
Prioritising Preference RelationsMark RyanDepartment of Computing, Imperial College180 Queens Gate, London SW7 2BZ, United Kingdommdr@doc.ic.ac.uk20 May 1993AbstractWe describe some ideas and results about the following problem:Given a set, a family of \preference relations" on the set, and a\priority" among those preference relations, which elements of the setare best? That is, which elements are most preferred by a consensus ofthe preference relations which takes account of their relative priority?The problem is posed in a deliberately general way, to capture a widevariety of examples.Our main result gives su�cient conditions for the existence of `best'elements for an important instance of the problem: preference relationsare pre-orders, the priority among them is a partial order, and the def-inition of best elements uses a generalisation of lexicographic ordering.1 IntroductionOften in computer science, we wish to pick from a set elements which satisfycertain properties. But often, the properties are conicting, and we want to�nd elements which satisfy them as much as possible, or as many of themas possible. The situation may be complicated still further if some of theproperties are more important than others.Example 1 I like vegetarian food; I like nuts; I like tomatoes, especiallywith chili. My �rst preference is to take priority over the other two, whichare incomparable in priority. Available are lamb casserole; nut roast withtomato sauce; and pasta with tomato chili sauce. Thus, there is no dishsatisfying all of my preferences, but some are better at doing so than others.1



Our motivation for studying this problem is to establish the founda-tions of default reasoning. We postpone discussion of this motivation untilsection 5.For this paper, we assume that `preferences' between elements in a setare expressed by a pre-order. We also stipulate that the priority betweenpreferences is a partial order.Our aim in this paper is to formalise the notion of prioritised preference,and to establish conditions under which `best' (i.e. most preferred) elementsmay be found. Prioritised preference is formalised in section 2. Conditionsfor �nding maximal elements are given in section 3. In section 4, we consideran alternative characterisation. Section 5 briey describes applications ofthis work.2 Prioritised preferenceDe�nition 2 A pre-order is a reexive and transitive relation. A partialorder is a reexive, anti-symmetric and transitive relation.Notation 3 Let (X;v) be a pre-order or a partial order. We write x @ yif x v y and y 6v x; and x � y if x v y and y v x.De�nition 4 Let X be a set. A prioritised family of preferences on X is atriple (I;6; fvigi2I), where� (I;6) is a �nite, partially ordered set, and� for each i 2 I , vi is a pre-order on X .The food preferences of example 1 may be represented as a family ofprioritised preferences over the set of dishes X = f`; n; pg. In this case, I =fV;N; Tg (each letter representing a preference) with < = f(V;N); (V;T )gand the orderings vV , vN , vT are respectively the �rst three ofn; p` n`; p pǹ n p@@@ ���`2



The fourth ordering represents the consensus of the prioritised preferences,which we will shortly de�ne.Notice that i < j means that vi has a higher priority than vj. Butx @i y means that y is preferred to x by i.De�nition 5 Let (I;6; fvigi2I) be a prioritised family of preferences ona set X . The globalisation or consensus of fvigi2I is the relation v on Xde�ned byx v y if 8i 2 I: (x vi y or 9j 2 I: (j < i and x @j y)):That is, y is as preferred as x overall if it is as preferred according toeach of the relations except possibly those for which there is a relation ofgreater priority, at which y is strictly preferred to x.The remainder of this section is devoted to theorems and remarks whichfurther motivate and explain this de�nition.Lemma 6 x v y i� 8i 2 I: (x vi y or (9j < i: x @j y and 8k < j: x vk y)).Proof ( immediate. ) Find j minimal with x @j y. 2The de�nition of globalisation is a generalisation to partial orders of theusual lexicographic ordering. That is to say, if (I;6) is a total ordering, sayf1 < 2 < � � �< ng then the globalisation is the following:x v y if x @1 yor x v1 y and x @2 yor x v1 y; x v2 y and x @3 yor � � �or x v1 y; x v2 y : : : and x vn yOur convention that i < j implies vi has greater priority than vjmatches with the lexicographic ordering.Proposition 7 The globalisation v of a prioritised family of preferencerelations is a pre-order.Proof Reexivity is obvious. For transitivity, suppose x v y v z, and leti 2 I . We shall show x vi z or x @j z for some j < i.Suppose x vi y. If y vi z then x vi z. Otherwise, y 6vi z, so let j1 < ibe such that y @j1 z and y vk z for k < j1 (lemma 6). If x 6vj1 y, then let3



j < j1 be such that x @j y. Then j < i and x @j z follows from x @j y andy vj z. If x vj1 y, set j = j1. Then j < i, and x @j z follows from x vj yand y @j z.On the other hand, suppose x 6vi y and let j2 < i be such that x @j2 yand x vk y for all k < j2 (lemma 6). Again, consider separately the twocases y vj2 z and y 6vj2 z. If y vj2 z, set j = j2; then j < i, and x @j zfollows from x @j y and y vj z. Otherwise, y 6vj2 z so let j < j2 be suchthat y @j z; then j < i, and x @j z follows from x vj y and y @j z. 2De�nition 5 has also been described in various guises in Ryan [5] andGrosof [3].3 Finding maximal elementsWe are interested in �nding elements which are `best' according to the con-sensus of the prioritised preference relations; that is, we are interested in�nding v-maximal elements. As is well-known, Zorn's lemma [1] can beused to prove that maximal elements of an ordering exist. Zorn's lemmasays that a pre-order has a maximal element if every chain in the pre-orderhas an upper bound.De�nition 81. Let (X;v) be a pre-order. A subset Y of X is a v-chain if Y is totallyordered by v; that is, 8y; z 2 Y: y v z or z v y.2. A chain Y in (X;v) has an upper bound a 2 X if 8y 2 Y: y v a.Proposition 9 (Zorn's Lemma) A pre-order (X;v) has a maximal ele-ment if every chain in X has an upper bound.Before we apply Zorn's lemma, we establish the existence of certain keypreferences which will enable us to reduce v-chains to vi-chains. We do thisin the �rst of the following two lemmas. Then, in the second of the two, wecompose the vi chains to give another chain. We show that this chain hasan upper bound, and that its upper bound serves as an upper bound of thev chain we started with.The next few de�nitions and lemmas are technical lemmas whose realpurpose is to assist in the proof of theorem 15.4



De�nition 10 Let (I;6; fvigi2I) be a prioritised family of preferences ona set X , and let x; y 2 X . The x; y-frontier, written fr(x; y), is the set of6-minimal elements of the set fi 2 I j x 6�i yg.Note that if fi 2 I j x 6�i yg = ? then fr(x; y) = ?.Lemma 11 Suppose x v y. Then i 2 fr(x; y) i� x @i y and 8j < i: x �j y.Proof (If) Immediate. (Only if) Let x v y and i 2 fr(x; y). (1) We provex vi y; for if not, by de�nition 5 9j < i: x @j y, i.e. x 6�j y, contradictingi's minimality. (2) Since i 2 fr(x; y), x 6�i y. Thus x @i y.Now suppose j < i. Since i is minimal in fi 2 I j x 6�i yg, we havex �j y. 2De�nition 12 Let J � I . We write x vJ y if 8j 2 J: x vj y. We alsowrite #J for fi 2 I j 9j 2 J: i 6 jg.Lemma 13 Let Y � X be a v-chain with no maximal element. Then thereexists J � I and a 2 Y such that1. 8j 2 J: 8i 2 I: 8x; y 2 Y: (a v x v y and i 6 j) implies x vi y | thatis, fy 2 Y j a v yg forms a v#J -chain.2. 8j 2 J: 8x 2 Y: a v x implies 9z 2 Y: (x @ z and x @j z) | that is,the same set also forms a vJ -chain with no maximal element.3. 8i 2 I: 8x; y 2 Y: a v x v y implies (x vi y or 9j 2 J: j < i).Proof The idea of the proof is the following. First, we obtain a set I 0 � Iwhich contains those i which participate in frontiers all the way up the chainY . Then �nd an element a of Y above which all the frontiers are in I 0. J isde�ned as the minimal elements of I 0. Then it is possible to prove property1. Property 2 follows because we have stipulated that Y have no maximalelement; that is, for each y 2 Y there is a y0 2 Y with y @ y0. Property 3follows because J is the set of minimal elements of I 0.Let I 0 = fi 2 I j 8x 2 Y: 9y; z 2 Y: x v y @ z and i 2 fr(y; z)g.� If I 0 = I then let a be an arbitrary element of Y .� Otherwise, for each i 2 I � I 0 let xi 2 Y be such that 8y; z 2 Y , ifxi v y @ z then i 62 fr(y; z), and let a = maxvfxi j i 2 I � I 0g. Thateach xi can be found follows from the de�nition of I 0, and that theirmaximum can be found is guaranteed by the facts that Y is a chainand I is �nite. 5



Now we show that I 0 is non-empty. Let x; y 2 Y be such that a v x @ y.The fact that Y has no maximal element guarantees that these can be found.Since x @ y, fr(x; y) 6= ?, and since a v x; y, we have fr(x; y) � I 0.1. Let j 2 J , i 2 I and x; y 2 Y be such that i 6 j and a v x v y.If i 2 fr(x; y) then x @i y (lemma 11); otherwise, if i 62 fr(x; y) andx 6vi y then 9j 0 < i: x @j0 y, contradicting the minimality of j in J .2. Let j 2 J and x 2 Y with a v x. Since j 2 I 0, we can pick y; z 2 Ywith x v y @ z and j 2 fr(y; z). By part 1, x vj y vj z; and sincej 2 fr(y; z) we have y @j z. By transitivity, x @j z.3. If x 6vi y then 9j 0 2 fr(x; y) � I 0: j 0 < i (lemma 6), and since J consistsof the minimal elements of I 0 (and I is �nite!), 9j 2 J: j < j 0. 2Now we show, subject to a certain condition, that it is possible to �ndan upper bound for any v-chain. The condition says that upper bounds canbe found for intersections (i.e. conjunctions) of the vi relations.Lemma 14 Suppose for every J � I , every vJ -chain has an upper bound.Then every v-chain has an upper bound.Proof Let Y be a v-chain. If Y has a maximal element, then that serves asits upper bound. Suppose, then, that Y has no maximal element. Let J � Iand a 2 Y be as de�ned in lemma 13. Let K = J [ fk 2 I j 8j 2 J: j 66 kg.We now show that the set fx 2 Y j a v xg forms a v#K chain. Withoutloss of generality, let x; y 2 Y be such that a v x v y, and i 2 I and k 2 Kbe such that i 6 k. We need to show that x vi y. If k 2 J then x vi y bylemma 13(1). Otherwise, 8j 2 J: j 66 k (de�nition of K). Therefore, j 66 i.Suppose x 6vi y. Then by 13(3), 9j 2 J: j < i, a contradiction. So x vi y.Now let b be a v#K upper bound for fx 2 Y j a v xg. We show thatit is also a v upper bound for that set, and hence for Y . Let x 2 Y witha v x; we show that x v b, using de�nition 5.First note that (i) j 2 #K implies x vj b (by de�nition of b). Also, (ii)j 2 J implies x @j b. To see this, take y such that x @j y by lemma 13(2);but then y vj b, so x @j b.Now let i 2 I . We show that either x vi b or 9j < i: x @j b. If i 2 #K,x vi b by (i). If i 62 #K, then i 62 K. By de�nition of K, 9j 2 J: j < i; by(ii), x @j b. 2Thus, we are in a position to provide su�cient conditions for being ableto �nd maximal elements. 6



Theorem 15 Let (I;6; fvigi2I) be a prioritised family of preferences on aset X with globalisation v, such that for every J � I , every vJ -chain hasan upper bound. Then v has maximal elements.Proof By Zorn's lemma and lemma 14. 2The su�cient conditions for �nding maximal elements may feel a bitunsatisfactory, and one might ask whether they can be weakened. For ex-ample, maybe being able to �nd upper bounds on all vi-chains (but notnecessarily their intersections) is su�cient. However, the following exampleshows that this is not so.Example 16 Let X = (N�N)[ f(0; !); (!; 0)g. Let I = f1; 2g with 6 thediscrete ordering (i.e. < = ?) and(x; y) v1 (x0; y0) if x 6 x0 according to the numerical ordering(x; y) v2 (x0; y0) if y 6 y0 ditto..............�(3; 3).......���@@@.......�(0; !) �(2; 3) � � (!; 0).....................���@@@���@@@.....................� � ����@@@���@@@���@@@�(0; 3) � � � (3; 0)@@@���@@@���@@@����(0; 2) � � (2; 0)@@@���@@@����(0; 1) � (1; 0)@@@����(0; 0)Notice that although the premise of lemma 14 fails, all v1-chains andv2-chains have upper bounds. The globalisation is de�ned as (x; y) v (x0; y0)if x 6 x0 and y 6 y0. It has no maximal element. The chain (0; 0) v (1; 1)v(2; 2) v � � � has no upper bound according to this relation. So this exampleshows that upper bounds on the vi orderings is not enough.7



4 Are these really the best elements?The contribution of the preceding two sections is as follows: in the �rstsection, we gave the de�nition of the `globalising' or `consensus' relationfor a prioritised family of preferences, and examined its properties. In thesecond section, we showed that (under certain conditions) it is possible to�nd `best' elements according to those preferences { namely, those maximalin the globalising relation.Are these really the best elements? There is a particular case of priori-tised preference relations in which one may have conicting intuitions. Inthis section we examine those intuitions and propose an alternative de�ni-tion.4.1 Totally prioritised families of preferencesAn order 6 is total if for each i; j 2 I , we have i 6 j or j 6 i.Suppose our (I;6) is a total order f1 < 2 < � � � < ng. We will write thistotally prioritised family of preferences as fvigi6n. Note that the preferenceorderings vi need not be total; it is the priority relation 6 which is total.This notation is convenient because in this case we can characterise theglobalising relation inductively. We write the globalisation of fvigi6n asvn.Proposition 171. x v0 y always; and2. x vi y if x @i y or (x �i y and x vi�1 y).The proof is straightforward. In this case we may expect that the max-imal elements in the globalisation relation vn can be found in the followingway.Procedure 18 (incorrect) Start with the set X . Take the maximal ele-ments according to the relation v1 (it has the highest priority). Then, fromthe resulting set, choose those which are maximal in v2. From that set, takethose which are maximal according to v3. Continue in this way until eachof the relations has been considered.Any element found in this way is indeed vn-maximal, but it turns outthat this does not yield all of the vn maximal elements. To �nd all themaximal elements, proceed as follows.8



Procedure 19 (correct) Start, as before, with the set X . Take the v1-maximal equivalence classes. This is a set of sets; each element inside thesets is v1-maximal, and each set is a �1 equivalence class. Now for eachsuch equivalence class, take the v2-maximal equivalence classes. This givesanother set of sets, several of them resulting from each one of the previousset of sets. Continue in this way until all the relations have been considered.To formalise this procedure and state the necessary theorem, we needthe following notation.De�nition 20 Let (X;v) be a pre-order, and � the corresponding equiva-lence relation. If Y � X , then Maxv(Y ) is the set of �jY -equivalence classeswhich are v-maximal. That is,Maxv(Y ) = fZ � Y j 8z 2 Z: (z is v-maximal in Y , and8x 2 X: x 2 Z i� x � z)g:Notice that this is not the set of maximal elements of Y ; rather, it is aset of sets whose union is the set of maximal elements. It is, in fact, the setof maximal elements of Y partitioned by �jY .Proposition 21 Let fvigi6n be a totally prioritised family of preferenceson X . De�ne the sets X0;X1; : : : ;Xn � P(X) as follows.1. X0 = fXg, and2. Xj = fY � X j 9Z 2 Xj�1: Y 2 Maxvj(Z)g (1 6 j 6 n).(Equivalently, Xj = SZ2Xj�1 Maxvj (Z).)Then: x is vn-maximal i� 9Y 2 Xn: x 2 Y .In spite of this rather awkward notation, the di�erence between the twoprocedures is easy to see.Example 22 Suppose X = fa; bg, v1 = f(a; a); (b; b)g, and v2 = f(a; a);(b; b); (a; b)g. That is, v1 and v2 area b baProcedures 18 and 19 yield fbg and fa; bg respectively as the set of v2-maximal elements. 9



Procedure 18 takes the view that as v1 has not decided the matterbetween a and b, then it should be up to v2 to determine that b is superiorto a and thus that b is overall maximal. On the other hand, procedure 19takes the view that v1 has decided the matter between a and b; it says thatthey are incomparable. Since v2 is of less priority, it gets no say.Example 23 Suppose X = fa; bg, v1 = f(a; a); (b; b); (a; b); (b; a)g, andv2 = f(a; a); (b; b); (a; b)g. That is, v1 and v2 area b baBoth procedures yield fbg as the set of v2-maximal elements.Moral of story: there is a di�erence between saying that two elementsare incomparable and saying that they are equivalent!4.2 Squashing pre-orders into total ordersOur �nal question is this: is there a way of de�ning the globalisation of afamily of prioritised relations in such a way that, in the totally prioritisedcase, procedure 18 yields the right results? The answer is `yes', in certainconditions which we will state; but the de�nition is rather unnatural. Wetake this to be evidence of the unnaturalness of that procedure.The essence of the de�nition is to squash the pre-orders vi into totalpre-orders v�i in such a way as to preserve maximal elements. Then we usethe de�nition of globalisation (de�nition 5).If v is a pre-order, v� is the squashed version.De�nition 24 Let (X;v) be a pre-order. The pre-order v� on X is de�nedas follows. x v� y if j"xj > j"yjwhere� "x = fy 2 X j x @ yg, and� jY j is the cardinality of Y , and > compares cardinalities.10



Example 25 Here are some examples of v with the squashed version v�v 1 2@ �3 1 2 1� @2 3@ �4 1 32 2����� 31 4@@ 5v� 1; 23 1; 2 12; 34 1; 32 21; 345Proposition 261. v� is total.2. If x is v-maximal then x is v�-maximal.3. If v has maximal elements then: if x is v�-maximal then x is v-maximal.Proof 2. x is v-maximal implies j"xj = 0 implies x is v�-maximal.3. Let y be any maximal element. Then j"yj = 0. Now suppose x isv�-maximal; then j"xj = 0, so x is v-maximal. 2Proposition 27 Let fvigi6n be a totally prioritised family of total prefer-ences on X . (That is to say, each vi is also total; 8x; y: x vi y or y vi x.)Then the globalisation v is also total.Proof Suppose y 6v x. We show that x v y. Since y 6v x, there is i suchthat y 6vi x and 8k < i: y 6@k x. But since these are total orders, this impliesx @i y and 8k < i: x vk y. Therefore, x v y. 211



Proposition 28 Let fvigi6n be a totally prioritised family of preferenceson X , such that each vi has maximal elements. Let v be the globalisationof fv�i gi6n (that is, the squashed relations). Then x is v-maximal i� x isobtained by procedure 18.5 ApplicationsThe motivation for studying this problem is to establish the foundations ofdefault reasoning. In the framework we propose (which is the subject of [6]),defaults are represented by sentences in the language. The idea of defaultreasoning is that it is in general not possible to satisfy the defaults, butnevertheless we want models of our theory which are as close to satisfyingthe defaults as possible. To that end, we de�ne orderings which measurehow well an interpretation of a logical language satis�es a given sentence inthe language. Thus, we write M v� N to mean that N satis�es � at leastas well as M does. This de�nition and examples can be found in [6] and [5].Clearly, we will be interested in interpretations which are v�-maximal.Thus, a default denotes a preference among models. The techniques ofthis paper are then applied to putting defaults together with priorities. Wethus give semantics to `ordered theory presentations' (OTPs). An OTP is apartially ordered multiset of sentences, the ordering representing a priorityon the sentences. The sentences are in general contradictory, and a modelof an OTP is de�ned to be an interpretation of the language which is max-imal in the globalised relation which comes from the individual preferencerelations in the way described in this paper.This work also represents a direct generalisation of the notion of `pri-oritised circumscription' [4] to the case that `priority' is a partial order.In circumscription, minimizing a predicate means preferring interpretationswhich have a small extension of the predicate. The de�nition of (totally) pri-oritised circumscription uses, in e�ect, the lexicographic ordering describedhere.Our main interest is to apply these techniques to reasoning about `norma-tive speci�cations' { that is, speci�cations which contain constraints whichone has to maximise or minimise. Obviously, we are interested in the casewhere these constraints are ordered by priority. See [2, 7].There are also applications to optimisation under (prioritised) constraintsand in `social choice theory' { but they are still to be investigated.12
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