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Abstract

We describe some ideas and results about the following problem:

Given a set, a family of “preference relations” on the set, and a
“priority” among those preference relations, which elements of the set
are best? That i1s, which elements are most preferred by a consensus of
the preference relations which takes account of their relative priority?
The problem is posed in a deliberately general way, to capture a wide
variety of examples.

Our main result gives sufficient conditions for the existence of ‘best’
elements for an important instance of the problem: preference relations
are pre-orders, the priority among them is a partial order, and the def-
inition of best elements uses a generalisation of lexicographic ordering.

1 Introduction

Often in computer science, we wish to pick from a set elements which satisfy
certain properties. But often, the properties are conflicting, and we want to
find elements which satisfy them as much as possible, or as many of them
as possible. The situation may be complicated still further if some of the
properties are more important than others.

Example 1 I like vegetarian food; I like nuts; I like tomatoes, especially
with chili. My first preference is to take priority over the other two, which
are incomparable in priority. Available are lamb casserole; nut roast with
tomato sauce; and pasta with tomato chili sauce. Thus, there is no dish
satisfying all of my preferences, but some are better at doing so than others.



Our motivation for studying this problem is to establish the founda-
tions of default reasoning. We postpone discussion of this motivation until
section b.

For this paper, we assume that ‘preferences’ between elements in a set
are expressed by a pre-order. We also stipulate that the priority between
preferences is a partial order.

Our aim in this paper is to formalise the notion of prioritised preference,
and to establish conditions under which ‘best’ (i.e. most preferred) elements
may be found. Prioritised preference is formalised in section 2. Conditions
for finding maximal elements are given in section 3. In section 4, we consider
an alternative characterisation. Section 5 briefly describes applications of
this work.

2 Prioritised preference

Definition 2 A pre-order is a reflexive and transitive relation. A partial
order is a reflexive, anti-symmetric and transitive relation.

Notation 3 Let (X,C) be a pre-order or a partial order. We write z C y
ifeCyandyZa;and a=yif 2 Cy and y C 2.

Definition 4 Let X be a set. A prioritised family of preferences on X is a
tI’iple (Iv <7 {Ei}ie[)v where

o (I,<)is a finite, partially ordered set, and

e foreach 1 € I, C; is a pre-order on X.

The food preferences of example 1 may be represented as a family of
prioritised preferences over the set of dishes X = {{,n,p}. In this case, [ =
{V, N, T} (each letter representing a preference) with < = {(V, N),(V,T)}
and the orderings Cy, Cn, Cp are respectively the first three of
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The fourth ordering represents the consensus of the prioritised preferences,
which we will shortly define.

Notice that + < j means that C; has a higher priority than CT;. But
x C; y means that y is preferred to z by 1.

Definition 5 Let (/,<,{C;};cs) be a prioritised family of preferences on
a set X. The globalisation or consensus of {C,};c; is the relation C on X

defined by
tCy if Viel.(zC,yordjel.(j<iandzC;y)).

That is, y is as preferred as z overall if it is as preferred according to
each of the relations except possibly those for which there is a relation of
greater priority, at which y is strictly preferred to z.

The remainder of this section is devoted to theorems and remarks which
further motivate and explain this definition.

Lemma 6 : Cyiff Vie I. (2 C, yor (3j <i.2 C; yand Vk < j. 2 Ty y)).
Proof <« immediate. = Find j minimal with z C; y. a

The definition of globalisation is a generalisation to partial orders of the
usual lexicographic ordering. That is to say, if (1, <) is a total ordering, say
{1 <2 < ---< n} then the globalisation is the following:

xCy if zC1y
or zCiyanda Cyry
or zCiy, xCoyandazCsy
or .-
or vy, 2Cy ...andzC, ¥y

Our convention that 7+ < j implies T, has greater priority than C;
matches with the lexicographic ordering.

Proposition 7 The globalisation C of a prioritised family of preference
relations is a pre-order.

Proof Reflexivity is obvious. For transitivity, suppose z C y C z, and let
t € I. We shall show 2 C; z or  C; 2 for some j < 1.

Suppose  C; y. If y C; z then = C; z. Otherwise, y Z; 2, so let j; < i
be such that y C;, z and y T z for k < j; (lemma 6). If 2 Z;, y, then let



Jj < j1 be such that # C; y. Then j <7 and z C; z follows from  C; y and
yC; 2. Ifx C;, y,set j =j;. Then j < i, and z C; 2 follows from z C; y
and y C; 2.

On the other hand, suppose = IZ; y and let j, < ¢ be such that 2 C;, y
and z Cj y for all £ < j; (lemma 6). Again, consider separately the two
cases y C;, zand y [Z;, 2. If y C;, 2, set 7 = jo; then j < ¢, and 2 C; 2
follows from = C; y and y C; 2. Otherwise, y iZ;, z so let j < j, be such
that y C; #; then j < ¢, and 2 C; z follows from 2 C; y and y C; 2. a

Definition 5 has also been described in various guises in Ryan [5] and

Grosof [3].

3 Finding maximal elements

We are interested in finding elements which are ‘best’ according to the con-
sensus of the prioritised preference relations; that is, we are interested in
finding C-maximal elements. As is well-known, Zorn’s lemma [1] can be
used to prove that maximal elements of an ordering exist. Zorn’s lemma
says that a pre-order has a maximal element if every chain in the pre-order
has an upper bound.

Definition 8

1. Let (X,C) be a pre-order. A subset Y of X is a C-chain if Y is totally
ordered by C; that is, Vy,z € Y.y C z or z C y.

2. A chain Y in (X,C) has an upper bound a € X if Vy € Y. y C a.

Proposition 9 (Zorn’s Lemma) A pre-order (X,C) has a maximal ele-
ment if every chain in X has an upper bound.

Before we apply Zorn’s lemma, we establish the existence of certain key
preferences which will enable us to reduce C-chains to C;-chains. We do this
in the first of the following two lemmas. Then, in the second of the two, we
compose the C; chains to give another chain. We show that this chain has
an upper bound, and that its upper bound serves as an upper bound of the
C chain we started with.

The next few definitions and lemmas are technical lemmas whose real
purpose is to assist in the proof of theorem 15.



Definition 10 Let (I, <, {C;};cs) be a prioritised family of preferences on
aset X, and let z,y € X. The z,y-frontier, written fr(z,y), is the set of
<-minimal elements of the set {i € I | z #; y}.

Note that if {i € I | 2 #; y} = @ then fr(z,y) = @.
Lemma 11 Suppose ¢ C y. Then ¢ € fr(a,y) iff 2 T, y and Vj < i. 2 =; .

Proof (If) Immediate. (Only if) Let 2 C y and ¢ € fr(z,y). (1) We prove
x C; y; for if not, by definition 5 35 < i. 2 C; y, i.e. © #; y, contradicting
’s minimality. (2) Since ¢ € fr(z,y), ¢ #; y. Thus z C; y.

Now suppose j < i. Since i is minimal in {i € [ | z #; y}, we have
T =;y. 0

Definition 12 Let J C I. We write x CT; y if Vj € J. 2 C; y. We also
write |J for {i € I'|dj € J.i < j}.

Lemma 13 Let Y C X be a C-chain with no maximal element. Then there
exists J C I and a € Y such that

1.VjeJViel Ve,yeY. (¢CaCyandi<j)implies z C; y — that
is, {y € Y | « C y} forms a C|;-chain.

2.VjeJ Ve €Y. aC ximplies 3z € Y. (2 C 7z and 2 C; z) — that is,
the same set also forms a C ;-chain with no maximal element.

3.Viel.Ve,yeY. aCzCyimplies (z C; yor 35 € J.j <1i).

Proof The idea of the proof is the following. First, we obtain a set I' C [
which contains those ¢ which participate in frontiers all the way up the chain
Y. Then find an element a of ¥ above which all the frontiers are in I'. J is
defined as the minimal elements of I’. Then it is possible to prove property
1. Property 2 follows because we have stipulated that ¥ have no maximal
element; that is, for each y € Y thereis a ¢ € Y with y C ¢'. Property 3
follows because J is the set of minimal elements of I’.
Let I'={iel|VzeY. Jy,ze€Y. 2 CyC zand i € fr(y, z)}.

o If I’ = I then let a be an arbitrary element of Y.

e Otherwise, for each i € I — I' let 2; € Y be such that Vy,z €Y, if
2; C y C z then ¢ & fr(y,2), and let @ = maxc{z; | ¢ € I — I'}. That
each x; can be found follows from the definition of I’, and that their
maximum can be found is guaranteed by the facts that Y is a chain
and [ is finite.



Now we show that I’ is non-empty. Let 2,y € Y be such that « C z C y.
The fact that ¥ has no maximal element guarantees that these can be found.
Since z C y, fr(z,y) # @, and since a C z,y, we have fr(z,y) C I'.

1. Let y € J, i € I and 2,y € Y be such that : < j and ¢« C o C y.
If i € fr(z,y) then 2 C; y (lemma 11); otherwise, if ¢ ¢ fr(z,y) and
x [Z; y then 35’ < i. 2 C; y, contradicting the minimality of j in J.

2. Let j € Jand x € Y with « C ». Since j € I’, we can pick y,z € Y
with 2 C y C z and j € fr(y,z). By part 1, 2 C; y C; 2; and since
J € fr(y, z) we have y C; 2. By transitivity,  C; 2.

3. If o iZ; y then 35’ € fr(z,y) C I'. 7/ < i (lemma 6), and since J consists
of the minimal elements of I’ (and [ is finite!), 35 € J. j < j'. a

Now we show, subject to a certain condition, that it is possible to find
an upper bound for any C-chain. The condition says that upper bounds can
be found for intersections (i.e. conjunctions) of the C; relations.

Lemma 14 Suppose for every J C I, every C;-chain has an upper bound.
Then every C-chain has an upper bound.

Proof LetY beaC-chain. If Y has a maximal element, then that serves as
its upper bound. Suppose, then, that ¥ has no maximal element. Let J C I
and a € Y be as defined in lemma 13. Let K = JU{k el |Vje J.j Lk}
We now show that the set {o € Y | ¢ C 2} forms a C g chain. Without
loss of generality, let z,y € Y be such that « C 2 C y,and i € [ and k € K
be such that 7 < k. We need to show that  C; 3. If £ € J then z C; y by
lemma 13(1). Otherwise, Vj € J. 7 £ k (definition of K'). Therefore, j £ ¢.
Suppose & Z; y. Then by 13(3), 35 € J. j < i, a contradiction. So z C; y.

Now let b be a T,k upper bound for {z € Y | « C z}. We show that
it is also a C upper bound for that set, and hence for Y. Let € Y with
a C z; we show that « C b, using definition 5.

First note that (i) j € | K implies 2 C; b (by definition of b). Also, (ii)
j € J implies 2 T; b. To see this, take y such that 2 C; y by lemma 13(2);
but then y T, b, so x C; b.

Now let 7 € I. We show that either x C, bor dj <.z C; b. If 1 € | K,
x C; bby (i). If ¢ ¢ | K, then ¢ ¢ K. By definition of K, 35 € J. j < i; by
(ii), = C; b. ]

Thus, we are in a position to provide suflicient conditions for being able
to find maximal elements.



Theorem 15 Let (I, <,{C;}ics) be a prioritised family of preferences on a
set X with globalisation C, such that for every J C I, every C;-chain has
an upper bound. Then C has maximal elements.

Proof By Zorn’s lemma and lemma 14. a

The sufficient conditions for finding maximal elements may feel a bit
unsatisfactory, and one might ask whether they can be weakened. For ex-
ample, maybe being able to find upper bounds on all C;-chains (but not
necessarily their intersections) is sufficient. However, the following example
shows that this is not so.

Example 16 Let X = (Nx N)U{(0,w),(w,0)}. Let I = {1,2} with < the
discrete ordering (i.e. < = @) and

(2, y) if @ <a’ according to the numerical ordering

2 (2/,y") if y<y ditto

PN

T,y)
T,y)

I

(0,0)

Notice that although the premise of lemma 14 fails, all C;-chains and
C,-chains have upper bounds. The globalisation is defined as (z,y) C (2, y')
if 2 < 2’ and y < y'. It has no maximal element. The chain (0,0)C (1,1)C
(2,2) C --- has no upper bound according to this relation. So this example
shows that upper bounds on the C; orderings is not enough.



4 Are these really the best elements?

The contribution of the preceding two sections is as follows: in the first
section, we gave the definition of the ‘globalising’ or ‘consensus’ relation
for a prioritised family of preferences, and examined its properties. In the
second section, we showed that (under certain conditions) it is possible to
find ‘best’ elements according to those preferences — namely, those maximal
in the globalising relation.

Are these really the best elements? There is a particular case of priori-
tised preference relations in which one may have conflicting intuitions. In
this section we examine those intuitions and propose an alternative defini-
tion.

4.1 Totally prioritised families of preferences

An order < is total if for each ¢, 7 € I, we have ¢ < 7 or j < ¢.

Suppose our ([, <) is a total order {1 < 2 < --- < n}. We will write this
totally prioritised family of preferences as {T;};<,. Note that the preference
orderings C; need not be total; it is the priority relation < which is total.

This notation is convenient because in this case we can characterise the
globalising relation inductively. We write the globalisation of {C;};¢, as
™.

Proposition 17
1. 2 C° y always; and
2. 2 Clyif o Cyyor (v = yand 2 T y).

The proof is straightforward. In this case we may expect that the max-
imal elements in the globalisation relation C” can be found in the following
way.

Procedure 18 (incorrect) Start with the set X. Take the maximal ele-
ments according to the relation C; (it has the highest priority). Then, from
the resulting set, choose those which are maximal in C,. From that set, take
those which are maximal according to E3. Continue in this way until each
of the relations has been considered.

Any element found in this way is indeed E”-maximal, but it turns out
that this does not yield all of the C™ maximal elements. To find all the
maximal elements, proceed as follows.



Procedure 19 (correct) Start, as before, with the set X. Take the C;-
maximal equivalence classes. This is a set of sets; each element inside the
sets is C;-maximal, and each set is a =; equivalence class. Now for each
such equivalence class, take the Co-maximal equivalence classes. This gives
another set of sets, several of them resulting from each one of the previous
set of sets. Continue in this way until all the relations have been considered.

To formalise this procedure and state the necessary theorem, we need
the following notation.

Definition 20 Let (X,C) be a pre-order, and = the corresponding equiva-
lence relation. If ¥ C X, then Max(Y') is the set of =|y-equivalence classes
which are CE-maximal. That is,

Maxc(Y)={Z CY |Vz € Z. (2 is C-maximal in Y, and
VeeX.ze Ziff z =2)}.

Notice that this is not the set of maximal elements of Y'; rather, it is a
set of sets whose union is the set of maximal elements. It is, in fact, the set
of maximal elements of Y partitioned by =|y.

Proposition 21 Let {C;};¢, be a totally prioritised family of preferences
on X. Define the sets X, Xy,..., X, € P(X) as follows.

1. Xo ={X}, and
2. X; ={Y CX|3IZeX; ;.Y e Maxg (Z)} (1 <j<n).
(Equivalently, X; = Uzex,_, Maxc,(Z).)
Then: 7z is C"-maximal ff Y € X,,. z € Y.

In spite of this rather awkward notation, the difference between the two
procedures is easy to see.

Example 22 Suppose X = {a,b}, C; = {(a,a),(b,b)}, and C, = {(a,a),
(b,b),(a,b)}. That is, C; and C, are

a

Procedures 18 and 19 yield {b} and {a,b} respectively as the set of C*-
maximal elements.



Procedure 18 takes the view that as T, has not decided the matter
between a and b, then it should be up to C5 to determine that b is superior
to @ and thus that b is overall maximal. On the other hand, procedure 19
takes the view that C; has decided the matter between a and b; it says that
they are incomparable. Since C, is of less priority, it gets no say.

Example 23 Suppose X = {a,b}, T, = {(a,a),(b,b),(a,b),(b,a)}, and
C, = {(a,a),(b,b),(a,b)}. That is, C; and C, are

ab

a

Both procedures yield {b} as the set of C*-maximal elements.

Moral of story: there is a difference between saying that two elements
are incomparable and saying that they are equivalent!

4.2 Squashing pre-orders into total orders

Our final question is this: is there a way of defining the globalisation of a
family of prioritised relations in such a way that, in the totally prioritised
case, procedure 18 yields the right results? The answer is ‘yes’, in certain
conditions which we will state; but the definition is rather unnatural. We
take this to be evidence of the unnaturalness of that procedure.

The essence of the definition is to squash the pre-orders C; into total
pre-orders T} in such a way as to preserve maximal elements. Then we use
the definition of globalisation (definition 5).

If C is a pre-order, C* is the squashed version.

Definition 24 Let (X,C) be a pre-order. The pre-order C* on X is defined
as follows.
v Ey i |z > [yl

where
e la={ye X |zCy}, and

e |Y| is the cardinality of Y, and > compares cardinalities.

10



Example 25 Here are some examples of C with the squashed version C*

2
| |

1 2 AN | 3
N 2 |2 33/
1 4

\ |

A

C
3 NS 2
4
2
| |
1,2 \ 1,3 1,3
C | 1,2 2,3 | |
3 | 2 4
' |
5

Proposition 26

1. C* is total.
2. If # is C-maximal then z is C*-maximal.
3. If C has maximal elements then: if 2 is C*-maximal then z is C-
maximal.
Proof 2. x is C-maximal implies |[2| = 0 implies z is C*-maximal.
3. Let y be any maximal element. Then |Ty| = 0. Now suppose z is
C*-maximal; then |Tz| = 0, so « is C-maximal. O

Proposition 27 Let {C,;};¢, be a totally prioritised family of total prefer-
ences on X. (That is to say, each C; is also total; Va,y. 2 C; y or y C; z.)
Then the globalisation C is also total.

Proof Suppose y Z . We show that « C y. Since y [Z z, there is ¢ such
that y IZ; @ and Yk < ¢. y [Z; . But since these are total orders, this implies
x C; y and Yk < i. x Cf y. Therefore, 2 C y. a

11



Proposition 28 Let {C;};¢, be a totally prioritised family of preferences
on X, such that each C; has maximal elements. Let C be the globalisation
of {C}}icn (that is, the squashed relations). Then z is C-maximal iff 2 is
obtained by procedure 18.

5 Applications

The motivation for studying this problem is to establish the foundations of
default reasoning. In the framework we propose (which is the subject of [6]),
defaults are represented by sentences in the language. The idea of default
reasoning is that it is in general not possible to satisfy the defaults, but
nevertheless we want models of our theory which are as close to satisfying
the defaults as possible. To that end, we define orderings which measure
how well an interpretation of a logical language satisfies a given sentence in
the language. Thus, we write M C, N to mean that N satisfies ¢ at least
as well as M does. This definition and examples can be found in [6] and [5].
Clearly, we will be interested in interpretations which are T -maximal.

Thus, a default denotes a preference among models. The techniques of
this paper are then applied to putting defaults together with priorities. We
thus give semantics to ‘ordered theory presentations” (OTPs). An OTP is a
partially ordered multiset of sentences, the ordering representing a priority
on the sentences. The sentences are in general contradictory, and a model
of an OTP is defined to be an interpretation of the language which is max-
imal in the globalised relation which comes from the individual preference
relations in the way described in this paper.

This work also represents a direct generalisation of the notion of ‘pri-
oritised circumscription’ [4] to the case that ‘priority’ is a partial order.
In circumscription, minimizing a predicate means preferring interpretations
which have a small extension of the predicate. The definition of (totally) pri-
oritised circumscription uses, in effect, the lexicographic ordering described
here.

Our main interest is to apply these techniques to reasoning about ‘norma-
tive specifications’ — that is, specifications which contain constraints which
one has to maximise or minimise. Obviously, we are interested in the case
where these constraints are ordered by priority. See [2, 7].

There are also applications to optimisation under (prioritised) constraints
and in ‘social choice theory’ — but they are still to be investigated.
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