
ADJUNCTIONS BETWEEN DEFAULT FRAMEWORKSPART 1MARK RYAN�School of Computer Science, University of BirminghamEdgbaston, Birmingham B15 2TT, Englandmdr@cs.bham.ac.ukAM�ILCAR SERNADAS and CRISTINA SERNADASDepartment of Mathematics, Instituto Superior T�ecnico,Av. Rovisco Pais, 1096 Lisbon Codex, Portugalfacs,cssg@inesc.ptABSTRACTWe explore the relationship between preference-based and distance-based semanticsfor defaults. This is done by de�ning several categories for default semantics. Someof these are preference-based, some are distance-based, and some are mixtures ofthe two paradigms. We exhibit the relationships between the categories by de�ningmaps between them, which we show to be adjunctions.1. IntroductionA default is a piece of information which expresses a generality for which it is knownthat there may be exceptions. The need to be able to express defaults in speci�cationsis well-established1, 10, 13. For example, using defaults we may specify the intendedbehaviour of a system in such a way that this behaviour may be overridden when someexceptional circumstance arises. Using defaults makes speci�cations more readable,more modular, and more reusable10.Typically, a speci�cation will consist of two parts: some facts and some defaultinformation. The facts are the statements that must hold in the speci�cation, andthe defaults are statements which should hold provided there is no contrary evidence.The defaults may also be ordered by priority2, 5, 9. In this paper we will not discussthe precise structure of the default information (for example, whether it is prioritisedor not).Our aim is to explore the relationship between several model-theoretic frameworksfor the semantics of defaults. Such frameworks adopt the standpoint that, givencertain facts and defaults, we must look at those models of the facts which comeclosest to satisfying the default information. The point is that it is not in generalpossible for models of the facts to satisfy the defaults. The criteria for choosing amongthe models of the facts is that they satisfy the defaults as much as possible.�This work was performed while this author was a�liated to Department of Mathematics, InstitutoSuperior T�ecnico, Av. Rovisco Pais, 1096 Lisbon Codex, Portugal.

We may broadly distinguish between two approaches in model-theoretic semanticsfor defaults: the preference-based approach and a distance-based approach. Thepreference-based approach7, 8, 12, 1 employs a preference relation which orders inter-pretation structures, or perhaps sets of interpretation structures, according to howwell they satisfy the default information. By convention, those interpretations whichare lower in the ordering are the ones which better satisfy the defaults.The distance-based approach13, 14, 11 stipulates a measure of distance between twointerpretations. This is independent of the default information, and is used in con-junction with the default information to �nd the models of the theory which areclosest to the models of the default information.In this paper we adopt the categorical standpoint whose slogan is: \know yourobjects via their morphisms"6. The meaning of this slogan is that a mathematical ob-ject can be understood properly only by also understanding the relationship betweensuch objects. Thus, for instance for the preference-based approach, as well as study-ing preference relations, we should also study how preference relations are relatedto each other. There are several possible relationships between preference relationswhich we could de�ne | in categorical language, we say that there are several no-tions of morphism | but an intuitive possibility is to focus on their granularity ofdefeasibility.Suppose we have some facts F and some defaults D. Default logics work byreasoning classically with F together with some part of D which is consistent withF . Where they might di�er is in the extent to which they decompose D to �ndcomponents of it which are consistent with F . One default logic may have a verycoarse granularity, just checking whether D is consistent as a whole with F . Anotherlogic may be much �ner, splitting D in many ways to �nd parts of it which areconsistent with F . The two logics described di�er in their granularity of defeasibility.In terms of preference relations, we will see that one preference relation is coarserthan another one if the �rst is a subrelation of the second. Thus, our notion ofmorphism in the category P of preference relations is simply inclusion.In a similar way we will describe three other categories, which are called D, D�,and DP . The objects in each category share a mechanism for handling defaults, suchas the preference relation mechanism of P . The morphisms express whether one suchobject is coarser (or �ner) than another.Therefore, more speci�cally, our aim is to be able to translate between these cat-egories of default logics in such a way that we preserve the granularities. Concretely,we will seek to establish adjunctions between the categories. An adjunction betweentwo categories is a pair of maps going in opposite directions between the categories,such that the round trip from either category back to itself via the composition ofthe maps returns an object which bears the sort of relationship to the original ob-ject that is speci�ed by the morphism. This will be stated formally later in the paper(de�nition 1.2.3). The notion of adjunction is a generalisation of the notion of inverse.No prior exposure to category theory is needed to understand this paper. Indeed,



for most of the paper we will require only a special case of the notion of category,called a pre-order category, in which there is at most one morphism between any twoobjects. This is much simpler than the general case, and the notions of functor andadjunction which we will require (and de�ne) are correspondingly simpler.The paper is structured as follows. In the remainder of this section, we reviewsome preliminaries. Section 2 is the main section, in which we introduce the two mostimportant examples of default frameworks, namely P and D (sections 2.1 and 2.2).Their relationship is explored in section 2.3 by giving adjunctions between these andother categories. A diagram illustrating the various adjunctions is given in �gure 1.In section 3 we make some remarks about the application of these results to the ideaof default institutions. Finally, we conclude with section 4.This paper is the �rst part of some work that will be continued in a future paper.1.1. Assumptions and notationThroughout this paper, we will assume a collection M of interpretation structures.We will not refer explicitly to any logical language; instead, we will treat a sentenceor a theory simply as the set of its models; that is, as a subset of M.If < is a relation on the set X and Y � X , then y 2 Y is said to be <-minimalin Y i� 8y0 2 Y: (y0 6< y). We de�ne Min<(Y ) = fy 2 Y j y is <-minimal in Y g. Weuse � to mean subset, and � to mean strict subset.1.2. Pre-order categoriesIn this section we brie
y review the category theory we require. There are manybooks on category theory to which the reader may refer for a fuller picture, but weparticularly recommend the Chapter 2 of Crole3 for its readability and because itdeals explicitly with the special case of pre-order categories which we require for thispaper.1.2.1 De�nition. A pre-order category (C;!) is simply a pre-order, that is, a setC equipped with a re
exive and transitive relation !. When A! B (A;B 2 C) wesay that there is a morphism from A to B. If A! B and B ! A, we write A$ B.1.2.2 De�nition. Let (C;!C) and (D;!D) be pre-order categories. A functor Ffrom C to D is a monotonic map from C to D, that is, a map such that if A !C Bis a morphism in C then there is a morphism F (A) !D F (B) in D. If F is such afunctor we write C DF // .1.2.3 De�nition. Let (C;!C) and (D;!D) be pre-order categories, and L and Rbe functors from C to D and D to C respectively, a situation we may write asC DL //Roo :Then L and R are said to form an adjunction, with L as the left adjoint and R asthe right adjoint, if

� For any A 2 C, there is a morphism A!C R(L(A)) in C, and� For any B 2 D, there is a morphism L(R(B))!D B in D.We write the fact that L is left-adjoint to R as L a R.1.2.4 Proposition. The following facts hold about adjunctions. Proofs may befound in Crole3.1. L a R i� for each A 2 C and B 2 D, (L(A)!D B i� A!C R(B)).2. When adjoints exist they are unique up to isomorphism. If C DL // isa functor and if L a R1 and L a R2 then, for all B 2 D, R1(B) $D R2(B).Similarly, left adjoints are also unique up to isomorphism.3. Adjunctions compose to give other adjunctions. SupposeC D EL1 //R1oo L2 //R2ooare functors and L1 a R1 and L2 a R2. ThenC EL2�L1 //R1�R2ooare functors and L2 � L1 a R1 � R2.There is a special case of adjunction known as the co-re
ection, which has strongerconditions.1.2.5 De�nition. An adjunction L a R as described in 1.2.3 between C and D is aco-re
ection if, for each A 2 C, we have R(L(A))$ A.Essentially, this means that C is isomorphic to a subcategory of D.2. Model-based frameworks for defaults2.1. The preference-relation framework PThe preference-relation framework P is based on the idea that interpretations areordered according to how well they satisfy the defaults; compare with the standardworks7, 8, 12, 1 on preferential models. Suppose some default information is given. Weassume that, however it is presented syntactically, there is some machinery which wecan use to reduce it to a set M of interpretations. The set M is the set of `ideal' or`most normal' models as far as the defaults are concerned.The objects inside P are thus preference relations indexed by subsets of M. IfM �M then �M is the relation onM�M which orders the elements inM accordingto how close they are to being inside M . The expression x �M y means that x iscloser to being a member of M than y is.



2.1.1 De�nition. An object in the category P of preference relations is a relation� in M�P(M)�M, such that1. transitivity: x �M y �M z implies x �M z.2. base: If x 2 M and y 62 M then x �M y; and if x �M y then y 62 M andM 6= ?.3. chain: there is no in�nite descending chain of the form: : : �M x3 �M x2 �M x1:4. unions: If I 6= ?, then 8i 2 I: x �Mi y implies x �Si2IMi y.A morphism exists between objects �1 and �2, written �1 ! �2 i� �1 � �2 asrelations.The transitivity condition is very intuitive; for if x is closer to M than y is, andthat y is in turn closer than z, then x must also be closer than z. The conditioncalled base means that the elements of M are precisely those which are minimal in�M ; this is proved in the next proposition. The chain condition is there for technicalreasons, namely that we will require the ability to �nd models which are �M minimalwithin arbitrary subsets of M. Note that the chain condition also implies that �Mis irre
exive. The unions condition says that if x is closer than y to each of a familyfMigi2I of sets, then x is closer than y to the union of those sets.The chain condition corresponds to the stopperedness condition prevalent in theliterature8. Usually stopperedness is stated as saying that, for any x 2 Mod(�) thereis a y < x with y minimal in Mod(�). In the setting of this paper, we simplifyby treating formulas just as the set of their models. Therefore the condition ofstopperedness becomes: for any M �M and x 2M there is a y < x with y minimalin M . This is equivalent to the chain condition in the de�nition above.2.1.2 Proposition. y is �M -minimal i� y 2M or M = ?.Proof. ) If y 2 Min�M (M) and M 6= ?, pick any x 2M . Then x 6�M y so by thebase condition, y 2M .( Suppose y 62 Min�M (M); we will prove that y 62M and M 6= ?. Take x suchthat x �M y. Then by base, y 62M , and M 6= ?. �The notion of morphism in P is supposed to re
ect the granularity of defeasibility.Thus, if � is coarser than �0, we expect that more should be derivable from a setof facts and a set of defaults using �0 than with �. This means that there shouldbe fewer minimal models (more information derivable) of N according to �0M thanaccording to �M . This is indeed the case.2.1.3 Proposition. � ! �0 i� 8M �M; N �M: Min�0M (N) � Min�M (N)
2.1.4 Example. Consider the default p ^ q ^ r, represented by the set of modelsM = f111g. (Notation: 001 is the element of M which assigns false to p and q andtrue to r, etc.) Then the following three Hasse diagrams represent three possibilitiesfor �M . All satisfy the conditions of P .000 001 010 011 100 101 110111LLLLLLLLLLLLBBBBBBBB1111111 






||||||||rrrrrrrrrrrr 000100 010 001110 101 011111GGGGGwwwwwGGGGG wwwww 000100 010 001110 101 011111wwwww GGGGGGGGGGwwwww GGGGGwwwwwGGGGG wwwwwMoreover, the three possibilities for �M are in ascending order of granularity. Alldistinctions made by the �rst are also made in the second, and all those of the secondoccur also in the third.2.2. Distance functions; the category DWe now turn to a very di�erent way of structuring the set M in order to equip it todeal with defaults. We will study the idea of stipulating a distance function whichwill control defeasibility. A distance function takes two interpretations and returnsa value which is interpreted as measuring how di�erent the two interpretations are.Appealing examples include the following:2.2.1 Examples (Cf. Schobbens13, 11). LetM be the set of propositional valuationsfor �nitary propositional logic (i.e. the number of proposition symbols is �nite). Thecoarsest distance function is the following one, which simply returns `zero' or `unit'distance: d1(x; y) = ( ? if x = yf�g otherwiseAnother distance function is the following one,d2(x; y) = hfp j x 
 p and y 6
 pg; fp j x 6
 p and y 
 pgiwhich gives us a pair of sets: the proposition symbols satis�ed by x but not by y onthe one hand, and those satis�ed by y but not x on the other.A third example isd3(x; y) = fp j x 
 p and y 6
 pg [ fp j x 6
 p and y 
 pg;which says that the distance between two interpretations is simply the set of propos-ition symbols on which they di�er.In general, and in the examples above, distance values are not real numbers. Theyare of course ordered, but not necessarily totally ordered. We will allow any partialorder. In the examples above, d1 and d3 are ordered by subset, while d2 is ordered bysubset on the components.



2.2.2 De�nition. An object (d;<) in the category D of distance functions is a func-tion d from M�M to a strict partial order (�; <), satisfying1. base: if y 6= v then d(x; x) < d(y; v); and if d(x; u) < d(y; v) then y 6= v.2. chain: there is no in�nite descending chain : : : < d(x3; u3) < d(x2; u2) <d(x1; u1).A morphism exists between objects (d1; <1) and (d2; <2), written (d1; <1)! (d2; <2)or sometimes more brie
y as d1 ! d2, i� for all x; y; u; v 2 M, d1(x; u) <1 d1(y; v)implies d2(x; u) <2 d2(y; v).As before, the notion of morphism is intended to capture granularity.The reader might expect a condition saying that (�; <) contains a bottom element? and that d(x; u) = ? i� x = u. We do indeed allow such an arrangement, in thesense that the conditions we impose in 2.2.2 are weaker. However, it turns out that itis more convenient not to stipulate a single minimum value. The conditions of 2.2.2are strong enough for our purposes; in particular:2.2.3 Proposition. d(y; v) is minimal in the range of d i� y = v. Moreover, in therange of d every minimal is less than every non-minimal.Proof. y = v ) 8x; u: d(x; u) 6< d(y; v) by second part of base, d(y; v) minimal in the range of d by de�nition of minimal) y = v by �rst part of baseThe second part of the proposition follows immediately from the base condition.�2.2.4 Proposition. The three examples in 2.2.1 are inD, with d1 ! d2 and d2 ! d3.To check whether the notion of morphism really does capture granularity, we mustde�ne how a distance function is to be used. Given a set M of `ideal' interpretationsaccording to the defaults and a set N of models of the facts, we wish to �nd (as wedid in the preference relations case) which models in N are closest to being in M .2.2.5 De�nition. Let M;N � M. The models in N which are closest (accordingto d) to M are given byCM(N) = fx 2 N j 8x0 2 N: 9y 2M: 8y0 2M: d(x0; y0) 6< d(x; y)gThis says that the closest elements of N to M are those elements x of N forwhich, given another element x0 of N , there is a distance from x to M which isminimal among all distances x0 to M .Intuitively, d1 being coarser than d2 means that d2 will report fewer interpretationsin N closest to M (i.e. more information) than d1. Our notion of morphism musttherefore verify the following proposition:2.2.6 Proposition. (d1; <1)! (d2; <2) implies C2M(N) � C1M (N).Proof. Suppose (d1; <1)! (d2; <2).

x 62 C1M(N), x 62 N _ (9x0 2 N: 8y 2M: 9y0 2M: d1(x0; y0) <1 d1(x; y))) x 62 N _ (9x0 2 N: 8y 2M: 9y0 2M: d2(x0; y0) <2 d2(x; y)) by hypothesis, x 62 C2M(N) �2.3. The relationship between D and POur aim at the outset of this work was to establish an adjunction between P and D.It is still an open question whether this is possible. In this paper, we will contentourselves by providing adjunctions between P and D via several other categorieswhich will introduce in this section.To motivate this further, we'll now describe a functor from D to P which hasseveral good properties. Think of this as a way of translating a distance function inD into a preference relation in P which is somehow equivalent to it. Given a distancefunction d, we'll de�ne the preference relation � as follows:x �M y def()M 6= ? ^ 8v 2M: 9u 2M: d(x; u) < d(y; v): (�)To check whether this really is a functor, it is necessary to verify that the � thusde�ned satis�es the conditions of P given in 2.1.1, assuming that d satis�es theconditions of D in 2.2.2. It is also necessary to verify that if d1 ! d2 and d1; d2 aretransformed to �1;�2, then �1 ! �2. All these facts are true; we'll verify them laterin this section.The intuition behind the de�nition is simple. It says that x is closer to the set Mthan y is if (M 6= ? and) for every distance y to M there is a distance x to M whichis smaller than it. The proviso about the empty set is just to express the fact thatno point is closer than some other point to being in the empty set.This way of transforming elements of D to elements of P has the property that ifwe focus on any subsets M;N of M and ask which elements of N are closest to M ,then d and � gives us the same answer.2.3.1 Proposition. Let d and � be related by (�) above, and M;N �M. ThenCM(N) = Min�M (N):Proof.y 2 Min�M(N) , y 2 N ^ 8x 2 N: x 6�M y, y 2 N ^ 8x 2 N: 9v 2M: 8u 2M: d(x; u) 6< d(y; v), y 2 CM (N) �The open question alluded to at the beginning of this section can now be castas follows: does this functor have an adjoint? In this paper, we go part of the waytowards answering it. We de�ne the intermediate categories D� and DP . We give
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Fig. 1. The following diagram illustrates all the categories of default logics and the functors betweenthem. Each L functor is left-adjoint to the corresponding R functor. Moreover, each adjunctionL a R is a co-re
ection. This means that the composition R � L is an isomorphism. Thus, forexample, if you start with � in P and map it via L2 to DP and then back again via R2, you getback to the same relation �.several adjunctions between them and D and P , which are summarised in the diagramin �gure 1. The composition of the functors R1, L3 and R2 in the �gure is the functordescribed by (�) above.The two categories which mediate between D and P are intuitive and help clarifythe relationship. The �rst category generalisesD slightly. Instead of positing concretedistance values and then imposing an ordering on them, as we did in D, we simplyorder pairs of interpretations.2.3.2 De�nition. An object in the category D� is a relation < inM�M�M�Msuch that1. transitivity: x; u < y; v < z; w implies x; u < z; w.2. base: if y 6= v then x; x < y; v; and if x; u < y; v then y 6= v.3. chain: there is no in�nite descending chain : : : < x3; u3 < x2; u2 < x1; u1.A morphism exists between objects <1 and <2 i� <1 � <2 as relations.Thus, D� abstracts away from the particular values of d(x; y). In D�, we can onlymake comparisons of the form d(x; u) < d(y; v), which we write simply as x; u < y; v;we cannot look at the actual values of d(x; u). Notice that the chain condition in D�implies irre
exivity.The relationship between D and D� will be established by giving functors betweenthem which form an adjunction.2.3.3 De�nition/proposition. The functors D� DL1 //R1oo_ _ _ _ _ _ are de�ned by� L1(<) (x; u) = f(z; w) j z; w 6 x; ug, ordered by proper inclusion.� x; u R1(d) y; v, d(x; u) < d(y; v).

This is a `de�nition/proposition' because it de�nes the functors; however, it is neces-sary to check that they are indeed functors.The intuition for R1 is simple: it abstracts away from the distance values in D.L1, on the other hand, introduces some concrete distance values which are simplydown-sets in D�.Proof. We verify that(a) L1(<) satis�es the conditions of D.(b) R1(d;<) satis�es the conditions of D�.(c) L1 preserves morphisms, i.e. if <1 ! <2 then L1(<1)!L1(<2).(d) R1 preserves morphisms, i.e. if (d1; <1)! (d2; <2) then R1(d1; <1)!R1(d2; <2).The details of these veri�cations may be found in the Appendix. �2.3.4 Proposition. L1 a R1; moreover, this adjunction is a co-re
ectiony.Proof. We verify the following.1. L1(R1((d;<)))! (d;<). Let (d0; <0) = L1(R1((d;<))).d0(x; u) <0 d0(y; v)) f(z; w) j z; w = x; u _ z; wR1(d;<)x; ug� f(z; w) j z; w = y; v _ z; wR1(d;<)y; vg ^ x; u 6= y; v) 8z; w: (z; w = x; u _ d(z; w) < d(x; u))z; w = y; v _ d(z; w) < d(y; v))^ x; u 6= y; v) (x; u = y; v _ d(x; u) < d(y; v))^ x; u 6= y; v by putting z; w = x; u) d(x; u) < d(y; v).2. R1(L1(<))$ <.x; uR1(L1(<))y; v, L1(<) (x; u) �L1(<) (y; v), 8z; w: (z; w 6 x; u) z; w 6 y; v) ^9z; w: (z; w 66 x; u ^ z; w 6 y; v), x; u < y; v.�yReinhold Heckmann has pointed out that this co-re
ection is actually an equivalence. In other words,L1 and R1 are not merely adjoints, but are inverses (up to isomorphism in D). This means we need neverwork with concrete distance values, but can always abstract away from them as we do in D�. It also meansthat the diagram in �gure 1 should be drawn with D� and D at the same level. There is no need to labelthe functors between them with names suggesting left and right, since we have L1 a R1 and R1 a L1.Technically, the proof of equivalence can be made as follows. Condition (d) in the proof of 2.3.3 can bestrengthened to (d1; <1)! (d2; <2) i� R1(d1; <1)!R1(d2; <2). From 2.3.4 we have R1(L1(R1(d))) = R(d),which by the strengthening of (d) yields L1(R1(d))$ d.



Now our task is to establish a relationship between D� and P , i.e. between judge-ments of the type x; u < y; v and those of the type x �M y. The �rst judgementsays that x is closer to u than y is to v, while the second says that x is closer to Mthan y is to M . The next intermediating category is designed to combine these twotypes of judgements. We will de�ne a category DP in which x;M @ y;N means thatx is closer to M than y is to N . Thus, D� is the special case in which M;N aresingletons, and P is the special case in which M = N .2.3.5 De�nition. An object in the category DP is a relation @ in M� P(M) �M�P(M) such that1. weak transitivity: x;M @ y;M @ z;M implies x;M @ z;M ; and x; fug @y; fvg @ z; fwg implies x; fug @ z; fwg.2. base: if x 2 M and y 62 N then x;M @ y;N ; and if x;M @ y;N then y 62 Nand M 6= ?.3. chain: there are no in�nite descending chains of the form : : : @ x3;M3 @x2;M2 @ x1;M1.4. unions: if I 6= ? then 8i 2 I: x;Mi @ y;Ni implies x;Si2IMi @ y;Si2I Ni.5. monotonicity: x;M @ y;N and M �M 0 and N 0 � N implies x;M 0 @ y;N 0.As before, a morphism exists between objects @1 and @2 i� @1 � @2 as relations.This category allows us to compare distances from interpretations to sets of inter-pretations. Thus, x;M @ y;N means that x is nearer to the set M than y is to theset N ; think of this as saying that x is more nearly a member of M than y is of N .Whereas D� tells us how to order distances between points, and P tells us how toorder distances from points to a �xed set, DP does both these jobs at once by tellingus how to order distances between points and sets of points. To put this in anotherway, it is clear how to extract from an object @ of DP either an object like those ofD� or an object like those of P . This is the intuition behind the forgetful functors,which we'll see shortly.A particular point of interest is that the weak transitivity condition does notguarantee full transitivity of the formx;M @ y;N @ z;K implies x;M @ z;K:This is guaranteed to hold only if M = N = K or M;N;K are all singletons. Wemay think of this as saying that a particular set M imposes an ordering on pointsx; y, given by x �M y in P and x;M @ y;M in DP . This ordering is transitive. ButDP also allows comparison of the orderings given by two di�erent sets M and N .Transitivity of such comparisons is not guaranteed.The conditions of base and chain resemble those we have seen before in P and D�.As before, the chain condition implies irre
exivity. Unions is the natural counterpart
of unions in DP , while monotonicity tells us that if you grow M , then the distancex;M can only shrink.The relationship between P and D� is established by establishing a co-re
ectionbetween each of them and DP .2.3.6 De�nition/proposition. The functors P DP D�L2 //R2oo_ _ _ _ _ _ R3 //_ _ _ _ _ _L3oo arede�ned by� x;M L2(�) y;N , (9K: N � K �M ^ x �K y) _ (x 2M ^ y 62 N).� x R2(@)M y, x;M @ y;M .� x;M L3(<) y;N ,M 6= ? ^ 8v 2 N: 9u 2M: x; u < y; v.� x; u R3(@) y; v, x; fug @ y; fvg.To understand L2, notice that we start with the ability to order the distancesof points from a �xed set (P), and we want to order distances from arbitrary sets(DP). The strategy of this functor is as follows. If it happens that the arbitrary setsare related by inclusion (N �M), then we can use the information we have in P bylooking at intermediate sets (the K). Otherwise, we can only tell in rather degeneratecircumstances, namely those of DP-base.L3 uses the uper power-ordering. We say that the distance x;M is less than thedistance y;N if every distance y to v (v 2 N) is beaten by some distance x to u(u 2M).On the other hand, the maps R2 and R3 simply extract the special case which Pand D� are of DP .Proof. We verify that(a) L2(�) satis�es the conditions of DP .(b) R2(@) satis�es the conditions of P .(c) L3(<) satis�es the conditions of DP .(d) R3(@) satis�es the conditions of D�.(e) L2 preserves morphisms, i.e. if �1 ! �2 then L2(�1)!L2(�2).(f) R2 preserves morphisms, i.e. if @1 ! @2 then R2(@1)!R2(@2).(g) L3 preserves morphisms, i.e. if <1 ! <2 then L3(<1)!L3(<2).(h) R3 preserves morphisms, i.e. if @1 ! @2 then R3(@1)!R3(@2).The details of this veri�cation are in the Appendix. �2.3.7 Proposition. L2 a R2 and L3 a R3. Moreover, both these adjunctions areco-re
ections.The proof of this proposition is given in the appendix.



3. Default institutionsAn institution4 is a presentation of a logic woth emphasis on the possibility of dif-ferent signatures (vocabularies). Institutions are useful for structuring speci�cations.Di�erent components of a structured speci�cation use di�erent signatures. We recallthe de�nition of institution:3.0.8 De�nition. An institution hSig; Sen; Int;
i consists of a category Sig of sig-natures, together with the two functors Sen from Sig to Set, and Int from Sig toSetop. Given a signature �, Sen(�) and Int(�) are the sets of sentences over � andinterpretations over � respectively. 
 is a �-indexed family of satisfaction relations;
� is a relation in Int(�)� Sen(�).3.0.9 De�nition. A morphism h between institutions hSig; Sen; Int;
i and hSig0;Sen0; Int0;
0i is a functor h : Sig! Sig0, a natural transformation h� : h; Sen0 ) Sen,and a natural transformation h� : Int ) h; Int0, such that the following satisfactioncondition holds: x 
� h��(�0) i� h��(x) 
0h(�) �0;for each x 2 Int(�) and �0 2 Sen0(h(�)).Our categories P , D etc. can be viewed as candidates for the machinery whichmust be added to an institution in order to equip it for handling defaults. Thus,de�nitions 2.1.1 and 3.0.9 can be combined to give:3.0.10 De�nition. Let I be the institution hSig; Sen; Int;
i. Then P(I) is the pref-erence default institution based on I given by I together with a �� Sen(�)-indexedfamily of preference relations; ��;� is a relation in Int(�)� Int(�) satisfying1. abstractness: if � ��  then ��;� = ��; .2. transitivity: x ��;� y ��;� z implies x ��;� z3. base: if x 
� � and y 6
� � then x ��;� y; and if x ��;� y then y 6
� � and �is satis�able.4. limit: there is no in�nite descending chain of the form : : : x3 ��;� x2 ��;� x1.3.0.11 De�nition. Amorphism h between preferential institutions hSig; Sen; Int;
;�iand hSig0; Sen0; Int0;
0;�0i is a morphism between the institutions hSig; Sen; Int;
iand hSig0; Sen0; Int0;
0i such that, for all � in Sig, x; y 2 Int(�) and �0 2 Sen0(h(�)):x ��;h��(�0) y implies h��(x) �0h(�);�0 h��(y)However, the adjunctions described in this paper do not extend to the case of suchdefault institutions without further work.
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10. M. D. Ryan. Towards specifying norms. Annals of Mathematics and Arti�cialIntelligence, 9:49{67, 1993.11. M. D. Ryan, P.-Y. Schobbens, and M. Dionisio. Distance functions and preferencerelations. In preparation, 1994.12. K. Schlechta. Some results on classical preferential models. Journal of Logic andComputation, 2(6), 1992.13. P.-Y. Schobbens. Exceptions for algebraic speci�cations: on the meaning of `but'.Science of Computer Programming, 20:73{111, 1993.14. P.-Y. Schobbens. A logic for legal hierarchies. In Fourth International Conferenceon Arti�cial Intelligence and Law, Free University, Amsterdam, 1993.6. AppendixDetails of veri�cations too long for the main body of the paper are given here.Proof of 2.3.3 (a) Let (d0; <0) be L1(<); then d0(x; u) = f(z; w) j z; w 6 x; ug andd0(x; u) <0 d0(y; v), d0(x; u) � d0(y; v). Plainly <0 is a strict partial order. We mustalso verify the conditions of D.1. Base: Suppose y 6= v; we must show that d0(x; x) <0 d0(y; v). Suppose (z; w) 2d0(x; x); then z; w 6 x; x. But x; x < y; v by D�-base; so z; w 6 y; v and(z; w) 2 d0(y; v). Hence d0(x; x) � d0(y; v). To show strict subset, observethat (y; v) 2 d0(y; v) but, since (y; v) 6= (x; x) and (x; x) is <-minimal, (y; v) 62d0(x; x).For the second part of base, suppose that d0(x; u) <0 d0(y; v); we must show thaty 6= v. Suppose y = v; then d0(y; v) = f(y; v)g. However, (x; u) 2 d0(x; u) �d0(y; v) implies that d0(y; v) is a proper superset of f(x; u)g, so contains at leasttwo elements, a contradiction. Therefore, y 6= v.2. Chain. Suppose : : : < d(x3; u3) < d(x2; u2) < d(x1; u1) is a chain. Then f(z; w) jz; w 6 x3; u3g � f(z; w) j z; w 6 x2; u2g � f(z; w) j z; w 6 x1; u1g, from whichwe can extract the chain : : : < x3; u3 < x2; u2 < x1; u1, contradicting D�-chain.(b) The conditions follow directly from their counterparts in D.(c) Suppose <1 ! <2; we prove (d01; <01)! (d02; <02), where (d0i; <0i) is L1(<i).d01(x; u) <01 d01(y; v), 8z; w: (z; w 61 x; u) z; w 61 y; v)^ 9z; w: (z; w 661 x; u ^ z; w 61 y; v), x; u <1 y; v) x; u <2 y; v, d02(x; u) <02 d02(y; v).(d) Suppose (d1; <1)! (d2; <2); we prove <01 ! <02, where <0i is R1(di; <i).x; u <01 y; v , d(x; u) <1 d(y; v)) d(x; u) <2 d(y; v) using hypothesis, x; u <02 y; v

Proof of 2.3.6 (a)1. Weak transitivity: suppose x;M L2(�) y;M L2(�) z;M . Then [x �M y_ (x 2M ^ y 62 M)] ^ [y �M z _ (y 2 M ^ z 62 M)]. Since x 2 M ^ y 62 M impliesx �M y, and similarly for the case with y and z, this condition reduces to x �My ^ y �M z. Therefore, by �M -transitivity, x �M z and so x;M L2(�) z;M .Turning to the second case in weak transitivity, suppose x; fug L2(�) y; fvg L2(�)z; fwg. A similar case analysis to the one above, together with applications ofP-base and P-transitivity, leads to the conclusion that x; fug L2(�) z; fwg.2. Base: x 2M ^ y 62 N implies x;M L2(�) y;N trivially.For the second half, suppose x;M L2(�) y;N , i.e. (9K: N � K � M ^ x �Ky)_ (x 2M ^y 62 N). We show that each disjunct implies y 62 N ^M 6= ?. Forthe second disjunct, it's immediate. For the �rst, pick such a K. By P-base,K 6= ? and y 62 K. Since N � K �M , this means M 6= ? and y 62 N .3. Chain: suppose : : : L2(�) x3; fu3g L2(�) x2; fu2g L2(�) x1; fu1g was such achain; we will obtain a contradiction by �nding a chain that violates P-chain.For each i > 0, we have (ui+1 = ui ^ xi+1 �fuig xi) _ (xi+1 = ui+1 ^ xi 6= ui).We will show that the second disjunct cannot hold for any i. For supposexi+1 = ui+1; then taking i+ 1 in the formula stated, we obtain (ui+2 = ui+1 ^xi+2 �fui+1g xi+1) _ (xi+2 = ui+2 ^ xi+1 6= ui+1), and since the second disjunctcannot hold by hypothesis, we obtain xi+2 �fui+1g xi+1. But by P-base, thisimplies xi+1 6= ui+1, contradicting the hypothesis. Therefore, we �nd that 8i >0: (ui+1 = ui ^ xi+1 �fuig xi), giving us the chain : : : �fu1g x3 �fu1g x2 �fu1g x1which violates P-chain.Now suppose : : : L2(�) x3;M L2(�) x2;M L2(�) x1;M ; the argument issimilar. We get 8i > 0: [xi+1 �M xi _ (xi+1 2 M ^ xi 62 M)]. Again, we arguethat the second disjunct can never be selected; since it implies xi+1 2 M , andeither disjunct of the condition for i+ 1 gives us xi+1 62M . We therefore musthave 8i > 0: xi+1 �M xi, contradicting P-chain.4. Unions: suppose I 6= ? and x;Mi L2(�) y;Ni for each i 2 I . Then for eachi 2 I , (9Ki: Ni � Ki �Mi^x �Ki y)_(x 2Mi^y 62 Ni). LetM = Si2IMi andN = Si2I Ni. Note that y 62 Ni for each i, since x �Ki y implies y 62 Ki impliesy 62 Ni. If for some i, x 2 Mi, then x 2 M ^ y 62 N and so x;M L2(�) y;N .Otherwise, for each i, 9Ki: Ni � Ki � Mi ^ x �Ki y. Put K = Si2I Ki; thenN � K �M and by P-unions, x �K y.5. Monotonicity: clearly, if (9K: N � K �M ^ x �K y) _ (x 2 M ^ y 62 N) andM �M 0 and N 0 � N then (9K: N 0 � K �M 0 ^ x �K y)_ (x 2M 0 ^ y 62 N 0).



(b) The properties follow directly from their corresponding properties in DP ; we willillustrate the case for P-chain.4. Chain: from the chain : : : x3 R2(@)M x2 R2(@)M x1 we obtain the chain: : : x3;M @ x2;M @ x1;M , violating DP-chain.(c)1. Weak transitivity: we can verify the stronger condition of transitivity in thiscase.x;M L3(<) y;N L3(<) z;K, 8k 2 K: 9n 2 N: y; n < z; k ^ 8n 2 N: 9m 2M: x;m < y; n^M 6= ? ^N 6= ?) 8k 2 K: 9n 2 N: (y; n < z; k ^ 9m 2M: x;m < y; n) ^M 6= ?) x;M L3(<) z;K2. Base: suppose x 2 M ^ y 62 N ; we need to prove x;M L3(<) y;N , i.e. 8v 2N: 9u 2M: x; u < y; v^M 6= ?. Let v 2 N . Then v 6= y. Put u = x. Then byD�-base, x; u < y; v. Moreover, M 6= ? since x 2M .Now suppose x;M L3(<) y;N ; we prove y 62 N and M 6= ?. The second partfollows immediately when L3(<) is expanded. For the �rst part, suppose y 2 N .Since 8v 2 N: 9u 2 M: x; u < y; v, by taking v = y we obtain x; u < y; y forsome u, violating D�-base.3. Chain: suppose : : : L3(<) x3;M3 L3(<) x2;M2 L3(<) x1;M1. M2 6= ? bybase, so 9u3 2 M3: x3; u3 < x2; u2. Therefore, 9u4 2 M4: x4; u4 < x3; u3, etc,violating D�-chain.4. Unions: suppose I 6= ? and x;Mi L3(�) y;Ni for each i 2 I , i.e.Mi 6= ?^8v 2Ni: 9u 2 Mi: x; y < y; v. Set M = Si2IMi and N = Si2I Ni. Then M 6= ?;and if v 2 N , then v 2 Ni for some i, so pick u 2Mi �M with x; u < y; v.5. Monotonicity: Clearly M 6= ?^ 8v 2 N: 9u 2M: x; u < y; v and M �M 0 andN 0 � N impliesM 0 6= ? ^ 8v 2 N 0: 9u 2M 0: x; u < y; v.(d) The properties follow directly from their corresponding properties in DP ; we willillustrate the case for D�-base.3. Base: y 6= u ) x; fxg @ y; fug DP-base) x; x R3(@) y; u:(e) Suppose � � �0.x;M L2(�) y;N , (9K: N � K �M ^ x �K y)_ (x 2M ^ y 62 N)) (9K: N � K �M ^ x �0K y)_ (x 2M ^ y 62 N), x;M L2(�0) y;N

(f) Suppose @ � @0.x R2(@)M y , x;M @ y;M) x;M @0 y;M, x R2(@0)M y(g) Suppose <1 � <2.x;M L3(<1) y;N , M 6= ? ^ 8v 2 N: 9y 2M: x; u <1 y; v) M 6= ? ^ 8v 2 N: 9y 2M: x; u <2 y; v, x;M L3(<2) y;N(h) Suppose @1 � @2.x; u R3(@1) y; v , x; fug @1 y; fvg) x; fug @2 y; fvg, x; u R3(@2) y; vProof of 2.3.7 We verify the following.1. There is a morphism L2(R2(@))! @.x;M L2(R2(@)) y;N , (9K: N � K �M ^ x R2(@)K y) _ (x 2M ^ y 62 N), (9K: N � K �M ^ x;K @ y;K) _ (x 2M ^ y 62 N)) (N �M ^ x;M @ y;N) _ (x 2M ^ y 62 N) DP-mono) x;M @ y;N2. There is an isomorphism R2(L2(�))$ �.x R2(L2(�))M y , x;M L2(�) y;M, x �M y _ (x 2M ^ y 62M), x �M y3. There is a morphism L3(R3(@))! @.x;M L3(R3(@)) y;N ,M 6= ? ^ 8v 2 N: 9u 2M: x; u R3(@) y; v, M 6= ? ^ 8v 2 N: 9u 2M: x; fug @ y; fvg) 8v 2 N: x; fuvg @ y; fvg skolemising) x;Sv2Nfuvg @ y;N DP-unions) x;M @ y;N DP-monotonicity4. There is an isomorphism R3(L3(<))$ <.x; u R3(L3(<)) y; v , x; fug L3(<) y; fvg, x; u < y; v.


