Defaults in Specifications

Mark Ryan
Department of Computing
Imperial College
London SW7 2BZ

E-mail: mdr@doc.ic.ac.uk

Abstract

A formalism is motivated and described for rep-
resenting defaults in specifications. The formalism
is called Ordered Theory Presentations. The ability
to represent defaults narrows the gap between a cus-
tomer’s initial requirements and a formal specification,
and supports reuse on both a small and a large scale.
We illustrate the issues throughout with reference to
the lift example.

We also consider the application of the formalism
to specification revision.

1 Introduction

Imagine specifying a lift system. There 15 a lift,
with n buttons and n indicator lights inside, and there
are doors. The buttons inside the lift are for request-
ing where the lift goes, and the indicator lights register
such requests. There are floors, each with two buttons
and indicator lights (one for requesting to go up and
one for down). The indicator lights switch on in re-
sponse to button pressings and off when the lift arrives
at a floor; and the lift goes from floor to floor depend-
ing on the state of the lights. Sometimes it opens its
doors to let people in and out.

Here are some of the customer’s requirements:

1. If the lift is at the ¢th floor and it goes down by
one floor, then it is at the (¢ — 1)th floor.

2. Pressing the alarm button causes the alarm to
sound.

3. The lift may not move up or down unless the
doors are closed.

4. When the lift is at the ¢th floor, the indicator light
for the 2th floor is off.

5. Pressing! a button for a floor causes the corre-
sponding indicator light to come on.

IThroughout this paper we take the press action to be an
atomic press-and-release.

Although they are initially appealing, examination
reveals that these statements are (in the context of
other even more plausible statements) contradictory.
For example, statements 4 and 5 contradict if we as-
sume, as we should, that pressing a button does not
directly affect the position of the lift among the floors.
The contradiction arises when we consider what hap-
pens when the ith button is pressed and the lift is
already at the ith floor. Statement 5 says that the
light should come on, while 4 (together with the as-
sumption that the pressing did not instantly change
the floor) says that it should be off.

In this case it is clear that 4 should override 5 when
they conflict. However, that does not mean that we
can remove b from the specification altogether, as it
is required for all the other circumstances in which
the lift is not at the relevant floor. That is to say,
statement 4 should only partially override statement 5.

The situation for the lift’s indicator lights is in fact
even worse, for some others of the customer’s require-
ments are

6. Holding down any button makes the light turn on
(until the button is released).

7. In the event of a power failure, all the lights will
turn off.

8. If the lift was between floors when the power fail-
ure took place, the alarm will sound (it is battery
operated).

And so on. These statements further interfere with
statements 1 to b, overriding them in certain circum-
stances.

The upshot of all this, then, is that statement 5
should be thought of as a default — a statement
which 1s true unless some stronger sentence overrides
it. Much of this paper is about how such defaults in
specifications should be handled formally.

Among the questions addressed in this paper are
the following:

e Can we make sense of such defaults in specifica-

tions?

e How formally can we allow one partially to over-
ride another, in the way that 4 partially over-
rides 5 in the example?

e How do we know what should override what, any-
way’

The benefit of answering these questions is to nar-
row the gap between the customers initial require-
ments and the formal specification. The i1dea is the
following. In the usual simple model of the software
development process the formal specification stands
between the informally stipulated requirements and
the final code. There are thus two components to
the process, one which takes the requirements and
constructs the specification, and the other taking the
specification to the program code. We are interested
in the first process, and we believe that if we can rep-
resent more of the original intentions of the customer
in the specification then that process becomes easier.
Part of those original intentions includes defaults and
the implication that certain statements override oth-
ers when they conflict. The issue, then, is to represent
these formally in the specification, thus making the
specification a more accurate reflection of the require-
ments.

Also in this paper, we consider another related
topic, which is how revisions of the requirements may
be formally represented. Revisions may come about
during the software development process when the
customer is made aware of the consequences of his
or her stipulations, which he or she may find unde-
sirable. In that case, they are introduced in order to
remove these undesirable consequences. Revising the
specification then consists of adding a new sentence
which overrides (if necessary, ad only partially) the
other sentences.

Defaults and revisions in specifications are very
similar from the formal point of view, because they
both involve this crucial notion of overriding between
sentences.

The remainder of the paper 1s organised as follows.
In section 2 we review a standard formal language
and logic for describing state-based systems, known
as Modal Action Logic, or MAL. This logic forms the
basis of the system described in this paper. In sec-
tion 3 we discuss how specifications should be struc-
tured (or modularised) and how this gives a basis for
defining the overriding relation between statements.
In this section, and throughout the paper, we make
continued reference to the lift specification example.
In section 4 we develop the formal machinery for the
overriding relation, and apply it to the lift example.

Finally, objections to the approach are considered and,
I hope, quashed, in section 6, and comparisons with
other default systems are touched upon in the last sec-
tion.

2 Modal action logic

Modal action logics (also known as dynamic logics
or multi-modal logics), have for over a decade been
used to specify state-based software systems. The
basic idea of modal action logics is to represent ac-
tions moving the system from one state to another as
‘modalities.” Such a logic has a family of modal opera-
tors, one for each action that the system can undergo,
and its semantics is given by a set of states and a
family of relations on the states, one interpreting each
modality. For example, the fact that the action a if
executed in a state satisfying condition ¢ results in a
state satisfying ¥ is expressed by the axiom

¢ — [a]y.

There are many accounts of modal action logics [3, 4,
5, 14]. We now describe a simple version which we
refer to as MAL below.
A component within a specification 1s, in logical
terms, a signature together with a theory presentation
over the signature. A MAL signature is a pair con-
sisting of a set of action symbols and a set of atomic
proposition symbols; the action symbols are used to
describe the actions which the system may perform,
and the proposition symbols are used to represent the
state of the system. Thus, actions update the values
of the propositions.
A MAL signature S = (A, P) consists, then, of two
sets; a set of actions A and a set of propositions P.
For example, here are the signatures for some of the
objects of the lift system:
button has the signature ({press, cancel}, {lit}). The
button may be pressed or cancelled, and has a
light which may be on or off.

door has the signature ({open, close}, {doors-open}).

lift-position has the signature ({up,down}, {floory,
..., floor, }). floor; represents whether the lift is
at the ¢th floor or not.

lift has the signature ({press,...,press,,cancel;,
..., cancel, open, close, up, down}, {lity, ..., lit,,
floory, ..., floor,, doors-open}). Notice the re-
naming of the press actions.

Given a signature, atomic propositions are com-
posed to form more complex sentences using the usual
boolean operators A, V, —, = etc. There is also the

construct [-] - which, as already mentioned, is used to
describe the effects of actions. If ¢ is an action sym-
bol and ¢ a sentence (which may also contain action
terms) then [a]¢ expresses the fact that ¢ holds after
a has taken place. The syntax of formulas is therefore
as follows:

acA peP
¢ = plo1ANda| 1V 2| — d2
1 — ¢2 | 1o | [a]o

To illustrate this syntax, here again are the five state-
ments about the lift.

1. floor; — [down]floor;_; (for 2 < i< n)

2. [press-alarm]alarm

3. doors-open — ([up]— A [down]—)

4. floor; — —lit;

5. [press;]lit;
The semantics of the language we have introduced so
far is given by its interpretations. An interpretation
M for a signature is a function which takes states to an
assignment of truth values to the atomic propositions.
States are represented by traces. A trace is a sequence
of actions in the signature; a finite trace denotes the
state which results by performing the actions in the
sequence, starting in the initial state. Thus, if ¢ is a
trace and p an atomic proposition, then M (o)(p) is a
truth value which says whether p is true or false in the
state resulting from performing the actions in ¢ in the
initial state.

Satisfaction in states is defined in the following way:

M(o)lFp if M(o)(p)=t
M(o)lF=¢ if M(o)lfé
M(o)lF oAy if M(o)lk¢and M(o)IFy
and similar clauses for V, —, «

M(o)IFlal¢ if M(coa)l ¢

(In the last clause, o o a is ¢ with a appended.) In
this way of handling actions, the logic cannot support
concurrent actions. In the papers to which we have al-
ready referred a more complex logic is described which
handles concurrency. For our present purposes, how-
ever, concurrency is not an issue and it is better to
avold unnecessary technicalities.

Satisfaction in interpretations is then defined as fol-
lows:

M |- ¢ if for each o, M (o) IF ¢.

This means that a sentence is true overall in an inter-
pretation iff it is true in every state of the interpreta-
tion.

If 7 is a set of sentences and ¢ a sentence, ? | ¢
holds if for every M, if M I+ ¢ for each ¥ € 7 then
M- ¢. 7 | ¢ is read 7 entails ¢. If 7 is the set
of axioms of a specification and 7 | ¢, then ¢ is a
consequence of the specification.

We are now equipped with the syntax and seman-
tics necessary to specify action-based systems. Our
aim is to develop the machinery which allows defaults
and revisions to be expressed. First, we examine an
important element of this, which is how specifications
are structured into their components.

3 Structuring MAL specifications

The language and logic introduced so far allows us
to specify state-based systems. In cases that there is
a large number of action symbols or proposition sym-
bols, however, it makes sense to split up the signature
into smaller signatures and specify them separately.
This not only enhances readability and writability, but
also provides a means of stipulating locality conditions
to constrain the effects of actions. This is the idea of
object encapsulation, or object-oriented specification.

In the last section, we gave the signatures of four of
the objects which make up the lift. The lift structure
is the following:

button button button
lift-buttons door lift-position
lift

The lift 1s split into three objects: lift-buttons, door
and lift-position. The panel of buttons, called lift-
buttons, is composed of n copies of button. The
button object represents the button and the light to-
gether.

Each object of this diagram has a signature, and
the arrows in the diagram are inclusion maps between
these signatures. An object also comes with a set of
sentences over its signature, which expresses the ob-
ject’s behaviour. For example, the ¢th button object
has the sentences

[press;]lit; and [cancel;]-lit;

which, as already noted, means that the ¢th light is
switched on and off by the press and cancel actions.
The lift-position object has the sentences

floor; — [up]floor; 41 foreachi=1,...,n—1
floor; — [down]floor;—; foreach i=2,...,n
floor; « /\j# —floor; foreachi=1,...,n

which respectively express the effects of the actions
up and down and the fact that the lift is always at
precisely one floor.

The locality conditions which structuring provides
are axioms which express the fact that the actions of
an object can only affect the values of the propositions
also declared in that object. For example, for each
1 < 1,7 < n there is the axiom

floor; « [press;]floor;

which says that press; leaves floor; unchanged. That
1s because press; can only affect the value of lit;; its
sole effect is to switch on the light.

As well as enhancing readability and providing the
locality constraints as described, structuring specifi-
cations also provides a way of resolving conflicts be-
tween sentences, such as the conflict between sentences
5 and 4 of the lift. As noted, the first of these as-
serts that the button’s light comes on when the but-
ton is pressed. However, we know that this is only
the light’s usual behaviour, because there are circum-
stances when the light does not come on when the
button is pressed. We have already noted one such
circumstance, which is when the lift 1s already at the
relevant floor. The fact that the light does not illu-
minate in that case is a consequence of sentence 4. It
says that the ¢th light is never on when the lift is at
the ith floor. Intuitively, these two sentences conflict?.
Sentence 5 says that the ¢th light wll come on when
the 7th button is pressed, even if we are already at the
1th floor, while 4 says it will not.

The conflict between 4 and 5 can be resolved by the
lift structure by appealing to the specificity principle.
It states that

Defaults about a specific class of objects over-
ride those about a more general class when
there 1s conflict.

2To obtain a formal contradiction it is necessary to invoke the
locality axiom mentioned earlier. Take any M satisfying the ax-
ioms. By virtue of the third axiom in lift-position, we have that
M () IF floory, for some k. (The symbol - is the empty sequence
of action symbols.) Then, since M (-) IF floory, < [press;|floory
(since that is an instance of the locality axiom), we obtain
M(-) b [press;|floor; and so M (press;) Ik floory. There-
fore, since floory — =lity is an axiom, M (press;) IF —lity.
But [press;]lity is an axiom, so M(:) Ik [press;]lity and so
M (press;,) IF lit,, a contradiction.

This principle is well-known in artificial intelligence [2,
15]. Tt applies in this case because statement 4 is about
lifts (i.e. it is in the lift object), while statement 5
is about buttons (it is in the button object). The
structure of the lift specification shows that the lift
object incorporates the button object. Therefore, the
class of lifts is more specific than that of buttons. The
specificity principle says then that statements about
lifts override those about buttons, so 4 overrides 5.

In this way the specificity principle tells us that the
relation of ‘overriding’ between sentences is given by
the structure of the specification. That is to say, we
may derive from it an ordering of the axioms which
shows which ones may override which other ones in
the case of a conflict. We call such orderings of ax-
ioms ordered theory presentations. To obtain the or-
dered theory presentation for the lift, we replace each
object in the structure diagram above by the axioms
which come with it, and reverse the direction of the ar-
rows: see figure 1. (We have left out some axioms not
relevant to this discussion.) We reversed the arrows so
that we can read them as ‘dominates’ or ‘overrides’.
Thus, they happen to go in the reverse direction to the
arrows of the structure diagram, but this 1s merely a
matter of convention.

An ordered theory presentation, such as this one,
is a finite set of sentences equipped with a partial or-
der. Sentences lower in the ordering are to be treated
as having greater weight or priority. They override
higher sentences when there is a conflict. The exact
nature of this overriding is the subject of the next sec-
tion. But to prime our intuitions, notice that it is not
simply the case that if two sentences conflict, we can
ignore the upper one; some ‘instances’ of it may still be
needed. For example, although sentence 4 overrides 5
of the lift, we still need sentence 5 for those cases that
it is not overridden. This feature of ordered theory
presentations is expanded upon in section 4.

Not all axioms express behaviour which may be
overridden. For example, we may wish to keep lo-
cality axioms inviolable. This would be prudent, for
if we override such axioms we may lose our intuitive
understanding of the specification. Therefore, a spec-
ification seen from a logical point of view must be a
pair (A7) consisting of an ordinary theory presenta-
tion A (the inviolable axioms) and an ordered theory
presentation 7 (the defaults). We argue that these or-
dered theory presentations are ‘first-class’ logical en-
tities. Their meaning is the subject of section 4.

[press, Jlity [press, lits [press,, Jlit,
[canceli]-lit; [cancelz]—lit2 [cancel,]-lity,
:.:11 (loor; — [up]floori41)
[op]open N\._,(floor; — [down]floor; 1)
[c]]~open Ni_, (floor; — /\]# —floor;)

/\ (loor; — —lity)
=1

Figure 1: Part of the OTP for the lift

4 Ordered theory presentations

The concept of ordered theory presentation was
first introduced in [12], under the name ‘structured
theory’. Since then the definitions and notations for
OTPs have been improved and new results have been
obtained. See also [11]. The present paper applies
the cumulation of this work to the problem at hand,
namely, the representation of defaults and revisions in
specifications.

Let M be the set of interpretations as described
in section 2 of a fixed signature L, and let |k be the
satisfaction relation also described there.

To define the meaning of an ordered presentation
? we need to define an ordering C' on interpretations
in M which measures the extent to which interpreta-
tions satisfy the ordered presentation 7. This relies on
a set of orderings Ty, one for each sentence ¢ of the
language. To define Ty, it is necessary to define nat-
ural entailment, which is written |=. This definition
in turn relies on the notion of the monotonicities of a
sentence. Lest the reader be daunted by these nest-
ings of definitions, we repeat the list here. We define,
in order,

1. Monotonicities of a sentence ¢, written (¢T,¢7).

2. Natural entailment, a relation = between sen-
tences, being a sub-relation of ordinary entail-
ment |=.

3. For each sentence ¢, a reflexive and transitive or-
der C4 on the interpretations of the language; as
will be seen, this order grades interpretations ac-
cording to how nearly they satisfy ¢.

4. An ordering C" on the interpretations of the lan-
guage; 1t grades interpretations according to how
well they satisfy 7.

When all these have been defined, we stipulate
that the models of a specification (A7) are the C!'-
maximal elements in the set of interpretations which
satisfy A.

The motivation for this series of definitions may be
seen in terms of the discussion of ‘partial overriding’
given in section 4. We note there that one of the cri-
teria for the semantics of ordered theory presentations
was that higher sentences be accepted at least in part,
even when they are overridden by lower sentences. In
other words, we want as much of the higher sentences
as we can have, given that we must have the lower
sentences and must avoid contradictions. This 1s the
motivation for the ordering of item 3 in the above list;
it is an ordering which allows us to chose models which
nearly satisfy a particular sentence, even if we have al-
ready limited our choice to models which do not quite
satisfy 1t fully. It is harder to motivate items 1 and 2
of the above list in intuitive terms, except to the ex-
tent that they are needed in order to arrive at the
definition of the orderings Cy. Item 4 may be seen in
the same way as the orderings of item 3, except that
it works at the level of entire theory presentations in-
stead of individual sentences. Its definition is in terms
of the subsidiary orderings, but it takes account of the
ordering of the sentences in 7 as well.

For the definition of the monotonicities of ¢, we
need the following notation. If M is an interpreta-
tion of L, ¢ a trace of I and p a propositional sym-
bol in L, then M (o)~ is an interpretation identical
with M (o) except possibly that it assigns true to p.
(If M(c) already assigns true to p then M (o)~ is
simply M(c).) M(a)P~flis defined analogously.

Definition 1 Let ¢ be a sentence other than — and

p any propositional symbol.
1. ¢ is monotonic in p if for each M,o: M(o) IF ¢
implies that M ()P~ (F ¢.
2. ¢ is anti-monotonic in p if M (o) IF ¢ implies that
M(o)P= 1T 6.
3. ¢1 and ¢~ are the sets of symbols in which ¢ is
monotonic and anti-monotonic respectively.

The case that ¢ = — is handled separately; we define
_t - - = .

Thus, ¢ is monotonic in p if “increasing” the truth
value of p in a model of ¢ preserves satisfaction of ¢.
Similarly, ¢ is anti-monotonic in p if decreasing the
truth value so preserves satisfaction.

Having defined monotonicities, we turn to point 2 of
the four-point plan mentioned above, 1.e. the definition
of natural entailment. Let ¢ and ¢ be sentences of L.

Definition 2 ¢ naturally entails v, written ¢ = o, if

1. ¢ E ¢, and
2. ¢F Cytand ¢~ C o

Natural entailment is a sub-relation of ordinary en-
tailment; in addition to ordinary entailment we require
that the monotonicities of the premise be preserved by
the conclusion. This definition is really the core of the
work described in this section, for the natural conse-
quences of a sentence are its ‘components’ which may
be individually accepted or rejected in the overall the-
ory. In Brass/Ryan/Lipeck [1] we discuss other ways
of describing such instances.

Proposition 3 [is reflexive and transitive.

The proofs of this proposition and others in this sec-
tion which are given without proofs may be found in

[12].
Definition 4 M Cy4 N, if for each 1,

G Y= (Mg = NIk

We can show that C, has precisely the mathemat-
ical behaviour we want:

Proposition 5 1. Ty is a pre-order, that is to say,
it 1s reflexive and transitive.
2. If ¢ # —, the maximal elements of Ty (which are
in fact maximum) are just the models of ¢.

The proofs of these assertions, together with many
examples of Cy for various sentences ¢, can be found
in [12].

We have defined, for each sentence ¢, an ordering
on interpretations T, which measures the extent to

which interpretations satisfy ¢. If M satisfies ¢ to the
fullest extent (that is, if it simply satisfies it) then M
is Cy-maximum. If M does not fully satisfy ¢ then it
may satisfy it to a greater, lesser, equal or incompara-
ble extent than some N which perhaps also fails fully
to satisfy ¢. As stated, examples of this ordering on
models for various sentences ¢ can be found in [12].

All that remains of our four-point plan at the be-
ginning of this section is to define the global ordering
CT for an ordered presentation 7 in terms of the re-
lations C for each ¢ € 7. The idea is that M ctU N
means that if a sentence in 7 makes the ‘wrong’ choice
between M and N (i.e. if M [Z, N) then there is a
sentence with greater priority which makes the ‘right’
choice.

Definition 6 M CY N if for each ¢ € 7, M Zy N
implies there exists ¥ < ¢ in 7 such that M Ty N.

Proposition 7 C' is a pre-order.

As already said, the models of a specification (A7)
are the CM-maximal elements in the set of interpreta-
tions which satisfy A.

Returning to the lift example, the question which
should be answered is: what are the models of (A7)
when A is the locality axioms and 7 is the structured
theory presentation for the lift example, given at the
end of section 37 More practically, we can ask: what
are the interesting consequences of the specification
(that is, what sentences hold in these maximal inter-
pretations)?

As one would expect, all the axioms except the
[press;]lit; family are consequences of the specification.
That is to say, it 1s the only axiom which is overridden
by others or by locality axioms. Instead, the sentence

—floor; A press; — lit;,

which says that the button lights when pressed if the
lift 1s at another floor, is also a consequence.

5 Revising specifications

In this section we briefly describe the application of
this work to the topic of specification revision. Fuller
details will be given in another paper. We use the
word ‘revision’ to mean any change to a specification,
which in general can remove some of its properties
as well as adding others. This is not to be confused
with ‘refinement’, which (like ‘enrichment’ or ‘special-
isation’) is simply adding properties. The formal ma-
chinery required for revision is exactly the same as

the machinery for defaults which is described in the
preceeding sections. Revisions arise inherently in the
software process, and may also be taken as a design
methodology. We consider each of these in turn.

The software development process. Revisions of
requirements occur during the construction of a speci-
fication. Indeed, flushing them out is part of the moti-
vation for formal specifications in the first place. Dur-
ing the requirements elicitation phase, the specifier
typically brings to the attention of the customer un-
desirable consequences of the specification so far, and
the customer requests revisions.

Design method. We may reuse specifications by
revising them to fit the new context we have in mind.
This has both small-scale and large-scale applications.

In the small, one can consider re-using components
from a library of standard objects. If a component
doesn’t quite fit the application because it has un-
wanted properties, revise it with the desired proper-
ties.

In the large, whole specifications may be con-
structed in this way. For example, the recent Rover
TV advertisement showed how the Metro motor-car
was conceived as a Mini with certain properties added.
These properties conflicted with the old ones, which
means the revision 1s not merely a matter of refine-
ment or enrtchment. Thus, the Metro is specified by
stipulating its differences from a Mini.

In practical terms one may envisage a software en-
gineering environment (implemented on a computer)
which allows one to explore a ‘design space’ by both
small-scale and large-scale revisions of the type de-
scribed here.

The obvious difference in the case of specification
revision as against specifications with defaults is that
the ordering in the resulting OTP comes not from the
structure of the specification, as it did for defaults,
but from the process by which the specification was
obtained (the revision history). But in fact, these
genealogies are not so different. One can think of a
revision history as showing the structure (through re-
finement) of a component; for example, one can think
of the structure diagram for the Metro

Mini

Metro

as a revision history or one can view the earlier objects
as the components of which the Metro is made. On

the other hand, a non-linear structure diagram such
as that of the lift represents a revision history in more
than one dimension. For example, the manufacturer’s
intention is that the button’s light illuminates when
the button is pressed. This is encoded in the but-
ton’s specification. But the specification was revised
for incorporation in the lift, since in that context it
is to have the property that it does not light when
pressed in certain circumstances; namely, when the
lift is in a state in which the request made by the user
by pressing the button is inappropriate. The revision
is 1mplemented via a complicated interface between
the components which may not even be part of the
specification—that is why an OTP is needed.

6 Objections

In the preceeding sections we have motivated the
idea that a specification can be a rather ‘loose’ object,
containing sentences which may be overridden by oth-
ers. The reader may dislike this idea; this section is
devoted to presenting objections to defaults and revi-
sion in specifications and, I hope, to allaying them.

The most common objection raised is that speci-
fications are by nature exact, and it goes against the
grain to introduce the slack which comes with defaults.
I have much sympathy with this view, but I believe
that the benefits gained outweigh the disadvantages.
Among the benefits are the ability to represent default
behaviour when it really is a characteristic of the ob-
ject being specified; the ability to explore a design
space; the itmprovement in modularisation which can
be obtained (see below); and freedom from the chore
of filling in every little detail, instead being able to
allow conflicts to resolve automatically. Furthermore,
from a methodological point of view, we narrow the
gap between the informal requirements and the spec-
ification; without, I believe, the price of widening the
gap on the other side, between specification and code.
This is because the specifier has an improved medium
for expressing the intuitions and intentions behind his
or her specifications.

The improvement in modularisation referred to
above can be seen by considering the effect of cod-
ing in the exception to sentence b of the lift specifica-
tion. Sentence 5 expresses the fact that the buttons
light when pressed, and is an axiom of the button ob-
ject. The exception noted is when the lift is already at
the relevant floor, so taking account of this the axiom
would become:

—floor; — [press,]lit;.

But this cannot now be an axiom of the button object
after all, but must be an axiom of the complete lift
system. This is because the vocabulary it uses is not
available in the button signature. Thus the motiva-
tion for structuring (that is, dividing the specification
into constituent objects and axiomatising them indi-
vidually) in the first place is foiled: every axiom has
to be part of the biggest object in order to list all the
exceptions.

It might be objected that if some axioms are al-
lowed to override others, we may quickly get into a
mess in which we do not know which axioms are being
affected by which others. To counter this objection,
it should be possible to check at any stage whether a
certain axiom expressing a default is being overridden
or not, by checking whether it i1s a consequence of the
specification. And again, the advantage is that one
can explore the design space by changing the order
around until the desired effect is achieved. This gives
great flexibility to the specifier. Of course, the ability
to do these things assumes a sophisticated interactive
software environment which supports OTPs; such a
thing is yet to be developed.

7 Comparison with other default logics

The idea of using default information in specifica-
tions has been motivated in sections 1 and 3. How-
ever, there are other default systems which might also
be considered as candidates in specification theory. A
full investigation is given in [11]; here we summarise
our findings.

We have analysed several default systems, and
found them wanting from our point of view. For ex-
ample, Reiter’s ‘Default Logic’ [10] represents defaults
as rules of inference which interfere with the underly-
ing logic, and cannot cope with the modalities of MAL.
Conflicting defaults are handled by coding their prece-
dence as consistency checks, as the specificity principle
cannot be used directly. Also, Reiter’s system enjoys
insufficiently many of the formal properties of [7]. Mec-
Carthy’s ‘Circumscription’ [6, 8], which has better for-
mal properties of the kind described in [7], fares better
from our point of view, representing defaults as ordi-
nary first order sentences. But it is still unclear how
modalities should be handled, and the resolution of
conflicts between conflicting defaults has to be coded
up explicitly, this time by manipulating relationships
between abnormality predicates.

References

[1] S. Brass, M. Ryan, and U. Lipeck. Hierarchical defaults
in specification. To appear, 19927

[2] D. Etherington and R. Reiter. On inheritance hierar-
chies with exceptions. In Proc. Third National Confer-
ence on Artificial Intelligence, pages 104-108, 1983.

[3] J. Fiadeiro and T. Maibaum. Describing, structur-
ing and implementing objects. In Proc. REX Workshop
on Foundations of Object-Oriented Languages. Springer-
Verlag, 1991.

[4] J. Fiadeiro and T. Maibaum. Towards object calculi.
Technical report, Deprtment of Computing, Imperial
College, London, 1992.

[5] R. Goldblatt. Logics of Time and Computation. CSLI
Lecture Notes, 1987.

[6] V. Lifschitz. Computing circumscription. In Ninth In-
ternational Joint Conference on Artificial Intelligence,
pages 121-127, 1985.

[7] D. Makinson. General patterns in non-monotonic rea-
soning. In D. Gabbay, C. Hogger, and J. Robinson, edi-
tors, Handbook of Logic in Artificial Intelligence. Oxford
University Press, 1992.

[8] J. McCarthy. Circumscription—a form of non-
monotonic reasoning. Artificial Intelligence, 13:27-39,
1980.

[9] J. McCarthy. Applications of circumscription to for-
malising common-sense knowledge. Artificial Intelli-
gence, 28:89-116, 1986.

[10] R. Reiter. A logic for default reasoning. Artificial
Intelligence, 13:81-132, 1980.

[11] M. Ryan. Ordered Presentations of Theories: Default
Reasoning and Belief Revision. PhD thesis, Department
of Computing, Imperial College, 1992. Copies available
from author.

[12] M. D. Ryan. Defaults and revision in structured theo-
ries. In Proc. Swxth IEEE Symposium on Logic in Com-
puter Science (LICS), pages 362-373, 1991.

[13] M. D. Ryan. Representing defaults as sentences with
reduced priority. In B. Nebel and W. Swartout, edi-
tors, Proc. Third International Conference on Principles
of Knowledge Representation and Reasoning (KR’92).
Morgan Kaufmann, 1992.

[14] M. D. Ryan, J. Fiadeiro, and T. Maibaum. Sharing
actions and attributes in modal action logic. In T. Ito
and A. Meyer, editors, Theoretical Aspects of Computer
Software, pages 569-593. Lecture Notes in Computer
Science 526, Springer Verlag, 1991.

[15] D. Touretzky. Implicit ordering of defaults in inher-
itance systems. In Proc. Fifth National Conference on
Artificial Intelligence, pages 332-325, 1984.

