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ABSTRACT

We explore the relationship between preference-based and distance-based semantics
for defaults. This is done by defining several categories for default semantics. Some
of these are preference-based, some are distance-based, and some are mixtures of
the two paradigms. We exhibit the relationships between the categories by defining
maps between them, which we show to be adjunctions.

1. Introduction

A default is a piece of information which expresses a generality for which it is known
that there may be exceptions. The need to he able to express defanlts in specifications
is well-established™ 1% 13 For example, using defaults we may specify the intended
behaviour of a system in such a way that this behaviour may be overridden when some
exceptional circumstance arises. Using defaults makes specifications more readable,
more modular, and more reusable!®.

Typically, a specification will consist of two parts: some facts and some default
information. The facts are the statements that must hold in the specification, and
the defaults are statements which should hold provided there is no contrary evidence.
The defaults may also be ordered by priority® 3 °. In this paper we will not discuss
the precise structure of the defanlt information (for example, whether it is prioritised
or not).

Our aim is to explore the relationship between several model-theoretic frameworks
for the semantics of defaults. Such frameworks adopt the standpoint that, given
certain facts and defaults, we must look at those models of the facts which come
closest to satisfying the default information. The point is that it is not in general
possible for models of the facts to satisfy the defaults. The criteria for choosing among
the models of the facts is that they satisfy the defaults as much as possible.

“This work was performed while this author was affiliated to Department of Mathematics. Instituto
Superior Técnico, Av. Rovisco Pais, 1096 Lisbon Codex, Portugal.

We may broadly distinguish between two approaches in model-theoretic semantics
for defaults: the preference-based approach and a distance-based approach. The
preference-based approach™ & 121 employs a preference relation which orders inter-
pretation structures, or perhaps sets of interpretation structures, according to how
well they satisfy the default information. By convention, those interpretations which
are lower in the ordering are the ones which better satisfy the defaults.

The distance-based approach!® - 11 stipulates a measure of distance between two
interpretations. This is independent of the default information, and is used in con-
junction with the default information to find the models of the theory which are
closest to the models of the default information.

In this paper we adopt the categorical standpoint whose slogan is: “know your
objects via their morphisms™®. The meaning of this slogan is that a mathematical ob-
ject can be understood properly only by also understanding the relationship between
such objects. Thus, for instance for the preference-based approach, as well as study-
ing preference relations, we should also study how preference relations are related
to each other. There are several possible relationships between preference relations
which we could define — in categorical language, we say that there are several no-
tions of morphism but an intuitive possibility is to focus on their granularity of
defeasibility.

Suppose we have some facts F' and some defaults D. Default logics work by
reasoning classically with F' together with some part of D which is consistent with
F. Where they might differ is in the extent to which they decompose D to find
components of it which are consistent with F'. One default logic may have a very
coarse granularity, just checking whether D is consistent as a whole with #'. Another
logic may be much finer, splitting D in many ways to find parts of it which are
consistent with F'. The two logics described differ in their granularity of defeasibility.

In terms of preference relations, we will see that one preference relation is coarser
than another one if the first is a subrelation of the second. Thus, our notion of
morphism in the category P of preference relations is simply inclusion.

In a similar way we will describe three other categories, which are called D, D,
and DP. The objects in each category share a mechanism for handling defanlts, such
as the preference relation mechanism of P. The morphisms express whether one such
object is coarser (or finer) than another.

Therefore, more specifically, our aim is to be able to translate between these cat-
egories of default logics in such a way that we preserve the granularities. Concretely.
we will seek to establish adjunctions between the categories. An adjunction between
two categories is a pair of maps going in opposite directions between the categories,
such that the round trip from either category back to itself via the composition of
the maps returns an object which bears the sort of relationship to the original ob-
ject that is specified by the morphism. This will be stated formally later in the paper
(definition 1.2.3). The notion of adjunction is a generalisation of the notion of inverse.

No prior exposure to category theory is needed to understand this paper. Indeed,



for most of the paper we will require only a special case of the notion of category,
called a pre-order category, in which there is at most one morphism between any two
objects. This is much simpler than the general case, and the notions of functor and
adjunction which we will require (and define) are correspondingly simpler.

The paper is structured as follows. In the remainder of this section, we review
some preliminaries. Section 2 is the main section, in which we introduce the two most
important examples of default frameworks, namely P and D (sections 2.1 and 2.2).
Their relationship is explored in section 2.3 by giving adjunctions between these and
other categories. A diagram illustrating the various adjunctions is given in figure 1.
In section 3 we make some remarks about the application of these results to the idea
of default institutions. Finally, we conclude with section 4.

This paper is the first part of some work that will be continued in a future paper.

1.1. Assumptions and notation

Throughout this paper, we will assume a collection M of interpretation structures.
We will not refer explicitly to any logical language: instead, we will treat a sentence
or a theory simply as the set of its models: that is, as a subset of M.

If < is a relation on the set X and Y C X, then y € Y is said to be <-munimal
in Y iff Vy' € Y. (y £ y). We define Min (V) = {y € Y | y is <-minimal in Y}. We
use C to mean subset, and C to mean strict subset.

1.2. Pre-order categories

In this section we briefly review the category theory we require. There are many
books on category theory to which the reader may refer for a fuller picture, but we
particularly recommend the Chapter 2 of Crole? for its readability and because it
deals explicitly with the special case of pre-order categories which we require for this
paper.

1.2.1 Definition. A pre-order category (C,—) is simply a pre-order, that is, a set
C equipped with a reflexive and transitive relation —. When A — B (A.B € C) we
say that there is a morphism from A to B. If A — B and B — A, we write A — B.
1.2.2 Definition. Let (C,—¢) and (D, —p) be pre-order categories. A functor F
from C to D is a monotonic map from C to D, that is, a map such that if A —- B
is a morphism in C then there is a morphism F(A) —p F(B) in D. If F is such a
functor we write ¢ L D.

1.2.3 Definition. Let (C,—¢) and (D, —p) be pre-order categories, and L and R
be functors from C to D and D to C respectively, a situation we may write as

C D.

Then L and R are said to form an adjunction, with L as the left adjoint and R as
the right adjoint, if

e For any A € C. there is a morphism A —¢ R(L(A)) in C. and
e For any B € D. there is a morphism L(R(B)) —p B in D.

We write the fact that L is left-adjoint to R as L - R.

1.2.4 Proposition. The following facts hold about adjunctions. Proofs may be
found in Crole?.

1. L4 R iff for each A € C and B € D, (L(A) —p B iff A —¢ R(B)).

2. When adjoints exist they are unique up to isomorphism. If ¢ L D is
a functor and if L 4 Ry and I 4 Ry then, for all B € D. Ri(B) «<p Ra(B).
Similarly, left adjoints are also unique up to isomorphism.

3. Adjunctions compose to give other adjunctions. Suppose

Ly Lo
C D £
Ry Ry

are functors and L 4 Ry and Ly 4 Rs. Then
LooL,

RioRy
are functors and Ly o Ly 4 Ry o Rs.

There is a special case of adjunction known as the co-reflection, which has stronger
conditions.

1.2.5 Definition. An adjunction L 4 R as described in 1.2.3 between C and D is a
co-reflection if, for each A € C. we have R(L(A)) < A.

Essentially, this means that C is isomorphic to a subcategory of D.

2. Model-based frameworks for defaults
2.1.  The preference-relation framework P

The preference-relation framework P is based on the idea that interpretations are
ordered according to how well they satisfy the defaults; compare with the standard
works™ 8 121 on preferential models. Suppose some default information is given. We
assume that, however it is presented syntactically, there is some machinery which we
can use to reduce it to a set M of interpretations. The set M is the set of ‘ideal” or
‘most normal’ models as far as the defaults are concerned.

The objects inside P are thus preference relations indexed by subsets of M. If
M C M then <,y is the relation on M x M which orders the elements in M according
to how close they are to being inside M. The expression z <,; y means that z is
closer to being a member of M than y is.



2.1.1 Definition. An object in the category P of preference relations is a relation

< in M x P(M) x M, such that
1. transitivity: z <3, y <as 2 implies z <,/ 2.

2. base: If 2 € M and y ¢ M then z <, y; and if 2 <y, y then y ¢ M and
M+ .

3. chain: there is no infinite descending chain of the form

s =M T3 <) T2 <) T

4. unions: If I # @, then Vi € I. z <), y implies = =U,., M Y-
ier Tt

A morphism exists between objects <; and <5, written <; — <5 iff <y C <, as
relations.

The transitivity condition is very intuitive; for if z is closer to M than y is, and
that y is in turn closer than z, then z must also be closer than z. The condition
called base means that the elements of M are precisely those which are minimal in
~<r; this is proved in the next proposition. The chain condition is there for technical
reasons, namely that we will require the ability to find models which are <;; minimal
within arbitrary subsets of M. Note that the chain condition also implies that <,
is irreflexive. The unions condition says that if z is closer than y to each of a family
{M,}ier of sets, then 2 is closer than y to the umion of those sets.

The chain condition corresponds to the stopperedness condition prevalent in the
literature®. Usnally stopperedness is stated as saying that, for any 2 € Mod(¢) there
is a y < 2 with y minimal in Mod(¢). In the setting of this paper, we simplify
by treating formulas just as the set of their models. Therefore the condition of
stopperedness becomes: for any M C M and @ € M there is a y < z with y minimal
in M. This is equivalent to the chain condition in the definition above.

2.1.2 Proposition. y is <y-minimal iff y € M or M = @.
Proof. = If y € Ming, (M) and M # @, pick any 2z € M. Then 2 £5; y so by the
base condition, y € M.

< Suppose y &€ Ming,, (M): we will prove that y ¢ M and M # @. Take z such
that <y y. Then by base, y ¢ M, and M # @. |

The notion of morphism in P is supposed to reflect the granularity of defeasibility.
Thus, if < is coarser than <’, we expect that more should be derivable from a set
of facts and a set of defaults using <’ than with <. This means that there should
be fewer minimal models (more information derivable) of N according to </, than
according to <37. This is indeed the case.

2.1.3 Proposition. < — <"iff Y C M, N C M. Ming, (N) C Ming, (N)

2.1.4 Example. Consider the default p A g A 7, represented by the set of models
M = {111}. (Notation: 001 is the element of M which assigns false to p and ¢ and
true to 7, etc.) Then the following three Hasse diagrams represent three possibilities
for <,;. All satisfy the conditions of P.

000 000

\
| P
AN
000001 myﬂ/}yno 1T0>(m 0(‘]1 1T0><010><0T1
11 110\ \101 011 110\ 101 /011
.
)7 N
111 111
Moreover, the three possibilities for <, are in ascending order of granularity. All

distinctions made by the first are also made in the second, and all those of the second
occur also in the third.

2.2.  Distance functions; the category D

We now turn to a very different way of structuring the set M in order to equip it to
deal with defaults. We will study the idea of stipulating a distance function which
will control defeasibility. A distance function takes two interpretations and returns
a value which is interpreted as measuring how different the two interpretations are.
Appealing examples include the following:

2.2.1 Examples (Cf. Schobbens'® 1), Let M be the set of propositional valuations
for finitary propositional logic (i.e. the number of proposition symbols is finite). The
coarsest distance function is the following one, which simply returns ‘zero’ or ‘unit’
distance:
g ifz=y
dy(z.y) = i
1(@.y) { {*} otherwise

Another distance function is the following one,

dy(z,y)=({p|zlFpandy If p}.{p| z I pand y IF p})

which gives us a pair of sets: the proposition symbols satisfied by « but not by y on
the one hand, and those satisfied by y but not = on the other.
A third example is

dz(z,y)={p|azlFpandyfFp}U{p|zlf pandylF p}.

which says that the distance between twao interpretations is simply the set of propos-
ition symbols on which they differ.

In general, and in the examples above, distance values are not real numbers. They
are of course ordered, but not necessarily totally ordered. We will allow any partial
order. In the examples above, d; and d3 are ordered by subset, while ds is ordered by
subset on the components.



2.2.2 Definition. An object (d, <) in the category D of distance functions is a func-
tion d from M x M to a strict partial order (A, <), satisfying

1. base: if y # v then d(z,z) < d(y.v): and if d(z.u) < d(y.v) then y # v.

2. chain: there is no infinite descending chain ... < d(z3,u3) < d(z2,us) <
d(wq.1u1).

A morphism exists between objects (dy, <1) and (da, <), written (dy, <1) — (d2, <5)
or sometimes more briefly as dy — do. iff for all z.y,u,v € M, dy(z.u) <1 dq(y,v)
implies dy (2, 1) <o da(y, v).

As before, the notion of morphism is intended to capture granularity.

The reader might expect a condition saying that (A, <) contains a bottom element
L and that d(z,u) = L iff 2 = v. We do indeed allow such an arrangement, in the
sense that the conditions we impose in 2.2.2 are weaker. However, it turns out that it
is more convenient not to stipulate a single minimum value. The conditions of 2.2.2
are strong enough for our purposes; in particular:
2.2.3 Proposition. d(y.v) is minimal in the range of d iff y = v. Moreover, in the
range of d every minimal is less than every non-minimal.

Proof. y=v= Vao,u d(z,u) £ d(y,v) by second part of base
< d(y.v) minimal in the range of d by definition of minimal
= y=uv by first part of base

The second part of the proposition follows immediately from the base condition. B
2.2.4 Proposition. The three examples in 2.2.1 are in D. with d; — do and dy — d3.

To check whether the notion of morphism really does capture granularity, we must
define how a distance function is to be used. Given a set M of ‘ideal’ interpretations
according to the defanlts and a set N of models of the facts, we wish to find (as we
did in the preference relations case) which models in N are closest to being in M.

2.2.5 Definition. Let M, N C M. The models in N which are closest (according
to d) to M are given by

Cu(N)={z e N|Va'e N.Iye M.Vy' € M. d(z'.y') ¢ d(z.,vy)}

This says that the closest elements of N to M are those elements 2z of N for
which, given another element z’ of N, there is a distance from z to M which is
minimal among all distances 2/ to M.

Intuitively, d; being coarser than dy means that do will report fewer interpretations
in N closest to M (i.e. more information) than d;. Our notion of morphism mnst
therefore verify the following proposition:

2.2.6 Proposition. (dy, <;) — (dy, <o) implies C3;(N) C C1;(N).
Proof. Suppose (di, <1) — (da, <2).

NV (32’ € N.Yye M. 3y € M. dy(2,y') <y dy(2,9))
NV (32" € N.Vy e M. 3y € M. dy(2',y') <5 do(x.y)) by hypothesis
C3,(N)

|

2.3.  The relationship between D and P

Our aim at the outset of this work was to establish an adjunction between P and D.
It is still an open question whether this is possible. In this paper, we will content
ourselves by providing adjunctions between P and D via several other categories
which will introduce in this section.

To motivate this further, we’ll now describe a functor from D to P which has
several good properties. Think of this as a way of translating a distance function in
D into a preference relation in P which is somehow equivalent to it. Given a distance
function d, we’ll define the preference relation < as follows:

=<0y N #@NANYv e M. Ju e M. d(z,u) < d(y.v). (%)

To check whether this really is a functor, it is necessary to verify that the < thus
defined satisfies the conditions of P given in 2.1.1, assuming that d satisfies the
conditions of D in 2.2.2. It is also necessary to verify that if d; — do and dy,ds are
transformed to <1, <», then <; — <5. All these facts are true; we’ll verify them later
in this section.

The intuition behind the definition is simple. It says that z is closer to the set M
than y is if (M # @ and) for every distance y to M there is a distance 2 to M which
is smaller than it. The proviso about the empty set is just to express the fact that
no point is closer than some other point to being in the empty set.

This way of transforming elements of D to elements of P has the property that if
we focus on any subsets M, N of M and ask which elements of N are closest to M,
then d and < gives us the same answer.

2.3.1 Proposition. Let d and < be related by (%) above, and M, N C M. Then
Cu(N)=Min,,,(N).

Proof.
y € Min<y (N)< ye NAVz € N.ow £y y
& ye NAVz e N.Jve M. Yue M. d(z,u) £ d(y,v)
< yeCy(N)
|
The open question alluded to at the beginning of this section can now be cast
as follows: does this functor have an adjoint? In this paper, we go part of the way
towards answering it. We define the intermediate categories D~ and DP. We give



Fig. 1. The following diagram illustrates all the categories of default logics and the functors between
them. Each L functor is left-adjoint to the corresponding R functor. Moreover, each adjunction
L 4 R is a co-reflection. This means that the composition R o L is an isomorphism. Thus, for
example, if you start with < in P and map it via Ly, to DP and then back again via R,, you get
back to the same relation <.

several adjunctions between them and D and P, which are summarised in the diagram
in figure 1. The composition of the functors Ry, L3 and R in the figure is the functor
described by (%) above.

The two categories which mediate between D and P are intuitive and help clarify
the relationship. The first category generalises D slightly. Instead of positing concrete
distance values and then imposing an ordering on them, as we did in D, we simply
order pairs of interpretations.

2.3.2 Definition. An object in the category D~ is a relation < in M x M x M x M
such that

1. transitivity: o, u < y,v < z,w implies z,u < z, w.
2. base: if y # v then z, 2 < y,v; and if 2, v < y,v then y # v.
3. chain: there is no infinite descending chain ... < z3,u3 < o, uy < Ty, uy.

A morphism exists between objects <y and <5 iff <1 C <, as relations.

Thus, D~ abstracts away from the particular values of d(z,y). In D™, we can only
make comparisons of the form d(z,u) < d(y,v). which we write simply as z. v < y. v
we cannot look at the actual values of d(x,u). Notice that the chain condition in D~
implies irreflexivity.

The relationship between D and D~ will be established by giving functors between
them which form an adjunction.

L
2.3.3 Definition/proposition. The functors p-Z - D are defined by

Ry

o Li(<) (z.u) ={(z,w) | z,w < x,u}, ordered by proper inclusion.

o z.uRi(d)y.ve dz,u) <dy,v).

This is a ‘definition/proposition’ because it defines the functors; however, it is neces-
sary to check that they are indeed functors.

The intuition for R; is simple: it abstracts away from the distance values in D.
Ly. on the other hand, introduces some concrete distance values which are simply
down-sets in D~

Proof. We verity that
(a) Li(<) satisfies the conditions of D.
(b) Ry(d. <) satisfies the conditions of D~.
(¢) Ly preserves morphisms, i.e. if <4 — <5 then L;(<q)—Li(<2).
(d) Ry preserves morphisms. i.e. if (dy, <1) — (da, <) then Ry(d;, <1)—Ri(da, <2).

The details of these verifications may be found in the Appendix. |
2.3.4 Proposition. L; 4 R;; moreover, this adjunction is a co-reflectiont.

Proof. We verify the following.
1. Li(Ry((d,<))) — (d,<). Let (d',<') = Li(R1((d, <))).

d'(z,u) < d'(y,v)
= {(z.w) | z,2w =24V 2z, wR(d, <)z, u}
C{(zw) | zow=y.vVz,wR(d, <)y, v} Nz,u#y.v
= Vz,w. (z,w=z,uVd(zw) <dz,u)=
zyw =y, vVd(z,w) <d(y.v))ANz.u#y. v
= (z,u=y,vVd(z,u) <d(y,v)) ANz, u#yv by putting z,w = x,u
= d(z,u) <d(y,v).

2. Ry(Ly1(<)) < <.

z,uRy(L1(<))y,v
& Li(<) (z,u) CLy(<) (y,v)
& YVzow. (zow < zou=z,w <Yy v) A
Fzow. (z,w L vu A z,w <y, v)
< zu<y,v.

TReinhold Heckmann has pointed ont that this co-reflection is actually an equivalence. Tn other words,
Ly and Ry are not merely adjoints, but are inverses (up to isomorphism in D). This means we need never
work with concrete distance values, but can always abstract away from them as we do in D7. It also means
that the diagram in figure 1 should be drawn with D~
the functors between them with names suggesting left and right, since we have Ly 4 Ry and Ry - L.

Technically, the proof of equivalence can be made as follows. Condition (d) in the proof of 2.3.3 can be
strengthened to (di,<i) — (d2, <2) iff B1(d1,<1)—R1(d2,<2). From 2.3.4 we have R1(L1(R:(d))) = R(d).
which by the strengthening of (d) yields Li(Bi(d)) < d.

and D at the same level. There is no need to label



Now our task is to establish a relationship between D~ and P, i.e. between judge-
ments of the type z,u < y,v and those of the type = <;; y. The first judgement
says that z is closer to u than y is to v, while the second says that = is closer to M
than y is to M. The next intermediating category is designed to combine these two
types of judgements. We will define a category DP in which z, M T y, N means that
2 is closer to M than y is to N. Thus, D~ is the special case in which M, N are
singletons, and P is the special case in which M = N.

2.3.5 Definition. An object in the category DP is a relation C in M x P(M) x
M x P(M) such that

1. weak transitivity: =z, M T y, M T z, M implies 2, M T 2z, M; and z. {u} C
Y, {’1)} C z, {’m} implies . {71} C z, {’m}.

2. base: if z € M and y ¢ N then 2, M C y, N; and if 2, M C y, N then y ¢ N

and M # @.
3. chain: there are no infinite descending chains of the form ... C 23, M3 C
2o, Mo T xy. M.

4. unions: if I # @ then Vi € I. . M; T y. N, implies z, U;e; M; T y,Uier Ni.
5. monotonicity: x. M =y, N and M C M’ and N’ C N implies 2, M' =y, N'.

As before, a morphism exists between objects [y and Co iff ©; C 5 as relations.

This category allows us to compare distances from interpretations to sets of inter-
pretations. Thus, , M T y. N means that x is nearer to the set M than y is to the
set N; think of this as saying that z is more nearly a member of M than y is of N.
Whereas D~ tells us how to order distances between points, and P tells us how to
order distances from points to a fixed set, DP does both these jobs at once by telling
us how to order distances between points and sets of points. To put this in another
way, it is clear how to extract from an object T of DP either an object like those of
D~ or an object like those of P. This is the intuition behind the forgetful functors,
which we’ll see shortly.

A particular point of interest is that the weak transitivity condition does not
guarantee full transitivity of the form

z, M Ty NCz Kimpliesz, M T z K.

This is guaranteed to hold only if M = N = K or M, N, K are all singletons. We
may think of this as saying that a particular set M imposes an ordering on points
z,y, given by <y, y in P and z, M T y, M in DP. This ordering is transitive. But
DP also allows comparison of the orderings given by two different sets M and N.
Transitivity of such comparisons is not guaranteed.

The conditions of base and chain resemble those we have seen before in P and D~.
As before, the chain condition implies irreflexivity. Unions is the natural counterpart

of unions in DP, while monotonicity tells us that if you grow M, then the distance
2, M can only shrink.

The relationship between P and D~ is established by establishing a co-reflection
between each of them and DP.

2.3.6 Definition/proposition. The functors P

defined by
o o.M Ly<)y N (IK.NCKCMAMANz <y V(ze MAygN).
o s Ry(C)yyye . My M.
o s M Ly(<)y. Noe M#ASANVve N.Jue M. z,u <y.v.
e z,u R3(C)y.ve a {u} Cy {v}

To understand Lj, notice that we start with the ability to order the distances
of points from a fixed set (P), and we want to order distances from arbitrary sets
(DP). The strategy of this functor is as follows. If it happens that the arbitrary sets
are related by inclusion (N C M), then we can use the information we have in P by
looking at intermediate sets (the K). Otherwise, we can only tell in rather degenerate
circumstances, namely those of DP-base.

L3 uses the uper power-ordering. We say that the distance z, M is less than the
distance y, N if every distance y to v (v € N) is beaten by some distance z to u
(we M).

On the other hand, the maps Ry and R3 simply extract the special case which P
and D~ are of DP.

Proof. We verify that

The details of this verification are in the Appendix. |

2.3.7 Proposition. Ly, 4 Ry and L3z 4 R3. Moreover, both these adjunctions are
co-reflections.

The proof of this proposition is given in the appendix.



3. Default institutions

An institution® is a presentation of a logic woth emphasis on the possibility of dif-
ferent signatures (vocabularies). Institutions are useful for structuring specifications.
Different components of a structured specification use different signatures. We recall
the definition of institution:

3.0.8 Definition. An institution (Sig, Sen,Int,IF) consists of a category Sig of sig-
natures, together with the two functors Sen from Sig to Set, and Int from Sig to
Set®. Given a signature X, Sen(X) and Int(X) are the sets of sentences over ¥ and
interpretations over Y respectively. IF is a 3-indexed family of satisfaction relations:
IFs is a relation in Int(X) x Sen(X).

3.0.9 Definition. A morphism h between institutions (Sig, Sen,Int,IF) and (Sig’,
Sen’, Int’, IF) is a functor A : Sig — Sig’, a natural transformation h, : h;Sen’ = Sen,
and a natural transformation hy : Int = h;Int’, such that the following satisfaction

condition holds:
2 ks hag (¢') iff hpe () ”_Ih(z) ¢,

for each z € Int(X) and ¢’ € Sen’(h(Z)).

Our categories P, D ete. can be viewed as candidates for the machinery which
must be added to an institution in order to equip it for handling defaults. Thus,
definitions 2.1.1 and 3.0.9 can be combined to give:

3.0.10 Definition. Let 7 be the institution (Sig, Sen, Int, IF). Then P(7) is the pref-
erence default institution based on I given by I together with a ¥ x Sen(X)-indexed
family of preference relations: <y 4 is a relation in Tnt(X) x Int(2) satisfying

1. abstractness: if ¢ =5 1) then <5, = <5,
2. transitivity: @ <x 4 y <v.4 z implies © <z 4 2

3. base: if  lkx ¢ and y g ¢ then 2 <54 y; and if 22 <54 y then y s ¢ and ¢
is satisfiable.

4. limit: there is no infinite descending chain of the form ...xz3 <54 22 <v 4 27.

3.0.11 Definition. A morphism i between preferential institutions (Sig, Sen, Int, IF, <)

and (Sig'.Sen',Int',\F', <') is a morphism between the institutions (Sig, Sen, Int, IF)
and (Sig’, Sen’, Int’, IF') such that, for all ¥ in Sig, 2,y € Int(X) and ¢’ € Sen’(A(X)):

T =S h,(6) Y implies hse () <’,,(v_m, h ()

However, the adjunctions described in this paper do not extend to the case of such
default institutions without further work.

4. Conclusions

Starting from a class of interpretation structures M, we have examined several pro-
posals for structuring the class in order to equip it for reasoning with defaults. The
two most intuitive proposals are P, which is based on preference relations, and D,
which is based on distance functions. Various adjunctions were found, which relate
the proposals in terms of granularities of defeasibility. These are summarised in figure

1.
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Appendix

Details of verifications too long for the main body of the paper are given here.
Proof of 2.3.3 (a) Let (d'.<') be Li(<): then d'(z,u) = {(z.w) | z,w < x,u} and
d'(z,u) <" d'(y,v) & d'(z.,u) Cd(y,v). Plainly <’ is a strict partial order. We must
also verify the conditions of D.

1. Base: Suppose y # v: we must show that d'(z,z) <’ d'(y,v). Suppose (z,w) €

d'(z,z); then z,w < z,z. But z,z < y.v by D -base: so z,w < y.v and
(z,w) € d'(y,v). Hence d'(z,2) C d'(y,v). To show strict subset, observe
that (y,v) € d'(y,v) but, since (y,v) # (2, 2) and (2, 2) is <-minimal, (y,v) &
d'(z,z).
For the second part of base, suppose that d'(z, u) <’ d'(y,v); we must show that
y # v. Suppose y = v; then d'(y,v) = {(y,v)}. However, (z,u) € d'(z,u) C
d'(y,v) implies that d’(y, v) is a proper superset of {(z, %)}, so contains at least
two elements, a contradiction. Therefore, y # v.

2. Chain. Suppose ... < d(z3,uz) < d(x9,us) < d(21,u7)is a chain. Then {(z, w) |
z,w < agouz} C {(zow) | zow < woug} C {(2,w) | z,w < 2y, 0y}, from which
we can extract the chain ... < 23, uz < o, us < x71,uy, contradicting D~ -chain.

(b) The conditions follow directly from their counterparts in D.

!

(¢) Suppose <; — <s; we prove (df, <) — (db, <4), where (d}, <!) is Li(<;).

d

W u) <4 dy(y.v)

& Yeow (zow<gzu=zow <y, v) Adzw. (2w €y zouAz,w < Y, v)
< x,u <Y

= r.u<2Y.V

& dh(x,u) <b dy(y.v).

(d) Suppose (dy, <1) — (da, <2); we prove <} — <4, where <! is R;(d;, <;).

zou <y y,v e daz,u) <y d(y,v)
= d(z.u) <9 d(y,v) using hypothesis
< T, <'2 Y, v

Proof of 2.3.6 (a)

1.

(&3]

Weak transitivity: suppose z, M Lo(<) y, M Lo(<) z, M. Then [z <y yV (2 €
MAyg M)Ay =<aurzV(ye MANzg M)]. Sincexz € M Ay & M implies
z < y, and similarly for the case with y and z, this condition reduces to z <,
y Ay <ar z. Therefore, by <y -transitivity, z <y z and so 2, M Ly(<) z, M.

Turning to the second case in weak transitivity, suppose z, {u} La(<) y, {v} Lo(=
z, {w}. A similar case analysis to the one above, together with applications of
P-base and P-transitivity, leads to the conclusion that z, {u} Lo(<) z, {w}.

. Base: 2 € M Ay ¢ N implies 22, M Lo(<) y, N trivially.

For the second half, suppose 2, M Ly(<) y, N, ie. (K. N C K C M ANz <k
y)V(z € MAy & N). We show that each disjunct impliesy & NAM # @. For
the second disjunct, it’s immediate. For the first, pick such a K. By P-base,
K # @& and y ¢ K. Since N C K C M, this means M # & and y ¢ N.

. Chain: suppose ... Ly(=<) 23, {uz} Lo(=<) w2, {ua} La(<) x1.{u;} was such a

chain; we will obtain a contradiction by finding a chain that violates P-chain.
For each 4 > 0, we have (u;41 = u; A w41 < {ui} 23) V (Tip1 = tig1 N\ w; # uyp).
We will show that the second disjunct cannot hold for any . For suppose
Zip1 = U;y1; then taking 7 + 1 in the formula stated, we obtain (u;40 = ;41 A
Tiga <{uisr} Tit1) V (Tiga = Uipo AN iy F# w;41), and since the second disjunct
cannot hold by hypothesis, we obtain z;12 <y} Tit1. But by P-base, this
implies 2,41 # u;y1, contradicting the hypothesis. Therefore, we find that Vi >
0. (wig1 = u; AN Tig1 <{u;y ;). giving us the chain ... <(,) T3 <{u,} T2 <{u,} 21
which violates P-chain.

Now suppose ... Lo(=<) z3. M Lo(<) o, M Ly(<) z1,M; the argument is
similar. We get Vi > 0. [2;41 <27 2 V (25010 € M A2y & M)]. Again, we argne
that the second disjunct can never be selected; since it implies z;,4 € M, and
either disjunct of the condition for i + 1 gives us 2,41 € M. We therefore must
have Vi > 0. 2,41 < z;, contradicting P-chain.

. Unions: suppose I # @ and z, M; Ly(=<) y. N; for each i € I. Then for each

iel, (AK,. N; C K; C M;Ax <k, y)V(z € M;Ay & N;). Let M = ;7 M; and
N = Ujer N;. Note that y ¢ N; for each 4, since z <y, y implies y ¢ K; implies
y & N;. If for some i, z € M;, then 2 € M Ay ¢ N and so 22, M Ly(<) y, N.
Otherwise, for each i, 3K;. N; C K; C M; Az <, y. Put K = U;c; K;: then
N C K C M and by P-uniouns, & <f y.

. Monotonicity: clearly, if (3K. NC K C M Az <xy)V(z € M Ay ¢ N) and

M C M and N'C N then (3K. N'C K C M ANa <gy)V(z e M ANy & N').



(b) The properties follow directly from their corresponding properties in DP; we will
illustrate the case for P-chain.

4. Chain: from the chain ...z3 Ro(C),, 2o Ro(C),, 21 we obtain the chain
co.x3. M T xo, M T xy, M, violating DP-chain.

(c)

1. Weak transitivity: we can verify the stronger condition of transitivity in this
case.

x, M L3(<) y, N Ly(<) 2, K
& Vie K.Ane Noyn<z,kAVne€ N.dm e M. z.m < y,n
AM#S AN # S
= Vike K.dne N. (yyn<zkAIme M. x,m <y,n)\NM+# &
= z,M Ly(<) 2. K

2. Base: suppose 2 € M Ay ¢ N; we need to prove z, M L3(<) y, N, i.e. Vv €

N.Jue M. z,u<y,vANM# . Let v € N. Then v # y. Put u = 2. Then by
D~-base, z,u < y,v. Moreover, M # & since = € M.
Now suppose 22, M Lz(<) y, N; we prove y € N and M # @&. The second part
follows immediately when L3(<) is expanded. For the first part, suppose y € N.
Since Vo € N. Ju € M. z,u < y,v, by taking v = y we obtain z,u < y,y for
some u, violating D~ -base.

3. Chain: suppose ... L3(<) 23, M3 L3(<) @2, My L3(<) z1,My. M> # @ by
base, so Juz € Mj3. x3,u3 < s, us. Therefore, Juy € My. x4, uy < x3.u3. cte,
violating D~ -chain.

4. Unions: suppose [ # & and o, M; L3(<) y, N; for each i € I, i.e. M; # @ A\Yv €
N;. Ju e M;. z.y < y.v. Set M = Ujer M; and N = U;e; N;. Then M # @:
and if v € N, then v € N; for some i, so pick w € M; C M with xz,u < y,v.

5. Monotonicity: Clearly M # @ AVv € N. Ju € M. z,u < y,v and M C M' and
N’ C N implies M' £ @AYo e N'.Ju e M'. z,u < y,v.

(d) The properties follow directly from their corresponding properties in DP; we will
illustrate the case for D™-base.

3. Base: y#u = uz,{z}Cy.{u} DP-base
= z,2 R3(C) y, u.

(e) Suppose < C <.

2, M Iy(<)y Neo AK.NCKCMAz<xy)V(zre MAygN)
= AK.NCKCMAz=<pyV(@eMAy¢gN)
& o, M Ly(<")y, N

(f) Suppose — C .
zR(C)yye a MCy M
=z MC'y M
S R(C)yy
(g) Suppose <1 C <.
z, M Ly(<1)y, N & M#SAVve N.Jye M. z.u <y y,v
= M#ASAVoe N.FJye M. z,u <, y,v
& z. M Ly(<s) y. N
(h) Suppose C; C Cs.
z,u R3(Cq) y,v < z,.{u} C1y. {v}
= T, {71} Loy, {’1)}
< z.u R3(Co) y, v
Proof of 2.3.7 We verify the following.

1. There is a morphism Lo(Ro(C)) — C.

2, M Ly(Ro(C)) y, N

tige

(K. N
(K. NCKCMAz,KCy,K)V(
(N C
z, MCy, N

2. There is an isomorphism Ry(Ls(<)) < <.

2 Ro(La(=))y; y & 2, M Ly(<) y, M
S z=<yyV@eMNANyg M)
< @ =<puYy
3. There is a morphism L3(R3(C)) — C.

2, M Ly(R3(C)) y, N ©M # @ AVv € N. Ju € M. z,u R3(C

& M#ASAVve N . FJue M.z {u} T

= Vv e N. .z {u,}Cy{v}
= 2.Uen{uw.}Cy N
= a2, MCyN

4. There is an isomorphism R3(Ls(<)) < <.

xou Ry(La3(<)) y,v & a{u} La(<) y,{v}
< r.u<Y,v.

NCMAz, MEZy N)V(z€MAq

CKCMAMAzR(C)py)V(ze MAygN)

zr€MANy¢gN)
y ¢ N) DP-mono

)y.v

y. {0
skolemising
DP-unions

DP-monotonicity



