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Abstract. A well-known framework by Fagin, Halpern,
Moses and Vardi models knowledge-based agents as “Inter-
preted Systems”. In this paper we analyse a particular class
of interpreted systems, which we call hypercube systems,
that share information among themselves. Hypercube systems
arise by taking the full Cartesian product of the state space of
interpreted systems. We analyse hypercube systems by taking
their semantically equivalent Kripke frames and we present a
sound and complete axiomatisation for them. The logic thus
obtained, which we study in some detail, is a proper extension
of the system S5,, commonly studied for modelling knowledge
for a community of ideal agents.

1 INTRODUCTION

The need for specifications of complex systems in Al as in
mainstream computer science, has brought forward the use
of logic as formal tool for reasoning and proving properties
about systems. In this respect, Multi-Agent Systems (MAS)
constitute no exception and in the last thirty years many log-
ics for modelling MAS have been proposed.

The design of a knowledge based agent is a central issue
in agent theory, as knowledge is a key property of any intel-
ligent system. Arguably the most successful approach is the
modal logic S5,,, which has been used in Distributed Comput-
ing Theory by Halpern and Moses (see for example [8]), and
others. S5, is the generalisation to a multi-agent scenario of
the logic S5 which was originally proposed by Hintikka ([9])
in Philosophical Logic.

The logic S5, models a community of ideal knowledge
agents. Ideal knowledge agents have, among others, the prop-
erties of veridical knowledge (everything they know is true),
positive introspection (they know what they know) and neg-
ative introspection (they know what they do not know). The
modal logic S5, (see for example [10] and [5]) can be ax-
iomatised by taking all the propositional tautologies; the
schemas of axioms ;(¢ = ¢) = ;¢ = O, i = ¢,
;¢ = O;0ip, 0i¢p = 0;0i¢p, where i € A represents an
agent in the set of agents A = {1,...,n}; and the inference
rules Modus Ponens and Necessitation.

The logic S5, has also been extended to deal with prop-
erties that arise when we investigate the state of knowledge
of the group. Subtle concepts like common knowledge and
distributed knowledge have been very well investigated ([2]).
The logic S5, is a successful tool for the agent theorist also
because, even in its extensions to common knowledge and
distributed knowledge, it has important meta-properties like
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closure under substitution, completeness and decidability (see
for example [15]).

Notwithstanding this, there are some issues that epistemic
theories based on S5, still do not address. One of the weak-
ness of S5, is that all agents have equal status: the logic treats
them in a uniform way. This is counterintuitive to the needs
of Al in which interesting scenarios arise when the agents
are conceptually different. For example, consider a distributed
system composed by a group of agents A = {1,...,n} and the
two following situations:

One agent knowing everything the others know. An
agent j is the central processing unit of a distributed
system of agents whose non-specialised entities transmit
their knowledge to a central unit j.

Linear order in agents’ private knowledge. Several
processes with the same information at disposal but differ-
ent computational power are running the same program.
Under certain assumptions, it is reasonable to assume
that the knowledge of the agents, seen as knowledge
bases, increases with the order of computational power at
disposal.

These and similar scenarios can still be modelled by exten-
sions of S5, in which interaction azioms are imposed. The
first example of the description above can be modelled by the
logic S5, plus the axiom schema

Oi¢ = O;¢,Vi € A.

The second scenario can be described by assuming an order
on the set of agents A = {1,...,n}, reflecting their increasing
computational power, and by taking S5, plus the axiom:

These are just two isolated examples but there is actually a
broad spectrum of possible specifications on how private states
of knowledge are affected by other agents’ knowledge. At one
end of the spectrum we have the system S5 in which all the
knowledge bases are effectively equivalent. This can be mod-
elled by taking an extension of S5, in which the axiom

holds. This is a very strong constraint. At the other end of
the spectrum is simply S5,, in which the only interesting
interaction appears to be:

Fss, ip = 0;¢. (2)



The formula above states that agents cannot rule out the
possibility of a fact known by another agent. This is not sur-
prising once we remember that all the known facts must be
true at the real world. Quite surprisingly little work has been
done to analyse systematically such interaction schemas - the
only exceptions to this that we are aware of are [3], and [1]
in which a limited class of interactions between the agents is
proposed.

In this paper we isolate and study a special class of inter-
preted systems that can be modelled by an extension of S5,
that falls into the above described spectrum. The systems we
investigate, that we call hypercube systems or simply hyper-
cubes, are defined by taking not an arbitrary subset (as in-
terpreted systems are defined) but the full Cartesian product
of the local states for the agents. We show that hypercubes
not only satisfy the usual properties of veridical knowledge
and complete introspection, but also an interesting interac-
tion property: these agents do not rule out conjunctions of
facts that are known by some other agent or considered pos-
sible by some agent to be known by some other agent. In this
way, they share some knowledge among other agents in the
community.

The paper is organised as follows: In Section 2 we recall the
two standard semantics for MAS (Kripke models and inter-
preted systems), and we discuss hypercube systems. In Sec-
tion 3 we present a sound and complete axiomatisation for
the hypercubes. In Section 4 we explore this resulting logic
and we provide an alternate axiomatisation which is more in-
tuitive in terms of MAS. In Section 5 we draw our conclusions
and we suggest further work.

This is technical paper - the reader is assumed to be familiar
with the notation and the standard techniques of modal logic.
Excellent introductions to the subject are [10] and [5]. The
reader is also referred to [13] for the proofs of the results
presented in this paper.

2 HYPERCUBE SYSTEMS

As far as logics for knowledge are concerned, two semantic
treatments are available: interpreted systems and Kripke mod-
els. The two approaches have different advantages and disad-
vantages. On the one hand, interpreted systems are more in-
tuitive to model real MAS, on the other hand Kripke models
come with an heritage of fundamental techniques that help
the user prove properties about her specification.

We briefly remind the key definitions of Kripke frames, in-
terpreted systems and we define hypercube systems.

2.1 Kripke models

Kripke models ([12]) have been first formally proposed in
Philosophical Logic and later used in Logic for AT as semantic
structures for logics for belief, logics for knowledge, temporal
logics, logics for actions, etc., all of which are modal logics.
Over the last thirty years, many formal techniques have been
developed for the study of modal logics grounded on Kripke
semantics, such as completeness proofs via canonical models,
decidability via the finite model property [10], and more re-
cently, techniques for combining logics [11, 4].

The epistemic logic S5, is based on the notion of equiva-
lence frame.
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Definition 2.1 (Frames) A frame s a tuple F
(W,R1,...,Ry), where W is a non-empty set and for ev-
ery i in A, R; is a relation in W x W. Elements of W are
called worlds and are denoted as: wi,wa,... If all relations
are equivalence relations, the frame is an equivalence frame
and we write ~; for R;. F denotes the class of equivalence
frames.

(In the following we will denote by idw the identity relation
on W.)

2.2 Interpreted systems

Interpreted systems have first been proposed by Fagin,
Halpern, Moses and Vardi [7] to model distributed systems.
The growing interest in MAS and their specifications has
brought forward the concept of interpreted system as use-
ful formal tool to model key characteristics of the agents,
such as the evolution of their knowledge, communication, etc.
This work has culminated in the publication of [2] and [6]
in which the authors use the notion of interpreted system to
explore systematically fundamental classes of MAS (such as
synchronous, asynchronous, with perfect recall ability, etc.)
by the use of interpreted systems.

Interpreted systems can be defined as follows ([2]). Consider
n sets of local states, one for every agent of the MAS, and a
set of states for the environment.

Definition 2.2 (Global states of interpreted systems)
A set of global states for an interpreted system is a subset
of the Cartesian product S C Le x L1 X -+ X L, where
Le,Li,...,L, are non-empty sets. The set L; represents the
local states possible for agent i and L. represents the possible
states of the environment.

A global state represents the situation of all the agents and
of the environment at a particular instant of time. The idea
behind considering a subset is that some of the tuples that
originate from the Cartesian product might not be possible
because of explicit constraints present in the MAS. By con-
sidering functions (runs) from the natural numbers to the set
of global states, it is possible to represent the temporal evolu-
tion of the system. An interpreted system is a set of functions
on the global states with a valuation for the atoms of the
language. Since here we carry out an analysis of the static
properties of knowledge, we will not consider runs explicitly.

As it is shown in [2], interpreted systems can represent the
knowledge of the MAS by considering two global states to be
indistinguishable for an agent if its local state is the same
in the two global states. Thus, a set of global states S de-
notes the Kripke frame F = (W, ~1,...,~y), if W = S, and
(I, ooy ln) ~ (I, 1), i L =150 € A

2.3 Hypercube systems

Given n sets of local states for the agents of the MAS, the
interpreted systems we analyse in this paper and that we call
hypercube systems or hypercubes, result by considering the
admissible state space of the MAS to be described by the
full Cartesian product of its sets of local states. This means
that every global state is in principle possible, i.e. there are
no mutually exclusive configurations between local states. In
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these cases the state space of the system is the whole full
Cartesian product of the sets of local states for the agents?.

With hypercubes we are imposing a further simplification
on the notion presented in Definition 2.2: in the tuples repre-
senting the configuration of the system we do not consider a
slot for the environment. While we will later observe that this
restriction is not relevant in terms of the resulting interaction
of private knowledge within the community, the following is
worth pointing out. The presence of the environment in the
notion of Fagin et al. is motivated in order to keep track of
the changes in the system and in general to represent every-
thing that cannot be captured by the local states of the single
agents (most importantly messages in transit, etc.). By ne-
glecting the dimension of the environment or, which comes to
be the same thing, by treating it as a constant, we are project-
ing the notion of Fagin et al. of a time-dependent interpreted
system to the product of its local states. Since we are focusing
on a static case, in a way we can see this restriction as fixing
the environment at the time in analysis, and investigate the
possible configurations of the states of the agents. We now
formally define hypercube systems.

Definition 2.3 (Hypercube systems) A hypercube sys-
tem, or hypercube, is a Cartesian product H = Ly X -+« X Ly,
where L1, ..., L, are non-empty sets. The set L; represents
the local states possible for agent i. Elements of a local state L
will be indicated with l1,l2,... The class of hypercube systems
is denoted by H.

Semantic structures which can be described by full Carte-
sian product can be proven to be semantically equivalent to
particular Kripke frames, as it is shown in [14]. This particular
class of frames is the following:

Definition 2.4 Let G be the class of equivalence frames that
satisfy properties:

1. Nyeq ~i=idw;

2. For any wi,...,w, in W there exists a W such that W ~;
wi,t=1,...,n
We have the following result ([14]):

Theorem 1 For all ¢, H |= ¢ if and only if G |= ¢.

Theorem 1 shows that hypercube systems are semantically
equivalent to equivalence frames with properties as in Def-
inition 2.4, and therefore an axiomatisation of the latter is
also an axiomatisation of the former. In the next section we
provide such an axiomatisation.

3 AXIOMATISATION OF HYPERCUBE
SYSTEMS

In this section we aim to axiomatise the class of hypercube
systems by axiomatising the class G of frames.

We start by looking at the first property of Definition 2.4.
By denoting with D4 the distributed knowledge of the group
A of agents as it is defined in [2], we can prove the following:

2 Tt has also been proved by Ron van der Meyden that there is a
connection between Hypercubes and the states of knowledge in
certain classes of broadcast systems (personal communication).
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Lemma 3.1 Consider frame F
(W~ o).

Nica ~i=idw if and only if F = ¢ < Dag.

The previous Lemma is a first surprising result: in the hy-
percubes the notion of distributed knowledge collapses to the
truth of the formula. This follows from our simplification
to consider global states that do not represent the environ-
ment. Notwithstanding this, the same result would have been
achieved had we considered a MAS whose environment is con-
stant, i.e set of states for the environment composed by a
singleton.

From now on we shall focus on a language that does not
include a modal operator for distributed knowledge. Since
the operator of distributed knowledge cannot be rewritten
in terms of standard knowledge operators, in the following we
will not be able to distinguish between extensions of S5,, that
satisfy property 1 and the ones which do not.

Property 2 of Definition 2.4 is more difficult to analyse. We
begin by noting the following:

an  equivalence

Lemma 3.2 If F is a frame such that, Vw1, ..., w,,3W such
that WR;w;, 1 = 1,...,n, then F = ¢0;0;¢ = 0;0:¢, where
i F

Lemma 3.2 says that the agents described by hypercubes
have the property that if agent ¢ considers possible that agent
j knows ¢, then agent j knows that agent ¢ considers ¢ to
be possible. This is a constraint on the agents’ knowledge
because it implies that two agents ¢ and j cannot be in a
situation in which ¢ considers that j might know a fact and
j considers that ¢ might know the negation of the same fact.
We also notice that the formula expressed in Lemma 3.2 is
not provable in S5,. To see this, consider the following S5,
counter-model (at wi) for ¢102p = O201p, in which we do
not indicate the reflexive relations:

M = ({wr, w2, w3}, {wr ~1 w2, w1 ~2 wz}, 7(p) = {w1r, wa}).

So, intuitively, the axiomatisation of the hypercube systems
will have to be an extension of S5,,.

To understand better the property and its impact on the
logic we need to proceed formally.

We call n-directedness (nD) property 2 of Definition 2.4.

Definition 3.1 (nD) A frame F (W, R;) is n-Directed
(nD) if Ywn, ..., w,,3W such that WR;w;, 1 =1,... n.

Since property 1 of Definition 2.4 cannot be captured by
the standard modal boxes, our aim is just to axiomatise nD
equivalence frames. Using the standard S5, language, an ax-
iomatisation for nD equivalence frames is also complete with
respect to nD equivalence frames that satisfy property 1.

We know equivalence frames can be axiomatised by S5,.
The usual way to axiomatise a class of frames is to work out
the correspondent axioms and try to prove completeness for
that axiomatisation.

Unfortunately we note the following:

Lemma 3.3 No modal to

directedness.

formula  corresponds n-

To find a correspondence result, we need to look at a weaker
property. In the following P, is the set of all the permutations
of {1,...,n}, without fixed-points, i.e. if (z1,...,2,) € Py,
then z; # i.
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Definition 3.2 (nWD) A frame F = (W, R;) is n-weakly-
directed (MW D) if Vw, w1, ..., w, € W, such that wR;w;,i =
1,...,n, and ¥Y(x1,...,Zn) € Pp, 3w such that w; R, W, for
allt=1,...,n.

When n is clear from the context we just use we refer to nWW D
just as W D. The property nW D for n = 2 was discussed in
[16] and [1]; nW D is a generalisation of it.

It is immediate to note that:

Lemma 3.4 If a frame is directed then it is weakly-directed.

We analyse extensions of S5,, with respect to the axiom:

/\ (<>1|:|11p1 JARERNAN <>n*1 Dwn—lp"*1) = DnOzn (A?;11pl)
(1, sxn)EPy

WD
We have the correspondence result:

Lemma 3.5 F = WD if and only if F' is weakly-directed.
It is now possible to prove completeness:

Theorem 2 The logic S5, W D 1is sound and complete with
respect to the class of reflexive, symmetric, transitive and WD
frames.

As it is shown in [13], by means of a few laborious lemmas it
is possible to strengthen Theorem 2 and prove the following;:

Theorem 3 The logic S5, W D 1is sound and complete with
respect to the class of reflerive, symmetric, transitive and di-
rected frames.

Theorem 3 and Theorem 1 provide the axiomatisation of
the hypercube systems in a multi-modal language.

4 THE LOGIC S5,WD

In this section we try to explore the logic S5, W D. In partic-
ular we present an equivalent formulation that can be inter-
preted more easily in terms of knowledge agents.

Let us start by analysing the type of constraint imposed by
WD on the community of agents in the case n = 2:

O10:2p = O201p

We do not need to make the other conjunct explicit, as this
can be obtained by taking the contrapositive of 2WD.

2WD can be read as “If it is conceivable for agent 1 that
agent 2 knows the fact p, then agent 2 knows that p is con-
ceivable for agent 1”7. In other words, we are ruling out a situ-
ation in which agent 1 considers possible that agent 2 knows
p, while agent 2 considers possible that agent 1 knows not p.
We can say that 2WD imposes a sort of homogeneity on the
knowledge considered possible by other agents.

It is interesting to note that this constraint is logi-
cally equivalent to instantaneous message passing of possible
knowledge of other agents. To see this, suppose that every
time an agent considers possible that the other agent knows
p, it broadcasts this information state, and this message is al-
ways safely received by the other agent. We also consider the
communication to be always truthful. We have the axiom:

(0102p = O20:102p) A (Q2001g = 01 Q2001q)

2WD

2WD'

In S5,,, we have the following:
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Lemma 4.1 kg5, 2WD & 2WD'

So, in the case of n = 2, the logic S5, W D specifies ideal
agents of knowledge with an interaction between the two
agents’ knowledge that can be simulated by truthful com-
munication of possible knowledge between the agents.

Let us now analyse the case n = 3. We have:

(0102p1 A O203p2
(01031 A Q20162

= O301(p1 Ap2)) A

= Dg(}z(ql A q2)) 3WD
The reading of the first conjunct of 3WD is “If it is conceiv-
able for agent 1 that agent 2 knows p: and it is conceivable
for agent 2 that agent 3 knows p», then agent 3 knows that
p1 and p2 is conceivable for agent 1”.

Considering the first conjunct with the special cases of ps =
T,p1 = T,p2 = —p1, it can be checked that WD implies the
formulas: O10op = O301p, O203p = O301p, and O102p =
O203p. More generally, it is easy to see that 3WD implies
0:0;p = UrOip (4,4, k,1 € {1,2,3}), that may be rewritten
in the shape of 2WD'.

Notwithstanding this, the intuition is that 3WD is stronger
than the simple conjunction of all these formulas. In fact,
the semantic condition on the frames that corresponds to
Q:0;p = 0,Oip is Yw, w1, w2 such that wR;w: and wRiwa,
Jw such that w1 R;w and w2 Ryw. This condition appears to
be weaker than 3W D, that corresponds to 3WD, and so it is
reasonable to expect W/ss, (Ajkieq1,2,330:0p = O0,0ip) =
3WD. In other words, it is unlikely that we can see the con-
straint imposed by 3WD on the private knowledge of the
agents as the result of a relatively simple message passing
activity among the agents.

If we consider the case for arbitrary n, it is indeed quite hard
to have a clear picture of the constraint imposed by the axiom
WD; still this does impose a constraint on the information
they possess. To understand better the implications of the
logic S5, WD we axiomatise it in a slightly different way.
Here we only sketch how this can be done and we refer to [13]
for a technical presentation of the matter.

In Definition 3.2 we considered P, to be the set of all the
permutations (z1,...,%,) without fixed-points z; = i. But it
is possible to extend the results of the previous section and
prove correspondence and completeness for the case of arbi-
trary permutations. It can then be observed that any permu-
tation can be obtained by a sequence of swaps between two
elements. By exploiting this observation it is possible to de-
fine a logic which is still equivalent to S5, W D, and therefore
complete with respect to the same class of frames, but whose
interaction axiom can more easily be understood in terms of
knowledge.

The logic in question, that we call S5,W D" is S5, en-
riched by the following axiom:

n—1
/\ /\ <Dipi/\<>jkaj/\<)ijpk = Ol(A?;llpi))
1<7,k,1<n i=1
i#j itk i#l

WD*
Theorem 4 The logic S5,W D™ is equivalent to S5, W D

and therefore sound and complete with respect to the class
of reflexive, symmetric, transitive and WD frames.
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Theorem 4 permits us to reason about hypercubes by con-
sidering the logic S5, W D*. The advantage of WD” over WD
is that its meaning is more immediate in terms of the knowl-
edge of the agents. In fact, axiom WD" specifies a class of
knowledge agents with the following property:

Observation 4.1 (Knowledge sharing in hypercubes)
Let A={1,...,n} be a community of agents modelled by an
hypercube and consider any three agents, j, k,l. Then agent |
thinks that the conjunction of

e anything that j thinks may be known by k,
anything that k thinks may be known by j,

anything known by any other agent,

.
is possible.

MAS modelled by hypercube systems share knowledge
among themselves following Observation 4.1. They have full
introspection capabilities and veridical knowledge, but they
also consider possible facts known by some agents, or regarded
by some agent to be possibly known by some other agent. Ob-
servation 4.1 specifies how private knowledge is shared in such
community of agents. Note how the symmetry of the act of
broadcasting is reflected in the symmetry of the interaction
axiom.

5 CONCLUSIONS AND FURTHER
WORK

In this paper we have formally investigated hypercube sys-
tems, a particular class of interpreted systems that arises
by considering the full Cartesian product of the local states.
We have argued that hypercubes model interpreted systems
with no a priori constraints on their possible configurations.
Thanks to a result that relates interpreted systems to Kripke
frames, in order to axiomatise hypercubes we have analysed
their images in a particular class of equivalence Kripke frames.

On the conceptual level the paper tries to offer two different
contributions.

First, we have motivated that epistemic logics for MAS need
to address the issue of interaction among agents’ knowledge.
We hope that in the near future S5, W D will be just one of
the formal options available in the literature and that, thanks
to more examples, a systematic study of types of interactions
can be carried out.

Second, we have analysed the interesting class of nD equiv-
alence frames. The variation of the canonical model technique
we used to prove completeness heavily relies on the frames be-
ing reflexive, symmetric and transitive, properties guaranteed
by the fact that we were analysing extensions of S5,. The
question is whether it is possible to prove similar results for
weaker logics, such as S4,,, whose agents differently from S5,
do not have negative introspection capabilities. In the future
we will also analyse completeness for S5, WD{¢ < Dad}
with respect to equivalence frames with properties 1 and 2 of
Definition 2.4, and we will try to prove decidability of S5, W D
through finite model property.

Hypercube systems seem to be related to a special class of
agents broadcasting information on a channel and this issue
will be investigated shortly. In such a case the symmetry of
the act of broadcasting would be reflected in the symmetry
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of the interaction axiom WD. Future work also include an
analysis of common knowledge in hypercube systems.
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