
Defaults in Speci�cationsMark RyanDepartment of ComputingImperial CollegeLondon SW7 2BZE-mail: mdr@doc.ic.ac.ukAbstractA formalism is motivated and described for rep-resenting defaults in speci�cations. The formalismis called Ordered Theory Presentations. The abilityto represent defaults narrows the gap between a cus-tomer's initial requirements and a formal speci�cation,and supports reuse on both a small and a large scale.We illustrate the issues throughout with reference tothe lift example.We also consider the application of the formalismto speci�cation revision.1 IntroductionImagine specifying a lift system. There is a lift,with n buttons and n indicator lights inside, and thereare doors. The buttons inside the lift are for request-ing where the lift goes, and the indicator lights registersuch requests. There are
oors, each with two buttonsand indicator lights (one for requesting to go up andone for down). The indicator lights switch on in re-sponse to button pressings and o� when the lift arrivesat a
oor; and the lift goes from
oor to
oor depend-ing on the state of the lights. Sometimes it opens itsdoors to let people in and out.Here are some of the customer's requirements:1. If the lift is at the ith
oor and it goes down byone
oor, then it is at the (i� 1)th
oor.2. Pressing the alarm button causes the alarm tosound.3. The lift may not move up or down unless thedoors are closed.4. When the lift is at the ith
oor, the indicator lightfor the ith
oor is o�.5. Pressing1 a button for a
oor causes the corre-sponding indicator light to come on.1Throughout this paper we take the press action to be anatomic press-and-release.

Although they are initially appealing, examinationreveals that these statements are (in the context ofother even more plausible statements) contradictory.For example, statements 4 and 5 contradict if we as-sume, as we should, that pressing a button does notdirectly a�ect the position of the lift among the
oors.The contradiction arises when we consider what hap-pens when the ith button is pressed and the lift isalready at the ith
oor. Statement 5 says that thelight should come on, while 4 (together with the as-sumption that the pressing did not instantly changethe
oor) says that it should be o�.In this case it is clear that 4 should override 5 whenthey con
ict. However, that does not mean that wecan remove 5 from the speci�cation altogether, as itis required for all the other circumstances in whichthe lift is not at the relevant
oor. That is to say,statement 4 should only partially override statement 5.The situation for the lift's indicator lights is in facteven worse, for some others of the customer's require-ments are6. Holding down any button makes the light turn on(until the button is released).7. In the event of a power failure, all the lights willturn o�.8. If the lift was between
oors when the power fail-ure took place, the alarm will sound (it is batteryoperated).And so on. These statements further interfere withstatements 1 to 5, overriding them in certain circum-stances.The upshot of all this, then, is that statement 5should be thought of as a default | a statementwhich is true unless some stronger sentence overridesit. Much of this paper is about how such defaults inspeci�cations should be handled formally.Among the questions addressed in this paper arethe following:� Can we make sense of such defaults in speci�ca-1

tions?� How formally can we allow one partially to over-ride another, in the way that 4 partially over-rides 5 in the example?� How do we know what should override what, any-way?The bene�t of answering these questions is to nar-row the gap between the customers initial require-ments and the formal speci�cation. The idea is thefollowing. In the usual simple model of the softwaredevelopment process the formal speci�cation standsbetween the informally stipulated requirements andthe �nal code. There are thus two components tothe process, one which takes the requirements andconstructs the speci�cation, and the other taking thespeci�cation to the program code. We are interestedin the �rst process, and we believe that if we can rep-resent more of the original intentions of the customerin the speci�cation then that process becomes easier.Part of those original intentions includes defaults andthe implication that certain statements override oth-ers when they con
ict. The issue, then, is to representthese formally in the speci�cation, thus making thespeci�cation a more accurate re
ection of the require-ments.Also in this paper, we consider another relatedtopic, which is how revisions of the requirements maybe formally represented. Revisions may come aboutduring the software development process when thecustomer is made aware of the consequences of hisor her stipulations, which he or she may �nd unde-sirable. In that case, they are introduced in order toremove these undesirable consequences. Revising thespeci�cation then consists of adding a new sentencewhich overrides (if necessary, ad only partially) theother sentences.Defaults and revisions in speci�cations are verysimilar from the formal point of view, because theyboth involve this crucial notion of overriding betweensentences.The remainder of the paper is organised as follows.In section 2 we review a standard formal languageand logic for describing state-based systems, knownas Modal Action Logic, or MAL. This logic forms thebasis of the system described in this paper. In sec-tion 3 we discuss how speci�cations should be struc-tured (or modularised) and how this gives a basis forde�ning the overriding relation between statements.In this section, and throughout the paper, we makecontinued reference to the lift speci�cation example.In section 4 we develop the formal machinery for theoverriding relation, and apply it to the lift example.

Finally, objections to the approach are considered and,I hope, quashed, in section 6, and comparisons withother default systems are touched upon in the last sec-tion.2 Modal action logicModal action logics (also known as dynamic logicsor multi-modal logics), have for over a decade beenused to specify state-based software systems. Thebasic idea of modal action logics is to represent ac-tions moving the system from one state to another as`modalities.' Such a logic has a family of modal opera-tors, one for each action that the system can undergo,and its semantics is given by a set of states and afamily of relations on the states, one interpreting eachmodality. For example, the fact that the action a ifexecuted in a state satisfying condition � results in astate satisfying is expressed by the axiom�! [a] :There are many accounts of modal action logics [3, 4,5, 14]. We now describe a simple version which werefer to as mal below.A component within a speci�cation is, in logicalterms, a signature together with a theory presentationover the signature. A mal signature is a pair con-sisting of a set of action symbols and a set of atomicproposition symbols; the action symbols are used todescribe the actions which the system may perform,and the proposition symbols are used to represent thestate of the system. Thus, actions update the valuesof the propositions.A mal signature S = hA;P i consists, then, of twosets; a set of actions A and a set of propositions P .For example, here are the signatures for some of theobjects of the lift system:button has the signature hfpress; cancelg; flitgi. Thebutton may be pressed or cancelled, and has alight which may be on or o�.door has the signature hfopen; closeg; fdoors-opengi.lift-position has the signature hfup; downg; f
oor1;: : : ;
oorngi.
oori represents whether the lift isat the ith
oor or not.lift has the signature hfpress1; : : : ; pressn; cancel1;: : : ; canceln; open; close; up; downg, flit1; : : : ; litn;
oor1; : : : ;
oorn; doors-opengi. Notice the re-naming of the press actions.Given a signature, atomic propositions are com-posed to form more complex sentences using the usualboolean operators ^, _, !, : etc. There is also the2

construct [�] � which, as already mentioned, is used todescribe the e�ects of actions. If a is an action sym-bol and � a sentence (which may also contain actionterms) then [a]� expresses the fact that � holds aftera has taken place. The syntax of formulas is thereforeas follows:a 2 A; p 2 P� ::= p j �1 ^ �2 j �1 _ �2 j �1 ! �2 j�1$ �2 j :� j [a]�To illustrate this syntax, here again are the �ve state-ments about the lift.1.
oori ! [down]
oori�1 (for 2 6 i 6 n)2. [press-alarm]alarm3. doors-open! ([up]?^ [down]?)4.
oori ! :liti5. [pressi]litiThe semantics of the language we have introduced sofar is given by its interpretations. An interpretationM for a signature is a function which takes states to anassignment of truth values to the atomic propositions.States are represented by traces. A trace is a sequenceof actions in the signature; a �nite trace denotes thestate which results by performing the actions in thesequence, starting in the initial state. Thus, if � is atrace and p an atomic proposition, then M (�)(p) is atruth value which says whether p is true or false in thestate resulting from performing the actions in � in theinitial state.Satisfaction in states is de�ned in the followingway:M (�)
 p if M (�)(p) = tM (�)
 :� if M (�) 6
 �M (�)
 �^ if M (�)
 � andM (�)
 and similar clauses for _, !, $M (�)
 [a]� if M (� � a)
 �(In the last clause, � � a is � with a appended.) Inthis way of handling actions, the logic cannot supportconcurrent actions. In the papers to which we have al-ready referred a more complex logic is described whichhandles concurrency. For our present purposes, how-ever, concurrency is not an issue and it is better toavoid unnecessary technicalities.Satisfaction in interpretations is then de�ned as fol-lows: M
 � if for each �,M (�)
 �:This means that a sentence is true overall in an inter-pretation i� it is true in every state of the interpreta-tion.

If � is a set of sentences and � a sentence, � j= �holds if for every M , if M
 for each 2 � thenM
 �. � j= � is read � entails �. If � is the setof axioms of a speci�cation and � j= �, then � is aconsequence of the speci�cation.We are now equipped with the syntax and seman-tics necessary to specify action-based systems. Ouraim is to develop the machinery which allows defaultsand revisions to be expressed. First, we examine animportant element of this, which is how speci�cationsare structured into their components.3 Structuring MAL speci�cationsThe language and logic introduced so far allows usto specify state-based systems. In cases that there isa large number of action symbols or proposition sym-bols, however, it makes sense to split up the signatureinto smaller signatures and specify them separately.This not only enhances readability and writability, butalso provides a means of stipulating locality conditionsto constrain the e�ects of actions. This is the idea ofobject encapsulation, or object-oriented speci�cation.In the last section, we gave the signatures of four ofthe objects which make up the lift. The lift structureis the following:button button � � � button@@@@@R 	�����lift-buttons_ door lift-position@@@@@R 	�����lift_The lift is split into three objects: lift-buttons, doorand lift-position. The panel of buttons, called lift-buttons, is composed of n copies of button. Thebutton object represents the button and the light to-gether.Each object of this diagram has a signature, andthe arrows in the diagram are inclusion maps betweenthese signatures. An object also comes with a set ofsentences over its signature, which expresses the ob-ject's behaviour. For example, the ith button objecthas the sentences[pressi]liti and [canceli]:liti3

which, as already noted, means that the ith light isswitched on and o� by the press and cancel actions.The lift-position object has the sentences
oori ! [up]
oori+1 for each i = 1; : : : ; n� 1
oori ! [down]
oori�1 for each i = 2; : : : ; n
oori$ Vj 6=i :
oorj for each i = 1; : : : ; nwhich respectively express the e�ects of the actionsup and down and the fact that the lift is always atprecisely one
oor.The locality conditions which structuring providesare axioms which express the fact that the actions ofan object can only a�ect the values of the propositionsalso declared in that object. For example, for each1 6 i; j 6 n there is the axiom
oori$ [pressj]
ooriwhich says that pressj leaves
oori unchanged. Thatis because pressj can only a�ect the value of litj ; itssole e�ect is to switch on the light.As well as enhancing readability and providing thelocality constraints as described, structuring speci�-cations also provides a way of resolving con
icts be-tween sentences, such as the con
ict between sentences5 and 4 of the lift. As noted, the �rst of these as-serts that the button's light comes on when the but-ton is pressed. However, we know that this is onlythe light's usual behaviour, because there are circum-stances when the light does not come on when thebutton is pressed. We have already noted one suchcircumstance, which is when the lift is already at therelevant
oor. The fact that the light does not illu-minate in that case is a consequence of sentence 4. Itsays that the ith light is never on when the lift is atthe ith
oor. Intuitively, these two sentences con
ict2.Sentence 5 says that the ith light will come on whenthe ith button is pressed, even if we are already at theith
oor, while 4 says it will not.The con
ict between 4 and 5 can be resolved by thelift structure by appealing to the speci�city principle.It states thatDefaults about a speci�c class of objects over-ride those about a more general class whenthere is con
ict.2To obtain a formal contradictionit is necessary to invoke thelocality axiom mentioned earlier. Take anyM satisfying the ax-ioms. By virtue of the third axiom in lift-position, we have thatM(�)

oork for some k. (The symbol � is the empty sequenceof action symbols.) Then, since M(�)

oork $ [pressk]
oork(since that is an instance of the locality axiom), we obtainM(�)
 [pressk]
oork and so M(pressk)

oork. There-fore, since
oork ! :litk is an axiom, M(pressk)
 :litk .But [pressk]litk is an axiom, so M(�)
 [pressk]litk and soM(pressk)
 litk , a contradiction.

This principle is well-known in arti�cial intelligence [2,15]. It applies in this case because statement 4 is aboutlifts (i.e. it is in the lift object), while statement 5is about buttons (it is in the button object). Thestructure of the lift speci�cation shows that the liftobject incorporates the button object. Therefore, theclass of lifts is more speci�c than that of buttons. Thespeci�city principle says then that statements aboutlifts override those about buttons, so 4 overrides 5.In this way the speci�city principle tells us that therelation of `overriding' between sentences is given bythe structure of the speci�cation. That is to say, wemay derive from it an ordering of the axioms whichshows which ones may override which other ones inthe case of a con
ict. We call such orderings of ax-ioms ordered theory presentations. To obtain the or-dered theory presentation for the lift, we replace eachobject in the structure diagram above by the axiomswhich come with it, and reverse the direction of the ar-rows: see �gure 1. (We have left out some axioms notrelevant to this discussion.) We reversed the arrows sothat we can read them as `dominates' or `overrides'.Thus, they happen to go in the reverse direction to thearrows of the structure diagram, but this is merely amatter of convention.An ordered theory presentation, such as this one,is a �nite set of sentences equipped with a partial or-der. Sentences lower in the ordering are to be treatedas having greater weight or priority. They overridehigher sentences when there is a con
ict. The exactnature of this overriding is the subject of the next sec-tion. But to prime our intuitions, notice that it is notsimply the case that if two sentences con
ict, we canignore the upper one; some `instances' of it may still beneeded. For example, although sentence 4 overrides 5of the lift, we still need sentence 5 for those cases thatit is not overridden. This feature of ordered theorypresentations is expanded upon in section 4.Not all axioms express behaviour which may beoverridden. For example, we may wish to keep lo-cality axioms inviolable. This would be prudent, forif we override such axioms we may lose our intuitiveunderstanding of the speci�cation. Therefore, a spec-i�cation seen from a logical point of view must be apair h�;�i consisting of an ordinary theory presenta-tion � (the inviolable axioms) and an ordered theorypresentation � (the defaults). We argue that these or-dered theory presentations are `�rst-class' logical en-tities. Their meaning is the subject of section 4.4

[press1]lit1[cancel1]:lit1 [press2]lit2[cancel2]:lit2 � � � [pressn]litn[canceln]:litnI@@@@@ �������̂ [op]open[cl]:open Vn�1i=1 (
oori ! [up]
oori+1)Vni=2(
oori ! [down]
oori�1)Vni=1(
oori $ Vj 6=i :
oorj)I@@@@@ ������n̂i=1(
oori ! :liti)^Figure 1: Part of the OTP for the lift4 Ordered theory presentationsThe concept of ordered theory presentation was�rst introduced in [12], under the name `structuredtheory'. Since then the de�nitions and notations forOTPs have been improved and new results have beenobtained. See also [11]. The present paper appliesthe cumulation of this work to the problem at hand,namely, the representation of defaults and revisions inspeci�cations.Let M be the set of interpretations as describedin section 2 of a �xed signature L, and let
 be thesatisfaction relation also described there.To de�ne the meaning of an ordered presentation� we need to de�ne an ordering v� on interpretationsin M which measures the extent to which interpreta-tions satisfy the ordered presentation �. This relies ona set of orderings v�, one for each sentence � of thelanguage. To de�ne v�, it is necessary to de�ne nat-ural entailment, which is written j=� . This de�nitionin turn relies on the notion of the monotonicities of asentence. Lest the reader be daunted by these nest-ings of de�nitions, we repeat the list here. We de�ne,in order,1. Monotonicities of a sentence �, written h�+; ��i.2. Natural entailment, a relation j=� between sen-tences, being a sub-relation of ordinary entail-ment j=.3. For each sentence �, a re
exive and transitive or-der v� on the interpretations of the language; aswill be seen, this order grades interpretations ac-cording to how nearly they satisfy �.4. An ordering v� on the interpretations of the lan-guage; it grades interpretations according to howwell they satisfy �.

When all these have been de�ned, we stipulatethat the models of a speci�cation h�;�i are the v�-maximal elements in the set of interpretations whichsatisfy �.The motivation for this series of de�nitions may beseen in terms of the discussion of `partial overriding'given in section 4. We note there that one of the cri-teria for the semantics of ordered theory presentationswas that higher sentences be accepted at least in part,even when they are overridden by lower sentences. Inother words, we want as much of the higher sentencesas we can have, given that we must have the lowersentences and must avoid contradictions. This is themotivation for the ordering of item 3 in the above list;it is an ordering which allows us to chose models whichnearly satisfy a particular sentence, even if we have al-ready limited our choice to models which do not quitesatisfy it fully. It is harder to motivate items 1 and 2of the above list in intuitive terms, except to the ex-tent that they are needed in order to arrive at thede�nition of the orderings v�. Item 4 may be seen inthe same way as the orderings of item 3, except thatit works at the level of entire theory presentations in-stead of individual sentences. Its de�nition is in termsof the subsidiary orderings, but it takes account of theordering of the sentences in � as well.For the de�nition of the monotonicities of �, weneed the following notation. If M is an interpreta-tion of L, � a trace of L and p a propositional sym-bol in L, then M (�)[p7!t] is an interpretation identicalwith M (�) except possibly that it assigns true to p.(If M (�) already assigns true to p then M (�)[p7!t] issimplyM (�).) M (�)[p7!f] is de�ned analogously.De�nition 1 Let � be a sentence other than ? and5

p any propositional symbol.1. � is monotonic in p if for each M;�: M (�)
 �implies that M (�)[p7!t]
 �.2. � is anti-monotonic in p ifM (�)
 � implies thatM (�)[p7!f]
 �.3. �+ and �� are the sets of symbols in which � ismonotonic and anti-monotonic respectively.The case that � = ? is handled separately; we de�ne?+ = ?� = ?.Thus, � is monotonic in p if \increasing" the truthvalue of p in a model of � preserves satisfaction of �.Similarly, � is anti-monotonic in p if decreasing thetruth value so preserves satisfaction.Having de�ned monotonicities, we turn to point 2 ofthe four-point plan mentioned above, i.e. the de�nitionof natural entailment. Let � and be sentences of L.De�nition 2 � naturally entails , written � j=� , if1. � j= , and2. �+ � + and �� � �Natural entailment is a sub-relation of ordinary en-tailment; in addition to ordinary entailmentwe requirethat the monotonicities of the premise be preserved bythe conclusion. This de�nition is really the core of thework described in this section, for the natural conse-quences of a sentence are its `components' which maybe individually accepted or rejected in the overall the-ory. In Brass/Ryan/Lipeck [1] we discuss other waysof describing such instances.Proposition 3 j=� is re
exive and transitive.The proofs of this proposition and others in this sec-tion which are given without proofs may be found in[12].De�nition 4 M v� N , if for each ,� j=�) (M
) N
)We can show that v� has precisely the mathemat-ical behaviour we want:Proposition 5 1. v� is a pre-order, that is to say,it is re
exive and transitive.2. If � 6= ?, the maximal elements of v� (which arein fact maximum) are just the models of �.The proofs of these assertions, together with manyexamples of v� for various sentences �, can be foundin [12].We have de�ned, for each sentence �, an orderingon interpretations v� which measures the extent to

which interpretations satisfy �. IfM satis�es � to thefullest extent (that is, if it simply satis�es it) then Mis v�-maximum. If M does not fully satisfy � then itmay satisfy it to a greater, lesser, equal or incompara-ble extent than some N which perhaps also fails fullyto satisfy �. As stated, examples of this ordering onmodels for various sentences � can be found in [12].All that remains of our four-point plan at the be-ginning of this section is to de�ne the global orderingv� for an ordered presentation � in terms of the re-lations v� for each � 2 �. The idea is that M v� Nmeans that if a sentence in � makes the `wrong' choicebetween M and N (i.e. if M 6v� N) then there is asentence with greater priority which makes the `right'choice.De�nition 6 M v� N if for each � 2 �, M 6v� Nimplies there exists 6 � in � such that M @ N .Proposition 7 v� is a pre-order.As already said, the models of a speci�cation h�;�iare the v�-maximal elements in the set of interpreta-tions which satisfy �.Returning to the lift example, the question whichshould be answered is: what are the models of h�;�iwhen � is the locality axioms and � is the structuredtheory presentation for the lift example, given at theend of section 3? More practically, we can ask: whatare the interesting consequences of the speci�cation(that is, what sentences hold in these maximal inter-pretations)?As one would expect, all the axioms except the[pressi]liti family are consequences of the speci�cation.That is to say, it is the only axiom which is overriddenby others or by locality axioms. Instead, the sentence:
oori ^ pressi ! liti;which says that the button lights when pressed if thelift is at another
oor, is also a consequence.5 Revising speci�cationsIn this section we brie
y describe the application ofthis work to the topic of speci�cation revision. Fullerdetails will be given in another paper. We use theword `revision' to mean any change to a speci�cation,which in general can remove some of its propertiesas well as adding others. This is not to be confusedwith `re�nement', which (like `enrichment' or `special-isation') is simply adding properties. The formal ma-chinery required for revision is exactly the same as6

the machinery for defaults which is described in thepreceeding sections. Revisions arise inherently in thesoftware process, and may also be taken as a designmethodology. We consider each of these in turn.The software development process. Revisions ofrequirements occur during the construction of a speci-�cation. Indeed,
ushing them out is part of the moti-vation for formal speci�cations in the �rst place. Dur-ing the requirements elicitation phase, the speci�ertypically brings to the attention of the customer un-desirable consequences of the speci�cation so far, andthe customer requests revisions.Design method. We may reuse speci�cations byrevising them to �t the new context we have in mind.This has both small-scale and large-scale applications.In the small, one can consider re-using componentsfrom a library of standard objects. If a componentdoesn't quite �t the application because it has un-wanted properties, revise it with the desired proper-ties.In the large, whole speci�cations may be con-structed in this way. For example, the recent RoverTV advertisement showed how the Metro motor-carwas conceived as a Mini with certain properties added.These properties con
icted with the old ones, whichmeans the revision is not merely a matter of re�ne-ment or enrichment. Thus, the Metro is speci�ed bystipulating its di�erences from a Mini.In practical terms one may envisage a software en-gineering environment (implemented on a computer)which allows one to explore a `design space' by bothsmall-scale and large-scale revisions of the type de-scribed here.The obvious di�erence in the case of speci�cationrevision as against speci�cations with defaults is thatthe ordering in the resulting OTP comes not from thestructure of the speci�cation, as it did for defaults,but from the process by which the speci�cation wasobtained (the revision history). But in fact, thesegenealogies are not so di�erent. One can think of arevision history as showing the structure (through re-�nement) of a component; for example, one can thinkof the structure diagram for the MetroMiniMetro_as a revision history or one can view the earlier objectsas the components of which the Metro is made. On

the other hand, a non-linear structure diagram suchas that of the lift represents a revision history in morethan one dimension. For example, the manufacturer'sintention is that the button's light illuminates whenthe button is pressed. This is encoded in the but-ton's speci�cation. But the speci�cation was revisedfor incorporation in the lift, since in that context itis to have the property that it does not light whenpressed in certain circumstances; namely, when thelift is in a state in which the request made by the userby pressing the button is inappropriate. The revisionis implemented via a complicated interface betweenthe components which may not even be part of thespeci�cation|that is why an OTP is needed.6 ObjectionsIn the preceeding sections we have motivated theidea that a speci�cation can be a rather `loose' object,containing sentences which may be overridden by oth-ers. The reader may dislike this idea; this section isdevoted to presenting objections to defaults and revi-sion in speci�cations and, I hope, to allaying them.The most common objection raised is that speci-�cations are by nature exact, and it goes against thegrain to introduce the slack which comes with defaults.I have much sympathy with this view, but I believethat the bene�ts gained outweigh the disadvantages.Among the bene�ts are the ability to represent defaultbehaviour when it really is a characteristic of the ob-ject being speci�ed; the ability to explore a designspace; the improvement in modularisation which canbe obtained (see below); and freedom from the choreof �lling in every little detail, instead being able toallow con
icts to resolve automatically. Furthermore,from a methodological point of view, we narrow thegap between the informal requirements and the spec-i�cation; without, I believe, the price of widening thegap on the other side, between speci�cation and code.This is because the speci�er has an improved mediumfor expressing the intuitions and intentions behind hisor her speci�cations.The improvement in modularisation referred toabove can be seen by considering the e�ect of cod-ing in the exception to sentence 5 of the lift speci�ca-tion. Sentence 5 expresses the fact that the buttonslight when pressed, and is an axiom of the button ob-ject. The exception noted is when the lift is already atthe relevant
oor, so taking account of this the axiomwould become: :
oori ! [pressi]liti:7

But this cannot now be an axiom of the button objectafter all, but must be an axiom of the complete liftsystem. This is because the vocabulary it uses is notavailable in the button signature. Thus the motiva-tion for structuring (that is, dividing the speci�cationinto constituent objects and axiomatising them indi-vidually) in the �rst place is foiled: every axiom hasto be part of the biggest object in order to list all theexceptions.It might be objected that if some axioms are al-lowed to override others, we may quickly get into amess in which we do not know which axioms are beinga�ected by which others. To counter this objection,it should be possible to check at any stage whether acertain axiom expressing a default is being overriddenor not, by checking whether it is a consequence of thespeci�cation. And again, the advantage is that onecan explore the design space by changing the orderaround until the desired e�ect is achieved. This givesgreat
exibility to the speci�er. Of course, the abilityto do these things assumes a sophisticated interactivesoftware environment which supports OTPs; such athing is yet to be developed.7 Comparison with other default logicsThe idea of using default information in speci�ca-tions has been motivated in sections 1 and 3. How-ever, there are other default systems which might alsobe considered as candidates in speci�cation theory. Afull investigation is given in [11]; here we summariseour �ndings.We have analysed several default systems, andfound them wanting from our point of view. For ex-ample, Reiter's `Default Logic' [10] represents defaultsas rules of inference which interfere with the underly-ing logic, and cannot cope with the modalities of MAL.Con
icting defaults are handled by coding their prece-dence as consistency checks, as the speci�city principlecannot be used directly. Also, Reiter's system enjoysinsu�ciently many of the formal properties of [7]. Mc-Carthy's `Circumscription' [6, 8], which has better for-mal properties of the kind described in [7], fares betterfrom our point of view, representing defaults as ordi-nary �rst order sentences. But it is still unclear howmodalities should be handled, and the resolution ofcon
icts between con
icting defaults has to be codedup explicitly, this time by manipulating relationshipsbetween abnormality predicates.

References[1] S. Brass, M. Ryan, and U. Lipeck. Hierarchical defaultsin speci�cation. To appear, 1992?[2] D. Etherington and R. Reiter. On inheritance hierar-chies with exceptions. In Proc. Third National Confer-ence on Arti�cial Intelligence, pages 104{108, 1983.[3] J. Fiadeiro and T. Maibaum. Describing, structur-ing and implementing objects. In Proc. REX Workshopon Foundations of Object-Oriented Languages. Springer-Verlag, 1991.[4] J. Fiadeiro and T. Maibaum. Towards object calculi.Technical report, Deprtment of Computing, ImperialCollege, London, 1992.[5] R. Goldblatt. Logics of Time and Computation. CSLILecture Notes, 1987.[6] V. Lifschitz. Computing circumscription. In Ninth In-ternational Joint Conference on Arti�cial Intelligence,pages 121{127, 1985.[7] D. Makinson. General patterns in non-monotonic rea-soning. In D. Gabbay, C. Hogger, and J. Robinson, edi-tors, Handbook of Logic in Arti�cial Intelligence. OxfordUniversity Press, 1992.[8] J. McCarthy. Circumscription|a form of non-monotonic reasoning. Arti�cial Intelligence, 13:27{39,1980.[9] J. McCarthy. Applications of circumscription to for-malising common-sense knowledge. Arti�cial Intelli-gence, 28:89{116, 1986.[10] R. Reiter. A logic for default reasoning. Arti�cialIntelligence, 13:81{132, 1980.[11] M. Ryan. Ordered Presentations of Theories: DefaultReasoning and Belief Revision. PhD thesis, Departmentof Computing, Imperial College, 1992. Copies availablefrom author.[12] M. D. Ryan. Defaults and revision in structured theo-ries. In Proc. Sixth IEEE Symposium on Logic in Com-puter Science (LICS), pages 362{373, 1991.[13] M. D. Ryan. Representing defaults as sentences withreduced priority. In B. Nebel and W. Swartout, edi-tors, Proc. Third International Conference on Principlesof Knowledge Representation and Reasoning (KR'92).Morgan Kaufmann, 1992.[14] M. D. Ryan, J. Fiadeiro, and T. Maibaum. Sharingactions and attributes in modal action logic. In T. Itoand A. Meyer, editors, Theoretical Aspects of ComputerSoftware, pages 569{593. Lecture Notes in ComputerScience 526, Springer Verlag, 1991.[15] D. Touretzky. Implicit ordering of defaults in inher-itance systems. In Proc. Fifth National Conference onArti�cial Intelligence, pages 332{325, 1984.8

