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Abstract. We point out a simple but hitherto ignored link between the theory
of updates, the theory of counterfactuals, and classical modal logic: update is a
classical existential modality, counterfactual is a classical universal modality, and the
accessibility relations corresponding to these modalities are inverses. The Ramsey
Rule (often thought esoteric) is simply an axiomatisation of this inverse relationship.

We use this fact to translate between rules for updates and rules for counterfactu-
als. Thus, Katsuno/Mendelzon’s postulates Ul U8 are translated into counterfactu-
al rules C1-C8 (table 7), and many of the familiar counterfactual rules are translated
into rules for updates (table 8). Our conclusions are summarised in table 5.

From known properties of inverse modalities we deduce that not all rules for
updates may be translated into rules for counterfactuals, and vice versa. We present
a syntactic condition which is sufficient to guarantee that a translation from update
to counterfactual (or vice versa) is possible.

1. Introduction

Background. An intuitive connection between theory change and
counterfactuals was observed by F. P. Ramsey [19], who proposed what
has become known as the Ramsey Rule:

To find out whether the counterfactual ‘if A were true, then B would
be true’ is satisfied in a state S, change the state S minimally to
include A, and test whether B is satisfied in the resulting state.

(Actually, Ramsey proposed the rule only for non-counterfactual con-
ditionals, but the term ‘Ramsey Rule’ is now taken to refer to counter-
factuals too.)

It was initially hoped that the AGM theory of belief revision [7,
14] would provide the right notion of minimal change. However, the
intuitively acceptable AGM postulates for belief revision are known to
be incompatible with the Ramsey Rule [6, 7].

It turns out that the theory of updates proposed by Katsuno and
Mendelzon [11] is compatible with the Ramsey Rule [9]. Updates, like
revisions, are a formalisation of theory change; but whereas revisions
are intended to model changing beliefs about a fixed world, updates are
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intended to model a changing world. The difference between the for-
malisations of updates and revisions can be seen in terms of postulates;
for example, the AGM postulate

AxB=ANDB if AN B is consistent

is accepted for revisions, but rejected for updates. The difference can
also be seen in terms of operations on models; in revision, we measure
the distance to the models of the old theory as a whole, while in update
we measure the distance to them pointwise. The intuition behind this
crucial difference (expanded upon in section 3.1) is that in updates
we want to change total states of the world, whereas in revisions we
change partial descriptions of it. Though they were discovered more
recently, updates are conceptually simpler than revisions, because of
this pointwise character.

Our contribution.  We capitalise on the realisation that updates are
the right notion of theory change for the Ramsey rule. We show that
the standard treatments of updates (e.g. [11]) is a system of multi-
modal logic. Furthermore, this modal logic bears a particular relation-
ship with the modal logic of counterfactuals [22, 13, 17]: it has the
inverse accessibility relation. It is therefore appropriate to present a
single modal logic, with positive and negative modalities; the positive
modalities (used for updates) refer to the accessibility relation R, and
the negative ones (used for counterfactuals) refer to the relation R™'.

The Ramsey rule turns out to be an axiomatisation of the inverse
relationship between the two sets of modalities.

We work out the correspondence properties of the accessibility rela-
tion for the standard rules for updates and counterfactuals (tables 4
and 6), and we provide a systematic translation of rules for updates
into rules for counterfactuals, and conversely (theorem 14). The paper
extends two previous papers [21, 20].

Structure.  The paper is arranged as follows. Section 2 contains pre-
liminaries about modal logic and (inverse) accessibility relations. In
section 3, we show that updates and conditionals are systems of multi-
modal logic, and that they have inverse accessibility relations. In section
4, we show that this is equivalent to the Ramsey rule, and we trans-
late the standard rules for update into conditional logic rules, and vice
versa. Conclusions are in section 5.
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2. Preliminaries

This section sets our notation and provides background technical details
about the version of multi-modal logic we will use, and about inverse
modalities. The modally-expert reader can skim it quite fast.

2.1. MULTI-MODAL LOGIC

We assume a propositional language L with atomic propositions p, ¢, r, . ..
and connectives A, V,—, —, <+, 0,<O, 8, $. The unary connectives bind
most tightly, then A,V, and —, <> bind least tightly. The modal con-
nectives take two arguments; if A, B are formulas then so are OB,
OaB, BaB, ©4B. (The formula ¢ 4B will later be read as the result
of updating B by A; the formula B4 B will be read as the counterfactual
‘if A were the case, B would be the case’. The other two modal formulas
are their duals.) The set L is the set of atomic formulas p, q,r,...; the
set L is the set of all formulas over L.

The semantics of multi-modal logic with inverses is given as follows.
A model M = (W, R, V) of the multi-modal language L is a set W of
worlds, an accessibility relation R C P(W) x W x W and a valuation
Vi:L—PW).

The relation IF of satisfaction between a model M = (W, R, V), a
world z € W and a formula A is defined inductively on A as follows.

zlry p iff € V(p)
rlky ANB iff xlbp; Aand 21k B
z Iy OaB iff for each y € W, Ry 4 (7, y) implies y IFy B
zlby BaB iff for each y € W, Rj4(y, z) implies y IFy B

The missing connectives V, —, <», &, & are defined by similar (stan-
dard) clauses. As can be seen, B, & are like O, O except that they refer
to the inverse accessibility relation.

In the context of a model M, |A| is defined to be {z € W | z Iy A}.
The subscript on IF3; will usually be dropped in order to make the
notation lighter.

The model M satisfies the formula A, written M I+ A, if x k3 A
for each x € W. A frame F = (W,R) consists of a set of worlds
and an accessibility relation. Such a frame F' satisfies A, written F' I
A, if for each valuation V', we have (W, R, V) IF A. A formula A is
valid, written = A, if it is satisfied by every frame. A formula A is
satisfiable in a model M if |A| # (. The formula A over L is complete
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w.r.t. M = (W, R, V) if there is precisely one z € W with z IF A. If
Ay, Ag, ..., A,, B are formulas, the rule

A Ay ... Ay
B

holds in a frame F' if: for all V, if M I+ A; for each ¢ then M I+ B,
where M = (F, V). Notice that this is weaker than asserting the axiom
Ay AN...NA, — B, but stronger than asserting ‘if each A; is valid, then

A
B is valid’. The double-barred rule = holds in F' if for all M = (F, V),

M- Aiff M I+ B. b

This multi-modal logic is not the straightforward one discussed in [8]
and [18], because the indices are formulas. However, our modalities are
not quite the binary modalities found in [25], because they treat the two
arguments A and B in quite different ways (and, for example, =04 B is
equivalent to & 4—B, but not to & 4—B as in [25]). Nevertheless, our
definitions also seem natural, and as will be seen, they are right for our
application.

2.2. INVERSE MODALITIES

Inverse modalities have already been used in modal logics: in linear
temporal logic, they are the past modalities. Table 1 summarises their
intuitive meaning. These inverse modalities should not be confused with
the dual modalities, nor with the inverse of the dual (which is of course
dual of the inverse).

Not all modalities have intuitively interesting inverses. Temporal
and dynamic modalities do, but epistemic and doxastic modalities do
not. If one interprets OB as ‘I believe B’, then BB seems to say: ‘in all
situations where my beliefs admit the current situation, B is true’.

In later sections, we discover that the counterfactual modality has
an interesting inverse: its inverse is (the dual of) update.

2.2.1. Aziomatising inverse modalities

How can we axiomatise the link between O and B? There are two
ways. The first is to add a pair of axioms (whose monomodal versions
are already known from temporal logic [8, ex. 6.1]). The second way is
the Ramsey Rule.

Theorem 1 (Folklore) Assume O,$ are interpreted by the accessi-
bility relation R and B,< are interpreted by S in a frame F.
The following are equivalent:

1. For each T CW, Ry = S;l.
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Table 1. Modalities, their inverses and duals

Counterfactuals and updates as inverse modalities 5

modality
OB

inverse

BB

dual
OB

inverse dual

B

henceforth B

tomorrow B

any execution
of program P
in the current
state results in
a state satisfy-
ing B

up to now, B

yesterday B

if P has just been
executed, the

starting state sat-
isfied B

eventually B

tomorrow B

there is an exe-
cution of pro-
gram P in the
current state
which results in
a state satisfy-

once upon a time,

B
yesterday B

P could have just
executed in a state
satisfying B

ing B

2. F satisfies the following axiom schemes (each of which is also given
in its dual form):

(1) B —- 046,48 S B4B — B
(2) B — 84048 &S 204B — B.

3. F satisfies the following rule (which is also given in its dual form):

B — B84C

o,C = B
——— RR —_—
ouB — C

——— RRd.
C — 0OuB

(The proof of this and all other theorems is given in the Appendix.)

Observe that with the reading we will give to B and <, the rule RR
exactly expresses the Ramsey rule for counterfactuals. B4C' is read as
‘if A were true, then C' would be true; O 4B is read as the update of B
by A; so the rule states that the counterfactual ‘if A, C” is supported
in a state B iff the state obtained by updating B with A supports C.
Notice that formulas are used to denote both pieces of information and
(descriptions of ) states.

[Aside. Those knowledgeable about category theory may like to see
the rule of Theorem 1(3) as an adjunction between pre-orders. The pre-
order in question is P(W) (given a fixed model M = (W, R, V')) ordered
by inclusion. For any fixed A, B4 and ¢4 may be considered as the
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following monotonic operators on the preorder:

OaS={rxeW|3yecS Ry}
BaS={yeW |VzeW (R (z,y) =>z€S)}

and we have S C BT iff 045 C T]
2.3. OTHER PRELIMINARIES

If (X, <) is a pre-ordered set (i.e. < is a reflexive and transitive ordering
on X) and Y C X, then Min<(Y') is the set of <-minimals in Y, i.e.
Min<(Y) ={yeY |Vz €Y.z £ y}.

If R is a relation in W x W, then R(a) = {b € W | R(a,b)} and
R '(b) ={a € W | R(a,b)}.

3. Updates and counterfactuals

Our aim in this section is to show that updates and conditionals are
systems of modal logic, having inverse accessibility relations to each
other. In 3.1 we clarify the difference between ‘update’ and its cousin
‘revision’. In 3.2 we show that updates are existential modalities. This
enables us to look at correspondence properties, in the style of [23].
In 3.3 we recall the known result that counterfactuals are universal
modalities, and see that the accessibility relation is the inverse of the
one for updates. We recall some known correspondence theory, and use
it to relate rules for update with rules for counterfactuals.

3.1. UPDATES VS REVISIONS

This paper concerns the notion of ‘update’. It is related to the notion
of belief revision, and shares some properties. Indeed, there has been a
historical confusion between the two notions. They differ in motivation,
however, and they have some important technical differences. Before
focussing on updates, we briefly recall the differences between update
and revision.

The need for different notions was pointed out in [12]. Updates are
intended to model a world which changes, while revisions are intended
to model a static world, about which one’s information changes. In
[11] new postulates for updates were proposed. These postulates are
similar to those for revisions [7] and are presented in Table 2. In the
last column, we have indicated the name used in revision.

Katsuno/Mendelzon use ¢ as an infix operator; ¢ ¢ p means q updat-
ed by p. It may appear surprising that the two arguments of ¢ are the
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Table 2. Update postulates according to Katsuno/Mendelzon [11], using their syntax.
They use ¢ as an infix operator; ¢ ¢ p means g updated by p.

name postulate name
(11] (7]

U1 qgop—p K*2
U2.1 q — p implies g - qop

U2.2 gqg—pimpliesqgop—gq K*4w
U3 q ¢ p satisfiable, if p, ¢ satisfiable ~ K*5
U4.1 q <> rimpliessqgop&rop

U4.2 g rimpliesspogepor K*6
U5 (gqor)Ap—qo(rAp) K*7
U6 gop—r,qor - pimplygopeqgor

u7 q complete implies (gop)A(gor) =>qo(pVr)

U8 (@qvr)op<+r (qgop)V(rop)

same syntactic type (namely, formulas), since one usually expects states
to be updated by formulas. The explanation is that ¢ is a formula denot-
ing a set of states, and ¢ ¢ p is the formula denoting the resulting set
of states after each of them has been updated by p.

Comparing the update postulates and the standard AGM postu-
lates [7], one sees that updates and revisions have much in common,
explaining the historical confusion. The fundamental difference between
the two notions may be seen by looking at the representation theorems
associated with each of them, rather than the postulates. [In the fol-
lowing two theorems, |A| is the set of valuations making A true; thus,
KM and AGM work on specific frames where valuations are in bijection
with worlds.]

Theorem 2 ([7]) * is a revision operator iff
B+ A] = Ming,, (4]

where <ip C W x W is a preorder of closeness to B (x <g z means
that x is at least as close to the set of worlds S as z is).

Theorem 3 ([11]) © is an update operator iff

|BoAl= [ Ming, (A])
y€|B|

where <, CW x W is a preorder of closeness toy (x <, z means that
x is at least as close to the world y as z is).

counter.tex; 23/12/1996; 11:53; no v.; p.7
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Thus, while revisions measure closeness to |B| as a whole, updates
measure closeness to each element of | B| individually. This is the reason
for which, in [10], updates are referred to as pointwise revisions. The
justification for the pointwise character can be explained in terms of
the changing-world motivation behind updates. Suppose the world is
in a state satisfying p V ¢. Suppose now a change is made, whose result
guarantees —p. Belief revision would tell us that the resulting state
must satisfy —p A ¢, which is equivalent to the conjunction of these
formulas; it says that whenever the conjunction is consistent, then it is
the result of the revision. Updates, however, argue that if all we had
was pV g, then the world either satisfied p or it satisfied q. Considering
these cases independently, we see that after —p is imposed the world
satisfies —p in the first case, or =p A ¢ in the second. As we don’t know
which of the two cases it was, all we can be sure about now is that it
satisfies the disjunction, namely —p.

3.2. UPDATES ARE EXISTENTIAL MODALITIES

Suppose we write & 4B instead of B ¢ A. Looking at the representation
theorem for updates given above, it is easy to see that it can be written

zl-OGaB iff  there exists y s.t. B4)(2,y) and y Ik B

in the multi-modal model M = (W, R, V), where W is the set of valu-
ations and the relation R is given by

Rs(z,y) © = € Minc (S).

This fact shows that updates are an existential modality, and justifies
the decision to write & 4B instead of B ¢ A. We can therefore think of
Katsuno/Mendelzon’s U1-U8 as multi-modal axioms and rules. They
are presented as such in Table 3.

Katsuno/Mendelzon’s theory of updates may be seen as a particular
multi-modal logic, the one generated by the axioms and rules of Table 3.

To guarantee the classical properties of a modality, we should also
have necessitation:

B
OB

Theorem 4 Necessitation follows from the axioms and rules in Table 5.
A corollary of our observation that update is an existential modality

is that the Katsuno/Mendelzon theory represents one particular logic in
a hierarchy, whose intuitive base level is weaker, being a minimal normal
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Table 3. Update postulates rewritten as modal logic rules

name [11] rewritten as

U1l OB — A
B— A
U2.1
B — OB
B— A
U2.2
OuaB — B
-OaB
U3 if A satisfiable
-B
B+ C
U4.1 -
OaB & OAC
B« C
U4.2 R
<>BA(—) <>(;A
Ubs OABAC = OancB
OGaB—-C O¢cB— A
U6
OaB < OcB
u7 B complete implies 4B A OB — CaveB
U8 Ca(BVC) & 0aBVOAC

modal logic. One could consider stronger or weaker logics, according to
applications.

Some of the rules in Table 3, namely U4.1, U4.2 and U8, are auto-
matically valid, simply by virtue of the modal semantics:

Theorem 5 The rules Uj.1, U4}.2 and U8 hold in any frame.

The other rules are valid if we suitably constrain the accessibility
relation. As usual within the framework of modal logic, we can study
the ‘correspondence properties’ on R imposed by an axiom or rule.

Theorem 6 A rule in Table 3 holds in a frame F = (W, R) iff R has
the corresponding property stated in Table 4.

counter.tex; 23/12/1996; 11:53; no v.; p.9
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Table 4. Correspondence conditions for the update rules

name property of R

R1 Rs(z,y) implies x € S

R2.1  y € S implies Rs(y,y)

R2.2 y€ S and Rs(z,y) imply z =y

R3 S # 0 implies Vy3z.Rs(z,y)

R5 x € S and Ry (z,y) imply Rsnr(x,y)

R6  Rg'(y) CT and R;'(y) C S imply Ry'(y) = Ry (y).
R7 Rs N Rr C Rsur

Compare correspondence theorems for standard modal logic, e.g. [18,
§5.2], [8, theorems 1.12, 1.13],[23]. The proofs (given in the Appendix)
follow the usual pattern in correspondence theory. In the < direction,
we add to the frame (W, R) an arbitrary valuation V' to form the mod-
el M = (W,R,V), and show that the constraint on R is enough to
guarantee that the rule is satisfied in M. In the = direction, we make
a judicious choice of the valuation and an instance of the scheme, to
show that the constraint on R must hold.

Notice that these conditions are second-order, and (unlike the case
for mono-modal logic) none of them can be reduced to first order con-
ditions. This is because the R is always indexed by a set.

Note that the ‘pointwise character’ of updates is crucial in their
ability to be represented as an existential modality: it implies to the
distribution of & over V (U8). Revisions are not existential modalities
in this sense. (Revisions may however be analysed as modalities in a
rather different sense, for example [4, 24].)

3.3. COUNTERFACTUALS ARE UNIVERSAL MODALITIES

According to [22, 13, 17], the counterfactual ‘if A was the case, then
B would be the case’ may be interpreted by: “In all closest worlds
satisfying A, we find that B holds.” It is well-known that counterfac-
tuals have the properties of classical universal modalities [3, 13]. The
counterfactual ‘if A was the case, then B would be the case’ holds at
a world z if B holds in all y in Min<_|A|. But this relation between
z and y is simply the inverse of the relation Rj, given at the begin-
ning of section 3.2. So counterfactuals and updates are inverses (at the
level of accessibility relations), and duals (since updates are existential
modalities, while counterfactuals are universal). In terms of our logic,
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the counterfactual sentence ‘if A was the case, then B would be the
case’ can be written B4 B.

Slogan: Counterfactuals are the inverse dual of updates.
Updates are the inverse dual of counterfactuals.

One can perform the same analysis as we did for updates, namely,
the correspondence theory for standard rules for counterfactuals. Much
of this is known, but tends to be scattered in the literature, and often
the semantic conditions are not put into one-to-one correspondence
with the axiom schemes. We have collated results from many sources
in Tables 5 and 6.

These tables show that several authors have re-discovered axiom
schemes under different names, including ourselves! They also shows the
correspondence between some update rules and counterfactual rules,
obtained by noticing that they correspond to the same semantic con-
dition on the relation. This is the topic of the next section.

Note that we are choosing to work with the Kripke accessibility rela-
tion R, while many authors cited in Table 5 use the selection function
f- Of course, the relation between them is trivial, and which one is
used is merely a matter of convention or personal preference. R 4/(z,y)
expresses that x is closest among |A| to y, while f(A,y) selects exactly
those z’s. We therefore have = € f(A,y) iff Rj4(z,y), and may write
F(Ay) = R (y).

As a convention, we will use the leftmost names from the table in the
remainder of the paper. Note that our assumption that counterfactuals
are normal modalities renders some postulates in the table (e.g. ID, RI
in the first row) equivalent, though these are sometimes distinguished
in the literature.

4. Inter-translating systems for counterfactuals and updates

4.1. VIA THE CORRESPONDENCE CONDITIONS

We have observed that rules for updates correspond to particular prop-
erties of the accessibility relation R, and similarly for counterfactuals,
whose rules correspond to properties of the inverse relation R~'. This
gives us a criterion for identifying a particular rule for updates and a
rule for counterfactuals.

Example 7 The update axiom scheme Ul, OG4B — A, corresponds
to the semantic condition Rg(z,y) implies z € S (theorem 6). The

counter.tex; 23/12/1996; 11:53; no v.; p.11
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Table 5. The correspondence between update rules and counterfactual rules. The table has three major columns (the
minor subcolumns show how different authors give different names to the same thing). The first column shows the name
of an update axiom scheme or rule, the third column shows the name of the corresponding counterfactual rule. The second
column shows the name of the condition on the accessibility relation.

Update rule

semantic condition

Counterfactual rule

[11] here here [16] [3] [16, §12] [3] 2] [1] [5] [15]
U1l R1 CS1 id C1 D D A0, B0 1D, RI G4 RCE
U2.1 R2.1 CS2.1 mp | C2.1 MP MP  Di(b) MP G7 A4
U2.2 R2.2 CS2.2 C2.2 CS Di(a) CS G6 CS
U3 R3 C3
Ub R5 Ch
U6 R6 CS4 C6 CSO B3 CE CSO
U7 R7 Cc7
U CS3 CS3 C CS3
uv CS5h CV AS G9 CV
U A3 R A3 A3 ASC
U SDA R SDA cm’ SDA, SA CM’ S*, WA
UA RA cc’ CA CcC A4 AD G8 AT
UN’ RN’ cn’ CN’
U MOD | R MOD MOD MOD
UEM REM CEM CEM
U Tr R Tr Tr
U Contr | R Contr Contr
Ut3 Rt3 t3
Ut4 Rt4 t4
UB2 RB2 B2
UB4 RB4 B4
uD’ RD’ D’
UDH RDH DII
UDO RDO DO
UA1 RA1 A1l
UA2 RA2 A2
URT RRT RT, A6
U Triv R Triv Triv

¢l

SUAQOYDS SOA X -04IdI puR ueAy IR
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Table 6. Correspondence conditions for counterfactuals.

Counterfactual rule

Condition on accessibility relation

C1 HaA R1 Rg(z,y) implies z € S
C2.1 BaB — (A — B) R2.1 y € S implies Rs(y,y)
C2.2 ANB — ExB R2.2 y € S and Rg(z,y) imply z =y
C3 -84 — if A satisfiable R3 S # 0 implies Vy3z.Rs(z,y)
C5 BeoaaB = Bo(A — B) R5 z € S and Rr(z,y) imply Rsnr(z,y)
Cé6 BAC ABcA — R6 Rg ()CTandR "yycs
(BaD © BeD) imply Rg'(y) = Ry' (y)
C7 B complete implies R7 Rs N Rp C Rsyur
Bavc—B — BA—BV Bc-B
CCS3  BEx— — Be-A CSs3 RJ'(y)=0—-Ry'(y)nS=0
cv BAB A —(B4-C) = BarcB | CS5 Ry'(y)NS =0V R (y) C R ()
A3 BABABAC = BapgC RA3 RG'(y) CT — Rghp(y) C R ()
SDA Bava'B — BAB cm’ SCT— Rs C Ry
CA HaBAB s B — BHyya B cc’ Rsur C Rg U Ry
CN’ B_A cn’ Ry =10
MOD B.,A—2A RMOD it RZ(y) C S, R.'(y) C S
CEM  B,BVEs-B RCEM R;‘ is a (partial) function
Tr HaBABgC — 8,C RTr $'(¥) CT = Rg'(y) C R ()
Contr  B4B — 8_p-A RContr if Rg'(y) C T, R;V\T( y)CS
t3 BaB — (BAC <> Bang0) Rt3 if Ry (y)CTR Yy) = smT(y)
t4 BaB — (BBC < 8ayBC) | Rt4 if Rg'(y) C TR (y) = Rg/\7(v)
B2 BaB = Bavco(BVC) RB2 if Rg'(y) C T Sw(y) CTUU
B— A,ANC - B
B4 RB4 SNU CT C Sand Rg'(y) CU
BaC — 85C imply R (y) C U
D’ Bavp—A — RD’ if R;UT( )N S =0 then
BavemAV Bove~C Rgly(y)NS =0or Ry, (y)nU =0
n” BavBAVE. BB RD" RCEM and R1
DO -8 — RDO Ry (y) #0
Al Ban-B(A = B) — RA1 1fR;\g( y)NT\S=0and
(B-44 = B-5B) R3'(y)NS = 0 then Ry (y)NT =0
A2 Ban-B(A = B) — B4B RA2 Rg\lT( )NS\T=0—-Rg'(y) CT
RT BanBC A BaAB — BAC RRT R3'(y) €T — R5'(y) C Rghr(y)
Triv BaB — Baar-(A — B) RTriv if Rg Yy)NT =0 then
Ry orn) 0 (S0T) =0
counter.tex; 23/12/1996; 11:53; no v.; p.13



14 Mark Ryan and Pierre-Yves Schobbens

counterfactual axiom scheme HsA known as ID corresponds to the
same semantic condition:

FlFB44 & VV,.”I:,y(R‘Z‘l‘(m,y) =yl A)
& Vz,y(Rg'(z,y) = y € 5)
< Va,y (Rs(z,y) =z €5)

Indeed, U1l and ID intuitively say the same thing.

Using the criterion, we can look for a counterfactual rule which
corresponds to an update rule, or vice versa.

Example 8 The update rule U2.1
B— A
B — OB

corresponds to the semantic condition y € S implies Rg(y,y). As it
happens, this semantic condition is equivalent to the same condition
on R™!, so it corresponds to the counterfactual rule

B— A
B — $,B
This rule may be more simply stated as B4B — (A — B) (known as

MP in the literature) [for proof, see appendix].

Example 9 U6 < C6. Let’s first work out the correspondence condi-
tion R6 for U6.

OAB—)O <>(jB—)A

F satisfies U6 (1)
<>AB — <>(jB
HR“I@ cc| HR&(@ C |4
& ;all v (2)
1 —1
U #a0) = U B ®)
bk B bl B

R(b) CIC] R(b) C A

,all' Vv (3)

o R6  (4)
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From 1 to 2: recall F satisfying the rule means that any M = (F,V)
satisfying the top also satisfies the bottom; recall that M satisfies an
implication if the worlds satisfying the antecedent are contained in
those satisfying the consequent; and the worlds satisfying G4 B are
Ui B RfAl\ (b).

From 2 to 3: The direction 2 = 3 is by taking the special case
|B| = {b}. For the other direction, we use the fact that for any sets
Si, T, we have (J,c;8; € T iff for each i, S; € T. From 3 to 4: The
direction 4 = 3 is immediate, since, given V, |A|, | B| are just particular
sets. For the reverse direction, if we are given S, T we pick atomic A, C
and choose V such that V(A4) =S, V(C) =T.

Now we must find a corresponding update rule. Let’s ‘guess’ that it
is C6 := BACANBcA — (BaD + BeD), and verify that it corresponds
to the same condition on R.

zlFBAC ANBeA — (BaD + BeD)
& (Rj(@y) = yIF CO)A (R (2,y) = y Ik A) =

([B4\(z,y) = y I D] & [R (z,y) = y Ik D) (2)
& R} (0) CICI AR (x) C Al = R \(x) = R () 3)

3 comes from 2 because D is arbitrary. So U6 and C6 both correspond
to R6.

Experience can make the guessing easier! However, in the next sec-
tion we describe a more deterministic way of doing the translation.

Theorem 10 The update rules Ul-US8 translate to the counterfactual
rules given in table 7.

Notice that this modal logic perspective gives us a spectrum of coun-
terfactual logics (any selection of the rules defines a logic), and also a
spectrum of update logics; and these spectra are put into one-one cor-
respondence by the set of constraints they imply on R.

In the opposite direction, we have taken standard counterfactual
rules in the literature, and worked out the corresponding update rules
in Table 8.

4.2. VIiIA THE RAMSEY RULE

The proof of the equivalence between update and counterfactual rules
can be performed

— either by going via the accessibility relation R, as in the examples
above;
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16 Mark Ryan and Pierre-Yves Schobbens

Table 7. Counterfactual rules corresponding to the update rules U1-U8

name counterfactual rule name
116, §12]

C1 HaA 1D

C2.1 BEaB — (A — B) MP

C2.2 AANB — B84B CS

C3 —-H4 L if A satisfiable
Ch HoaaB — EI(;(A — B)
C6 HaC ANBcA — (BaD + BeD) CSO

C7 B complete implies Bayc—B — Ba—BV B¢—B

— or by working directly with the axioms of theorem 1(2); or, equiv-
alently, the Ramsey Rule (or its dual) in theorem 1(3).

Here we do it working directly with the axioms and rules.

Example 11 Ul < C1. Using the Ramsey rule, Ul: G4B — A trans-
lates immediately into B — B4 A. But this can be further simplified,
to B4A. [Note: B — B4A and E4A are not logically equivalent, but
they are ‘frame’ equivalent, as was shown in example 7. This means
they are equivalent axiom schemes.]

Example 12 U5 < C5.

C:>’
OcBoaaBNA = OopaBoaaB U5
CcBonaB — (A — OcnaBopaB) equiv.
OcBopaB — (A — B) by (1)
BcOcBoaaB = Be(A — B) Nec,K
HoaaB — Be(A — B) by (2)
‘<:’
BarcCancB — Ba(C — OancB) C5
B—>EA(C—><>AAcB) by (2)
OaB — (C — OAAcB) by RR
CABANC = OancB equiv.
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Table 8. Update rules corresponding to some counterfactual rules

Counterfactual rule

Update rule

CCS3

A3

SDA

CA

CN'

MOD

Tr

Contr

t3

t4

B2

B4

DO

A1l

A2

RT

Triv

U CS3

U A3

U SDA

UA

UN’

U MOD

U Tr

U Contr

Ut3

Ut4

UB2

UB4

UDo0

UA1

UA2

URT

UTriv

-OaB

—l(<>(;B A A)
OaC = B

OanC = OaC
OaB — O ya B

<>A\/A’B — OaBV OB

-O_T

OﬁAB — A

OCB—)A
OaD - B

OaD = OD

o4C — —B

OBC — —A

oAC - B

CaC & CansC

O4C - B

OpC < OAV BC

©GavsC — BV OAC
B— A ANC — B,04D —C

oD — C
-OTA

-A
Qapn-BCNA— B, O_4,C— A

<>_.BC — B
Oapn-sCNA— B

oAC - B
oAC - B

OAC = OannC

oAC - B

<>A/\—.BC/\A—) B

Proving the equivalence of update rules and counterfactual rules by
the Ramsey rule can be mechanised to some extent. We present syntac-
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tic criteria on counterfactual rules which allow them to be translated
to update rules, and conversely, using the Ramsey Rule.

Definition 13 We say a formula is ‘B-simple’ if it is formed from arbi-
trary non-modal formulas and the operators B and A, where all sub-
scripts of B are non-modal.

A rule of inference is B-simple if:

— its premises are implications whose antecedent is non-modal and
whose consequent is B-simple; and

— its conclusion is an implication whose antecedent and consequent
are B-simple.

Dually, $-simple formulas are formed from non-modal formulas and
the operators & and V, where all subscripts of & are non-modal. A rule
is ¢-simple if:

— its premises are implications whose antecedent is <-simple and
whose consequent is non-modal; and

— its conclusion is an implication whose antecedent and consequent
are O-simple.

O-simple, ©-simple formulas and rules are defined similarly.

Theorem 14 Any B-simple counterfactual inference rule can be trans-
lated into a <-simple update inference rule (and conversely) using the
Ramsey Rule.

The proof is an algorithm performing the translation. For read-
ability, we treat H-simple rules; the three other cases are similar. We
first massage the conclusion for application of the Ramsey Rule, by
introducing a fresh meta-variable, say X, and replacing the conclusion
S1 — S2 by the equivalent rule: ))gjg; Then we iterate the following
steps for each premise and the conclusion, now all of the form N — S,

where N does not contain B:

— if S contains no B, we are done;

— if S has an outermost B, we use the Ramsey rule to replace N —
By T by the equivalent Oy N — T

— if S has an outermost A, we distribute N — S; A Sy into N — 57,
N — SQ
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We eventually obtain an equivalent <-simple rule, which can sometimes
be further simplified.
Note that the conditions of Theorem 14 are quite liberal, since:

— an axiom is a rule with no premises
— any formula can be regarded as an implication with antecedent T

— it allows nesting of modalities, though not in subscripts. This free-
dom is more than is needed, since classical rules contain no modal
nesting.

Example 15 All of the counterfactual rules of Table 6 are B-simple,
except CV, CEM, D', D", C3, CT.

Example 16 Let us see how this works in the case of counterfactual
axiom Tr from Table 8.

X — B84B X — 8gC
X — B84C
OuX - B OpX —=>C
OuaX - C
SaX — B
OpX - OpX

BaBABgC — B84C <—

—

—

The rules C3 and C7 are simple if we ignore the side conditions; and
this is safe if we factor them out of the proof. This is done for C3 in
the proof of theorem 10 in the appendix.

For the remaining rules that are not simple, namely CV, CEM, D',
D" one possibility would be to follow Katsuno/Mendelzon by allowing
premises about whether formulas are complete or satisfiable (cf. U3,
UT7). Then the counterparts can be written

B compl. OB A C sat. B compl.
uv ——— UEM
<>A/\CB — OB OuB COmpl.

D Compl. <>A\/BD — —A <>A\/CD A A sat.
SpveD — -C

up'

UD” is simply UEM+U1.
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5. Conclusions

The link between counterfactual and updates, often considered as eso-
teric, is only the usual link between a relation and its inverse; counter-
factuals can be considered as a universal modality, and update as its
inverse existential modality.

Update rules are thereby translated into counterfactual rules, and
vice versa. We found that some, but not all, of the counterfactual coun-
terparts to U1-U8 are known in the counterfactual literature; and,
symmetrically, the translation from counterfactuals to updates gives
us some known and some new rules in that field.

Theorem 14 has proved very powerful, but probably does not cover
all the cases when translation is possible. We would like to have an ‘iff’
characterisation. It is somewhat fortuitous that it was possible to do
all the translations we performed, since it is known in temporal logic
that there are easy examples of axioms using the ‘future’ modalities
for which there is no equivalent using ‘past’ modalities. One such is
O(AANOA — B)vO(BAOB — A), whose correspondence condition
is forward-linearity: R(z,y) A R(z,z) = R(y,z) V (y = 2) V R(z,y).
This condition cannot be expressed using B, ©; to prove this, we show
it is not preserved under p-morphisms of frames by exhibiting two
appropriate frames.
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Appendix
A. Proofs of theorems
Theorem 1 Assume O, are interpreted by the accessibility relation

R and B, % are interpreted by S in a frame F.
The following are equivalent:

1. For each T CW, Ry = S;l.
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2. F satisfies the following axiom schemes (each of which is also given
in its dual form):

(1) B— 0Ox©4B O 4B — B
(2) B —- B404B o,0B4 — B.

3. F satisfies the following rule (which is also given in its dual form):

B — 8,C $4C - B
OuaB = C C — 0O4B

Proof. Let (W, (S, R)) be a frame, where R is the accessibility rela-
tion for O, <, and S is the relation for B, S.

(1 = 2) is straightforward.

For (2 = 1), suppose Sp(z,y); choose the valuation V' s.t. V(p) =
{z} and V(q) = T; then z IF p, so by axiom (2) z IF B, 4p so y IF Ogp
so 3z, Rp(y,z) Az Ik p. But by V, z = z, so Ry(y,x). So Sp C R;l.
The converse inclusion is similar, but uses axiom (1).

(2 = 3.) The axiom scheme (1) implies downward direction of the
rule:

B — 84C by hyp
OaB = ©48,C by K, MP
OaB = C by (1) dual form

The proof that the axiom scheme (2) implies the upward direction of
the rule is similar.
(3 = 2.) The upward direction of the rule implies the axiom (1):

oAB — ouB
B — 0,9%4B RRd

and the downward direction similarly implies (2).

Theorem 4 Necessitation follows from the axioms and rules in Table 5.

Proof.
B - = —
EE— U2.2

-B & — Op— = —

U4.1
Op—B & O y— Op— & —

<>A—|B — —
_'<>A_'B
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Theorem 5 The rules Uj.1, U4.2 and U8 hold in any frame.

Proof. Take any frame F', and any valuation V. Let M = (F, V).

U4.1. Suppose M I+ B <+ C' and z IF G4 B. Then there exists y with
R 4|(7,y) and y I B. But also, y I C, so x |- & 4C. The other half
is similar.

U4.2. Suppose M I+ B <+ C' and z IF OgA. Then there exists y with
Rp|(7,y) and y I- A. But also, R|¢|(7,y), so z IF GcA. The other
half is similar.

U8. z Ik CA(BVC)iff Iy R 4 (w,y),y IF BVC iff Jy1 Rja|(z,91), 91 IF B
or Jyz Rja|(7,y2),y2 IF Ciff zIF GaBV OAC.

Theorem 6 A rule in Table 3 holds in a frame F = (W, R) iff R has
the corresponding property stated in Table 4.

Proof.

Ul & R1. ‘«=". Let V be any valuation, and let M = (W, R, V). Sup-
pose z |Fpr O aB. Let S = |A], and take a y such that Rg(z,y) and
ylF B. By R1, x € S, so z IFp A.

‘=". Suppose Rg(z,y) in the frame (W, R); pick V such that V' (p) =
S and V(q) = {y}. Since y IF ¢, we have z IF Opg; so z |- p by Ul,
and z € S by def. of V.

U2.1 & R2.1. ‘«<=’. Suppose M |F B — A and z IF B. Then z IF A. We
have z IF C4B iff Jy s.t. y I- B, and R4 (7, y), which is true if we
set y = z.
‘=’. Suppose y € S; we prove that Rg(y,y). Let V be such that
V(p) = S and V(q) = {y}. It follows that M I ¢ — p, and there-
fore, by U2.1, M I $pq. Since y I g, we get y IF $pq. Therefore,
dz I+ g s.t. Rs(y,z). But V(¢) = {y}. Thus, z must be y, and
therefore Rg(y,vy).

Another style of proof is also possible, and is more immediate once
you see how it works. The equivalence between Ul and R1 may be seen
as follows. Let F' = (W, R) be a frame.

FIFOaB — A, all A,B "
< U RfA]\(b) C|A|, all A,B,V
& Uyer Bs'(y) € S, all 5,7
& Rg'(y) CS.all S,y
& Rg(z,y) impliesz € S, all S,z,y

\)

N

A~ N N N~
ot w
— '
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Notice the quantification is carefully stated: A and B are ‘local’ to
each line, and line 2 works for all valuations V. This quantification on
V allows us to pass to line 3: in the = direction, whatever S, T are we
can pick V such that V(p) = S and V(q) = T, for example; while in
the < direction, it is immediate by setting S = |A| and T' = |B|. The
passage from line 3 to 4 again works because S, T are locally quantified.

U2.2 & R2.2. ‘«<=’. Suppose M |F B — A and z I+ 4 B. Take y such
that R 4((z,y) and y I- B. Since M I+ B — A, y € |A]; so by R2.2,
r =y; so x|k B.

‘=’. Suppose y € S and Rg(z,y). Let V be such that V(p) = S
and V(q) = {y}. It follows that M I+ ¢ — p, and therefore, by
U2.2, M IF Opg — g. Since y IF g, z IF Opg, so z I- ¢, so z =y (by
def. of V).

U3 & R3. ‘«=’. Take any valuation such that A is satisfiable in M.
Assume M IF =0 4 B. Take any y; we will show y IF —=B. By R3,
exists z such that R|4((z,y). Since M IF =G 4B, then z I O 4B,
so we have y IF - B.

‘=’. Suppose S # () and y is given. Take V such that V(p) = S
and V(q) = {y}. So p is satisfiable, and M |} —q, since y IF q.
Therefore, by U3, M I =<{,q, so exists x such that x |- ¢,q. Then
there is a z with Rg(z, z) and z I q. But by choice of V, z = y; so

Rs(2,y).
Ub < Rb. ‘«=’. Suppose z IF O4B A C. Since z IF O4B, dy I+ B,
R‘A‘(.’E,y) By Rb5, R‘ch‘(x,y) and thus z IF O e B.

‘=’. Suppose z € S and Rp(z,y). Pick V such that V(p) = S,
V(q) = {y}, and V(r) = T. Then y I ¢ and Ry(z,y) imply that
z Ik ©pq. Since z IF p, by U5 z Ik Opapg. Therefore, Iy sty IF ¢
and Rgr(z,y'). But ¢ must be y, since V(q) = {y}, so Rsnr(z,y).

U6 < R6. See example 9 in the text.

U7 & R7
B complete implies O 4B A OB — O v B ur (1)
< B complete implies
Ui RfAl\(b) MUk s prl\(b) S Unrs R\;l\u\c\(b) (2)
& RIB)NRJIB) SR o0 (3)
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-1 -1 -1
& Rg (y) N Ry (y) € Ry r(y) (4)

& RsNRr C Rsur (5)

2 = 3 by setting B = {b}. 3 = 2 by completeness of B! 3 = 4
because we can choose arbitrary valuations; 4 = 3 by setting S, T
to be |A|, |C].

Example 8 (Last part.) The counterfactual rule

B— A
B — o,B

may be more simply stated as B4 B — (A — B) (known as MP in the
literature).

Proof. From left to right:

AN-B = A
AN-B = ©4(AN-B)
AN-B — $,-B
BaB — (A — B)

hyp.

prop. of diamond

equiv.

and right to left:

B— A B4a—B — (A — —B) [hyp.]
B AAB ANB = o4B e
B — $,B

Theorem 10 The update rules Ul-US8 translate to the counterfactual
rules given in table 7.

Proof. The proofs for Ul, U2.1 and U6 are given in examples 7, 8, 9
respectively. The proof for U5 is given using the method of section 4.2
in example 12. The other proofs may be constructed similarly. For C3
and C7, we factor out the side condition. For example, for C3, assume

OaB
(U3) and

that A is satisfiable; we show the equivalence between

—
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—Ha— (C3)
SAT =5 OuT
———— RRd OB — — hyp.
T > 0494T RR
—cq. B —B84— Ha— — — C3
O AB4—
— U3 B — —
—Hp—
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