Plug-and-play features*

Malte Plath Mark Ryan
School of Computer Science
University of Birmingham
Birmingham B15 2TT
UK
http://www.cs.bham.ac.uk/{ mcp, “mdr}

May 7, 1998

Abstract

We propose a feature construct for defining features, and use it to provide a plug-and-
play framework for exploring feature interactions. Qur approach to the feature interaction
problem has the following characteristics:

e Features are treated as first-class objects during the development phase;

¢ A method for integrating a feature into a system description is described. It allows
features to override existing behaviour of the system being developed;

e A prototype tool has been developed for performing the integration;

e Our approach allows interactions between features to be witnessed.
In principle, our approach is quite general and need not be tied to any particular system
description language. In this paper, however, we develop the approach in the context of

the SMV model checking system.
We describe two case studies in detail: the lift system, and the telephone system.

1 Introduction

The concept of feature has emerged in telephone systems analysis as a way of describing
optional services to which telephone users may subscribe. Features offered by telephone
companies include Call Forwarding, Automatic Call Back, and Voice Mail. Features are not
restricted to telephone systems, however. Any part or aspect of a specification which the
user perceives as having a self-contained functional role is a feature. For example, a printer
may exhibit such features as: ability to understand PostScript; Ethernet card; ability to print
double-sided; having a serial interface; and others. The ability to think in terms of features
is important to the user, who often understands a complex system as a basic system plus a
number of features. It is also an increasingly common way of designing products.

Just as features are not restricted to telecommunication systems, the feature interaction
problem can be observed in other contexts as well. To mention but a few examples, system
extensions for Windows and Mac OS, packages for GNU Emacs and ITEX styles may not

*Financial support from the EU through Esprit working groups ASPIRE (22704) and FIREworks (23531),
and from British Telecom and the Nuffield Foundation in the UK is gratefully acknowledged.

work as intended when loaded in the wrong order, or in some cases not be compatible at all.
These ‘interactions’ can usually be traced down to the fact that two ‘features’ manipulate the
same entities in the base system, and in doing so violate some underlying assumptions about
these entities that the other ‘features’ rely on. An example of interfering WTEX styles are
german.sty and amstex.sty (loaded in this order): when amstex.sty applies its changes,
it is not aware of the alterations which german. sty has made, leading to undesirable results.
In this case, luckily, reversing the loading order solves the problem, since german.sty was
written to respect amstex.sty.

Feature interaction seems unavoidable as soon as the structure of data becomes flexible
and the ‘features’ are not just filters on a one-way stream of data.! When a feature adds
conceptually new information to a system or the data it works on, other features may be
subverted. For example, if Call Waiting introduces a new state for which none of the other
features have been prepared, their actions may not have the desired effect. But that is the
central point of features: they may add functionality to a system which was not conceived
when the system was designed. Thus feature interaction will occur in any sufficiently flexible
system.

Since there is no way of avoiding feature interaction short of rigidly restricting the set of
potential features, it is reasonable to analyse potential interactions as early as possible in the
life-cycle of a new feature, and to interleave all steps in the development of new services with
further analysis.

Our approach addresses the early stages of specification, and enables the specifier to
identify problems with little more than the requirements to work from. That is to say, given
a model of the basic system, the features are easy to specify, to add, and to remove or to
re-specify, should interferences with other features arise.

We model the basic system and its features as different textual units, and integrate the
features into the basic system, producing an extended system. We check for interactions by
verifying the extended system. This approach works in principle with any modelling language
and verification method. In this paper, however, we ‘instantiate’ the approach by working
with the SMV model checker developed at Carnegie Mellon University [4, 7]. SMV can
automatically check whether a system description satisfies its specification, expressed as a
temporal logic formula. It does so by exhaustive state enumeration. A short introduction to
SMYV is provided in the appendix.

We have extended the SMV language with a new construct for describing features. We
have built a tool called SFI (“SMV Feature Integrator”) which compiles descriptions in this
extended language into pure SMV, ready for verification by the SMV model checker. We
present details of this extension and integration in the remainder of the paper, along with
two substantial case studies of feature integration.

The structure of this paper is as follows: in the following section we describe the ideas
behind our approach. This is followed by an explanation of our feature construct in section 3.
Sections 4 and 5 are devoted to our two case studies, the lift system and the telephone system
respectively. We conclude our paper by summing up our experiences with this approach in
section 6.

There are three appendices. The first one, section A, is a a short introduction to the SMV
system. Appendices B and C provide extra details of the case studies which space does not

'The structure of plug-in architectures for software usually enforces exactly this discipline: only one feature
may manipulate the data at any one time, and the data has to be in a strictly defined format before and after.

permit to be included in the body of the paper.

2 Features and feature-integration

The general idea of our approach is to describe features formally as units of functionality
which can be understood without detailed knowledge of the base system. These are then
automatically integrated into the system, and the resulting extended system is verified. We
do not assume any particular architecture of the base system in question, and (theoretically)
as much or as little as one wants can be modelled. To make model checking viable, however,
the system should be modelled in a rather abstract way, in order to keep the state space to
a reasonable size. Since our approach aims at exposing logical interactions (e.g., inconsisten-
cies), this is an advantage rather than a shortcoming, for at a high level of abstraction the
logical interactions become more visible.

A feature description can be seen as a prescription for extending and changing the basic
system. A feature description can usually be applied to different system descriptions, reflect-
ing the fact that most features are quite generic, and only their implementations for different
systems need to be adjusted to the precise underlying system.

The main aim of our approach of extending a specification and verification language with
a feature construct is to provide a ‘plug-and-play’ system for experimenting with features and
witnessing their interactions. Features can override existing behaviour of the base system in
a tightly controlled way.

In this paper, we apply our approach to the SMV modelling language and verification
tool [4, 7]. We extend the SMV language with a feature construct, thus making features
self-contained textual units. These are integrated into the system description automatically
by our tool, SFI (“SMV Feature Integrator”), and the resulting system can then be validated
with the SMV model checker. We believe our approach is quite general, however. A similar
tool could be developed for other description languages.

We chose SMV as the starting point for our approach for the following reasons:

e The SMV language is designed and optimised for concurrent, reactive systems, such as
the telephone system.

e The SMV tool can check temporal properties of systems described using the SMV
language. This enables rapid development of rigorous and accurate examples.

Our concept of feature makes it a special case of superimposition [6]. A superimposition is
a syntactic device for adding extra code to a given program, usually to make it better behaved
with respect to other concurrently running programs. In the classic example of superimposi-
tion, extra code is added to enable processes to respond to interrogations from a supervisory
process about whether they are awaiting further input, and this enables smooth termination of
the system. The superimposition construct proposed in [6] is suited to imperative languages,
and therefore cannot be used directly for SMV.

3 The feature construct for SM'V

In this section, we present an extension of the SMV syntax for describing features. We also
show how model descriptions written in the extended SMV can be compiled into pure SMV,

FEATURE feature-name
[REQUIRE
{ MODULE module-name | (parameter-list) |
VAR wvariable-declarations }x

]

[INTRODUCE
{ MODULE module-name
[VAR variable-declarations]
[ASSIGN assignments |
[DEFINE definitions |
[{ SPEC formula }x] }x

]

[CHANGE
{ MODULE module-name
[IF condition THEN]
[impose-clause | treat-clause | }*

END

where: impose-clause stands for: IMPOSE assignments
treat-clause stands for: TREAT var, = expr, [, ...var, = exrpry,]
[] stands for ‘optional’
[| |]stands for ‘one of’
{ }* stands for ‘several’

Figure 1: The syntax of the feature construct

thus giving semantics to the feature construct. We will illustrate its use with some examples
in the following two sections.

A formal specification of the syntax of the feature construct is given in figure 1. There are
three main sections of the feature construct, introduced by the keywords REQUIRE, INTRODUCE
and CHANGE.

The REQUIRE section stipulates what entities are required to be present in the base program
in order for the feature to be applicable. A collection of modules and variables in modules
may be specified there. All old modules and variables that are used in the INTRODUCE and
CHANGE sections should be REQUIREd, and their absence will lead to an error.

The INTRODUCE section states what new modules or new variables within old modules are
introduced by the integration of the feature into a program. DEFINE and ASSIGN clauses may
also be given, and CTL formulas in SPEC clauses may be given. These are textually added to
the SMV text at integrate-time.

The CHANGE section specifies what the feature actually does. It gives a number of TREAT
or IMPOSE clauses, which may be guarded by a condition. This is where the behaviour of the
original system is altered.

Given an SMV text representing the base system, and a feature description, our integration
tool SFI does the following:

e It checks that the REQUIREd entities are present in the base system, and reports an error
if they are not.

e It inserts text for the new modules or variables declared in the INTRODUCE section.

e For CHANGESs of the form
IF cond THEN TREAT x = expr
it replaces all right-hand-side occurrences of x by

case
cond : expr;
1 T
esac

This means that whenever x is read, the value returned is not x’s value, but the value
of this expression. Thus, when cond is true, the value returned is expr. In short, when
cond is true, we treat x as if it had the value given by expr. Note that we require expr
to be deterministic.

e For CHANGEs of the form
IF cond THEN IMPOSE z := expr;

In assignments x := oldexpr or next(z) := oldexpr, it replaces oldexpr by
case
cond : expr;
1 : oldexpr;
esac

Whereas TREAT just deals with expressions reading the value of x, i.e. occurrences of z on
the right-hand-side of an assignment to another variable, IMPOSE deals with assignments
to the variable z. It has the effect that, when cond is true, z is assigned the value of
expr; but when cond is false, z is assigned the value that it would have been assigned
in the original program. In an IMPOSE statement, ezpr may be non-deterministic.

e For CHANGEs that are not guarded by IF cond THEN, the case statements are of course
omitted, and the variable, or respectively, the expression (z or oldexpr, respectively)
are replaced directly by the new expression (expr).

The feature integration is deemed successful if the following are true:

e The modules and variables stipulated in the REQUIRE section were present in the base
program; and

e After the textual substitutions have been performed, the resulting program satisfies the
CTL formulas in the INTRODUCE section of the feature.

The semantics of TREAT and IMPOSE can also be given directly in terms of the automaton,
rather than in terms of the SMV text. This is mainly of theoretical interest and we omit it
for the sake of brevity.

4 Case study 1: the lift system

As a first case study, we have analysed the lift system and its features. For the base system
we have adapted the lift system description written by Mark Berry [2]. The SMV code for a
single lift travelling between 5 floors is given in the appendix (section B). It consists of about

120 lines of SMV code.

Before any features are added, we may use SMV to check basic properties of the lift system.
For example, the following CTL specification in the module main is satisfied: pressing a
landing button guarantees that the lift will arrive at that landing and open its doors. In CTL?:

AG (landingButi.pressed -> AF (lift.floor=:¢ & 1lift.door=open))

In the Appendix (section B) we list a further 6 properties of the basic lift system, and their
CTL formulations.

Features of the lift system. The following features of the lift system were described using
our feature construct, and then integrated into the base system using the feature integrator:

Parking. When a lift is idle, it goes to a specified floor (typically the ground floor) and
opens its doors. This is because the next request is expected to be at the specified
floor. The parking floor may be different at different times of the day, anticipating
upwards-travelling passengers in the morning and downwards-travelling passengers in
the evening.

Lift-%-full. When the lift detects that it is more than two-thirds full, it does not stop in
response to landing calls, since it is unlikely to be able to accept more passengers.
Instead, it gives priority to passengers already inside the lift, as serving them will help
reduce its load.

Overloaded. When the lift is overloaded, the doors will not close. Some passengers must
get out.

Empty. When the lift is empty, it cancels any calls which have been made inside the lift.
Such calls were made by passengers who changed their mind and exited the lift early,
or by practical jokers who pressed lots of buttons and then got out.

Executive Floor. The lift gives priority to calls from the executive floor.

By way of illustration, we give the code for the parking feature in figure 2. The parking
feature introduces the specification

AG Vi #1. 'EG(floor=i & door=closed)

which says that the lift will not remain idle indefinitely at any floor other than floor 1.

The other features mentioned introduce other specifications; these are listed in the ap-
pendix (section B).

Our method provides a framework to plug these different features into the lift system, and
by examining the result, to witness feature interactions. Our SFI tool integrates one or more

2To enhance the readability of the specifications we present them in a meta-notation, using variables
and quantifiers which SMV does not allow. Translating this into pure SMV notation is purely mechanical,
though. In these examples, any free variables are universally quantified. For example, if we expand the above
specification to pure SMV, we obtain the conjunction of the formulas:

AG (landingButl.pressed -> AF (lift.floor=1 & lift.door=open))
through

AG (landingButbh.pressed -> AF (lift.floor=5 & lift.door=open))

FEATURE park

REQUI RE
MODULEmain —- require all landing buttons
VAR
landingButl.pressed : bool ean; landingBut2.pressed : bool ean;
landingBut3.pressed : bool ean; landingBut4.pressed : bool ean;
landingBut5.pressed : bool ean;
MODULEIift —- require all lift buttons and the variable floor
VAR
floor :{1,2,3,4,5};
liftButl.pressed : bool ean; liftBut2.pressed : bool ean;
liftBut3.pressed : bool ean; liftBut4.pressed : bool ean;
liftBut5.pressed : bool ean;

| NTRODUCE

MODULEIift == no new variables introduced
SPEC-- lift parks at floor 1:

AG (floor=4 & idle —> E [idle U floor=1])
SPEC-- lift cannot park at floor 3:

AG (IEG(floor=3 & door=closed))

CHANGE

MODULEmain

| Fllift.floor=1 &

I(landingButl.pressed | lift.liftButl.pressed |
landingBut2.pressed | lift.liftBut2.pressed |
landingBut3.pressed | lift.liftBut3.pressed |
landingBut4.pressed | lift.liftBut4.pressed |
landingBut5.pressed | lift.liftBut5.pressed)

THEN TREAT landingButl.pressed = 1
END

Figure 2: The code for the Parking feature

of the features, in a given order, into the base system. The result of our experimentation with
the features for the lift system is summarised in table 1.

Each row represents a combination of the base system and some features, and each column
represents a property which SMV has checked against the relevant systems. The first row
is the unfeatured lift system; rows 2—6 represent the base system with just one feature, and
the remaining rows represent the base system with two features. The order in which two
features are added matters in general. In those cases where exactly the same specifications
are satisfied, we list just one ordering. (Thus, inspection of the table reveals that the only
features which do not commute are Lift—%—full and Executive Floor.)

The properties, represented by columns in the table, are divided into two groups. To the
left of the double line are properties which apply to any lift system (featured or not). We
can see which properties are broken by the addition of various features. To the right of the
double line are the properties which are designed to test the integration of specific features.

9OTA IS mwwjaﬁﬁhdﬂm JI00f "09Xo U0 "ul}yg

Iy w uoym 9ouapadald axe) s[ed 1e))

T 100f je Yred [1T

POPRO[ISAO O[IYM 9AOW 10U [[IM I

POPEROTISA0 J1 9SO[D J0U [[IM SIOO(]

Ayduro sso[un 991AI9s seojURIRNS "W I

s[reo Surpue[10j Auo Aydure sjeaeI) I

(umop) sreo Surpuey 10y dojs Aeur Hi]

(dn) syreo Surpue] 10§ doys Aewr 41T

VAR

ViV

100f Aue je yred Aeuwr Py

Poso[o uremal Aeul I100p I

VIVIVIVIVIV

VIVIVIVIVIV

VIVIVIY

VIVIVIY

peaye S[[ed a[IyMm “IIp a8ueyDd J,USA0P YT

VIVIVIVIV

VIVIVIVIV

VAR

9OTAIOS SeonjueIeNs U0YINg Pri

X

VARERY

90TAIOS Seonjuerens uojng urpue]

[VIVIVIVIVIVIV]

X

X

X

X

(g xpuadde ass) Ap1adorg

Feature(s)

no features

Empty

Overloaded
Parking
Lift-:

full
Exec. Floor
Overloaded
+ Empty
Parking

Z_
3

+ Empty

Lift- %—full

+ Empty

Exec. Floor
+ Empty
Parking

+ Overloaded

Lift-:

%—full
+ Overloaded
Exec. Floor

+ Overloaded
Lift- %—full

+ Parking

Exec. Floor
+ Parking

Exec. Floor

+ Lift- %—full
Lift- %—full

+ Exec. Floor

Table 1: Feature interactions for the lift system

5 Case study 2: the telephone system

Our second case study is a simple version of the Plain Old Telephone System (POTS). Features
we have modelled for integration into our model of POTS include:

Call Waiting (CW) When the subscriber is engaged in a call, and there is a second incom-
ing call the subscriber is notified and the second call is put on hold. The subscriber can
switch between the two calls at will. A caller will hear an announcement to indicate
that her call is being held.

Call Forward Unconditional (CFU) All calls to the subscriber’s phone are diverted to
another phone.

Call Forward on Busy (CFB) All calls to the subscriber’s phone are diverted to another
phone, if and when the subscriber’s line is busy.

Call Forward on No Reply (CFNR) All calls to the subscriber’s phone which are not
answered after a certain amount of time, are diverted to another phone.

Ring Back When Free (RBWF) If the user gets the busy-tone on calling another line,
she can choose to activate RBWF, which will attempt to establish a connection with
that line as soon as it becomes idle.

Terminating Call Screening (TCS) This feature inhibits calls to the subscriber’s phone
from any number on the screening list chosen by the subscriber. The caller will hear an
announcement to the effect that her call is being rejected.

Originating Call Screening (OCS) This feature inhibits calls from the subscriber’s phone
to any number from a set chosen by the subscriber. Any attempt to ring such a number
will yield an announcement.

Automatic Call Back (ACB) This feature records the number of the last caller to the
subscriber’s phone, which the subscriber can choose to ring directly.

5.1 The base system (POTS)

We have built an SMV description of four synchronous phones. The behaviour of each phone
is given by the finite automaton shown in figure 3, plus one variable, dialled, which indicates
which other phone it is connected to (or trying to connect to). ‘Idle’ is the usual state of
the phone; from there, it may move to ‘ringing’ (if someone rings it) or to ‘dialt’ (if someone
lifts the handset). ‘Dialt’, ‘ringingt’, and ‘busyt’ abbreviate dial-tone, ringing-tone, and busy-
tone. ‘Talking’ represents the state in which the phone is connected in a conversation which
it initiated, while ‘Talked’ means that the conversation was initiated by someone else. ‘ended’
means that the person we were talking to (or being talked to by) has hung up.

The dotted lines indicate that the transition must synchronise with a certain transition in a
certain other phone. (For example, the transition from ‘trying’ to ‘ringingt’ must synchronise
with the transition from ‘idle’ to ‘ringing’ in the phone we are trying to call.) The variable
dialled determines which other copy of the phone automaton it has to synchronise with. User
input is simulated by non-determinism: the number to be dialled is non-deterministically
chosen, and when there is more than one transition from a state, one is chosen at non-
deterministically. If a transition has to synchronise (indicated by a dotted line in the diagram)
with a transition in another phone, it can only be chosen if the other phone chooses the

corresponding transition. A piece of the code for the phone module can be seen in figure 4.
In this piece of code one can also see how the synchronisation mechanism helps to avoid the
race condition arising when several phones try to contact the same line at the same time.

taking
C v
ringingt

‘

-z

trying

(juwt > ide Q:::::::::::::hringing\J

(Dotted lines indicate synchronising transitions.)

Figure 3: The automaton for a single phone.

As it turned out, this model quickly grew to large to verify when we added features, since
every phone was extended with the features. Therefore we proceeded to a reduced model with
only two complete phones and one terminating and one originating phone (thus, still four in
total). In the diagram (figure 3), the left hand side represents the originating line, and the
right hand side the terminating line, both including the states ‘idle’ and ‘ended’, of course.
Additionally each feature was only added to one of the phones. A positive side-effect of this
differentiation is that it makes it easy to distinguish the interactions according to how features
are distributed over the system. This goes some way towards the distinction between SUSC,
SUMC, MUSC and MUMC (Single/Multiple User — Single/Multiple Component) interactions
as introduced in [3], even at this rather high level of abstraction.

5.2 Integrating features into the telephone system

As an illustration of the feature construct we show the Ring Back When Free feature in figure 5.
When looking at this example the reader should keep in mind that this code was written with
the goal to run it through a model checker — and that the syntax which SMV accepts is rather
limited. So for efficiency reasons, RBWF will only store one number at a time, and we don’t
allow cancelling RBWF once it is activated, until a call between the subscribed phone and
the phone with the stored number has been established.

The REQUIRE section states that the feature needs a MODULE phone with at least the named
parameters, and within that module, variables dialled and st are required, and the domain
of dialled has to include at least the values 0 through 4, and that of st the values idle,
trying, busyt, talking and talked.

The code given in the INTRODUCE section declares two new variables, rbwf-number and
rbwf-use, and defines which number to store in rbwf-number, and when RBWF may be
activated (rbwf-use=1) and deactivated (rbwf-use=0).

10

i nit(st):=idle;
next(st) :=
case

st=dialt : {idle, dialt, trying}:

st=trying :
case
dialled=2 & p[2].st=idle & next (p[2].st)=ringing
& ((p[3]-st=trying & p[3].dialled=2)-> next (p[3].st)=busyt)
& ((p[4].st=trying & p[4].dialled=2)-> next (p[4].st)=busyt) :ringingt;
dialled=3 & p[3].st=idle & next (p[3].st)=ringing
& ((p[2].st=trying & p[2].dialled=3)-> next (p[2].st)=busyt)
& ((p[4].st=trying & p[4].dialled=3)-> next (p[4].st)=busyt) :ringingt;
dialled=4 & p[4].st=idle & next (p[4].st)=ringing
& ((p[2].st=trying & p[2].dialled=4)—> next (p[2].st)=busyt)
& ((p[3].st=trying & p[3].dialled=4)-> next (p[3].st)=busyt) :ringingt;
1 :busyt;
esac;
()
esac;

Figure 4: An extract from the code for the phone automaton

Finally, in the CHANGE section we define how the new variables interact with those of
the base system. For the RBWF feature, the CHANGE section states that when both the
subscriber’s phone and the phone whose number was stored are idle, the subscriber’s phone
should try to connect to the phone with the stored number.

We do not model the subscriber’s phone ringing to alert her to the fact that the RBWF
call is being attempted, although this would not be difficult. It would, however, slow down
the model checking significantly, as we would have to introduce another variable to indicate
the special ringing. In fact this could be implemented as another feature.

Properties. Some generic properties which we have verified for the (unfeatured) phone are
given in section C. Apart from these generic properties, we also want to verify that the base
system with the feature actually behaves as the feature specification demand. For example,
in the case of RWBF we also demand the following (omitted in figure 5):

1. If RBWF is active, the stored number will be dialled as soon as possible (as long as
RBWF is active).

AG ((ph[¢].rbwf-use & phl:].rbwf-number=j)
-> A[(ph[:].st=idle & phl[j].st=idle -> AX phl[:].dialled=j)
W !'ph[i].rbuf-use 1)

(The ‘Weak until’ connective, W, is similar to U but p; Wy, does not require
that @9 eventually become true if ¢; is indefinitely true. One defines A[p; Wy as

—E[-p2U=(p1 V ¢2)].)

2. The stored number is reset when a call to the stored number is completed.

AG Vi # j. ((phli].rbwf-number=j
& phli] .st=talking & phl[i].dialled=j)
-> AF ph[:] .rbwf-number=0)

The stored number is also reset when the target party calls.

11

FEATURErbwf —- Ring Back When Free

REQUI RE
MODULEphone(X,B,C,D,p) —- req'd parameters: our number and those of the
VAR - other phones, and the array of phones

dialled : {0,1,2,3,4};
st :{idle,trying,busyttalking,talked};

| NTRODUCE
MODULEphone
VAR
rbwf-number : {0,1,2,3,4}; —- to store the number we're trying to reach
rowf-use : bool ean; -- true if RBWF activated
ASSI GN
i ni t (rbwf-number) := 0;
next (rowf-number) :=
case
rowf-number=0 -- don't allow changing the stored number
& st=busyt & rbwf-use : dialled;
Irbwf-use : 0 —- reset stored number on deactivation
1: rbwf-number;
esac;
i ni t(rbwf-use) :=0;
next (rbwf-use) :=
case
rbwf-use -- only deactivate if call established (either way)
&((dialled=rbwf-number & st=talking)
|(st=talked
&(rbwf-number=B & p[B].st=talking & p[B].dialled=X)
&(rbwf-number=C & p[C].st=talking & p[C].dialled=X)
&(rbwf-number=D & p[D].st=talking & p[D].dialled=X))) : 0;
Irbwf-use & st=busyt : {0,1}; —- may activate RBWF on busy-tone
1: rbwf-use; —- otherwise, keep same value
esac;

CHANGE
MODULEphone

| F(rbwf-use & st=idle —- if RBWF is active and our phone is idle
&((rbwf-number=B & p[B].st=idle) --and the stored phone is idle,
|(rowf-number=C & p[C].st=idle) -- try to connect to it
|(rbwf-number=D & p[D].st=idle)))

THEN | MPOSE next (dialled) := rbwf-number;

next (st) := trying;

END

Figure 5: The code for the Ring Back When Free feature

12

AG Vi # j. ((phl[i].rbwf-number=j & phl[i].st=talked
& phlj].dialled=: & ph[j].st=talking)
-> AF ph[:].rbwf-number=0)

3. RBWF is deactivated when a call to the stored number is completed.

AG Vi # j. ((phli].rbwf-number=j
& phli] .st=talking & phl[i].dialled=j)
-> AF ph[:].rbwf-use=0)

RBWF is also deactivated when the target party calls.

AG Vi # j. ((phl[i].rbwf-number=j & phl[i].st=talked
& ph[j].dialled=: & ph[j].st=talking)
-> AF ph[i].rbwf-use=0)

As expected the base system plus the Ring Back When Free feature satisfies these speci-
fications. After all, these were the requirements for the feature. We also found that RBWF
does not violate any of the properties that we stipulated for the base system. (See table 3,
and section C in the appendix.)

5.3 More features for the telephone system

More interesting with view to feature interaction is the question if adding other features
leads to violations of the specifications which the base system plus RBWF satisfies, or of
specifications which are satisfied by the base system plus the respective other features.

For example, when we added CFB to POTS+RBWEF, the only properties that were not
preserved, were already violated by CFB on its own:

e lines calling the CFB subscriber do not have to go immediately from state trying to
state busyt or ringingt because the diversion takes one execution step;

e the dialled number may change without replacing the hand-set when it is updated by
the forwarding feature.

The same was true when we added the features in the opposite order (first CFB, then RBWF)
and irrespective of whether the same phone subscribed to both of these features or they were
activated for two different phones. This leads us to the conclusion that Call Forwarding on
Busy and Ring Back When Free do not interfere with each other, at least with respect to our
specification of the system.

With other features, however, RBWF is not always so well behaved. When we added Call
Waiting to POTS+RBWF, we found that a number of requirements were violated. The first
thing to notice was that CW did not respect the specifications introduced for RBWF. But
on top of that, this combination of features also violated some of the requirements for CW.
The violated requirements were concerned with the number of phones connected to another
phone, for example: when there are two callers to a CW subscriber, exactly one of them is
on hold at any given time.

AG (ph[2].st=talking & ph[2].dialled=1 &
ph[3].st=talking & ph[3].dialled=1
-> (ph[2].cw-msg <-> !ph[3].cw-msg))

13

CW | CFU | CFB | RBWF | RBWF' | TCS | OCS
Cw X X X Vv X X
CFU X — X Vv Vv Vv Vv
CFB X X — v v W) | (V)
RBWF X V Vv — V Vv Vv
RBWF' | / | v v — v |V
TCS X v | V) v v v
OCS X v | (V) v v v

Table 2: Interferences between features for the phone system

where ph[1] is the phone subscribing to CW and the flag cw-msg indicates whether the
respective phone is on hold. The trace® that SMV produces as a counter-example shows up
the following behaviour:

ph[1] tries to ring ph[4] when ph[4] is busy, and ph[1] activates RBWEF;

ph[1] then calls ph[2] (successfully);

using CW, ph[1] accepts an incoming call from ph[3], which is put on hold;

finally ph[1] hangs up on ph[2], while the call from ph[3] is on hold and ph[4] is idle.

otk W b=

At this moment RBWF takes action: RBWF assumes that ph[1] is now idle and ready
to complete the call to ph[4], while, in fact, CW should let the subscriber know that
she still has a call on hold.

At first sight the trace that SMV produced looked rather pathological, but that is just because
a counter-example has to be a “worst case” scenario. CW may still work correctly as may be
checked by

EG (ph[2].st=talking & ph[2].dialled=1 &
ph[3] .st=talking & ph[3].dialled=1
-> (ph[2].cw-msg <-> !ph[3].cw-msg))

which turns out to be true. However, this only happens when RBWF is not activated as can
be verified by checking

EG ((ph[2].st=talking & ph[2].dialled=1 &
ph[3] .st=talking & ph[3].dialled=1
-> (ph[2].cw-msg <-> !ph[3].cw-msg)) -> rbwf-use=0)

which also holds.

If, on the other hand, we integrate CW first and then RBWF, the system violates the
RBWF requirements, namely that call completion will be attempted whenever both the sub-
scriber’s phone and the phone which RBWF should monitor become idle. This is in a sense
symmetrical to the above interference, since now CW overrides RBWF in case both features
are activated.

Table 2 indicates interferences between features for the phone system. A plain tick denotes

3This trace has 17 states and is about 130 lines long!

14

Po3orluod 9 jouurd sioquunu pausaldds :$H()

po1deooe I0AdU oIe S[[BD POURIdS :§D T,

uorje[dwod [[ed uo 3asa1 SI IqUINU Palo)s : J MY

pordwalje oq [uoredwod [ed :JMIY

ployuo 1oasu st Ayred oATiOR, 813 1 M\D

i

v
i

VAR AR

i

"3su1 proyuo s1esy A)red ouo jsouI JB I A\D

v
v

VI VI VIV

i

OUI[IOT[J0 J® "UIIAY) [[IM S[[BD 0/1 ‘padesdus J1 :gq)

i

3urr 1eaou [[im auoyd 14D

i

dn SurBuey 9no/m o3ueyd jouUTRD IDQUINU PAI[RI

owII) ® Je (8D 2/1 9UO0 A[uo daRy Ued duoyd y

09 pay[e} oul ‘wae) sordwr Sunyre) aulf "SLI()

VARY

SUIA1) MO[[0] AT}00IIp 2U0}-FUISULI 10 dUO0)-ASngg

Afleorrjowruds, pus [[Im [[89 AIoAy

i

VIVIVIVIV

VIVIVIVIV

VIVIVIVIV

arqssod auoyd 10yjo Aue o0y suoyd Aue woij [[e))

I VIVIVIVIVIVI [[| ||

VIVIVIVIVIV

i

X
X

X

i

X

(D x1puadde aes) Ayradoig

Feature(s)
POTS
Cw

CFU

CFB

RBWF
TCS
0CS

CW + CFU

CFU + CW
CW + CFB

CFB + CW

CW + RBWF
RBWF + CW

CW * RBWF!
CW + TCS

TCS + CW
CW * 0CS

CFU + CFB
CFB + CFU

RBWF * CFU

TCS * CFU?
0CS * CFU?

RBWF * CFB

TCS * CFB?
OCS * CFB?

TCS * RBWF?
OCS * RBWF?

Table 3: Feature interactions for the telephone system

15

that there is no interference, i.e. that both features work correctly together and it does not
matter in what order they are integrated. A tick in brackets indicates that the features
commute (i.e. the integration order makes no difference) but that the features interfere with
each other; and a cross means that they interfere and do not commute.

Table 3 summarises our experimental findings. Again, rows and columns represent
feature combinations and properties respectively. A ‘+’ between two features indicates that
the order they are integrated into the system matters, i.e. different properties are satisfied
by the two different orderings; while a ‘*’ indicates that the order does not matter. In these
tables, all features are subscribed to by the same phone, unless stated otherwise (see below).
The following notes interpret the superscripted numbers:

! Ring Back When Free subscribed to by a different phone.

2 Call forwarding on Busy/Unconditional subscribed to by two phones.

3 (Call Screening subscribed to by two phones.

4 This is clearly an artifact, generated by the use that Call Waiting makes of the variable
dialled.

6 Conclusions

Our approach to the feature-interaction problem gives to features the status of first-class
citizens; we could think of this as feature orientation. Concretely, this means that they are
compact textual units in a specification or program, and that they are as independent as
possible of the base system description. In this way, we develop a framework for plug-and-
play features: features can be added, removed, re-ordered or re-designed in order to explore
and resolve feature interactions.

Concerning the idea of a feature construct and feature integration in general, without
specific reference to SMV, one may draw the following conclusions. Our case studies have
shown features to be a useful design modularisation concept; we have described and verified
a range of features. Our plug-and-play approach allowed us to explore feature interactions
with an open mind, and we have witnessed surprising results. A negative point, however,
visible even at this level of generality, is the dependence feature descriptions have on the base
system.

From our experience of SMV, and our decision to define the feature construct for the
SMV language, we draw mixed conclusions. On the positive side, the simple and intuitive
syntax and semantics of SMV meant that our feature construct could also be simple and
intuitive. However, SMV is not very expressive, and that also limits the expressiveness of the
feature construct. Another problem with SMV was the state-space explosion problem: the
time and space complexity of verifications is exponential in the number of variables, and this
severely hampered our second case study (the phones). We were sometimes forced to be more
abstract than we wanted to, in order to keep the verification tractable, and this meant we
obtained some interactions which are really an artifact of our coding, while we missed some
classical ones (namely those between Call Forwarding features and Call Screening Features).
We nevertheless have obtained novel and significant data, and expect that our approach will
benefit from advances in verification technology.

16

References

1]

2]

[7]

G. C. Barney and S. M. dos Santos. Elevator Analysis, Design and Control. IEE Control
Engineering Series 2. Peter Peregrinus Ltd., 1985.

M. Berry. Proving properties of the lift system. Master’s thesis, School of Computer
Science, University of Birmingham, 1996.

E.J. Cameron, N. Griffeth, Y.-J. Linand M.E. Nilson, W.K. Schnure, and H. Velthuijsen. A
feature interaction benchmark for in and beyond. In L. G. Bouma and Hugo Velthuijsen,
editors, Feature Interactions in Telecommunications Systems, pages 1 23, Amsterdam,
The Netherlands, May 1994. 10S Press.

E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent sys-
tems. In A Decade of Concurrency, number 803 in Lecture Notes in Computer Science,
pages 124 175. Springer Verlag, 1993.

M. R. Huth and M. D. Ryan. Logic and its Practical Applications in Computer Science.
Book in preparation, 1998.

S. Katz. A superimposition control construct for distributed systems. ACM Transactions
on Programming Languages and Systems, 15(2):337-356, 1993.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

17

Appendices

A A short introduction to SMV

Knowledge about SMV is required in order to understand our feature construct, our tool SFI,
and the case studies presented in this paper. We apologize for leaving this exposition of SMV
very sketchy and refer the interested reader to [4, 7] for a more detailed account. SMV is a
verification tool which takes as input

e A system description in the SMV language, and
e Some formulas in the temporal logic CTL (Computation Tree Logic).

It produces as output the statement ‘true’ or ‘false’ for each of the formulas, according to
whether the system description satisfies the formula or not. In the case that the formula is
not satisfied, SMV also produces a trace showing circumstances in which the formula is false.

The SMV description language is essentially a high-level syntax for describing finite state
automata. It provides modularisation, and synchronous and asynchronous composition. The
behaviour of the environment is modelled by non-determinism. An SMV system description
declares the state variables, their initial values and the next values in terms of the current
and next values of the state variables as long as this does not lead to circular dependencies.

SMV works with unlabelled automata and has no message passing. Hence all synchroni-
sation has to be by explicit references to current and next values. While this keeps the syntax
simple, it does sometimes make writing the description slightly cumbersome.

1: MODULE main

2: VAR

3 request : boolean;

4 state : {ready,busy};
5: ASSIGN
6
7
8
9

init(state) := ready;

next (state) := case

state = ready & request : busy;
1 : {ready,busy};

10: esac;

11: SPEC AG(request -> AF state = busy)

Figure 6: A system description for SMV

Figure 6 shows one of the examples distributed with the SMV system. (The line numbers
are not part of the code.) This piece of code defines an automaton with four states ({0,1} x
{ready,busy}). There are transitions from every state to every state, except for the state
(1,ready) from which only transitions to (1,busy) and (0, busy) are allowed. The initial
states are (1,ready) and (0, ready).

Generally, a model description for SMV consists of a list of modules with parameters. Each
module may contain variable declarations (VAR), macro definitions (DEFINE), assignments
(ASSIGN), and properties (SPEC) to be checked of the module.

Possible types for variables are boolean, enumerations (e.g. state), or finite ranges of
integers. For declared variables (as opposed to DEFINEd ones, which are merely macros) we
may assign the initial value (e.g. line 6) and the next value (e.g. lines 7 10), or alternatively,

18

the current value. The expressions that are assigned to variables may be non-deterministic
as in line 9: if state is not ready or request is 0, the next value of state can be both
ready or busy. (Since request is not determined at all by the description it, too, will as-
sume values non-deterministically.) It is important to bear in mind that all assignments
are evaluated in parallel (although there is also a mechanism for asynchronous (interleaving)
composition of modules). A special kind of variable declaration is the the instantiation of
a module, as in “landingButl : button(lift.floor=1 & lift.door=open);” (cf. fig-
ure 7 in appendix B). This is interpreted as a declaration of all local variables (including
DEFINEd identifiers) of that module (pressed in this example), prefixed with the name of
the newly declared variable, here 1landingButl.pressed, together with the assignments or
macro-definitions within that module. The formal parameters are replaced by the actual
parameters as in a call-by-name language.

After defining a system in the SMV language, we formulate the properties to be verified
in the temporal logic CTL (marked by the keyword SPEC, e.g. line 11). The propositional
atoms for these formulas are boolean expressions over the variables of the system.

Given a set of propositional atoms P, CTL formulas are given by the following syntax:

pu=p| T |=p|p1Aps |
AXyp |EXyp | AGyp | EGy | AFp | EFp | A[pUps] | E[p Ups).

where p € P. (The other boolean operators (V,—, <, 1) are defined in terms of A,— in
the usual way.) In SMV, logical or is written as |, and as &, and not as !. Notice that
CTL temporal operators come in pairs. The first of the pair is one of A and E. A means
‘along all paths’ (inevitably), and E means ‘along at least one path’ (possibly). The second
one of the pair is X, F, G, or U, meaning ‘neXt state’, ‘some Future state’, ‘all future
states (Globally)’, and Until respectively. Notice that U is binary. The pair of operators in
E[p1Uys], for example, is EU. Further details of CTL are widely available in the papers by
E. Clarke and others [4, 7], and also in the forthcoming introductory text [5].

B Further details for case study 1 (the lift system)

We describe the code to implement the basic lift system in SMV. The code is given in figures 7
to 9.

The module main (figure 7) declares five instances (one for each landing) of the module
button (passing to each one as argument the conditions under which that button should cancel
itself). It also declares one instance of 1ift, to which it passes a parameter whose value at
any time is the next landing in the current direction of the lift which has requested the lift,
and another parameter whose value at any time expresses whether there is a landing request.

The 1ift module (figure 9) declares the variables floor, door and direction as well as
a further 5 buttons, this time those inside the lift. The algorithm it uses to decide which
floor to visit next is the one called “Single Button Collective Control” (SBCC) from [1]: the
lift travels in its current direction answering all lift and landing calls until no more exist in
the current direction; then it reverses direction, and repeats. Actually the conditions under
which it reverses direction are slightly more complicated, as can be seen by inspecting the
code for next (direction) in figure 9: if the lift is idle, it maintains the same direction as it
had before, but if it is at the top or bottom of its shaft it changes direction to down and up
respectively; otherwise, as stated, it reverses direction if there are no calls remaining to be

19

MODULE main

VAR
landingBut1 : button ((lift.floor=1) & (lift.door=open));
landingBut2 : button ((lift.floor=2) & (lift.door=open));
landingBut3 : button ((lift.floor=3) & (lift.door=open));
landingBut4 : button ((lift.floor=4) & (lift.door=open));
landingBut5 : button ((lift.floor=5) & (lift.door=open))

lift : lift (landing_call, no_call);

DEFI NE
landing_call 1=
case
lift.direction = down :

case
landingBut5.pressed & lift.floor>4 :
landingBut4.pressed & lift.floor>3 :
landingBut3.pressed & lift.floor>2 :
landingBut2.pressed & lift.floor>1 :
landingBut1.pressed 11
1 :0;

esac;

lift.direction =up :

case
landingButl.pressed & lift.floor<2 :
landingBut2.pressed & lift.floor<3 :
landingBut3.pressed & lift.floor<4 :
landingBut4.pressed & lift.floor<5 :
landingBut5.pressed .5
1 10

N Wk

E

esac,
esac;

no_call : = (landingButl.pressed &
llandingBut2.pressed &
llandingBut3.pressed &
llandingBut4.pressed &
llandingBut5.pressed);

Figure 7: The SMV code for the module main in the lift system.

served in the current direction. The final ‘1:direction’ means that if none of the preceding
conditions are true, then the value returned by the case statement is simply the old value
of direction. Notice that the SBCC algorithm stipulates only one button on each landing,
rather than the conventional two. Passengers press the button, but they are not guaranteed
that the lift will be willing to go in the direction they wish to travel.

By inspecting the button module (figure 8), one finds that its variable pressed is set to
false if the reset parameter is true; otherwise, if it was pressed before, it persists in that state;
otherwise, it non-deterministically becomes true or false. This non-determinism is to model
the fact that a user may come along and press the button at any time. In common with most
actual lift systems, the user may not un-press the button; once pressed, it remains pressed
until the conditions to reset it arise inside the lift system.

B.1 Properties for basic lift system

These are the properties that we have verified for the base lift system, and some more that
specify the behaviour of individual features. (We use the meta-notation introduced on page 6.)

20

MODULE button (reset)
VAR

pressed : bool ean;
ASSI GN
i nit (pressed) 1=0;
next (pressed) 1= case
reset :0;
pressed :1;
1 :{0,1};
esac;

Figure 8: The SMV code for the module button in the lift system.

1. Pressing a landing button guarantees that the lift will arrive at that landing and open
its doors:

AG (landingBut:.pressed
-> AF (lift.floor=: & lift.door=open))

2. If a button inside the lift is pressed, the lift will eventually arrive at the corresponding
floor.

AG (1ift.liftBut:.pressed
-> AF (lift.floor=:; & lift.door=open))

3. If the door closes, it may remain closed.

IAG (door=closed -> AF door=open)

4. The lift will not change its direction while there are calls in the direction it is travelling.
One formula for upwards travel,

AG Vi < j. (floor=:¢ & liftButj.pressed & direction=up
-> A[direction=up U floor=j5])

. and one formula for downwards travel, for 7 > j:
AG Vi > j. (floor=: & liftButj.pressed & direction=down
-> A[direction=up U floor=j5])
5. The lift may remain idle with its doors closed at floor .

EF (floor=:¢ & door=closed & idle)
AG (lift.floor=¢ & lift.idle & lift.door=closed
-> EG (lift.floor=: & lift.door=closed))

6. The lift may stop at floors 2, 3, and 4 for landing calls when travelling upwards or
downwards, respectively:

Vi € {2,3,4}. 'AG ((floor=i & !'liftButi.pressed & direction=up)
-> door=closed)

Vie {2,3,4}. 'AG ((floor=i & !'liftButi.pressed & direction=down)
-> door=closed)

. and at floors 1 and 5 regardless of direction:

21

MODULE ift (landing_call, no_call)

VAR
floor :{1,2,3,4,5};
door : {open,closed};

direction : {up,down};

liftButs : button (floor=5 & door=open);
liftBut4 : button (floor=4 & door=open);
liftBut3 : button (floor=3 & door=open);
liftBut2 : button (floor=2 & door=open);
liftButl : button (floor=1 & door=open);

DEFI NE

idle : = (no_call & !liftButl.pressed & !liftBut2.pressed &
liftBut3.pressed & !liftBut4.pressed & !liftBut5.pressed);

lift_call 1=
case

direction = down :
case
liftBut5.pressed & floor>4 :
liftBut4.pressed & floor>3 :
liftBut3.pressed & floor>2 :
liftBut2.pressed & floor>1 :
liftButl.pressed 11
1 1 0;
esac;

Nwha

direction = up

case
liftButl.pressed & floor<2 :
liftBut2.pressed & floor<3 :
liftBut3.pressed & floor<4 :
liftBut4.pressed & floor<5 :
liftBut5.pressed . 5;
1 :0;

esac;

roONE

esac;

ASSI GN
door .= case
floor=lift_call : open;
floor=landing_call : open;
1 : closed;
esac;
i nit (floor) 1=1;
next (floor) 1= case
door=open : floor;
lift_call=0 & landing_call=0 : floor;
direction=up & floor<5 :floor +1;
direction=down & floor>1 : floor -1;
1 : floor;
esac;
i ni t (direction) : = down;
next (direction) .= case
idle : direction;
floor=5 :down;
floor=1 :up;
lift_call=0 & landing_call=0 & direction=down : up;
lift_call=0 & landing_call=0 & direction=up : down;
1 : direction;
esac;

Figure 9: The SMV code for the module 1ift in the lift system.

22

IAG ((floor=1 & !'1iftButl.pressed) -> door=closed)
IAG ((floor=5 & !1iftBut5.pressed) -> door=closed)

B.2 Properties for the featured lift system

In addition to these generic properties, we check some requirements for each feature.

1. Empty:
The lift will not arrive empty at a floor unless the button on that landing was pressed.

AG (1ift.floor=¢ & lift.door=open & lift.empty
-> landingButi.pressed)

The lift will honour requests from within the lift as long as it is not empty.

AG Vi. (lift.liftButi.pressed & !'lift.empty)
-> AF ((lift.floor=:¢ & 1lift.door=open) | 1lift.empty)

2. Overloaded:
The doors of the lift cannot be closed when the lift is overloaded.

IEF (overload & door=closed)
The lift will not move while it is overloaded.

AG (1lift.floor=: & lift.overload
-> A[1lift.floor=: W !lift.overload])

3. Parking:
The lift will not remain idle indefinitely at any floor other than floor 1.

AG Vi # 1. 'EG(floor=i & door=closed)

4. Lift-2-full:
Car calls have precedence when the lift is % full (indicated by the flag tt-full).

AG Vi # 7. ((1ift.tt-full &
lift.1iftButi.pressed & !1ift.liftButj.pressed)
-> A ['(Qift.floor=j & 1lift.door=open)
U ((lift.floor=: & door=open)
| '1ift.cp | lift.liftButj.pressed)])

5. Executive Floor:
The lift will answer requests from the executive floor (1ift.ef).

AG (1lift.ef=:
-> A[(landingButi.pressed -> AF(lift.floor=:))
W Ilift.ef=¢])

Here again we use the ‘weak until’ connective, to allow for executions where 1ift.ef
never changes. (Cf. page 11)

23

C Further details for case study 2 (the telephone system)

The code for the phones is given in figures 10 and 11.

C.1 Properties for the basic phone system

These are the properties that we have verified for the base system. (Again we use the meta-
notation introduced on page 6.)

1. Any phone may call any other phone.

AG Vi # j. (EF (ph[7].st=talking & ph[i].dialled=5)

2. If phone i is talking to phone j, the call will eventually end; and this will be by one
party hanging up (st=idle) and the other party still off-hook (st=ended). (This holds
only with “weak” fairness, which ensures that a phone cannot remain in the same state
indefinitely.)

AG ((phl[¢].dialled=j & ph[i].st=talking)
-> AF ((ph[:].st=idle & ph[j].st=ended) |
(ph[j].st=idle & phl[i].st=ended)))

3. When a phone is in state trying, it will always get ringing-tone or busy-tone directly
after.

AG (ph[:].st=trying -> AX (ph[/].st=ringingt | ph[i].st=busyt))

4. The correct phone will ring: if phone i is trying to contact phone 7 and consequently
gets the ringing-tone, then phone 5 must be ringing.

AG ((ph[¢].st=trying & phl[/].dialled=yj)
-> AX (phl[:].st=ringingt -> phl[j].st=ringing))

5. A list of SPECs stating that if a phone is talking, the dialled phone must be talked to.

AG (ph[:].st=talking & phl[¢].dialled=j -> phl[j].st=talked)

6. Phone i can be talked to; and if it is being talked to, there has to be another phone
talking to it.

EF ph[:].st=talked
AG (phl[i].st=talked
<-> dj.(ph[j].st=talking & ph[j].dialled=:))

7. Phone 7 can be ringing; and if it is ringing, there has to be another phone that has
dialled it and is getting the ringing-tone.

EF ph[:].st=ringing
AG (ph[:].st=ringing
<-> dj.(ph[j].st=ringingt & phl[j].dialled=:))

8. Never can two phones be talking to the same third phone.

24

MODULEphone (X,B,C,D,p) —- parameters: the 4 numbers, and the array of phones

- X'is our own number
VAR
dialled : {0,1,2,3,4};
st :{idle, dialt, trying, busyt, ringingt,
talking, ringing, talked, ended};

ASSI GN
i ni t(dialled) :=0;
next (dialled) := case
st=idle :0;
st=dialt & dialled = 0 : {1,2,3,4};
1 : dialled;
esac;
i ni t(st):=idle;
next(st) :=
case
st=idle :
case

p[2].st=trying & p[2].dialled=1 &
p[3].st=trying & p[3].dialled=1 &
p[4].st=trying & p[4].dialled=1 &
1

esac,

st=ringing :
case
p[2].st=ringingt & p[2].dialled=1 &
p[3].st=ringingt & p[3].dialled=1 &
p[4].st=ringingt & p[4].dialled=1 &
1

esac;
st=dialt : {idle, dialt, trying};
st=busyt : {idle, busyt};

st=trying :
case
dialled=2 & p[2].st=idle &
& ((p[3].st=trying & p[3].dialled=2)—>
& ((p[4].st=trying & p[4].dialled=2)->
dialled=3 & p[3].st=idle &

& ((p[2].st=trying & p[2].dialled=3)->
& ((p[4].st=trying & p[4].dialled=3)->

dialled=4 & p[4].st=idle &

& ((p[2].st=trying & p[2].dialled=4)->
& ((p[3].st=trying & p[3].dialled=4)->
1

- {idle, dialt};

next (p[2].st)=ringingt : ringing;
next (p[3].st)=ringingt : ringing;
next (p[4].st)=ringingt : ringing;

next (p[2].st)=idle : idle;
next (p[3].st)=idle : idle;
next (p[4].st)=idle : idle;

: {ringing, talked},

next (p[2].st)=ringing

next (p[3].st)=busyt)

next (p[4].st)=busyt) :ringingt;

next (p[3].st)=ringing

next (p[2].st)=busyt)

next (p[4].st)=busyt) :ringingt;

next (p[4].st)=ringing

next (p[2].st)=busyt)

next (p[3].st)=busyt) :ringingt;

esac;
st=ringingt :

case
dialled=2 & next (p[2].st)=talked : talking;
dialled=3 & next (p[3].st)=talked : talking;
dialled=4 & next (p[4].st)=talked : talking;
1 - {ringingt, idle};

esac;

‘busyt;

Figure 10: The SMV code for the phone system. (1/2)

st=talked :

case
p[2].st=talking & p[2].dialled=1 & next (p[2].st)=idle : ended,;
p[3].st=talking & p[3].dialled=1 & next (p[3].st)=idle : ended;
p[4].st=talking & p[4].dialled=1 & next (p[4].st)=idle : ended;
1 : {idle, talkedy};

esac;

st=talking :

case
dialled=2 & p[2].st=talked & next (p[2].st)=idle : ended,;
dialled=3 & p[3].st=talked & next (p[3].st)=idle : ended;
dialled=4 & p[4].st=talked & next (p[4].st)=idle : ended;
1 : {idle, talking};

esac;

st=ended : {ended, idle};
esac;

DEFI NE
party :=
case
st=talking : dialled;
p[B].st=talking & p[B].dialled=X : B;
p[C].st=talking & p[C].dialled=X : C;
p[D].st=talking & p[D].dialled=X : D;
1 :0;

esac;

—- Fairness constraints to ensure that a phone does not remain in a state
—- indefinitely. A phone may still alternate between, say, idle <—> dialt.
FAI RNESS
Ist=idle
FAl RNESS
Ist=dialt
FAl RNESS
Ist=trying
FAl RNESS
Ist=busyt
FAI RNESS
Ist=ringingt
FAl RNESS
Ist=talking
FAl RNESS
Ist=ringing
FAI RNESS
Ist=talked
FAI RNESS
Ist=ended

MODULEmain

VAR
ph[1] : phone (1,2,3,4,ph);
ph[2] : phone (2,1,3,4,ph);
ph[3] : phone (3,1,2,4,ph);
ph[4] : phone (4,1,2,3,ph);

Figure 11: The SMV code for the phone system. (2/2)

26

AG Vi # j. !(ph[i].st=talking & ph[i].dialled=k &
ph[j].st=talking & phl[j].dialled=k)

9. The dialled number cannot change without replacing the hand-set. (This only holds
with “weak” fairness, otherwise one has to use the ‘weak until’ connective, cf. page 11.)

AG ((ph[+].dialled=j & ph[i].st=trying)
-> (A[phl[i].dialled=j U ph[i].st=idlel))

C.2 Properties for the featured phone system

In addition to these generic properties, we give some of the requirements we verified for each
feature.

1. Call Forwarding Unconditional
If a forwarding number is given, the phone will never ring. (The forwarding number is
chosen at random but does not change after that.)

AG ('ph[i].cfu-forw=0 -> AG !(ph[i].st in {ringing,talked}))

2. Call Forwarding on Busy
If the subscriber’s phone is busy, incoming calls will terminate at the phone with the
forwarding number. (Again, the forwarding number remains fixed.)

AG Vi # j # k. ((ph[i].cfb-forw=j & !ph[i].st=idle &
ph[k] .dialled=: & ph[k].st=trying)

-> AF(ph[k].dialled=j & ph[k].st in {busyt,ringingt}

& (ph[k].st=ringingt -> phl[j].st=ringing)))

3. Call Waiting
If there are two calls, exactly one party will hear the ‘onhold’-message. (In other words,
at most one party will hear the ‘onhold’-message.)

AG Vi # j # k. (phli].st=talking & ph[i].dialled=k &
phlj].st=talking & ph[j].dialled=k
-> (ph[i].cw-msg <-> !ph[j].cw-msg))

4. Call Waiting
The ‘active’ party is never on hold. (In the Call Waiting feature, dialled holds the
value of the party which the subscriber is currently talking to.)

AG (!ph[i].dialled=0 -> !ph[i].onhold=ph[i].dialled)
5. Ring Back When Free

If Ring Back When Free is activated, call completion will be attempted when possible,
i.e., whenever both phone are idle.

AG ((ph[¢].rbwf-use & phl:].rbwf-number=j)
-> A[(ph[i].st=idle & phl[j].st=idle -> AX phl[:].dialled=j)
W !'phli] .rbwf-use 1)

27

6. Ring Back When Free
The stored number will be reset when a call between the subscriber and the phone with
the stored number is established. One formula for calls initiated by the subscriber and
one for incoming calls. (These two could be rolled into one.)

AG (ph[:].rbwf-number=j & ph[:].st=talking & phl[i].dialled=j
-> AF phl[i] .rbwf-number=0)
AG (phl[:].rbwf-number=j & ph[:i].st=talked &
phlj].dialled=i & ph[j].st=talking
-> AF ph[:] .rbwf-number=0)

7. Terminating Call Screening
Calls from numbers on the screening list (array tcs) are never accepted.

AG (ph[i].tcs[j]
-> AG !'(ph[j].dialled=i & ph[j].st in {ringingt,talked}))

8. Originating Call Screening
Calls to numbers on the screening list (array ocs) never succeed.

AG (ph[i].ocs[j]
-> AG !(ph[i].dialled=j & ph[i].st in {ringingt,talking}))

28

