
Ideal agents sharing (some!) knowledgeAlessio Lomuscio1 and Mark Ryan1Abstract. A well-known framework by Fagin, Halpern,Moses and Vardi models knowledge-based agents as \Inter-preted Systems". In this paper we analyse a particular classof interpreted systems, which we call hypercube systems,that share information among themselves. Hypercube systemsarise by taking the full Cartesian product of the state space ofinterpreted systems. We analyse hypercube systems by takingtheir semantically equivalent Kripke frames and we present asound and complete axiomatisation for them. The logic thusobtained, which we study in some detail, is a proper extensionof the system S5n, commonly studied for modelling knowledgefor a community of ideal agents.1 INTRODUCTIONThe need for speci�cations of complex systems in AI, as inmainstream computer science, has brought forward the useof logic as formal tool for reasoning and proving propertiesabout systems. In this respect, Multi-Agent Systems (MAS)constitute no exception and in the last thirty years many log-ics for modelling MAS have been proposed.The design of a knowledge based agent is a central issuein agent theory, as knowledge is a key property of any intel-ligent system. Arguably the most successful approach is themodal logic S5n, which has been used in Distributed Comput-ing Theory by Halpern and Moses (see for example [8]), andothers. S5n is the generalisation to a multi-agent scenario ofthe logic S5 which was originally proposed by Hintikka ([9])in Philosophical Logic.The logic S5n models a community of ideal knowledgeagents. Ideal knowledge agents have, among others, the prop-erties of veridical knowledge (everything they know is true),positive introspection (they know what they know) and neg-ative introspection (they know what they do not know). Themodal logic S5n (see for example [10] and [5]) can be ax-iomatised by taking all the propositional tautologies; theschemas of axioms �i(� )  ) ) �i� ) �i , �i� ) �,�i� ) �i�i�, �i� ) �i�i�, where i 2 A represents anagent in the set of agents A = f1; : : : ; ng; and the inferencerules Modus Ponens and Necessitation.The logic S5n has also been extended to deal with prop-erties that arise when we investigate the state of knowledgeof the group. Subtle concepts like common knowledge anddistributed knowledge have been very well investigated ([2]).The logic S5n is a successful tool for the agent theorist alsobecause, even in its extensions to common knowledge anddistributed knowledge, it has important meta-properties like1 School of Computer Science, University of Birmingham, UK

closure under substitution, completeness and decidability (seefor example [15]).Notwithstanding this, there are some issues that epistemictheories based on S5n still do not address. One of the weak-ness of S5n is that all agents have equal status: the logic treatsthem in a uniform way. This is counterintuitive to the needsof AI, in which interesting scenarios arise when the agentsare conceptually di�erent. For example, consider a distributedsystem composed by a group of agents A = f1; : : : ; ng and thetwo following situations:One agent knowing everything the others know. Anagent j is the central processing unit of a distributedsystem of agents whose non-specialised entities transmittheir knowledge to a central unit j.Linear order in agents' private knowledge. Severalprocesses with the same information at disposal but di�er-ent computational power are running the same program.Under certain assumptions, it is reasonable to assumethat the knowledge of the agents, seen as knowledgebases, increases with the order of computational power atdisposal.These and similar scenarios can still be modelled by exten-sions of S5n in which interaction axioms are imposed. The�rst example of the description above can be modelled by thelogic S5n plus the axiom schema�i�) �j�; 8i 2 A:The second scenario can be described by assuming an orderon the set of agents A = f1; : : : ; ng, re
ecting their increasingcomputational power, and by taking S5n plus the axiom:�i�) �j�; with i � j:These are just two isolated examples but there is actually abroad spectrum of possible speci�cations on how private statesof knowledge are a�ected by other agents' knowledge. At oneend of the spectrum we have the system S5 in which all theknowledge bases are e�ectively equivalent. This can be mod-elled by taking an extension of S5n in which the axiom�i�, �j�; 8i; j 2 A (1)holds. This is a very strong constraint. At the other end ofthe spectrum is simply S5n, in which the only interestinginteraction appears to be:`S5n �i�) �j�: (2)c
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The formula above states that agents cannot rule out thepossibility of a fact known by another agent. This is not sur-prising once we remember that all the known facts must betrue at the real world. Quite surprisingly little work has beendone to analyse systematically such interaction schemas - theonly exceptions to this that we are aware of are [3], and [1]in which a limited class of interactions between the agents isproposed.In this paper we isolate and study a special class of inter-preted systems that can be modelled by an extension of S5nthat falls into the above described spectrum. The systems weinvestigate, that we call hypercube systems or simply hyper-cubes, are de�ned by taking not an arbitrary subset (as in-terpreted systems are de�ned) but the full Cartesian productof the local states for the agents. We show that hypercubesnot only satisfy the usual properties of veridical knowledgeand complete introspection, but also an interesting interac-tion property: these agents do not rule out conjunctions offacts that are known by some other agent or considered pos-sible by some agent to be known by some other agent. In thisway, they share some knowledge among other agents in thecommunity.The paper is organised as follows: In Section 2 we recall thetwo standard semantics for MAS (Kripke models and inter-preted systems), and we discuss hypercube systems. In Sec-tion 3 we present a sound and complete axiomatisation forthe hypercubes. In Section 4 we explore this resulting logicand we provide an alternate axiomatisation which is more in-tuitive in terms of MAS. In Section 5 we draw our conclusionsand we suggest further work.This is technical paper - the reader is assumed to be familiarwith the notation and the standard techniques of modal logic.Excellent introductions to the subject are [10] and [5]. Thereader is also referred to [13] for the proofs of the resultspresented in this paper.2 HYPERCUBE SYSTEMSAs far as logics for knowledge are concerned, two semantictreatments are available: interpreted systems and Kripke mod-els. The two approaches have di�erent advantages and disad-vantages. On the one hand, interpreted systems are more in-tuitive to model real MAS, on the other hand Kripke modelscome with an heritage of fundamental techniques that helpthe user prove properties about her speci�cation.We brie
y remind the key de�nitions of Kripke frames, in-terpreted systems and we de�ne hypercube systems.2.1 Kripke modelsKripke models ([12]) have been �rst formally proposed inPhilosophical Logic and later used in Logic for AI as semanticstructures for logics for belief, logics for knowledge, temporallogics, logics for actions, etc., all of which are modal logics.Over the last thirty years, many formal techniques have beendeveloped for the study of modal logics grounded on Kripkesemantics, such as completeness proofs via canonical models,decidability via the �nite model property [10], and more re-cently, techniques for combining logics [11, 4].The epistemic logic S5n is based on the notion of equiva-lence frame.

De�nition 2.1 (Frames) A frame is a tuple F =(W;R1; : : : ; Rn), where W is a non-empty set and for ev-ery i in A, Ri is a relation in W �W . Elements of W arecalled worlds and are denoted as: w1; w2; : : : If all relationsare equivalence relations, the frame is an equivalence frameand we write �i for Ri. F denotes the class of equivalenceframes.(In the following we will denote by idW the identity relationon W .)2.2 Interpreted systemsInterpreted systems have �rst been proposed by Fagin,Halpern, Moses and Vardi [7] to model distributed systems.The growing interest in MAS and their speci�cations hasbrought forward the concept of interpreted system as use-ful formal tool to model key characteristics of the agents,such as the evolution of their knowledge, communication, etc.This work has culminated in the publication of [2] and [6]in which the authors use the notion of interpreted system toexplore systematically fundamental classes of MAS (such assynchronous, asynchronous, with perfect recall ability, etc.)by the use of interpreted systems.Interpreted systems can be de�ned as follows ([2]). Considern sets of local states, one for every agent of the MAS, and aset of states for the environment.De�nition 2.2 (Global states of interpreted systems)A set of global states for an interpreted system is a subsetof the Cartesian product S � Le � L1 � � � � � Ln, whereLe; L1; : : : ; Ln are non-empty sets. The set Li represents thelocal states possible for agent i and Le represents the possiblestates of the environment.A global state represents the situation of all the agents andof the environment at a particular instant of time. The ideabehind considering a subset is that some of the tuples thatoriginate from the Cartesian product might not be possiblebecause of explicit constraints present in the MAS. By con-sidering functions (runs) from the natural numbers to the setof global states, it is possible to represent the temporal evolu-tion of the system. An interpreted system is a set of functionson the global states with a valuation for the atoms of thelanguage. Since here we carry out an analysis of the staticproperties of knowledge, we will not consider runs explicitly.As it is shown in [2], interpreted systems can represent theknowledge of the MAS by considering two global states to beindistinguishable for an agent if its local state is the samein the two global states. Thus, a set of global states S de-notes the Kripke frame F = (W;�1; : : : ;�n), if W = S, and(l1; : : : ; ln) �i (l01; : : : ; l0n), if li = l0i; i 2 A.2.3 Hypercube systemsGiven n sets of local states for the agents of the MAS, theinterpreted systems we analyse in this paper and that we callhypercube systems or hypercubes, result by considering theadmissible state space of the MAS to be described by thefull Cartesian product of its sets of local states. This meansthat every global state is in principle possible, i.e. there areno mutually exclusive con�gurations between local states. InIdeal agents sharing (some!) knowledge 558 A. Lomuscio, M. Ryan



these cases the state space of the system is the whole fullCartesian product of the sets of local states for the agents2.With hypercubes we are imposing a further simpli�cationon the notion presented in De�nition 2.2: in the tuples repre-senting the con�guration of the system we do not consider aslot for the environment. While we will later observe that thisrestriction is not relevant in terms of the resulting interactionof private knowledge within the community, the following isworth pointing out. The presence of the environment in thenotion of Fagin et al. is motivated in order to keep track ofthe changes in the system and in general to represent every-thing that cannot be captured by the local states of the singleagents (most importantly messages in transit, etc.). By ne-glecting the dimension of the environment or, which comes tobe the same thing, by treating it as a constant, we are project-ing the notion of Fagin et al. of a time-dependent interpretedsystem to the product of its local states. Since we are focusingon a static case, in a way we can see this restriction as �xingthe environment at the time in analysis, and investigate thepossible con�gurations of the states of the agents. We nowformally de�ne hypercube systems.De�nition 2.3 (Hypercube systems) A hypercube sys-tem, or hypercube, is a Cartesian product H = L1� � � � �Ln,where L1; : : : ; Ln are non-empty sets. The set Li representsthe local states possible for agent i. Elements of a local state Lwill be indicated with l1; l2; ::: The class of hypercube systemsis denoted by H.Semantic structures which can be described by full Carte-sian product can be proven to be semantically equivalent toparticular Kripke frames, as it is shown in [14]. This particularclass of frames is the following:De�nition 2.4 Let G be the class of equivalence frames thatsatisfy properties:1. Ti2A �i= idW ;2. For any w1; : : : ; wn in W there exists a w such that w �iwi, i = 1; : : : ; nWe have the following result ([14]):Theorem 1 For all �;H j= � if and only if G j= �.Theorem 1 shows that hypercube systems are semanticallyequivalent to equivalence frames with properties as in Def-inition 2.4, and therefore an axiomatisation of the latter isalso an axiomatisation of the former. In the next section weprovide such an axiomatisation.3 AXIOMATISATION OF HYPERCUBESYSTEMSIn this section we aim to axiomatise the class of hypercubesystems by axiomatising the class G of frames.We start by looking at the �rst property of De�nition 2.4.By denoting with DA the distributed knowledge of the groupA of agents as it is de�ned in [2], we can prove the following:2 It has also been proved by Ron van der Meyden that there is aconnection between Hypercubes and the states of knowledge incertain classes of broadcast systems (personal communication).

Lemma 3.1 Consider an equivalence frame F =(W;�1; : : : ;�n).Ti2A �i= idW if and only if F j= �, DA�.The previous Lemma is a �rst surprising result: in the hy-percubes the notion of distributed knowledge collapses to thetruth of the formula. This follows from our simpli�cationto consider global states that do not represent the environ-ment. Notwithstanding this, the same result would have beenachieved had we considered a MAS whose environment is con-stant, i.e set of states for the environment composed by asingleton.From now on we shall focus on a language that does notinclude a modal operator for distributed knowledge. Sincethe operator of distributed knowledge cannot be rewrittenin terms of standard knowledge operators, in the following wewill not be able to distinguish between extensions of S5n thatsatisfy property 1 and the ones which do not.Property 2 of De�nition 2.4 is more di�cult to analyse. Webegin by noting the following:Lemma 3.2 If F is a frame such that, 8w1; : : :, wn,9w suchthat wRiwi, i = 1; : : : ; n, then F j= �i�j� ) �j�i�, wherei 6= j.Lemma 3.2 says that the agents described by hypercubeshave the property that if agent i considers possible that agentj knows �, then agent j knows that agent i considers � tobe possible. This is a constraint on the agents' knowledgebecause it implies that two agents i and j cannot be in asituation in which i considers that j might know a fact andj considers that i might know the negation of the same fact.We also notice that the formula expressed in Lemma 3.2 isnot provable in S5n. To see this, consider the following S5ncounter-model (at w1) for �1�2p ) �2�1p, in which we donot indicate the re
exive relations:M = (fw1; w2; w3g; fw1 �1 w2; w1 �2 w3g; �(p) = fw1; w2g):So, intuitively, the axiomatisation of the hypercube systemswill have to be an extension of S5n.To understand better the property and its impact on thelogic we need to proceed formally.We call n-directedness (nD) property 2 of De�nition 2.4.De�nition 3.1 (nD) A frame F = (W;Ri) is n-Directed(nD) if 8w1; : : :, wn,9w such that wRiwi, i = 1; : : : ; n.Since property 1 of De�nition 2.4 cannot be captured bythe standard modal boxes, our aim is just to axiomatise nDequivalence frames. Using the standard S5n language, an ax-iomatisation for nD equivalence frames is also complete withrespect to nD equivalence frames that satisfy property 1.We know equivalence frames can be axiomatised by S5n.The usual way to axiomatise a class of frames is to work outthe correspondent axioms and try to prove completeness forthat axiomatisation.Unfortunately we note the following:Lemma 3.3 No modal formula corresponds to n-directedness.To �nd a correspondence result, we need to look at a weakerproperty. In the following Pn is the set of all the permutationsof f1; : : : ; ng, without �xed-points, i.e. if (x1; : : : ; xn) 2 Pn,then xi 6= i.Ideal agents sharing (some!) knowledge 559 A. Lomuscio, M. Ryan



De�nition 3.2 (nWD) A frame F = (W;Ri) is n-weakly-directed (nWD) if 8w;w1; : : : ; wn 2 W , such that wRiwi; i =1; : : : ; n, and 8(x1; : : : ; xn) 2 Pn, 9w such that wiRxiw, forall i = 1; : : : ; n.When n is clear from the context we just use we refer to nWDjust as WD. The property nWD for n = 2 was discussed in[16] and [1]; nWD is a generalisation of it.It is immediate to note that:Lemma 3.4 If a frame is directed then it is weakly-directed.We analyse extensions of S5n with respect to the axiom:^(x1;:::;xn)2Pn(�1�x1p1 ^ � � � ^�n�1�xn�1pn�1)) �n�xn(^n�1i=1 pi)WDWe have the correspondence result:Lemma 3.5 F j=WD if and only if F is weakly-directed.It is now possible to prove completeness:Theorem 2 The logic S5nWD is sound and complete withrespect to the class of re
exive, symmetric, transitive and WDframes.As it is shown in [13], by means of a few laborious lemmas itis possible to strengthen Theorem 2 and prove the following:Theorem 3 The logic S5nWD is sound and complete withrespect to the class of re
exive, symmetric, transitive and di-rected frames.Theorem 3 and Theorem 1 provide the axiomatisation ofthe hypercube systems in a multi-modal language.4 THE LOGIC S5nWDIn this section we try to explore the logic S5nWD. In partic-ular we present an equivalent formulation that can be inter-preted more easily in terms of knowledge agents.Let us start by analysing the type of constraint imposed byWD on the community of agents in the case n = 2:�1�2p) �2�1p 2WDWe do not need to make the other conjunct explicit, as thiscan be obtained by taking the contrapositive of 2WD.2WD can be read as \If it is conceivable for agent 1 thatagent 2 knows the fact p, then agent 2 knows that p is con-ceivable for agent 1". In other words, we are ruling out a situ-ation in which agent 1 considers possible that agent 2 knowsp, while agent 2 considers possible that agent 1 knows not p.We can say that 2WD imposes a sort of homogeneity on theknowledge considered possible by other agents.It is interesting to note that this constraint is logi-cally equivalent to instantaneous message passing of possibleknowledge of other agents. To see this, suppose that everytime an agent considers possible that the other agent knowsp, it broadcasts this information state, and this message is al-ways safely received by the other agent. We also consider thecommunication to be always truthful. We have the axiom:(�1�2p) �2�1�2p) ^ (�2�1q ) �1�2�1q) 2WD0In S5n, we have the following:

Lemma 4.1 `S5n 2WD, 2WD0So, in the case of n = 2, the logic S5nWD speci�es idealagents of knowledge with an interaction between the twoagents' knowledge that can be simulated by truthful com-munication of possible knowledge between the agents.Let us now analyse the case n = 3. We have:(�1�2p1 ^ �2�3p2 ) �3�1(p1 ^ p2)) ^(�1�3q1 ^ �2�1q2 ) �3�2(q1 ^ q2)) 3WDThe reading of the �rst conjunct of 3WD is \If it is conceiv-able for agent 1 that agent 2 knows p1 and it is conceivablefor agent 2 that agent 3 knows p2, then agent 3 knows thatp1 and p2 is conceivable for agent 1".Considering the �rst conjunct with the special cases of p2 =>; p1 = >; p2 = :p1, it can be checked that 3WD implies theformulas: �1�2p ) �3�1p, �2�3p ) �3�1p, and �1�2p )�2�3p. More generally, it is easy to see that 3WD implies�i�jp ) �k�lp (i; j; k; l 2 f1; 2; 3g), that may be rewrittenin the shape of 2WD0.Notwithstanding this, the intuition is that 3WD is strongerthan the simple conjunction of all these formulas. In fact,the semantic condition on the frames that corresponds to�i�jp ) �k�lp is 8w;w1; w2 such that wRiw1 and wRkw2,9w such that w1Rjw and w2Rlw. This condition appears tobe weaker than 3WD, that corresponds to 3WD, and so it isreasonable to expect 6`S5n (^j;k;l2f1;2;3g�i�jp ) �k�lp) )3WD. In other words, it is unlikely that we can see the con-straint imposed by 3WD on the private knowledge of theagents as the result of a relatively simple message passingactivity among the agents.If we consider the case for arbitrary n, it is indeed quite hardto have a clear picture of the constraint imposed by the axiomWD; still this does impose a constraint on the informationthey possess. To understand better the implications of thelogic S5nWD we axiomatise it in a slightly di�erent way.Here we only sketch how this can be done and we refer to [13]for a technical presentation of the matter.In De�nition 3.2 we considered Pn to be the set of all thepermutations (x1; : : : ; xn) without �xed-points xi = i. But itis possible to extend the results of the previous section andprove correspondence and completeness for the case of arbi-trary permutations. It can then be observed that any permu-tation can be obtained by a sequence of swaps between twoelements. By exploiting this observation it is possible to de-�ne a logic which is still equivalent to S5nWD, and thereforecomplete with respect to the same class of frames, but whoseinteraction axiom can more easily be understood in terms ofknowledge.The logic in question, that we call S5nWD�, is S5n en-riched by the following axiom:^1�j;k;l�n n�1̂i=1i6=j;i6=k;i 6=l ��ipi^�j�kpj^�k�jpk ) �l(^n�1i=1 pi)�WD�Theorem 4 The logic S5nWD� is equivalent to S5nWDand therefore sound and complete with respect to the classof re
exive, symmetric, transitive and WD frames.Ideal agents sharing (some!) knowledge 560 A. Lomuscio, M. Ryan



Theorem 4 permits us to reason about hypercubes by con-sidering the logic S5nWD�. The advantage ofWD� overWDis that its meaning is more immediate in terms of the knowl-edge of the agents. In fact, axiom WD� speci�es a class ofknowledge agents with the following property:Observation 4.1 (Knowledge sharing in hypercubes)Let A = f1; : : : ; ng be a community of agents modelled by anhypercube and consider any three agents, j; k; l. Then agent lthinks that the conjunction of� anything that j thinks may be known by k,� anything that k thinks may be known by j,� anything known by any other agent,is possible.MAS modelled by hypercube systems share knowledgeamong themselves following Observation 4.1. They have fullintrospection capabilities and veridical knowledge, but theyalso consider possible facts known by some agents, or regardedby some agent to be possibly known by some other agent. Ob-servation 4.1 speci�es how private knowledge is shared in suchcommunity of agents. Note how the symmetry of the act ofbroadcasting is re
ected in the symmetry of the interactionaxiom.5 CONCLUSIONS AND FURTHERWORKIn this paper we have formally investigated hypercube sys-tems, a particular class of interpreted systems that arisesby considering the full Cartesian product of the local states.We have argued that hypercubes model interpreted systemswith no a priori constraints on their possible con�gurations.Thanks to a result that relates interpreted systems to Kripkeframes, in order to axiomatise hypercubes we have analysedtheir images in a particular class of equivalence Kripke frames.On the conceptual level the paper tries to o�er two di�erentcontributions.First, we have motivated that epistemic logics for MAS needto address the issue of interaction among agents' knowledge.We hope that in the near future S5nWD will be just one ofthe formal options available in the literature and that, thanksto more examples, a systematic study of types of interactionscan be carried out.Second, we have analysed the interesting class of nD equiv-alence frames. The variation of the canonical model techniquewe used to prove completeness heavily relies on the frames be-ing re
exive, symmetric and transitive, properties guaranteedby the fact that we were analysing extensions of S5n. Thequestion is whether it is possible to prove similar results forweaker logics, such as S4n, whose agents di�erently from S5ndo not have negative introspection capabilities. In the futurewe will also analyse completeness for S5nWDf� , DA�gwith respect to equivalence frames with properties 1 and 2 ofDe�nition 2.4, and we will try to prove decidability of S5nWDthrough �nite model property.Hypercube systems seem to be related to a special class ofagents broadcasting information on a channel and this issuewill be investigated shortly. In such a case the symmetry ofthe act of broadcasting would be re
ected in the symmetry
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