. Cameron, N. Gri�eth, Y.-J. Linand M.E. Nilson, W.K. Schnure, and H. Velthuijsen. Afeature interaction benchmark for in and beyond. In L. G. Bouma and Hugo Velthuijsen,editors, Feature Interactions in Telecommunications Systems, pages 1{23, Amsterdam,The Netherlands, May 1994. IOS Press.[4] E. Clarke, O. Grumberg, and D. Long. Veri�cation tools for �nite-state concurrent sys-tems. In A Decade of Concurrency, number 803 in Lecture Notes in Computer Science,pages 124{175. Springer Verlag, 1993.[5] M. R. Huth and M. D. Ryan. Logic and its Practical Applications in Computer Science.Book in preparation, 1998.[6] S. Katz. A superimposition control construct for distributed systems. ACM Transactionson Programming Languages and Systems, 15(2):337{356, 1993.[7] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

17

AppendicesA A short introduction to SMVKnowledge about SMV is required in order to understand our feature construct, our tool SFI,and the case studies presented in this paper. We apologize for leaving this exposition of SMVvery sketchy and refer the interested reader to [4, 7] for a more detailed account. SMV is averi�cation tool which takes as input� A system description in the SMV language, and� Some formulas in the temporal logic CTL (Computation Tree Logic).It produces as output the statement `true' or `false' for each of the formulas, according towhether the system description satis�es the formula or not. In the case that the formula isnot satis�ed, SMV also produces a trace showing circumstances in which the formula is false.The SMV description language is essentially a high-level syntax for describing �nite stateautomata. It provides modularisation, and synchronous and asynchronous composition. Thebehaviour of the environment is modelled by non-determinism. An SMV system descriptiondeclares the state variables, their initial values and the next values in terms of the currentand next values of the state variables { as long as this does not lead to circular dependencies.SMV works with unlabelled automata and has no message passing. Hence all synchroni-sation has to be by explicit references to current and next values. While this keeps the syntaxsimple, it does sometimes make writing the description slightly cumbersome.1: MODULE main2: VAR3: request : boolean;4: state : {ready,busy};5: ASSIGN6: init(state) := ready;7: next(state) := case8: state = ready & request : busy;9: 1 : {ready,busy};10: esac;11: SPEC AG(request -> AF state = busy)Figure 6: A system description for SMVFigure 6 shows one of the examples distributed with the SMV system. (The line numbersare not part of the code.) This piece of code de�nes an automaton with four states (f0; 1g �fready; busyg). There are transitions from every state to every state, except for the state(1; ready) from which only transitions to (1; busy) and (0; busy) are allowed. The initialstates are (1; ready) and (0; ready).Generally, a model description for SMV consists of a list of modules with parameters. Eachmodule may contain variable declarations (VAR), macro de�nitions (DEFINE), assignments(ASSIGN), and properties (SPEC) to be checked of the module.Possible types for variables are boolean, enumerations (e.g. state), or �nite ranges ofintegers. For declared variables (as opposed to DEFINEd ones, which are merely macros) wemay assign the initial value (e.g. line 6) and the next value (e.g. lines 7{10), or alternatively,18

the current value. The expressions that are assigned to variables may be non-deterministicas in line 9: if state is not ready or request is 0, the next value of state can be bothready or busy. (Since request is not determined at all by the description it, too, will as-sume values non-deterministically.) It is important to bear in mind that all assignmentsare evaluated in parallel (although there is also a mechanism for asynchronous (interleaving)composition of modules). A special kind of variable declaration is the the instantiation ofa module, as in \landingBut1 : button(lift.floor=1 & lift.door=open);" (cf. �g-ure 7 in appendix B). This is interpreted as a declaration of all local variables (includingDEFINEd identi�ers) of that module (pressed in this example), pre�xed with the name ofthe newly declared variable, here landingBut1.pressed, together with the assignments ormacro-de�nitions within that module. The formal parameters are replaced by the actualparameters as in a call-by-name language.After de�ning a system in the SMV language, we formulate the properties to be veri�edin the temporal logic CTL (marked by the keyword SPEC, e.g. line 11). The propositionalatoms for these formulas are boolean expressions over the variables of the system.Given a set of propositional atoms P , CTL formulas are given by the following syntax:' ::=p j > j :' j '1 ^ '2 jAX' j EX' j AG' j EG' j AF' j EF' j A['1U'2] j E['1U'2]:where p 2 P . (The other boolean operators (_;!;$;?) are de�ned in terms of ^;: inthe usual way.) In SMV, logical or is written as |, and as &, and not as !. Notice thatCTL temporal operators come in pairs. The �rst of the pair is one of A and E. A means`along all paths' (inevitably), and E means `along at least one path' (possibly). The secondone of the pair is X, F, G, or U, meaning `neXt state', `some Future state', `all futurestates (Globally)', and Until respectively. Notice that U is binary. The pair of operators inE['1U'2], for example, is EU. Further details of CTL are widely available in the papers byE. Clarke and others [4, 7], and also in the forthcoming introductory text [5].B Further details for case study 1 (the lift system)We describe the code to implement the basic lift system in SMV. The code is given in �gures 7to 9.The module main (�gure 7) declares �ve instances (one for each landing) of the modulebutton (passing to each one as argument the conditions under which that button should cancelitself). It also declares one instance of lift, to which it passes a parameter whose value atany time is the next landing in the current direction of the lift which has requested the lift,and another parameter whose value at any time expresses whether there is a landing request.The lift module (�gure 9) declares the variables floor, door and direction as well asa further 5 buttons, this time those inside the lift. The algorithm it uses to decide which
oor to visit next is the one called \Single Button Collective Control" (SBCC) from [1]: thelift travels in its current direction answering all lift and landing calls until no more exist inthe current direction; then it reverses direction, and repeats. Actually the conditions underwhich it reverses direction are slightly more complicated, as can be seen by inspecting thecode for next(direction) in �gure 9: if the lift is idle, it maintains the same direction as ithad before, but if it is at the top or bottom of its shaft it changes direction to down and uprespectively; otherwise, as stated, it reverses direction if there are no calls remaining to be19

MODULE main
VAR
 landingBut1 : button ((lift.floor=1) & (lift.door=open));
 landingBut2 : button ((lift.floor=2) & (lift.door=open));
 landingBut3 : button ((lift.floor=3) & (lift.door=open));
 landingBut4 : button ((lift.floor=4) & (lift.door=open));
 landingBut5 : button ((lift.floor=5) & (lift.door=open));

 lift : lift (landing_call, no_call);

DEFINE
 landing_call :=
 case
 lift.direction = down :
 case
 landingBut5.pressed & lift.floor>4 : 5;
 landingBut4.pressed & lift.floor>3 : 4;
 landingBut3.pressed & lift.floor>2 : 3;
 landingBut2.pressed & lift.floor>1 : 2;
 landingBut1.pressed : 1;
 1 : 0;
 esac;
 lift.direction = up :
 case
 landingBut1.pressed & lift.floor<2 : 1;
 landingBut2.pressed & lift.floor<3 : 2;
 landingBut3.pressed & lift.floor<4 : 3;
 landingBut4.pressed & lift.floor<5 : 4;
 landingBut5.pressed : 5;
 1 : 0;
 esac;
 esac;

 no_call := (!landingBut1.pressed &
 !landingBut2.pressed &
 !landingBut3.pressed &
 !landingBut4.pressed &
 !landingBut5.pressed);Figure 7: The SMV code for the module main in the lift system.served in the current direction. The �nal `1:direction' means that if none of the precedingconditions are true, then the value returned by the case statement is simply the old valueof direction. Notice that the SBCC algorithm stipulates only one button on each landing,rather than the conventional two. Passengers press the button, but they are not guaranteedthat the lift will be willing to go in the direction they wish to travel.By inspecting the button module (�gure 8), one �nds that its variable pressed is set tofalse if the reset parameter is true; otherwise, if it was pressed before, it persists in that state;otherwise, it non-deterministically becomes true or false. This non-determinism is to modelthe fact that a user may come along and press the button at any time. In common with mostactual lift systems, the user may not un-press the button; once pressed, it remains presseduntil the conditions to reset it arise inside the lift system.B.1 Properties for basic lift systemThese are the properties that we have veri�ed for the base lift system, and some more thatspecify the behaviour of individual features. (We use the meta-notation introduced on page 6.)20

MODULE button (reset)
VAR
 pressed : boolean;
ASSIGN
 init (pressed) := 0;
 next (pressed) := case
 reset : 0;
 pressed : 1;
 1 : {0,1};
 esac;Figure 8: The SMV code for the module button in the lift system.1. Pressing a landing button guarantees that the lift will arrive at that landing and openits doors:AG (landingButi.pressed-> AF (lift.floor=i & lift.door=open))2. If a button inside the lift is pressed, the lift will eventually arrive at the corresponding
oor. AG (lift.liftButi.pressed-> AF (lift.floor=i & lift.door=open))3. If the door closes, it may remain closed.!AG (door=closed -> AF door=open)4. The lift will not change its direction while there are calls in the direction it is travelling.One formula for upwards travel,AG 8i < j: (floor=i & liftButj.pressed & direction=up-> A[direction=up U floor=j]): : : and one formula for downwards travel, for i > j:AG 8i > j: (floor=i & liftButj.pressed & direction=down-> A[direction=up U floor=j])5. The lift may remain idle with its doors closed at
oor i.EF (floor=i & door=closed & idle)AG (lift.floor=i & lift.idle & lift.door=closed-> EG (lift.floor=i & lift.door=closed))6. The lift may stop at
oors 2, 3, and 4 for landing calls when travelling upwards ordownwards, respectively:8i 2 f2; 3; 4g: !AG ((floor=i & !liftButi.pressed & direction=up)-> door=closed)8i 2 f2; 3; 4g: !AG ((floor=i & !liftButi.pressed & direction=down)-> door=closed): : : and at
oors 1 and 5 regardless of direction:21

MODULE lift (landing_call, no_call)
VAR
 floor : {1,2,3,4,5};
 door : {open,closed};
 direction : {up,down};
 liftBut5 : button (floor=5 & door=open);
 liftBut4 : button (floor=4 & door=open);
 liftBut3 : button (floor=3 & door=open);
 liftBut2 : button (floor=2 & door=open);
 liftBut1 : button (floor=1 & door=open);

DEFINE
 idle := (no_call & !liftBut1.pressed & !liftBut2.pressed &
 !liftBut3.pressed & !liftBut4.pressed & !liftBut5.pressed);
 lift_call :=
 case
 direction = down :
 case
 liftBut5.pressed & floor>4 : 5;
 liftBut4.pressed & floor>3 : 4;
 liftBut3.pressed & floor>2 : 3;
 liftBut2.pressed & floor>1 : 2;
 liftBut1.pressed : 1;
 1 : 0;
 esac;
 direction = up :
 case
 liftBut1.pressed & floor<2 : 1;
 liftBut2.pressed & floor<3 : 2;
 liftBut3.pressed & floor<4 : 3;
 liftBut4.pressed & floor<5 : 4;
 liftBut5.pressed : 5;
 1 : 0;
 esac;
 esac;

ASSIGN
 door := case
 floor=lift_call : open;
 floor=landing_call : open;
 1 : closed;
 esac;
 init (floor) := 1;
 next (floor) := case
 door=open : floor;
 lift_call=0 & landing_call=0 : floor;
 direction=up & floor<5 : floor +1;
 direction=down & floor>1 : floor −1;
 1 : floor;
 esac;
 init (direction) := down;
 next (direction) := case
 idle : direction;
 floor = 5 : down;
 floor = 1 : up;
 lift_call=0 & landing_call=0 & direction=down : up;
 lift_call=0 & landing_call=0 & direction=up : down;
 1 : direction;
 esac;Figure 9: The SMV code for the module lift in the lift system.

22

!AG ((floor=1 & !liftBut1.pressed) -> door=closed)!AG ((floor=5 & !liftBut5.pressed) -> door=closed)B.2 Properties for the featured lift systemIn addition to these generic properties, we check some requirements for each feature.1. Empty:The lift will not arrive empty at a
oor unless the button on that landing was pressed.AG (lift.floor=i & lift.door=open & lift.empty-> landingButi.pressed)The lift will honour requests from within the lift as long as it is not empty.AG 8i: (lift.liftButi.pressed & !lift.empty)-> AF ((lift.floor=i & lift.door=open) | lift.empty)2. Overloaded:The doors of the lift cannot be closed when the lift is overloaded.!EF (overload & door=closed)The lift will not move while it is overloaded.AG (lift.floor=i & lift.overload-> A[lift.floor=i W !lift.overload])3. Parking:The lift will not remain idle inde�nitely at any
oor other than
oor 1.AG 8i 6= 1: !EG(floor=i & door=closed)4. Lift-23 -full:Car calls have precedence when the lift is 23 full (indicated by the
ag tt-full).AG 8i 6= j: ((lift.tt-full &lift.liftButi.pressed & !lift.liftButj.pressed)-> A [!(lift.floor=j & lift.door=open)U ((lift.floor=i & door=open)| !lift.cp | lift.liftButj.pressed)])5. Executive Floor:The lift will answer requests from the executive
oor (lift.ef).AG (lift.ef=i-> A[(landingButi.pressed -> AF(lift.floor=i))W !lift.ef=i])Here again we use the `weak until' connective, to allow for executions where lift.efnever changes. (Cf. page 11)
23

C Further details for case study 2 (the telephone system)The code for the phones is given in �gures 10 and 11.C.1 Properties for the basic phone systemThese are the properties that we have veri�ed for the base system. (Again we use the meta-notation introduced on page 6.)1. Any phone may call any other phone.AG 8i 6= j: (EF (ph[i].st=talking & ph[i].dialled=j)2. If phone i is talking to phone j, the call will eventually end; and this will be by oneparty hanging up (st=idle) and the other party still o�-hook (st=ended). (This holdsonly with \weak" fairness, which ensures that a phone cannot remain in the same stateinde�nitely.)AG ((ph[i].dialled=j & ph[i].st=talking)-> AF ((ph[i].st=idle & ph[j].st=ended) |(ph[j].st=idle & ph[i].st=ended)))3. When a phone is in state trying, it will always get ringing-tone or busy-tone directlyafter. AG (ph[i].st=trying -> AX (ph[i].st=ringingt | ph[i].st=busyt))4. The correct phone will ring: if phone i is trying to contact phone j and consequentlygets the ringing-tone, then phone j must be ringing.AG ((ph[i].st=trying & ph[i].dialled=j)-> AX (ph[i].st=ringingt -> ph[j].st=ringing))5. A list of SPECs stating that if a phone is talking, the dialled phone must be talked to.AG (ph[i].st=talking & ph[i].dialled=j -> ph[j].st=talked)6. Phone i can be talked to; and if it is being talked to, there has to be another phonetalking to it.EF ph[i].st=talkedAG (ph[i].st=talked<-> 9j:(ph[j].st=talking & ph[j].dialled=i))7. Phone i can be ringing; and if it is ringing, there has to be another phone that hasdialled it and is getting the ringing-tone.EF ph[i].st=ringingAG (ph[i].st=ringing<-> 9j:(ph[j].st=ringingt & ph[j].dialled=i))8. Never can two phones be talking to the same third phone.24

MODULE phone (X,B,C,D,p) −− parameters: the 4 numbers, and the array of phones
 −− X is our own number
VAR
 dialled : {0,1,2,3,4};
 st : {idle, dialt, trying, busyt, ringingt,
 talking, ringing, talked, ended};

ASSIGN
 init(dialled) := 0;
 next(dialled) := case
 st=idle : 0;
 st=dialt & dialled = 0 : {1,2,3,4};
 1 : dialled;
 esac;

 init(st) := idle;
 next(st) :=
 case
 st=idle :
 case
 p[2].st=trying & p[2].dialled=1 & next(p[2].st)=ringingt : ringing;
 p[3].st=trying & p[3].dialled=1 & next(p[3].st)=ringingt : ringing;
 p[4].st=trying & p[4].dialled=1 & next(p[4].st)=ringingt : ringing;
 1 : {idle, dialt};
 esac;

 st=ringing :
 case
 p[2].st=ringingt & p[2].dialled=1 & next(p[2].st)=idle : idle;
 p[3].st=ringingt & p[3].dialled=1 & next(p[3].st)=idle : idle;
 p[4].st=ringingt & p[4].dialled=1 & next(p[4].st)=idle : idle;
 1 : {ringing, talked};
 esac;

 st=dialt : {idle, dialt, trying};

 st=busyt : {idle, busyt};

 st=trying :
 case
 dialled=2 & p[2].st=idle & next(p[2].st)=ringing
 & ((p[3].st=trying & p[3].dialled=2)−> next(p[3].st)=busyt)
 & ((p[4].st=trying & p[4].dialled=2)−> next(p[4].st)=busyt) :ringingt;

dialled=3 & p[3].st=idle & next(p[3].st)=ringing
& ((p[2].st=trying & p[2].dialled=3)−> next(p[2].st)=busyt)
& ((p[4].st=trying & p[4].dialled=3)−> next(p[4].st)=busyt) :ringingt;

 dialled=4 & p[4].st=idle & next(p[4].st)=ringing
 & ((p[2].st=trying & p[2].dialled=4)−> next(p[2].st)=busyt)
 & ((p[3].st=trying & p[3].dialled=4)−> next(p[3].st)=busyt) :ringingt;
 1 :busyt;
 esac;

 st=ringingt :
 case
 dialled=2 & next(p[2].st)=talked : talking;
 dialled=3 & next(p[3].st)=talked : talking;
 dialled=4 & next(p[4].st)=talked : talking;
 1 : {ringingt, idle};
 esac;Figure 10: The SMV code for the phone system. (1/2)

25

 st=talked :
 case
 p[2].st=talking & p[2].dialled=1 & next(p[2].st)=idle : ended;
 p[3].st=talking & p[3].dialled=1 & next(p[3].st)=idle : ended;
 p[4].st=talking & p[4].dialled=1 & next(p[4].st)=idle : ended;
 1 : {idle, talked};
 esac;

 st=talking :
 case
 dialled=2 & p[2].st=talked & next(p[2].st)=idle : ended;
 dialled=3 & p[3].st=talked & next(p[3].st)=idle : ended;
 dialled=4 & p[4].st=talked & next(p[4].st)=idle : ended;
 1 : {idle, talking};
 esac;

 st=ended : {ended, idle};
 esac;

DEFINE
 party :=
 case
 st=talking : dialled;
 p[B].st=talking & p[B].dialled=X : B;
 p[C].st=talking & p[C].dialled=X : C;
 p[D].st=talking & p[D].dialled=X : D;
 1 : 0;
 esac;

−− Fairness constraints to ensure that a phone does not remain in a state
−− indefinitely. A phone may still alternate between, say, idle <−> dialt.
FAIRNESS
 !st=idle
FAIRNESS
 !st=dialt
FAIRNESS
 !st=trying
FAIRNESS
 !st=busyt
FAIRNESS
 !st=ringingt
FAIRNESS
 !st=talking
FAIRNESS
 !st=ringing
FAIRNESS
 !st=talked
FAIRNESS
 !st=ended

MODULE main
VAR
 ph[1] : phone (1,2,3,4,ph);
 ph[2] : phone (2,1,3,4,ph);
 ph[3] : phone (3,1,2,4,ph);
 ph[4] : phone (4,1,2,3,ph);Figure 11: The SMV code for the phone system. (2/2)

26

AG 8i 6= j: !(ph[i].st=talking & ph[i].dialled=k &ph[j].st=talking & ph[j].dialled=k)9. The dialled number cannot change without replacing the hand-set. (This only holdswith \weak" fairness, otherwise one has to use the `weak until' connective, cf. page 11.)AG ((ph[i].dialled=j & ph[i].st=trying)-> (A[ph[i].dialled=j U ph[i].st=idle]))C.2 Properties for the featured phone systemIn addition to these generic properties, we give some of the requirements we veri�ed for eachfeature.1. Call Forwarding UnconditionalIf a forwarding number is given, the phone will never ring. (The forwarding number ischosen at random but does not change after that.)AG (!ph[i].cfu-forw=0 -> AG !(ph[i].st in fringing,talkedg))2. Call Forwarding on BusyIf the subscriber's phone is busy, incoming calls will terminate at the phone with theforwarding number. (Again, the forwarding number remains �xed.)AG 8i 6= j 6= k: ((ph[i].cfb-forw=j & !ph[i].st=idle &ph[k].dialled=i & ph[k].st=trying)-> AF(ph[k].dialled=j & ph[k].st in fbusyt,ringingtg& (ph[k].st=ringingt -> ph[j].st=ringing)))3. Call WaitingIf there are two calls, exactly one party will hear the `onhold'-message. (In other words,at most one party will hear the `onhold'-message.)AG 8i 6= j 6= k: (ph[i].st=talking & ph[i].dialled=k &ph[j].st=talking & ph[j].dialled=k-> (ph[i].cw-msg <-> !ph[j].cw-msg))4. Call WaitingThe `active' party is never on hold. (In the Call Waiting feature, dialled holds thevalue of the party which the subscriber is currently talking to.)AG (!ph[i].dialled=0 -> !ph[i].onhold=ph[i].dialled)5. Ring Back When FreeIf Ring Back When Free is activated, call completion will be attempted when possible,i.e., whenever both phone are idle.AG ((ph[i].rbwf-use & ph[i].rbwf-number=j)-> A[(ph[i].st=idle & ph[j].st=idle -> AX ph[i].dialled=j)W !ph[i].rbwf-use]) 27

6. Ring Back When FreeThe stored number will be reset when a call between the subscriber and the phone withthe stored number is established. One formula for calls initiated by the subscriber andone for incoming calls. (These two could be rolled into one.)AG (ph[i].rbwf-number=j & ph[i].st=talking & ph[i].dialled=j-> AF ph[i].rbwf-number=0)AG (ph[i].rbwf-number=j & ph[i].st=talked &ph[j].dialled=i & ph[j].st=talking-> AF ph[i].rbwf-number=0)7. Terminating Call ScreeningCalls from numbers on the screening list (array tcs) are never accepted.AG (ph[i].tcs[j]-> AG !(ph[j].dialled=i & ph[j].st in fringingt,talkedg))8. Originating Call ScreeningCalls to numbers on the screening list (array ocs) never succeed.AG (ph[i].ocs[j]-> AG !(ph[i].dialled=j & ph[i].st in fringingt,talkingg))

28

