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Abstract

The thesis motivates and examines the properties of hierarchies of sentences in a logi
where the hierarchy determines how any conflicts between the sentences should |
resolved. In the thesis such hierarchies are called ordered theory preseniations (
OTPs). In an OTP, one sentence overrides another if it contradicts it and dominat
it in the hierarchy. One of the principal contributions of the thesis is the ability

allow such overriding to be partial. Thus, if a sentence in an OTP is dominated |
another which contradicts it, those aspects of it which are contradicted are overridde
but aspects of it which are not contradicted are preserved. Many properties of OTI
are proved, of both a ‘static’ nature (relating to how conclusions can be drawn fro
them) and a ‘dynamic’ nature (how they can be updated with new information).

OTPs have applications in Artificial Intelligence and Software Engineering. T
thesis concentrates mainly on the applications in Al where OTPs provide a logi
independent framework for representing and reasoning with default information, a
for revising belief states with conflicting information. In SE, the topics of defaul
and revision occur again in the context of specifications, and the ability to hand
them mathematically 1s presented as an attempt to describe formally such concepts
incremental specification and design by difference. These applications are described
the thesis.

The machinery introduced for OTPs works for a wide class of logics given in terr
of a language, a set of interpretations and a satisfaction relation. The class includ
classical, intuitionistic and modal logics. The key definition gives, for each OTP,
pre-order on interpretations which orders interpretations according to how well the
satisfy the OTP. Models of the OTP are defined to be the interpretations which a
maximal in the ordering. Consequences of the OTP are sentences which are true in :
its models. Under the natural notion of adding new sentences to an OTP presentatic
this consequence relation is non-monotonic, which means that the set of conclusios
may shrink as the hierarchy of premises is extended. But if the underlying logic
compact, the consequence relation retains the property of weak monotonicity prevale
in the literature.
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Chapter 1

Introduction

Logic has been used since antiquity to study correct human reasoning. But until t]
last few decades, 1t had been successful only in representing very precise reasonin
such as that found in mathematics. Logic 1s appropriate for mathematical reasoni
because conclusions, when they follow from certain premises, do so inexorably. O:
never has to deal with conflicting evidence in mathematics; it is always possible
resolve apparent conflicts by further investigation. Furthermore, once a conclusion h
been shown to follow from a certain set of premises, the addition of further premis
in the argument cannot eliminate it.

But recently, a variety of systems have been proposed for aspects of practical re
soning. The reasoning humans perform in everyday life does not have the precise ar
exact flavour of mathematical reasoning, but rather is often based on conflicting ex
dence, on assumptions which are known not always to be valid or on prejudices fro
past experience. Much of the motivation for such research has come from artifici
intelligence. Specifically, at least two phenomena have been studied:

Default reasoning. A default sentence is one which expresses a generality or prej
dice but which may be overridden by other, more certain information. Exampl
include birds can fly and tigers have four legs. Reasoning with defaults mea:
being able to use such sentences to draw conclusions, taking account of wheth
they are overridden by other sentences or not. In a more general setting, the
could be a hierarchy of sentences to consider.

Belief revision. This is about incorporating new information about a situation whi
possibly conflicts with the older information an agent already has. The inform
tion an agent has is encoded in its ‘belief state’. To incorporate new informatic
successfully, the agent must arrive at another belief state which supports the ne
information while keeping as much of the old as is consistent.

Default reasoning is concerned with a static aspect of reasoning, namely how best
use information to arrive at conclusions. Belief revision, on the other hand, is abo
the dynamics of new information arriving. Nevertheless, there are strong relationshi
between these subjects. These relationships have already been explored by exhibitir
equivalences between properties of default systems and properties of belief revisic
systems [48]. In this thesis we present a framework which treats default reasonis
and belief revision in a uniform way, thus providing a further way to see relationshij
between the systems.
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There are other aspects of practical reasoning which can also be handled by the
framework of this thesis. We will also discuss:

Prioritised evidence. Suppose there are a number of sources providing information
about a particular topic. If the sources contradict each other, but we have an
ordering as to their reliability, we may wish to use the ordering to resolve conflicts
and get as near to a consensus as possible.

Verisimilitude, or closeness-to-the-truth. Given two descriptions of a situation, can
we say that one of them is closer to the truth (or perhaps to a third description)
than the other one 1s?

These topics have also been studied before, and we will compare our results with the
existing work. The contribution of this thesis is a uniform framework for handling at
least these four topics in practical reasoning, and perhaps others as well.

1.1 Ordered theory presentations

This thesis describes a new way of packaging sentences together to present a logical
theory. It turns out that this provides a uniform way of dealing with the kinds of
practical reasoning described above. As well as providing a framework for studying the
relationships between topics, it also gives better results in the areas mentioned.

o In default reasoning, we get an improved way of expressing defaults and their
interrelationships by using the proposed framework (chapter 5).

In belief revision, we obtain a system which improves on existing systems by
allowing repeated revision instead of just a single revision step. We depart from
two widely accepted postulates of belief revision, however; but this departure is
Jjustified with examples (chapter 4).

In prioritised evidence, we improve on the expressive power of the logic program-
ming setting of D. Vermeir’s work [40]. (As this topic is rather small compared
with the others it is not dealt with beyond this chapter.)

In verisimilitude, we get results which more closely match our intuitions (chap-
ter 7).

We propose the concept of an ordered theory presentation for dealing with
these phenomena. An ordered theory presentation, or OTP for short, is a multi-set of
sentences equipped with a partial ordering. The partial ordering is read as ‘dominates’
or ‘overrides’. The exact definition will be given and discussed in chapter 2. The reason
for considering multi-sets instead of sets is that the same sentence may occur twice in
different parts of the ordering. In some circumstances we will impose the restriction
that the multi-set be finite.

We will use a graphical notation for representing OTPs. For example, the notation

P pAg

N

r
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represents the ordered theory presentation with the three sentences
2 “pAg, and 1

such that r dominates both p and —p A ¢g. Notice that sentences lower in the order:
dominate those above. Thus, the arrow is read as ‘dominates’. Neither p nor —p A
dominates the other. In the following OTP:

(p/\q ﬂer>

the sentences p A ¢ and —p V r are incomparable in the ordering. Therefore, they a
written side-by-side with no arrows. The large brackets aren’t really necessary, b
they are useful in delimiting the OTP on the page in the absence of any arrows.

Examples motivating how to reason with OTPs will be given later (§1.3) and t!
definitions will be given in chapter 2. Examples to show how OTPs can be used f
the topics mentioned above are also given later.

The concept of an ordered theory presentation may be seen as an extension of t]
concept of theory presentation, thus explaining the nomenclature. A theory is a s
of sentences closed under logical consequence. A theory presentation is a finite way
presenting a theory. Usually it is just a finite set of sentences. It presents the theo
obtained by taking its closure under consequence.

As stated, an ordered theory presentation is a finite partially-ordered multi-set
sentences. It can be viewed as a theory presentation equipped with a partial order
such a way that the same sentence can, if necessary, be present in two different places
the ordering. If all the sentences in an OTP are consistent then the theory it presen
is just the closure under consequence of that set, analogously to the non-ordered cas
But if the sentences are not mutually consistent then the ordering has to be taken in
account to arrive at a consistent theory which the OTP presents. The way in which
do this is defined in chapter 2 and motivated later in this chapter (§1.3).

From a logical point of view, there are issues for ordered theory presentations whi
did not arise in the context of ordinary theory presentations.

o What are the natural ways of adding a sentence to an OTP?7 What are t
properties of these ways?

o What are the natural ways of putting OTPs together to make bigger ones, a
again, what are the properties?

These questions will be answered during the course of the thesis.

From a technical point of view, the main question addressed by this thesis is hc
the conflicts between the sentences of an OTP are resolved in arriving at the presente
theory. In order to answer this satisfactorily we introduce the idea of degrees of sats
faction between interpretations and sentences. This works as follows. In ordinary logi
given a language, an interpretation of the language and a sentence in the language, s
may say that the interpretation satisfies (or is a model of ) the sentence or that it do
not. Suppose we have two interpretations which fail to satisfy a sentence. In orc
nary logic there is usually nothing more to be said. But using the idea of degrees
satisfaction introduced in this thesis we can consider whether one interpretation mo
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nearly satisfies the sentence than the other. This seems to represent a significant de-
parture from classical logic. The machinery for doing this is introduced in chapter 2,
and examples of interpretations satisfying sentences to varying degrees are given.

The remainder of this chapter is organised as follows. In the next section the four
examples of practical reasoning described above are presented again, with more detail
of how ordered theory presentations can be used in each case. In §1.3 some specific
examples of OTPs are given, together the theories they present. These examples are
used to build (or test) the reader’s intuitions; the definitions are given in the next
chapter. In §1.3.1, the criteria which a system for handling OTPs should satisfy are
discussed.

1.2 Applications in ‘practical’ reasoning

1.2.1 Default Reasoning

Default reasoning is about using prejudices (or defaults) about the world to arrive at
plausible conclusions in such a way that the conclusions can be withdrawn if evidence
to the contrary emerges. To take the most hackneyed example, everyone would accept
that birds can fly, which we write as

1. Vaz. (b(x) — f(x))

It is undeniably true that penguins are birds:

2. Vaz. (p(x) — b(x)),

but 1t is also the case that penguins cannot fly, that is
3. V. (p(x) — ﬁf(x))

Of course these statements conflict!. The world is not contradictory, however, and most
people would agree that statement (1) should really say birds (other than penguins,
ostriches and some others) can fly:

1 Vo (ba) A= Ve = f(@).

But it 1s not practical to spell out the exceptions, for almost every premise of
interest in everyday reasoning is a generalisation for which it is infeasible to specify
all the exceptions. What is needed is a way of seeing the initial set of statements
(numbered 1, 2 and 3 above) as a way of presenting a consistent theory. There is
an implied way of resolving the conflict, namely that statement (3) should override
statement (1) whenever the two conflict. In this particular example, the overriding
comes from the specificity principle:

Statements about a specific class of things should override statements about
a more general class.

1Strictly speaking, there are models in which nothing satisfies the predicate p.

CHAPTER 1. INTRODUCTION

In this case, the specific class is the class of penguins, and the general class is the cla
of birds. This fact is represented by sentence 2, which expresses something about tl
definition of penguins. We will have more to say about this principle elsewhere in t!
thesis. For the present, it is possible to take a perhaps naive view of this example, whi
is that we will obtain intuitively correct results if we simply order the sentences in tl
presentation according to their relative ‘priorities’. We can encode the informatic
about this example with the following ordered theory presentation.

RY — L0 ——

Sentence 2 is the strongest—it dominates or overrides 1 and 3, because it is true ‘|
definition’. Also, 3 overrides 1. The fundamental question of this thesis is: give
such an OTP, how can a consistent theory be obtained, which includes as much of t
sentences in the OTP as possible, taking account of their ordering? It should be se
that this is not a trivial question. For example, one cannot argue as follows: becau
sentence 1 conflicts with 2 and 3 taken together, and because it is weaker than th
are in the ordering, we can ignore it. And because 2 and 3 are consistent, the theo
which the ordered presentation is intended to denote is given by their conjunction. T
reason that this argument is wrong is that one cannot prove from the resulting theo
that birds which are not penguins can fly. In logical terms, we cannot ignore the whc
of sentence 1; we must retain any ‘components’ which are consistent with 2 and
Exactly what is this notion of ‘component’ is one of the main questions addressed |
this thesis.

There are, of course, hundreds of proposed ways of handling this example whi
can be found in the literature [25, 44]. This one is particular because of the explic
prioritisation of the sentences involved. The other approaches to default reasoning a
classified in chapter 5, where OTPs are compared with other formalisms.

1.2.2 Belief revision

The basic question in belief revision i1s: how should new information be incorporate
into a belief state to result in a belief state which contains the new information a
as much of the original belief state as i1s consistent? The best-known work on th
subject is called the AGM theory (after its originators, C. Alchourrén, P. Gardenfo
and D. Makinson), which models belief states as deductively-closed sets of sentence
Here is an example from Gérdenfors’ book [23, page 1] on the subject?:

Oscar used to believe he had given his wife a gold ring at their wedding.
He had bought it from a jeweller who claimed it was made of 24 carat gold.
and had taken it to the jeweller next door who had testified to its gold
content.

2This is not an exact quotation; I have simplified the story slightly.



12 CHAPTER 1. INTRODUCTION

However, some time after the wedding Oscar noticed that the sulphuric
acid his wife was using in her laboratory stained her ring. He remembered
from school chemistry that the only acid that affected gold was aqua regia.
So he had to revise his beliefs because they entailed a contradiction. He
toyed with the idea that his wife had used aqua regia in the laboratory
instead of sulphuric acid, but soon gave up that idea. Having greater con-
fidence in his school chemistry than his own smartness, he concluded the
ring was not gold after all. He became convinced that the jewellers had
been lying, and guessed they were in collusion with each other.

There are several morals to this story, but we will restrict attention to those that have
to do with belief revision. The essential points of the story seem to be:

¢ Revision (rather than ezpansion)is demanded in the face of inconsistency. (Ex-
pansion means just adding beliefs without removing others to keep consistency.)

o There are several ways of doing any particular revision (in the story, Oscar toyed
with the alternatives), and the choice of which to do depends on how ‘entrenched’
other beliefs are. For example, school chemistry was more entrenched than Os-
car’s belief in his own smartness, in the sense that he is more prepared to give
up the latter than the former in the face of inconsistency.

o The new beliefs combine with the remaining old ones to give rise to further beliefs
(he concludes that the jewellers were lying), which may themselves carry less than
total certainty (he suspects that they were colluding with each other).

All of these ideas will be discussed in chapter 4.

One notable point about Oscar’s story is that he revises his beliefs but once. Indeed,
the AGM theory of belief revision only handles this kind of one-off revision. Real agents
(human or computer) revise their beliefs continually, and the theory we offer is able
to model this easily. The reason why the AGM theory can only model single revisions
is that the revision functions do not return a fully specified belief state of the kind
they demand as an argument. This point will be amply expanded in the chapter, but
the crucial problem is that belief states are represented by deductively-closed sets of
sentences in the AGM theory.

It will come as no surprise that we advocate representing belief states by ordered
theory presentations. To revise an OTP with a contradicting sentence (whether the
sentence contradicts the theory presentation or not), simply add the new sentence at
the bottom of the presentation. Thus, the presentation directly represents the relative
degrees of certainty. New information is placed in the most certain position. Of course,
this is not desirable for all kinds of revision, and in the chapter we will attempt to
characterise the applications for which this notion of revision is suitable.

A fundamental notion in the topic of belief revision is that of minimal change.
When revising a belief state, as much of the belief state should persist through the
revision as possible. We will show that the AGM theory fails to capture this notion,
but that the theory of belief revision based on OTPs scores highly on this point.

The following example of belief revision concerns the understanding of explanations.
Explanations are often structured so that broad generalisations are stated first and then
more specific information which may contradict the earlier generalisations is given.

CHAPTER 1. INTRODUCTION

Imagine an agent—a human, perhaps, or a robot—which acquires information abo
the world in a sequential fashion. As stated, later information may contradict th
which was learned earlier, and the agent wants to resolve these conflicts giving priori
to the later information. If explaining the operation of a motor car, for example,
might say:

1. When you turn the ignition key the starter motor turns the engine.
2. The engine then catches and turns by itself.
Of course this is not the full story, and if you want to know more I might say
3. If the battery is flat, the starter motor won’t turn.
4. And if there’s no petrol, the engine won't catch.

These latter statements partially override the earlier ones. Taken as a whole, the
contradict each other. For example, 1 is supposed to be true in any situation, wheth
the sun shines or not, whether it is a weekday or a weekend and whether the batte
is flat or not, since none of these are mentioned as exceptions. Sentence 3 contradic
this. Similarly, 2 and 4 contradict each other. The way to understand this explanatio
and all such explanations for that matter, is as an example of belief revision:

[EQUNEEENG JU N, J———

As more information arrives, the agent simply adds it to the end of its belief stat
If later information happens to be consistent with earlier information, as sometim
happens, then the ordering will be ignored and the conjunction of the sentences w
be used.

Note that, as before, we cannot ignore sentences higher in the ordering because th
contradict later ones. For example, 1 contradicts 3, but we still have to take accou
of 1 when the contradiction does not arise.

1.2.3 Prioritised evidence

In the examples given so far, it has been necessary only to consider linearly ordere
theory presentations. This is necessarily the case in belief revision examples, since t
presentations are just revision histories. In examples of defaults, however, more cor
plex structures can be appropriate; this will be seen in chapters 5 and 6. For anoth
example of general partial orderings between sentences, consider several advisors wi
different degrees of credibility. We imagine a situation in which we are seeking t
consensus of four politicians who have opposing points of view, but we have our ow
opinion on the relative priorities we should give them and we want to use this to arm
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at a conclusion. Our politicians are called Patrick, Neil, Nigel and Margaret. Suppose
it 1s believed that Neil is considered more believable than Margaret, and although no
priority is expressed between Nigel and Patrick, they both do better than Neil. These
considerations lead to the following order; the arrows mean ‘is more believable than’.

Margaret

T

Neil

7N

Nigel Patrick

The issues of the day are the prospects for the ruling party at the next election, and
what is likely to happen to interest rates and inflation. Let r mean that the ruling
party is restored to power, ¢ that interest rates increase and f that inflation goes up.

Margaret believes the ruling party will be re-elected, but also that interest rates will
rise: 7 A 1.

Nigel believes that the party will lose unless interest rates come down: 7 — —r.
Neil thinks that if inflation is high then interest rates will be high too: f — .
Patrick predicts that re-election of the ruling party will lead to inflation: r — f.

To take account of our preference between advisors, we have to consider the follow-

ing presentation:
rAt

1

f =i

/N

t— r—f

From this OTP we should expect to be able to deduce —r A ¢, but nothing about f.
To see that this is so, remember that we want to satisfy the constraints which occur
lower in the ordering first, and then subject to satisfying those we want to satisfy the
higher ones. In this case the three lowest sentences are consistent; their conjunction is
-r A (=f Vi). Now we want to satisfy the top sentence, or at any rate as much of it
as we can. It says r Ai. We are already committed to =7, but we can accept the ¢ and
conclude =7 A 7. In doing so we loose the ability to say anything about f.

That conclusion was based on a particular ordering of our advisors. Now suppose
we chose to re-order them according to a new opinion on their credibility. We may
decide that we have more confidence in Margaret than we did before. Perhaps we think
she’s even more honest than Nigel and Patrick. We might re-order the views as follows:

Neil

/

Nigel Patrick

NS

Margaret
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Given this new ordering, the right presentation to use is:
[ =i

/N

t— r— f

N/

rAL

In this case we deduce r AtA f, which is the conjunction of the views of Neil, Patrick ar
Margaret. We cannot accept Nigel's view because it 1s incompatible with Margaret’
and she takes priority in the ordering. Although Neil has been assigned a low priorit
we can accept his view because it does not conflict with any view given a higher priorit

The application of ordered theory presentations to prioritised evidence will not |
discussed further in the thesis, but it is not as light-hearted or impractical as the read
might think. There is an implementation of the definitions for ordered presentatio:
for propositional logic (the code is given in appendix A). On an issue with a lar
number of inter-dependent propositions and with a large number of different view
I consider that this idea would be a practical aid to gaining a feel for the ‘receive
opinion’. Of course the conclusion one might reach is much dependent on the orderi
of the views, and a well-designed reasoning tool would offer a graphical interface f
changing them around.

1.2.4 ‘Closeness to the truth’

Another outcome of the techniques developed in this thesis is the ability to measure t]
‘distance’ between competing theories to another theory, which may be thought of
representing the true situation. This may be illustrated by means of an example to «
with the economy. The state of the economy is often described by certain paramete
which take numeric values, such as unemployment, inflation, the rate of interest, tl
gross domestic output, per-capita income, the value of the pound against other cu
rencies and so on. Typically, it is desirable for some of these to be high (e.g., domest
output, per-capita income) and for others to be low (e.g., interest rates, inflation) whi
yet others are best kept within certain bounds (e.g., the value of the pound). One m:
simplify the representation of the state of the economy (as politicians are wont to d
by considering a family of atomic sentences expressing propositions about the valu
of these parameters, like the following:

o u means unemployment is high:

o ;. interest rates are high:

® ¢, per-capita income is high;

® p1, po and ps mean the pound is too low, within acceptable bounds, or too hig

and so on. There may be undisputed relationships between the propositions, such
the fact that precisely one of p;, ps and p; is true at a time.

Now imagine that we are performing a post-hoc comparison of several economis
theories about what would be the case in the economy at the present time. We ha
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to hand the truth of the matter, a theory 7" which says how things actually are. Most
probably this will be a logically complete theory, that is, one which contains every
sentence in the language, or its negation. It need not be complete, however, if not
everything about the current state of the economy is known. The ideas being motivated
work whether it is complete or not.

The economists’ predictions are set out in theories 71,75, ..., T,. These will prob-
ably not be logically complete, and may have any of the usual boolean combinations
of the atomic sentences, like conditionals (such as i — u), disjunctions (e.g. u V c),
negations and so on.

Even if a certain 7; is not the same as (or a superset) of 7', it may be closer to it
than some other theory 7. In view of the expressive power of the T;s mentioned, this
is not just a matter of comparing sets of atoms. We want 7" to induce a pre-order on
all the theories over the language in question, so that T; <7 T; means that 7} is as
close to T' as T; 1s. We expect certain principles, such as:

If T CT' then T"is <r-maximal.

For example, if one of our economists predicted as much or more as is known about
the present economy, he or she must get full marks.

This application has not yet been fully developed, but the beginnings of it are de-
scribed in chapter 7 and appendix B. The provisional definitions for theory comparison
have also been implemented for propositional logic. Indeed the diagrams given in ap-
pendix B were computed by the program. Thus, the idea of using this as a practical
means of ranking predictions against a known outcome is not unrealistic.

1.2.5 Software engineering

Finally, many of the ideas mentioned above can be applied to software engineering; a
chapter of the thesis is devoted to exploring these issues, although this work is still at
an early stage. In software engineering omne is interested in specifications and how to
construct them. In logical terms, specifications denote theory presentations, and we
will advocate in chapter 6 that this be changed to ordered theory presentations. This
will enable us to deal with

o Specifications involving default information. For example, certain components
of the specification may have default characteristics that we wish to accept or
override.

e The re-use of components which were specified for a similar (but not identical)
purpose to the one at hand.

o Design by difference; that is, a system may be specified as being like another
except in certain specifically mentioned respects.

o Fault tolerant systems. These systems have a normative behaviour which may be
violated if the system goes into a faulty state. We want to specify what happens
in these states.

There are relations between these ideas, which will be explored in chapter 6.
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1.3 Examples

To recap: an ordered presentation of a theory is a partially ordered multi-set of se
tences. It is a ‘multi-set’ rather than a ‘set’ because the same sentence may occ
twice, in different places in the order (for example, two of our advisors might say t]
same thing).

Ordered theory presentations are a simple approach to studying a variety of ph
nomena in practical reasoning. We will see in other chapters how they relate to oth
frameworks for practical reasoning. The good thing about OTPs are that they a
intuitively very simple; it is easy to see what a particular OTP should mean, as tl
following examples show.

An informal syntax of graphs for OTPs was used in §1.1, and we will use t}
here and indeed in the majority of the thesis. (In §2.2 we will introduce a more form
notation.) We will start with some linear examples from propositional logic and proce
to more general ones, and then consider examples from predicate logic. If & is a set
sentences, we write Cn(®) for the set of consequences of ®.

This section is intended to illustrate by example the intended behaviour of OTF
The reader can check the examples against his or her intuitions. All of them work o
successfully in the theory described in chapter 2. While reading these examples, it
important to keep the following points in mind:

1. In an OTP, sentences lower in the ordering take precedence over those above.

2. When a sentence lower in the ordering contradicts a sentence above it in t.
ordering, the lower sentence overrides the higher one. But in general, this ove
riding is only partial. The lower sentence need not cancel the effect of the high
one completely.

3. The ordering of sentences is a partial ordering. We can have sentences in an O
which are incomparable in the ordering.

4. In evaluating an OTP (that is, in working out the theory it presents), the idea
to use as much of the available information as possible but to aveid contradiction

Example 1.1

presents Cn{-p}
-p

This OTP says: we want —p (remember, the bottom sentences are the most important
and, subject to that, we want as much of p as possible. Since p i1s atomic, we can
extract anything of it which does not conflict with —p, so all we can deduce is -
(Later, it will be seen that this analysis is not valid if p is replaced by an arbitrary ¢

Of course, the partial order is important here. If the two sentences were incomp
rable in the ordering, nothing interesting could be deduced. If the ordering was tl
other way around, the ordered presentation would be equivalent to p:
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P
(p ﬂp) presents Cn{T}; presents  Cn{p}
P

The notation on the left is the OTP with p and —p incomparably ordered. In that
case we must remain agnostic about p. On the right, we see that p dominating -p
is equivalent to p. The idea is to extract what we can from an ordered presentation
without allowing contradictions. Notice that this means that an ordered presentation
in which all the sentences are incomparable is not the same as the flat presentation
formed from the same sentences; for the flat presentation {p, 7p} is equivalent to L,
not T.

Example 1.2
pAg

presents Cn{-p, ¢}

P
We want —p, and subject to that, as much of p A ¢ as possible. p A ¢ does conflict with
-p, so we can’t have it all. But we can have the ¢ component. Of course the ordering
is significant:
P
1 presents  Cn{p,q}; (ﬂp pA q) presents  Cn{q}

pPAg

Example 1.3
PAg
‘ presents Cn{p < ¢}
—p Vg

This seems similar to example 1.1, since =pV g is identical to =(pAgq) in the underlying
logic (classical propositional logic in this case). But the analysis given there doesn’t
scale up to this case. Here, we want =(p A ¢), and subject to that we want as much of
p A q. What we can have is either p or ¢ but not both.

Example 1.4

presents Cn{-p,q}

s s

—|pV—|q
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This is like example 1.3, except now there is a priority expressed between p and ¢. Th
priority is expressed by their location in the ordering. The bottom sentence (the mo
important) says that we want one of p and ¢ to fail; but subject to that we want
This gives us —p A ¢, since they are consistent. Then, subject to all {haf, we want
But we’ve ruled that out by now, so we end up with —p A g.

Example 1.5
pVyg

presents Cn{p, ¢}

—q

Here, since pV g and =g are consistent with each other, we can simply have them bo
and it doesn’t matter how they are ordered:

-q
‘ presents  Cn{p, -g¢}; (ﬁq p\/q) presents  Cn{p, ~¢}

PV

Example 1.6

P q
\ / presents Cn{p < ¢}

~(pAg)

There seems no reason to treat this differently from example 1.3. Therefore one mig
ask whether it is in general possible to squash trees into linear orders in this way? TI
following example answers this question negatively.

Example 1.7
P “pAg
\ / presents Cn{g, 7}
-

It is not possible to reduce non-linear partial orders to linear ones by zipping them 1

with As, since
L

presents Cn{r}

T

Indeed, the remark that (p ﬂp) presents Cn{T} while p A =p presents Cn{l

in example 1.1 was already an example of this. The intuitions for non-linear parti
orders seem to depend on whether the branches share non-logical language or not. Tk
is important in specification theory applications (§1.2.5 and chapter 6).
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Example 1.8

P -q
\ / presents Cn{p, ~¢}

pVy

Example 1.9 Adding —p at a higher level cannot affect the outcome.
/ ﬁp\
p \ / )

pVy

presents Cn{p, ~¢}

Example 1.10

pVy Py

\ / presents Cn{-p}

P

Example 1.11 Of course if the defaults in the last example had an order, the situation

would be different.
rVyq

\

peyq presents Cn{-p, =¢}

I

P
Example 1.12 This example will turn out to have crucial importance in chapter 4.

pAgAT

1

apVogVoor presents Cn{p < q,p—-r}

1

(pe=q)Vor

To see this 1s correct, separate the cases of r and —r. If 7, then we must have p « ¢
in order to satisfy the most important sentence (the bottom one). To satisfy the next
sentence, we must have —p or =g. Since we already have p < ¢, this means we have
—pA-q. Now we have determined the value of all three atoms, for we have =pA—gAr.
On the other hand, if =7 then both the bottom sentence and the middle one are
satisfled. We want as much of the top one as possible, which is p A ¢q. Therefore, we
get pAgA-r. The presentation is thus equivalent to (-pA—gAr)V(pAgA-r), which
is elementarily equivalent to (p < ¢) A (p < 7).
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The next two examples were seen in §1.2.3

Example 1.13

rA
T
f—i presents Cn{-r, i}
/N
i — o7 r— f
Example 1.14
f—
VAN
i— o r— f presents Cn{r,é f}

Example 1.15
Yz.p(z)

presents  Cn{3z.(-p(z) AVy. (z#y — p(y)))}

Jz. =p(z)

The more important sentence (the bottom one) says that there is at least one individu
which has not got the property p. But, subject to satisfying that, we want to satisfy
much of the upper sentence as possible; it says that all individuals have the proper
p. We conclude therefore, that precisely one individual fails p; all the others satis
it. As one would expect, different orderings give different results. If the two sentenc
Vz.p(z) and Jz. -p(z) are incomparable in the ordering (as shown below), then o
can conclude that there is one element whose claim to the property p is disputed, b
that all other elements have the property p.

(Vx‘p(x) Elx‘ﬂp(x)) presents  Cn{3z.Vy.(z#y — p(y))}

1.3.1 Criteria for the definitions for OTPs

The examples above serve as a benchmark for the development of the system for dealir
with ordered presentations given in this thesis. Some of the ideas mentioned there ar

1. Sentences lower in the ordering override those higher. But the overriding is on
partial (examples 1.2, 1.15, and others).

2. We should be able to handle arbitrary partial orders.
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3. Inclusion of the sentence lowest in the ordering (if there is one) is a minimal
requirement on the theory being presented.

4. Tf two sentences are at the bottom an OTP and are consistent, it doesn’t matter
how they are ordered (example 1.5). Graphically: if ¢ A ¢ # L then

Nt/

That is to say, these two graphs present the same theories; = is formally defined
in §3.3. We do not expect this to extend to the case that ¢ and ¢ are inconsistent
(example 1.1) or are not at the bottom of the OTP (example 1.4).

Other requirements which we may add are:

5. There should be no ‘hacks’ to the connectives. The system we define for handling
OTPs should not change the meanings of the connectives or interfere with the
mechanism of the underlying logic.

6. The system should be defined as independently of the underlying logic as possi-
ble. For example, substitution of logical equivalents at any point of an ordered
presentation should not change its meaning, as mentioned in the discussion of
example 1.3. We would like to define the behaviour of ordered theory presenta-
tions over any logic meeting certain minimal requirements. These requirements
on the underlying logic will be spelled out in chapter 2.

7. Infinite OTPs should be allowed, provided there are no infinite descending chains.
Such an OTP would mean stronger and stronger sentences overriding earlier ones
without any means of establishing what is ultimately wanted, which is clearly
counterintuitive. On the other hand, weaker and weaker sentences do not appear
to pose a problem.

1.4 Related work

There is no single chapter covering related work in this thesis. Discussion of related
work 1s contained in chapters 4, 5, 6, and 7.

1.5 Outline of the rest of the thesis

The definitions and principal results concerning ordered presentations of theories are
set out in chapters 2 and 3. Chapter 4 considers their application to the topic of belief
revision, and comparisons are drawn with the standard work in that topic. Chapter 5
compares OTPs with other frameworks for reasoning with defaults. Chapter 6 repre-
sents work in progress to do with applying OTPs to software engineering. The idea
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is well motivated, though some technical details remain to be resolved. Conclusion
related work and future work are described in the final chapter.

Parts of this thesis have been published or will be published as follows. Abo
half of the content of chapters 2 and 3 appeared as [61]. The content of chapter 4
contained in [59]. Some of chapter 6 appeared as [60].



Chapter 2

Ordered theory presentations

As seen in chapter 1, an ordered presentation of a theory is a bag (or multi-set) of
sentences equipped with a partial order. We saw that if the sentences are mutually
consistent, it is safe to ignore the partial order. The models of such an ordered pre-
sentation are just the models of the set of sentences. But if the sentences conflict,
sentences lower in the ordering are to be treated as having greater weight or priority.
This does not mean that a sentence high in the ordering can be ignored, even if it
conflicts with sentences below it; some ‘components’ of it may still be needed in de-
termining the models of the presentation. In §1.3, examples of ordered presentations
were given to illustrate their intended behaviour, and criteria for judging a theory of
ordered presentations were established.

In this chapter we formally define ordered theory presentations and establish a
framework for reasoning from them. We prove many properties of the framework.

In §2.1, the logical setting and notation is established, and the class of logics is
characterised for which the behaviour of OTPs will be specified. In §2.2 the models
of an OTP are defined, through two kinds of ordering, CT and C, (§2.2.1 and §2.2.2).
The second of these relies on a relation between sentences which we call ‘natural con-
sequence’. The sequence of definitions is motivated and elucidated in §2.2.1 to §2.2.4,
and a summary is given in §2.2.5.

2.1 Logical setting

The definitions which will be given in §2.2 apply to any logic which is given in terms of
language interpretations and a satisfaction relation, subject to being able to define the
standard notion of positive and negative occurrences of non-logical symbols. Such logics
include classical, intuitionistic and modal logics, in their propositional and predicate
forms; Horn clause logic; equational logic, action logic and a host of others. We keep
to this level of generality for most of the chapter as far as the definitions and results
are concerned.

In this section, some we will recap on some standard definitions to establish nota-
tion. It will be useful to refer back to these later.

Definition 2.1 A language L is

1. a finite set of logical connectives;
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2. a (possibly sorted) collection of non-logical symbols; and
3. a set of rules for forming L-sentences.

L considered as a set is the set of L-sentences.

Definition 2.2 A interpreifation system (M, [F) for a language L is a set M of inte
pretations and a relation (called satisfaction) It C M x L.

Definition 2.3 A logic (L, M IF) is a language L together with an interpretatic
system (M, IF) for L.

Of course this definition 1s not broad enough to capture every ‘logic’ encountere
in the literature. For example, it excludes logics for default reasoning [47], linear log
[26]. relevance logics [2], since any logic satisfying this definition is monotonic.

already mentioned, it includes propositional and predicate classical, intuitionistic ar
modal logics, Horn clause logic and others. For a variety of logics defined in this wa
including logics of partiality, see [70, 71]. It should also be noted that there are man
other characterisations of logic (see eg. [30]). Definition 2.3 delineates the logics s
consider in this thesis.

Example 2.4 Classical propositional logic. An appropriate language L has
1. the connectives {A,V, —, < =, L T};
2. a set atoms(L) of propositional atoms; and
3. the following rules for sentence formation:

e T and L are sentences;
o if p € atoms(L) then p is a sentence; and

o if ¢ and 9 are sentences then —¢, ¢ A9, ¢V ¢, ¢ — ¢ and ¢ < ¢ are :
sentences.

Brackets are used to disambiguate expressions involving nested connectives; but s
also adopt the convention that — binds more closely than A and Vv, which are in tu
more binding than — and <.

M consists of assignments of truth values to propositional atoms; if M € M the
M :atoms(L) — {t,f}. The satisfaction relation is defined in the following (standar:
way:

MIFT

ML

MIkp if M(p)=tand p€ atoms(L)

MIF—-¢ if MIe¢
MIF¢gny if MIF¢and MIF9y
MIF¢vey if MIFgorMIFy
MIF¢ -9 if MIF¢implies M IF vy
MF¢g—=vy if (MIF¢iff MIF o)
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Example 2.5 Classical predicate logic, with equality. L has
1. each of the connectives of example 2.4 plus {V, 3};

2. a set of predicate symbols, each with an arity n > 0, a set of function symbols,
also each with an arity n > 0, and a set of variables; and

3. the following rules for term formation, formula formation, and sentence formation:
o if z is a variable, f a function symbol with arity » and ¢, ..., ¢, are terms

then z and f(#,...,t,) are terms.

o if t ¢y, ... t, are terms, p a predicate symbol with arity n, and ¢ and ¢
are formulas and x is a variable then p(t1, ..., t,), t1 = t2, T, L, 2, ¢ A ¥,
oV, ¢ — Y, ¢ ¢ Jz. ¢ and V. ¢ are formulas.

o if ¢ 1is a formula with no free variables then ¢ is a sentence.

The definition of free variables is the standard one. See, for example, [31, defini-
tion 3.8].

Each M € M has

o a domain of individuals Dy;

o for each predicate symbol p with arity =, a subset M[p] of D%, (D} is
DM X ... X DM)’
—_—

n times

o for each function symbol f with arity n a function M[f] from D7}, to Dy, and
o for each variable z an element M[z] of Dys.

M][-] is extended to terms by

M[f(t, ... t)] = MISIM[a], - -, M[t])

for each function symbol f with arity n.

For each variable z of L, an equivalence relation ~, C M X M is defined as
follows: M ~, N if Dy = Dy and for each predicate symbol p and function symbol f,
M[p] = N[p] and M[f] = N[/] and for each variable y with the possible exception
of 2, M[ly] = N[y]. That is to say, M and N are alike in every way except possibly in
how they assign the variable z.

The satisfaction relation is defined as follows: if x is of the form T, L, =g, ¢ A ¢,
OV Y, ¢ — Y, or ¢ <, then M IF x according to example 2.4. Otherwise,

Mp(t,. .t if (M[u],..., M[t]) € M[p]
M-t =t if M[a] = M[t]
MYz ¢ if NIF¢foreach Nst. M~, N
MIF3z.¢ if NIF¢for some N st. M ~, N

We now return to standard definitions and a result:
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Definition 2.6 A (flat) theory presentation over a language L, or an L-theory pr

sentation, is a finite set of L-sentences.

Definition 2.7 Let & be a theory presentation. Then M Ik & if M Ik ¢ for ea
ped

Definition 2.8 ¢ is a consequence of &, or ® entails ¢, written & |= ¢, if for ea
MeM, MIF & implies M I+ ¢.

An expression like ® |= ¢ is called a sequent. Simple though these definitions ar
there are some well known consequences.

Proposition 2.9 Let L be a language and |= the consequence relation defined fro
an interpretation system (M, k). The following properties hold of |=:

1. Inclusion: S ¢l=¢
Y
2. Monotonicity: L
P ¢=9
Lo v =
3. Cut: —': v ki
eV =9

As usual, &, ¥ and @, ¢ are abbreviations for ® U and & U {¢} respectively. T
horizontal rule means: if the top sequent holds then so does the bottom one.

The last standard definition to consider is that of positive and negative occurrenc
of non-logical symbols in formulas. The exact definition depends on the connectives ar
their interpretations. We will give examples for propositional and predicate classic
logic.

Example 2.10 Let I, M and IF be classical propositional logic (example 2.4) wi
p € atoms(L).
® p occurs positively in p.

o If p occurs positively (negatively) in ¢ then it occurs negatively (positively)
—¢.
o If p occurs positively (negatively) in ¢ orin ¢ then it occurs positively (negativel;

in¢Ayand ¢V

o If p occurs negatively (positively) in ¢ or positively (negatively) in ¢ then
occurs positively (negatively) in ¢ — .

If p occurs at all in ¢ or 9 then it occurs both positively and negatively in ¢ <

o p does not occur in either T or L.
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Note, therefore, that p can occur positively, or negatively, or positively and negatively,
or p need not occur at all. In

(r—=(=qAn)Alg—p)

p occurs negatively (twice), g occurs positively (twice) and negatively (three times)
and r occurs positively and negatively (once). s does not occur.

Example 2.11 In the case of predicate logic, if p is a predicate symbol and ¢, ..., ¢,
are terms then p occurs positively in p(¢;,...,¢,). Each of the clauses for the propo-
sitional connectives above applies. Moreover, if p occurs positively (negatively) in ¢
then it occurs positively (negatively) in Vz. ¢ and Jz. ¢. In the sentence

Yz. 3y, (1: #yA (p(l’) —q(z,y) VP(?/)))

p occurs positively and negatively, ¢ positively and r not at all. We need not talk of
the occurrence of = as it is built in to the language.

Thus, the class of logics for which OTPs are defined in this chapter is quite wide.
(For other examples of such logics, see [63].) An interesting question is whether this can
be broadened still further. For example, a natural but abstract class of logics are the
so-called institutions [27] used in specification theory. Whether OTPs can be defined
over arbitrary institutions is a matter of ongoing research.

2.2 Ordered theory presentations

The purpose of this section is to define satisfaction for ordered presentations of theories,
so that consequence for such presentations can be defined by definition 2.8. As before
we assume we are working with a fixed language L and interpretation system (M, IF).

We have seen that an ordered theory presentation is a collection of sentences
equipped with a partial order. But to cover the case that the same sentence occurs
several times in different places in the presentation, it is necessary to posit a ‘carrier
set’ on which the order is defined and whose points are labelled by sentences.

Definition 2.12 An ordered theory presentation ? over a language L is a tuple (X, <
, '} where

1. X is a set (the carrier set).

2. < is a well-founded partial order on X (that is, there are no infinite descending
chains 1 > zy > 23 > .. ).

3. F'is a function mapping X to L-sentences.

A finite ordered theory presentation is one whose carrier set is finite. Some of
the results given in this and the next chapter work only for finite OTPs (this will be
explicitly stated each time).
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As usual, * < y means 2 € y and y £ 2, and ¢ 2 y and ¢ > y mean y <
and y < z respectively. The letters ® and U were used for ‘flat’ theory presentatio
(definition 2.6); we shall use ? and A for ordered presentations.

The intuitive meaning of the ordering is: if z < y then the sentence F'(z) has great
priority (or more influence) than F'(y). This information is used when F(z) and FY(
conflict.

We have already seen many ordered presentations in chapter 1 using the inform
notation of graphs; definition 2.12 is the formal definition.

Example 2.13 The ordered presentation

h A -

T

-h A e
AN
/ AN
h— —c cVh
is formally written as follows:

1. X ={1.234)}

2. < = {(1.1).(1,3).(1.4), (2.2). (2.3), (2,4).(3,3),(3.4), (4,4)}

3. F(l)=h — ¢, F(2)=cVh F@3)=-hA-c; F4)=hA-c

The requirement that X have no infinite descending chains means that there is
infinite sequence of ever more important sentences in the presentation, which obvious
would not make sense. There is no need to exclude infinite sequences of ever le
important sentences, however; an example of a situation in which this would be usef
will be seen in chapter 5.

A consequence of the requirement on X is that it is always possible to find minim
elements of any subset of X. Indeed, it will be useful to prove the slightly strong
result:

Lemma 2.14 Let (X, <, F) be an ordered theory presentation, and let X' C X ar
z € X'. Then there is a y € X' such that y is minimal in X' and y < .

Proof If z is minimal in X’ then set y = z. Otherwise, pick z; € X' such th
z1 < z. If z; is minimal in X' then set y = x1; otherwise, pick z; € X' such th
29 < 1. Proceed in this way until a minimal element is found. If none is found, s
have constructed an infinite descending chain = > z; > z9 > ..., a contradiction.

We want to define the models of an ordered theory presentation, that is, to exter
the satisfaction relation to ordered presentations analogously to its extension to fl
presentations in definition 2.7. Let ? = (X, <, F') be an ordered theory presentatic
over {L, M, IF). If all the sentences of 7 are mutually consistent, then the models
7 are just the models of that set of sentences. The interesting case is when sentenc
in 7 are inconsistent with each other and we have to use the ordering to resolve t.
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t 00,01
00 T
PAY t i
11
r T
-p 10 10
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Figure 2.1: an ordered theory presentation and candidate interpretation orderings

conflict. In this case we cannot hope to satisfy all the sentences but models of 7 should
satisfy as many of them as possible, taking account of their ordering.

The technique to be adopted 1s to order interpretations of L according to 7, so that
those higher up the ordering are better at satisfying ?. This ordering is written CT.
M CT N means N is at least as good as M at satisfying 7. Models of 7 are then taken
to be the interpretations which are maximal according to CT.

The remainder of §2.2 is structured as follows. In §2.2.1 we consider a proposal for
the definition of CT and find it to be wanting. The correct definition relies on what we
call ‘satisfaction orderings’, which are motivated in §2.2.2. They rely on a restriction
of ordinary consequence which is defined in §2.2.3. With this to hand, satisfaction
orderings are defined in §2.2.4. Finally, in view of this plethora of definitions and
considerations, the situation is summarised in §2.2.5.

2.2.1 The ordering C'

The question addressed in this section is how C is defined. If 7 were not itself ordered,
this task would be easier. For example, one might say M CT N if N satisfies all the
sentences of 7 that M does. But 7 is ordered, and our definition must take account of
that. Consider again the interpretations M and N. If M CV N, but there is a sentence
¢ in 7 such that M satisfies ¢ and N does not, then there must be a more important
sentence ¢ which is satisfied by N but not by M. Thus we might be tempted to define
C" as follows:

Proposal 2.15 M CY N if Vo € X. M IF F(z) and N ¥ F(z) implies Iy < =. M If
F(y) and N I+ F(y).

To see that this is wrong, consider the ordered presentation given in example 1.2.
A model of this theory is an interpretation which satisfies =p and as much of p A ¢ as
it can. Let (M, [F) be the usual interpretation system for this logic (see example 2.4).
An interpretation M of M is specified by whether it satisfies the atoms p and ¢. Let
us write 10 for the interpretation which satisfies p but not ¢; 11, 01 and 00 are defined
analogously.

Intuitively we expect the interpretation 01 to be the only model of 7. To see this,
notice that it must be either 00 or 01 since —p is the most important sentence of 7.
Of these two 01 is better at satisfying 7 overall because, while neither of them satisfy
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p A g, it at least satisfies half of p A ¢. Further reasoning along these lines results
the conclusion that figure 2.1(ii) is the correct interpretation ordering for the theory
question. There, the arrows mean C.

But since neither of the interpretations 01 and 00 fully satisfy pAg, and proposal 2.
just looks at what sentences are satisfied by the various interpretations, the propos
cannot distinguish between 01 and 00. In fact, according to the proposal CT is tl
order given in figure 2.1(iii). 01 and 00 are both maximal in this ordering, so bo
would be models of 7 according to the proposal.

The problem is that we were not able to take account of the fact that, while neith
01 nor 00 satisfy pA g, 01 1s actually better at it than 00; at least it satisfies ¢, which
a consequence of pAg. This thought leads us to the idea that, given a sentence and :
interpretation, there is more we can say than whether the interpretation satisfies tl
sentence or not. We can compare two interpretations as to the degree to which the
satisfy the sentence.

This intuition, about degrees of satisfaction, is formalised in the following wa
We suppose the existence of an ordering Ty on interpretations (for each sentence .
and use that to define CF'. M C,s NV means that N is as good as M at satisfyn
¢. The example discussed above shows that we should be interested in ordering t
interpretations which fail to satisfy ¢ according to how nearly they do; for example, |
is better than 00 at satisfying p A ¢ (therefore, 00 Tpaq 01). Ty is called a ‘satisfactic
ordering’, and we suppose it satisfies the following assumption.

Assumption 2.16 Let (L, M. IF) be a logic, and for each ¢ € L let Cy4 be a
satisfaction ordering. Then

1. Cy is a pre-order (i.e. reflexive and transitive);
2. M 1s Cy-maximum iff M Ik ¢.

Recall that a point M in an order {M, C) is maximum if for each N € M, N C }
We will define suitable orderings which meet this assumption in §2.2.4. A cons
quence of the assumption is

Lemma 2.17 If M ¥ ¢ and N IF ¢ then M Cy N.

Proof We show (i) M Cy N and (ii) N Zg4 M. (1) M C4 N since N is Cy-maximu
by the assumption. (i) N Zy M, for N Ik ¢ and M I} ¢.

We have used some standard notation in this lemma. It is as well to fix the
derived orderings once and for all.

Notation 2.18
1. MCy Nif MCy N and NZy M.
2. M=y Nif MCy N and NC, M.

3. E, will abbreviate Ep(;) when in the context of a particular OTP; similarly f
=, and C,.
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4. MCUNif MC" Nand N ZF M; also, M =T N means M C" N and N C" M.
5. M 3 N means N CT M; and similarly for M 32" N, M J; N and M 14 N.

Given the satisfaction orderings of assumption 2.16, we can define the interpretation
ordering induced by ?. The definition captures the flavour of proposal 2.15, which is
that if a sentence in 7 makes the ‘wrong’ choice of two interpretations then there is a
sentence with greater priority which makes the ‘right’ choice. But now, the choice that
the sentence ¢ makes is determined by Cy.

Let ? = (X, <, F) be an OTP over (L, M, ).

Definition 2.19 M CT N if for each » € X, M Z, N implies there exists y < # such
that M C, N.

One can tead this as saying: N is as good as M overall [M CT N] if whenever it
appears not to be so at a point & [M [Z, N] then there is a more important point y
[y < #] where N is doing better than M [M C, N].

Informally, the definition says: if things appear to go wrong at a particular z, then
they go well at some y in a more important position than . The condition that there be
no descending chains in OTPs guarantees that the process of finding ‘more important
ys’ terminates. To be precise:

Lemma 2.20 M CT N iff Vo € X. (M Z, N implies Iy < 2. M C, N and Vz <
y. M=, N).

Proof (If) Immediate. (Only if) Suppose M CI' N and M Z, N for some . Let
X' ={ye X|MC,Nandy<z} X' #@since M C' N. Let y be a minimal
point in X’ (this is possible by lemma 2.14). Then M C, N, and if z < y then » ¢ X',
so M Z, N. Either M Z, Nor M =, N. f M Z, N then 32’ < z.2/ € X', a
contradiction since then z' < y. Therefore, M =, N. &

Definition 2.19 is only one out of four possible ways of capturing proposal 2.15. We
might just as easily have said:

o M Z, Nimplies I3y < 2. NZ, M, or
o N[, Mimplies Iy <. M C, N, or
o NC, M implhes dy < 2. NEZ, M.

Indeed, replacing y < 2 with y < « gives us another four plausible definitions. Some of
these eight are equivalent. Without going into details, it turns out that only the one
chosen for definition 2.19 has good formal properties. In particular, it is the only one
with the following property, which I consider clear-cut grounds for choosing it.

Proposition 2.21 C' is a pre-order.
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Proof Reflexivity is obvious. For transitivity, suppose L CF M C" N, and |
LZ, N. We shall show L C, N for some y < .

Suppose L C, M. Either M C, N or M Z, N. If M C, N then L C, N,
contradiction. If M i, N, let yo < = be such that M C,, N and M C, N for z <
(lemma 2.20). If L Z,, M, then let y < yo be such that L C, M. Then y < z aI
L, N follows from LCy, M and MC, N. If LC,, M, set y =y;. Then y < z, a1
L, N follows from L T, M and M C, N and assumption 2.16.

On the other hand, suppose L £, M and let y; < z be such that L C,, M a1
L C, Mforall z < y; (lemma 2.20). Again, consider separately the two cases M C,,
and M Z,, N.If M C, N,sety=y;. Theny <z and L C, N follows from L C,, .
and M &, N. If M Z,, N then let y < y; be such that M C, N. Then y < z, a1
L, N follows from L T, M and M C, N and assumption 2.16.

Proposition 2.22 Then M CF N implies 32 € X. M C, N.

Proof Suppose M CT N. Then N Z' M, so by definition 2.19 2. N Z, M.
M Z, N then by the definition 3y. M C, N, so set z = y. Otherwise, M T, N,
MC, N, soset z=uz.

Proposition 2.23 Then M = N iff M =, N forall z € X.

Proof (If) immediate. (Only if) Suppose M #, N. Then M Z, N or N Z, 1
Without loss of generality, assume M Z, N. Since M CU N, by lemma 2.20 pick
such that M C, N and Vz < y. M =, N). Since N CT N, by definition 2.19 pick z
such that N C, M. Clearly, z # y; therefore, z < y so M =, N, a contradiction.

The definition of IF on flat presentations (definition 2.7) can now be extended
ordered presentations in the way already described.

Definition 2.24 M I+ ? if M is C'-maximal.

Definition 2.24 further overloads IF. (To determine whether M [ A, we have
check whether A is a sentence, a flat theory presentation or an ordered theory prese
tation and use definitions 2.2, 2.7 or 2.24 accordingly.) This overloading is justified
that for the most part the different senses of I correspond well. To be precise, we ha
that M Ik ¢ iff M I {¢}, where ¢ is a sentence. Also, M IF ® implies M Ik “®" whe
® 15 a set of sentences and “®” is the OTP with the same sentences and the discre
ordering. If ® is consistent then we have the converse, that M IF “®” implies M IF
The one case of disagreement, then, is when ® is inconsistent, in which case we ha
M} & and M IF “®” for all M. An example of this was given (case 3 of example 1.1

Finally, consequence is defined in the standard way:

Definition 2.25 7 |= ¢ if for each M € M, M Ik 7 implies M I+ ¢.

Now we give some results to continue to get the feel for the behaviour of OTF
Naturally we expect that the minimum sentence (if there is one) is satisfied by mode
of the theory:
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Definition 2.26 ¢ is minimum in ? = (X, <, F) if (X, <) has a minimum point 0
and F(0) = ¢.

Proposition 2.27 Let ? = (X, <, F) be an ordered presentation and M € M such
that M IF 7. If ¢ 1s minimum in ? and ¢ # L then M Ik ¢.

Proof Let 0 be the minimum point in X. F(0) = ¢. Suppose for a contradiction
that M I ¢. Since ¢ # L, let N Ik ¢. By lemma 2.17, M Co N. We show M [ 7
by showing M =T N. To show M CT N, suppose x is such that M Z, N. Let y = 0.
Then y € z and M T, N. To show N ZT M let 2 = 0. N Z, M. If y < z, then
y = 0 since 0 1s minimum; but N £, M. &

Already we have enough to look at some effects of putting ordered theory presen-
tations together. Let 7A be 7 and A ‘side by side’, and let 2 be 7 on top of A.
Formally:

Definition 2.28 Let ? = (X, <x, Fix) and A = (Y, <y, Fy), with X and YV disjoint.

1. 7A = (Z,<z,Fz), with Z = X UY, Fy(z) = Fx(z) if z € X, otherwise
Fr(z) = Fy(z),and 2 <z yifr <xyor 2 <y .

2. 2 =(Z,<gz,Fz), with Z and Fz as above and z <z yif # x yorz <y y or

(r €Y and y € X).

Example 2.29 If 7 and A are respectively

pAT P \ q
-7 ~(p Ag)
then 7 A and 2 are respectively
pAT

|
N
p

pAr P q

Jr =(p /\{ P /
AN

q
=(pAq)
Proposition 2.30

1. MCT2 N if MCT N and M CA N
2. MCPA Niff (MY N and M C2 N) or (M CY N and M C2 N).

3. M Ca Niff M T2 N or (M =2 N and M CF N).
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4 MCANITMCANor (M=2N and M T N).

Proof 1. and 2. follow easily from the definitions, and 4. follows easily from 3.

For 3., suppose M Ez Nand M ZF' N. We show M C2 N. (a) M C» N. Pi
z € Al Since M Ez N, we can find y € A satisfying the conditions of definitic
2.19. (b) N Z2 M. Suppose N C2 M; we derive a contradiction. Using the fact th
M Z" N, pick z € 7 such that M Z, N and Vy € 7 with y < z. M Z, N. But sin
MEE N, 3ye AMC, Nand V2 <y M =, N. ButNEAMandNZyM,
dz < y. N C, M, a contradiction.

Conversely, we show: (i) M C® N implies M Ez N. Let z € 2 be such th
M £, N. By proposition 2.22, pick z € A such that M C, N. Since z £ z, we ha
M Ca N. (i) M =2 N and M C" N imply M Ca N. Let o € & be such th
M Z, N. By proposition 2.23, z € 7. Since M CT N pick y € ? such that M C, |

Propositions 2.27 and 2.30 are meant to convince the reader that the definitic
of C! is the right one. The next chapter contains further evidence, but we end th
section with a final remark in this direction. As before, let us write “¢” for the OT
with the single sentence ¢. Then we have, as a consequence of definition 2.19:

Remark 2.31 M C ¢ Niff M T, N.

2.2.2 The ordering C4 (motivation)

In §2.2.1 we assumed so-called satisfaction orderings Cg4 satisfying the conditions
assumption 2.16. In this section we show how such an ordering may be defined, a:
give examples.

Given a sentence ¢ and an interpretation M, we are interested in how well |
satisfies ¢. If M I ¢, then this is the best one could hope for; M satisfies ¢ to t
fullest possible extent. But if M f ¢, all is not lost; for it may more nearly satis
¢ than some other interpretation N which also fails to satisfy ¢. In that case ¥
write N T4 M. The aim of T, 1s to order the interpretations which do not satisfy
according to how nearly they do.

The definition of T4 is motivated by the example given at the beginning of §2.2
(see figure 2.1). We concluded there that we wanted to have 00 Ty, 01, and we c:
extend the argument for the following diagram for Cpay:

11
01 10
00
In other words, we wish that interpretations which satisfy p or ¢ are better at satisfyi
p A g than that which satisfies neither p nor g.

As p and ¢ are consequences of p A ¢, one might consider the following basis for
definition of Cy:

1We should really say: let A = {X,<x, F") and pick z € X. But ¢ € A is a convenlent shorthar
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The more consequences of ¢ that M satisfies, the higher it should be in Cy4.

Thus one might consider the following definition for Cy:
Proposal 2.32 M C,; N, if for each ¥,

pEDb= (MIFy=NIFy)

However, one can immediately see that not all the consequences of ¢ are appropriate
to take into account in the definition of C4. Consider again example 2.47. p, p < ¢
and ¢ are all consequences of p A ¢, but none of each other. Therefore proposal 2.32
gives the following for Ty,

11

/1IN

01 00 10

This 1s wrong according to the intuition mentioned. Indeed, it turns out that under
this definition Cy4 always has a height of just 2. To be precise:

Proposition 2.33 If Cj is defined according to proposal 2.32 and the underlying
logic has the property that for each interpretation there is a sentence which picks it
out uniquely up to isomorphism (classical propositional logic over a finite language has
this property, as do certain fragments of first-order and modal logics), then M Cy N
implies N |k ¢ or M = N.

Proof Suppose M T4 N and let x be the sentence which characterises M. Since
¢ = ¢V xand MIF¢@Vy, it must be that NIF ¢V, ie NIF¢or N=M. &

2.2.3 The ‘natural consequence’ relation =

The problem encountered in the forgoing discussion is that not all the consequences
of ¢ should be taken into consideration in deciding whether M T4 N. In the case of
p A g, only the consequences in boxes in the following diagram are appropriate.

SN

Vg P Vg

p=a  [d]

AN
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What distinguishes these consequences of p A ¢ 1s that they are monotonic in p and
That is to say, if a model M satisfies such a consequence 9, then so does the model
obtained from M by increasing the ‘extension’ of p or of ¢. To define this we need
define positive and negative occurrences. As stated previously, we assume that the
are given by the underlying logic (examples 2.10 and 2.11).

Definition 2.34 If ¢ is an L-sentence other than L and p a non-logical symbol in .

1. ¢ is monotonic in p if it is equivalent to a sentence in which all occurrences of
(if any) are positive.

2. ¢ is anti-monotonic in p if it 1s equivalent to a sentence in which all occurrenc
of p are negative.

3. ¢ and ¢~ are the sets of symbols in which ¢ is monotonic and anti-monoton
respectively.

The case that ¢ = L is handled separately, for reasons which will be explained late
we define L* =17 =@,

Notice that although the definition uses the syntactic notion of positive and negati
occurrences, it 18 semantic in the sense that it is not sensitive to the way ¢ 1s writte

Let us write ¢ g ¢ if ¢ |= ¢ and ¢ | ¢.
Proposition 2.35 If ¢ 9= ¢ then ¢* = ¢+,

Proof If p € ¢t then there is a sentence x such that ¢ 5= x and p occurs on
positively in x. But then, ¥ = x. so p € ¥*. The converse, and the case for ¢~, a
proved similarly.

The justification for the terminology of ‘monotonic’ and ‘anti-monotonic’ is as f
lows. Omne may define the extension of a non-logical symbol p in a model to be t.
set of tuples of which p is true in the model. (In the propositional case, if p is tr
in a model then its extension is defined to be the singleton {x}; if p is false, it is ¢
Extensions are naturally ordered by inclusion. Let us write M <? N if M and N a
exactly alike except that NV has possibly a greater p-extension than M. It follows th
¢ is monotonic in p iff (M <? N = (M IF ¢ = N IF ¢)), i.e. increasing p-extension
a model preserves ¢-satisfaction. Similarly, ¢ is anti-monotonic in p iff (N < M :
(M Ik ¢ = NI ¢)).

Thus, the monotonicities of ¢ is a pair {¢1, ¢~} of sets of non-logical symbols su
that, if in any model of ¢ the extension of any symbol of the first set is increased,
the extension of any in the second set is decreased, the resulting interpretation is st
a model of ¢.
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Example 2.36 Let (L, M) be classical propositional logic over {p,¢}. For several
examples of ¢, ¢ and ¢~ are shown in the following table.

¢ i ¢

T .t | {pa}
P ) | {a}

q gt | {p}
pAg pVa| {pa} 4]
p—yq {7} {r}
perg () ()
L () (@)

Example 2.37 Let (L, M) be classical predicate logic over p (unary) and ¢ (binary).

b s
Yz.p(z) {r,q} {¢}
Az. p(z) {r,q} {¢}
vz, Ay q(z, y) .t | ir}
V. (p(z) — Jy. ¢(z,9)) {a} {r}

Vo ¥y (¢(z,9) = q(y, 7)) {r} {r}

We are interested in the consequences of ¢ which preserve these monotonicities.

Definition 2.38 A consequence ¢ of ¢ is a natural consequence (written ¢ [= ¢) if it
preserves the monotonicities of ¢:

pEYD I oY, 6T CyTandg” C YT

Natural consequence is a sub-relation of ordinary consequence; in addition to ordi-
nary entailment we require that the monotonicities of the premise be preserved by the
conclusion.

Proposition 2.39 [ is reflexive and transitive. &

Example 2.40 The relations |= and [= on the set of sentences formed from the lan-
guage containing the propositions {p, ¢} are shown in figure 2.2 for comparison. These
figures are the Lindenbaum algebras of = and [=. The nodes are the |= (resp. =)
equivalence classes, and the ‘arrows’? are the relation | (resp. E). (We will prove
in proposition 2.41 that the equivalence classes are the same for |= as for = — this
Justifies the second diagram.)

Thus: pAgEpand pAgEpVg but pAgE p—gand p £ pV g Moreover,
1 [ ¢ for all ¢.

The definition of natural consequence is perhaps not very satisfying, because (one
might ask), what is so special about preserving monotonicities? One way to answer
this is purely pragmatic: as we will see, it is essential for the next definition, which does

2For TpXnical reasons the arrowheads are not shown in the diagram.
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7

PV g -p Vg A

P —q P — g q -p

pA- p/\q\ FhT “pAg
1
T
—|p\/

pV g PV AN

il — «— il

p ] P p q - q p
pA- pAg —p A g TpAg

L

Figure 2.2: The ordinary and natural consequence relations over {p, ¢}
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have a satisfying feel. But first, we justify the term natural consequence by showing
examples of how much more natural this consequence really is.

Natural consequence is something like relevant consequence; it stops us adding
irrelevant disjuncts in our conclusions. (This is not the same notion of relevance as
Anderson/Belnap [2], for there one is interested in stopping irrelevant conjuncts in the
premises.) The following sequents, which are ordinarily valid, are not naturally valid:

P E pVy P E ¢g—p

A —
P E pV—g p Eop—g PAT P

There are well-known objections to the classical validity of these entailments, so it
is rather pleasing that they are not naturally valid. Regarding the first pair, the
premise p tells us nothing about ¢, and therefore it 1s suspect to introduce ¢ or ¢ as
a disjunct. The second pair are the standard inelegancies of material implication, and
are rejected by ‘resource’ logics like linear logic and relevance logics. Finally, we dislike
pAgq |= p g because the right-hand side suggests that p and ¢ are in some way bound
together, whereas the left-hand side only says that they are both true.

On the other hand, the simplicity of the definition and the fact that it is based on
satisfaction by models ensures that there is nothing untoward going on. In particular,
if ¢ and ¢ are classically equivalent then they are naturally equivalent; indeed:

Proposition 2.41 ¢ g ¢ iff ¢ HE ¢.

(¢ JE ¢ means ¢ |= ¢ and ¢ [= ¢.)

Proof Suppose ¢ 3k . Then, by proposition 2.35, ¢* = . Therefore, ¢ HE o.
The converse is immediate from definition 2.38. &

Proposition 2.42 If ¢ 9 ¢ then ¢ = x iff ¢ = x.

Proof Suppose ¢ = x. If ¢ g ¢ then ¢ = ¢ by proposition 2.41, and by proposi-
tion 2.39, ¢ |= x. The converse is proved similarly. &

We can also examine the structural properties of |=. Clearly it is substructural, that
is, 1t fails the usual properties of inclusion, monotonicity and cut:

Example 2.43 (See proposition 2.9 for the statement of the rules.)

1. Inclusion fails: p A (mp V ¢) & —p V ¢, since the left hand is equivalent to p A ¢
and 1s monotonic in p, while the right hand is not.

2. Monotonicity fails: -p V ¢ = —p V g, but, as above, pA(—-pV ¢) £ —p V.

3. Cut fails: Monotonicity is also built in to Cut, so the same example goes through.
We have pAg = T and TA(mpVgq) = =p Vg, but (cutting T) we also have
(pAg)A(—pVyq) [ —pVqg (the left-hand side is equivalent to pAg and is monotonic
in p, which the right-hand side is not).

We do, however, have their weak varieties:
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Proposition 2.44 1. Reflexivity: ¢ [ ¢.
PEY dE Y
A YL =

PEY dAD
¢ e
Proof 1. (proposition 2.39.)

2. Weak monotonicity [10]:

3. Weak cut:

2. Suppose ¢ = ¢y and ¢ = . By definition of =, ¢ = ¢4, so by classic
properties ¢ = ¢ A ;. But also, ¢ A ¢y = ¢, and since ¢ = 32, we ha
@ A1 = )2 by proposition 2.42.

3. Suppose ¢ = 1 and ¢ A9 [= 9. By classical properties, ¢ |= ¢3. Now suppo
p € ¢*. Then p € ¢F since ¢ = ¢y, Therefore, p € (¢ A ¢1)*, and sin
¢ A [ 9o, p € 97, thus proving ¢ = s,

2.2.4 The ordering C, (definition)

Finally we can define Cy4. As expected, the definition is just like proposal 2.32, b
with = instead of |=.

Definition 2.45 M Cy4 N, if for each 9,
dEY=(MIty=> NIy
Proposition 2.46 For each L-sentence ¢, T, is a pre-order.

Proof Reflexivity is obvious. For tramsitivity, suppose L Ty M Ty N, and let ¢ |
such that ¢ {= ¢ and L IF ¢. Then, since L Ty M, M I+ ¢. And since M C, |
NIk 9.

Some examples of this ordering now follow. We omit the details except in the fir
case; but the propositional examples have been checked by the Miranda program give
in appendix A.

Example 2.47 Consider again the propositional language over {p, ¢} and the inte
pretations {00, 01,10, 11} as before. The ordering C,a, is as follows:

11
10 01
00
Thus, interpretations which satisfy p or ¢ are better than that which satisfies neither
nor ¢. To see that this is so, first consider the natural consequences of p A ¢: they a
{pAg.p g L} Since 00 satisfies none of these, it is C,a, everything else; 01, on t.

other hand, satisfies ¢ so it is E,aq only others which satisfy ¢, namely itself and 1
An analogous argument holds for 10; and since 11 satisfies p A g it is Epa, only itsel
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Example 2.48 If ¢ is just p, then T, is as follows:
10,11

00,01

This is because the only natural consequences of p are T and p. Intuitively, either
an interpretation satisfies p or it doesn’t; there is no question of partial satisfaction.
Notice that Ty is not necessarily antisymmetric. For here, 10 and 11 are equivalent as
far as satisfying p is concerned, but they are not equal.

Example 2.49 C_, is simply C, turned upside down:
00,01

|

10,11

(The natural consequences of =p are -p and T.) But T, (o1, equivalently, C-pv-q)
bears little resemblance to Cya, (which was given in example 2.47):

00,01, 10

|

11
(The natural consequences of =(p V q) are itself and T.)

It should be clear that the ordering is only concerned with the interpretations which
fail to satisfy the sentence in question.

Example 2.50 If ¢ is T, then the ordering is the indiscrete one in which everything is
equivalent, for no model is any better at satisfying T than any other. That is because
they all satisfy it.

Example 2.51 If ¢ is L, the ordering is the discrete one in which nothing is related;
we have M C_ N iff M = N. For suppose M # N; pick any ¢ such that M IF ¢ and
N ¥ ¢. We have L |= ¢. Therefore, M Z_ N.

As far as the theory of OTPs is concerned, the difference between Ct and C_ is
of no importance. The fact that their strict versions, C+ and C_, are both the empty
relation is significant, and is what one would expect. The reader may be concerned
about the fact that we stipulated that L¥ = 1~ = @ in definition 2.34. The reason for
this is simply that we thereby obtain L = ¢ for all ¢, and therefore Ls position in the
second diagram of figure 2.2. It is true that if we had not treated L in any special way
in definition 2.34 we would have obtained that L = ¢ implies ¢ = L or ¢ = T; we then
would have obtained that C_ is the indiscrete ordering (M C_ N for all M, N) rather
than the discrete one; but the rest of the theory of OTPs would remain the same. It
turns out that L has a rather unusual réle in OTPs; we will return later to this topic
(proposition 3.18). The relevant point here is that the question of how L should be
treated at this level has no significant impact.
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Example 2.52 The orderings Cyagar. Epagvr and Cpy—g)a-r are

111

/ ‘ AN 001,011, 101
S/ AN 110,111

011 101 110

15X W\
N

001 010 100

\\‘//

000
000, 010
100
oof/// \\\\\\\\
011/// 101 110
111

We will show the working for just the last of these three diagrams.

The positive and negative monotonicities of (-p V =qg) A -7 are respectively
and {p.¢.r}. Its natural consequences are therefore the sentences in the followis
diagram; the diagram orders them by logical strength (that is, in this diagram t
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arrow means |=).

—pV gV -r

—|pV—|q —|pV—|r —|qV—|r

XX

=pV(~gA=r) (=pA=r)Vag (opA-g)V oy
(=pA=g)V((p = ~g)A=T) -

(=pV=g)A-r

To derive the model ordering from this diagram, the definitions say in effect to consider
each interpretation as the upwards-closed set of sentences it satisfies in this diagram.
The model ordering is then given by the inclusion ordering on these sets. For example,
to check that 101 should appear lower than 011 in the diagram (as it does), we must
check that the natural consequences which 101 satisfies form a subset of those satisfied
by 011. This is indeed so, since 101 satisfies {T,=pV =g V =r,p V =g, =g V =7, (-p A
7))V og}; and 001 additionally satisfies {-pV =r, =pV (=g A=r), (mpA-g)V -7, (mp A
=) V ((p < =g) A7)}

Further examples, including ones in predicate logic, are given in §3.1.
We finish this subsection with a few definitions and results to reassure us that
everything is according to plan:

Proposition 2.53 If ¢ | ¢ then Cy = C,.
Proof Suppose M Cy4 N, and ¢ = x and M |- x. By proposition 2.42, ¢ = x, so
N IF x. Therefore, M Ty N. The converse is proved similarly. &

Proposition 2.54 M is Cy-maximum iff M Ik ¢.
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Proof (If) If M I+ ¢ then M Ik ¢ whenever ¢ |= ¢. Therefore, N Cy M for any N

(Only if) If ¢ = L then M is not maximum by the argument given in example 2.5
Suppose ¢ # L and M I ¢. We show that M is not Cy-maximum. Let N I+
We show that M T4 N. (i) M C, N, since by the (If)-part N is Cy-maximum. (
N Z4 M, since ¢ |= ¢, N IF ¢ and M ¥ ¢.

Propositions 2.46 and 2.54 show that T, satisfies assumption 2.16.

2.2.5 Summary of definitions for OTPs

To recap, we started with a logic given in terms of a language and a set of interpretatio
in the standard way. Ordered presentations of theories in this logic consist of a poset
points, each one labelled by a sentence in the language (definition 2.12). To define 1!
models of ordered presentations, we first define, for each sentence ¢ in the languag
an ordering on the interpretations written C, (definition 2.45). M C,4 N intuitive
means that IV satisfies ¢ at least as well as M. To define Ty, we need the notion
natural consequence (definition 2.38). Then we define the crdering CT (definition 2.1¢
M CP N intuitively means that N is as good as M at satisfying 7, taking account
?’s own ordering. Finally, models of 7 are the CT-maximal elements, and consequen.
is defined in the standard way (definition 2.25).
Here is a summary, for reference:

1. We assume the underlying logic defines the notions of satisfaction (written |
and positive and negative occurrence.

26 B pif =y and g% C g,

3. M Cy Nif ¢ = ¢ implies (M IF ¢ implies N IF ).

4. MC'Nifvze X.3y€ X. (M Z, N implies y < z and M C, N).
5 M I+ ? if M is C'-maximal.

6. 7 E¢if for all M, M IF ? implies M IF ¢.

This chapter has, I hope, motivated and explained the definitions for ordered theo
presentations. The next chapter considers some of their properties.



Chapter 3

Examples and Properties of OTPs

In the last chapter the definitions of ordered theory presentations and their semantics
were given, in terms of an arbitrary logic defined in terms of interpretations and a
satisfaction relation. In this chapter, some of the properties of these definitions are
considered. An important result shows that there always are models of an OTP if the
underlying logic is compact. This is done in §3.2 by showing that, for each 7, there are
maximal interpretations in the CT ordering. The question of how to add sentences to
OTPs is examined in §3.3. We show that the operation extending an OTP by adding
new sentences to its bottom has natural properties.

We begin with a section giving details of worked examples for propositional and
predicate calculus.

3.1 Worked examples

In §1.3 a number of examples were given which we expect our theory to satisfy, and
indeed 1t does. In this section we recall some of the examples.

3.1.1 Examples in propositional logic

For each sentence we illustrate Cy4. Then we show C", where ? is the whole presenta-
tion. The reader can check that the C'-maximal elements are precisely the models of
the sentence claimed to be equivalent to the ordered presentation in §1.3. The notation
of Os and 1s was introduced in §2.2.1.
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Example 3.1 (Example 1.3)

11
pPAG 01 10
00
00,01,10
-p \ g
11

01 10

NS

11

Cf. examples 2.47 and 2.49 (second diagram) for how the left-hand orderings are cor
puted. They are put together to obtain the right-hand ordering by definition 2.19.

Again, it 1s worth emphasising that these diagrams can be computed by the co
given in appendix A. Having already given worked examples for C4 in the last chapte

we omit the working from the next three examples.

Example 3.2 (Example 1.5)

01,10, 11
pVag oo
00
00,10
SR |
01,11
Example 3.3 (Example 1.6)
10,11 01,11
» g | |
00, 01 00,10
444444 00,01, 10
=(p A ) ‘
11

10
1
00
1
01,11
01 1
NS
00
1
11
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Example 3.4 (Example 1.12)

111

f
0}1%01\}0 011 101 110
001 % 00 ol;><%1g><;lo o
\\\bod/// \\\bgd/// 010" 100 001

PV gV 000,001,010, 011 \\\boo///

pAgAT

111
100,101,110 f
! 111
111 S/ \\\b
101 11
(pq)Vr 000,001,010
100,110,111

011/ \01

3.1.2 Examples in predicate logic

Let 7 be the presentation
Yz.p(z)

f

Az. —p(z)
We will show that the models of 7 are the interpretations with precisely one element
which is not in the extension of p.

The way to do this is to work out the orders Cyg.pa) and Coze. p) (which we
abbreviate to Cy and Cg tespectively). This is done using definition 2.45. Then CT
is obtained from this by definition 2.19. We will restrict our attention to countable
models.

Notation 3.5 For all a,bin {1,2,3,...,w}, let the expression (a,b) denote the class
of interpretations with a + b elements, of which a satisfy p and b do not.

We start with the order Cy. To compute this we are interested in the natural
consequences of Yz. p(z).

Lemma 3.6 If ¢ is a non-tautologous natural consequence of Yz. p(x) then it can be
expressed in the form
Vo, 3z, Ve 3z, -0 9

where each g; is a tuple of variables and ¢ is quantifier-free and contains only positive
occurrences of p.
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Proof Consider ¢ in prenez form, that 1s, with all quantifiers at the beginning. Eve
first-order sentence can be written in this form [31, proposition 4.28]. Since ¢ is
consequence of Vz. p(z) it must begin with a V. Since p € (Vz. p(z))*, we have p € ¢
If p € ¢~ then ¢ can be written with no occurrences of p and if p € ¢~ then ¢ can |
written with only positive occurrences of p (by definition 2.34).

Proposition 3.7 The order Cy is the following.

(0,1 (1,1) (2,1) (3,1) 4 1) -« (ww)

(A I

(0.2) (1.2) (2.2) (3,2)

[

(0.3) (1.3) (2.3) (4.w)
[ 1
(0.4 (149 (3.w)

I I
(0.5) (2,w)

1

(1)

I

(0,w)

Proof It is sufficient to show:

1. fn#worm#wthen (n,m)Cy(n+1,mL1).

Suppose M € (n,m) and N € (n+1,m L 1). Let f: M — N be a bijjectt
function which maps all elements satisfying p in M to elements satisfying p
M. Then there is precisely one element, say ¢ € M, not satisfying pin M b
such that f(a) satisfies p in N.

Suppose ¢ is a natural consequence of Vz. p(z) and M |- ¢. We must show th
N Ik ¢. Consider ¢ in the form specified in lemma 3.6. We must show th
for any tuple b; of elements of N there is a tuple b, of elements, such that f
any tuple by there is ... such that ¢[b;/z,]. Consider such a tuple §;, and 1
a; = f7(by). Since M IF ¢, we can find a tuple g, such that

MYz, 3z, - e/, a0/ 5]
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Let b, = f(a,). Similarly, given b; we can find b, by mapping into M and back.
Proceed in this way until all the quantifiers have been dealt with.
Since 9[a;/z,] is true in M and p only occurs positively in %, ¢[a,/z,] cannot

assert —p(a). Therefore, ¥[b;/z,] is true in N. But the tuples by, bs,... were
arbitrary; therefore, N I ¢.

This shows that M Cy N. To show M Cy N we have additionally to exhibit a
natural consequence satisfied by N but not by M. If m # w, such a one is

Yz1,Z2,.. ., T (/\ z, #Frj — \/p(l’k))

1£] k

which says that in any selection of m distinct elements, one must satisfy p. If
n # w, we can take

Vzy, . o Tpgr Y1, Ynal- (/\ T F Ty — /\ yn Z Y A /\p(yl))
i3 h#k !

which says that if there are n + 1 distinct elements then there are n + 1 distinct
ones satisfying p. It is not hard to verify that these two sentences are indeed
natural consequences of Vz. p(z).

. Ifn+m#n'+m and n,n’' > 0 then (n, m) and (n', m') are incomparable in the

ordering.

Suppose M € (n,m) and N € (n',m'). We can exhibit a natural consequence
of Vz.p(z) satisfied by M and not by N, and another satisfied by N but not M.
First, let us adopt the notation that

size > n abbreviates Jxy, . xp. (/\ i # xj).
iy

This formula expresses the fact that there are at least n elements. Additionally,
let
size = n abbreviate size > n A —(size 2 n+1)

Then we have, for any n,
Vz.p(z) E V. p(z) Vsize = n
We also have
M- Yz.p(z)Vsize = n + m, but N W Vz. p(z)Vsize =n+m

In the former case M satisfies the second disjunct. In the latter, N fails both
the first disjunct (since n’ > 0) and the second (since n' + m’ # n + m). On the
other hand, we also have for similar reasons:

M ¢ Vz. p(z)Vsize = n' +m/, but NIFVz. p(z)Vsize = n' + m'
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Proposition 3.8 The order Cg is the following.

(0,1), (1,1), (2, ;
(07 ) ( )7 (22)

|

1
2

(00) (10) (20) ( 0) (40) ((A)O)

Proof Easy.

Now note that if

then it follows from proposition 2.30(4) and remark 2.31 that
MCYN iff MCy Nor(MCyNand M Ey N)

Proposition 3.9 Let ? be
Yz.p(z)

1

Jz. =p(z)

as above. Then for each n, the interpretation (n,1) is maximal.

Proof Suppose (n.1) CF (a,b). Then either (n,1) C3 (a,b), which is impossib
by inspection of the diagram; or (n,1) E3 (a,b) and (n,1) Cy (a,b). The second
these conditions implies b = 0, which contradicts the first. Therefore (n.1) CF (a, )

contradictory, therefore (n,1) is maximal.

3.2 Existence of models for OTPs

As stated, models of an ordered presentation 7 are CM-maximal interpretations of t.
language of 7. When is it possible to find such maximal interpretations? In tl
section we show that, if the underlying logic is compact, every ordered presentatic
has a model.

First, it is worth noting that there are simple cases of ordered presentations wi
no models, when compactness fails.

Example 3.10 Let 7 be the OTP
Yz.p(z)

domain is infinite A

[p] is finite
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The bottom sentence says that the domain of individuals is infinite, but that only
finitely many of its elements satisfy the predicate p. But the top sentence says that all
the individuals must satisfy p. These are sentences in second order predicate logic; it is
not possible to express finiteness of the interpretation of a predicate or infiniteness of
the domain in first order logic. (For details of how precisely to state these constraints
in second order logic, see [73].)

There are no models of this theory, because every candidate model M can be
improved to obtain an interpretation which is closer to being a model, ad infinitum.
That is to say, for all M € M there is an N € M such that M CT N. To see this,
suppose M pretends to be a model of 7.

o If the domain of individuals of M is finite, then construct N by adding infinitely
many new individuals which do not satisfy p.

o If M[p] is infinite, then construct N from M by using the same domain but
removing all but finitely many elements from [p].

o If M[p] is finite but the domain is infinite, then N is obtained by adding one
more element to [p].

In each of these cases, M CT N.

Now we turn to the proof that if the underlying logic is compact (which second-
order logic is not), then every ordered presentation has a model. The proof strategy is
to use Zorn’s lemma to find C'-maximal interpretations.

Let L be a language and (M, I} its interpretation system, and let 7 = (X, <, F)
be an ordered presentation over L.

Definition 3.11 The logic (L, M, [t) is compact if for all sets of sentences  C L, $
has a model if each of its finite subsets has a model.

Definition 3.12 For each M, N in M, the (M, N )-frontier, written fr(A, N), is the
set of minimal elements of the set {z € X | M #, N}.

Lemma 3.13 For all M, N € M and z € X, either M =, Nor Iy < z.y € f1(M  N).
Proof By lemma 2.14, {# € X | M #, N} has minimal elements. &
Lemma 3.14 M " N iff fr(M, N) # @ and Ve € ix(M, N). M C, N.

Proof (If) First we show M CU' N. Suppose 2 € X with M Z, N. By lemma 3.13,
Jy € fr(M, N) with y < z. By hypothesis, M C, N. Next, we show N ZI' M. Let
z € fr(M, N). Then N Z, M, but for each y < 2, M =, N.

(Only if) If fr(M, N) = @ then M =" N, a contradiction. Let x € fr(M, N). Either
M Z, N or NZ, M. In the former case, 3y < « with M T, N; since = € fr(M, N), y
must equal . In the latter case, N Z, M and if M C, N then M C, N. Therefore,
in both cases M C, N as required. &
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Lemma 3.15 Let ? be a finite OTP and AN be a non-empty chain in M with 1
maximal element (i.e. for every M. N € N, if M # N then M ' N or N CF M; a1
for each M € N there is an N € N such that M CF N). There is a non-empty s
Y C X and a non-empty chain £ C N such that

1. For each a € Y and M. N € £,if M CT N then M C, N; and

2. Foreach a € Y and M € £ there exists P € £ such that M " P and M C, |

Proof Let X' ={r € X |VYM € N IM, My € N (M T M, T M, and =
fI‘(]\41y Mz))}

If X = X' let £ =N. Otherwise, for each 2 € X 1 X'let M, be such that, for :
M, My € N, if M, T M; ¥ M, then = & fr(M;, M), That such an M, can be four
follows immediately from the definition of X'. Let Mx = max({M, | + € X L X')
we can take this maximum because X is finite; and let £ = {M € N | Mx CT M
L # @ since Mx € L.

Thus, whether X = X' or not, we have that £ # @. Also, £ is upwards close
(ie. forall M|N € N, M € £ and M CV N imply N € £). Let My, M, € £ wi
M; # M,. Then either M; CU My or My CF M. In either case, fr(M;, My) # @. Br
fr(My, M) C X' so X' # . Let Y be the minimal points of X'.

1. Suppose a € Y, M,N € £, and M CT N. If a € fr(M,N) then M C, N.
a € fr(M,N) and M Z, N then Iy € fr(M,N).y < a by lemma 3.13, s0 a ¢
a contradiction.

2. Suppose a € Y and M € L. Since a € X', AM,, My. M cF M, T M, and a
fr(My, My). Since M CT M, CF My, M C, My C, M,; and since a € fr(M;, M
we have M C, My C, M,. Let P = M.

Lemma 3.16 If (I, M I} is compact and ? is finite then for each M € M, the
exists N € M such that M CF N and N is C'-maximal.

Proof Let M € M. We show that {N | M C' N} has maximal elements. Let .
be a non-empty chain in that set. By Zorn’s lemma it suffices to show that eve
such chain has an upper bound. If A has a maximal element, that element is also :
upper bound. Suppose, then, that A" does not have a maximal element. Let ¥ and
be as given by lemma 3.15. Let Z =Y U{z € X | Vy € Y.y £ 2}. We now show th
for each # € Z and M, N € £, M C' N implies M C, N. If € Y, this follows fro
lemma 3.15 part 1. If # € Z L Y, then Vy € Y.y £ = by definition of Z. By lemn
313, Iy < z.y € fr(M,N)C X', 503y € Y.y < ¢/, a contradiction.

For each M € L let M* be {¢ | M IF ¢ and 3z € Z. F(z) = ¢}. M* has a mod
since it has M as a model. Also, M CT N implies M* C N*. For suppose ¢ € M
Then M IF 4, and there is an z € Z s.t. F(z) = 9. Since M C, N, we have N [F
Therefore, ¢ € N*.

Let ® = Upree M*. ® has a model, since every M* and therefore every finite subs
of ® has a model, and the underlying logic is compact. Let K Ik &. It remains
show that VM € £ M CT K, ie that K is an upper bound. Since £ is a non-emp
upwards-closed subchain of A, it is sufficient to consider the case M € L. Let M €
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The fact that M* C & implies that foreach € Z, M C, K. Suppose M [Z, K. Then
z & Z. We require that M C, K for some y < z. Since x € Z, Iy € Y.y < 2. We now
show that M C, K for every y € Y, completing the proof. By lemma 3.15, pick P
such that M CT P and M C, P. It suffices to show that P C, K. Suppose F(y) = ¢
and P Ik 4. Then ¢ € P*, s0o ¢ € ¢, 50 K I+ . &

As an immediate corollary, we get:

Proposition 3.17 Every finite ordered presentation ? over a compact logic has a
model.

Proof By lemma 3.16, CT has maximal elements. &

A consequence of this result is that contradictions can never be derived from an
ordered presentation, not even one with the contradictory sentence in it! Indeed,
nothing can be derived from the theory with one sentence which is L. That is because
every interpretation is a model of that theory. This may come as a surprise, but really
it 18 quite rational.

Proposition 3.18 If 7 |= ¢ then ¢ # L.
Proof Let M IF?. Since M IF¢, ¢ £ L. o

Our policy about L in the definitions in this thesis has been: “let L do what it
wants”. That is to say, we have tried to avoid giving L any special treatment in the
definitions; a consequence of this is that it has perhaps surprising properties in the
theorems. If it had turned out that L had positively unpleasant properties one might
be inclined to return to the definitions and try to change them to avoid those properties.
As it 1s, L has turned out completely benign: we cannot derive anything from it, and
it makes no difference to an OTP no matter where it is placed within it.

Proposition 3.19 If “1” |= ¢ then ¢ = T.

”

Proof Every M is C_-maximal (example 2.51), so is E“J‘ -maximal (remark 2.31).

&

3.3 Adding information to OTPs

A natural way to add information to an ordered presentation is to add it at the bottom.
This is not the only way, but it is obviously one with many interesting properties. Other
ways of adding information will be considered in chapter 6.

Definition 3.20 Let ? = (X, <, F') be an ordered theory presentation, let 0 € X and
let ¢ be a sentence. The ordered presentation ? x ¢ is (X', <', F') where

1. X'= XU {0},

2. <'=<u{(0,z)]|z € X'}, and
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6 ifzx=0
't —
3. F{z) = { F(z) otherwise

This situation is graphically illustrated as follows:

o
\

Definition 3.21 Let 7 and A be OTPs.
1. 7 and A are statically equivalent, written 7 = A, if they have the same extensio
?7=A ifforall M, (MIF?iff NIFA)
2. 7 and A are dynamically equivalent, if, for all ¢, 7 x ¢ = A x ¢.

Example 3.22

P
pPAq }
=
—p 1
—pV g

Compare examples 1.2 and 1.4.

Dynamic equivalence implies static equivalence, but the converse is not so as t
following example shows.

Example 3.23

p

P T pAg

x = pAg but q # 1

¢ T —pV g
—p Vg

Proposition 3.24 MCM™ Niff M Cy Nor (M Cy N and M CT N).
Proof Proposition 2.30 and remark 2.31.

Corollary 3.25 MC™ Nif MCy Nor (M Cy Nand MCVN).
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If ? |= ¢ we would not expect that revising 7 by ¢ should change the set of models:
Proposition 3.26 If (L, M, [F)is compact and 7 is finite then ? |= ¢ implies ? = 7 x¢.

Proof Suppose M IF? and M ¥ ? x ¢. Since M IF ? and ? | ¢, M IF ¢ (defini-
tion 2.25). Since M I ? % ¢, there is an N such that M C'™¢ N. By proposition 3.24,

o cither M T4 N, a contradiction since M I ¢ (proposition 2.54);
e or M Cy Nand M CT N, contradicting M IF 7.

Conversely, suppose M |F 7 x ¢ and M | 7. By lemma 3.16, take N such that
M cF N and N is CT-maximal, i.e. N IF 7. By N IF 7 and definition 2.25, N I+ . By
proposition 2.54, M T4 N. Therefore, by proposition 3.24, M CI*¢ N, contradicting
MIF? % ¢ &

Let [¢] = {M | M- ¢}.

Proposition 3.27 If (L, M, IF) is compact and ? is finite and ¢ # L then M IF 7 x ¢
iff M is CT-maximal in [¢].

Proof (If.) We show that M ¥ ? = ¢ implies M is not CT-maximal in [¢]. Suppose
M IF? x¢. Then M C*® N for some N. By lemma 3.16 we can take such an N such
that N IF 7 x¢, and by proposition 2.27, N Ik ¢, i.e. N € [¢]. By corollary 3.25, either
M C4 N, in which case M € [¢], or M CT N, in which case M is not CT-maximal in
[4].

(Only if.) Suppose M is not Cr-maximal in [¢]. If M € [¢], pick any N € [¢]. If
M € [4] and is not CT-maximal, pick N € [¢] with M CT N. In either case, we have
M C™# N (by corollary 3.25), and so M I 7 x ¢. $

We also obtain what we might loosely describe as weak analogues of proposition 2.9:

Proposition 3.28
1. Weak inclusion: if ¢ # L then ? x ¢ = ¢

If (L, M, IF) is compact and ? is finite then

? ?
2. Weak monotonicity: '7:(:)7':';#)
7 %
2
3. Weak cut: M
TEv

Proof 1. Follows from proposition 2.27.

2. and 3. Follow from proposition 3.26.
&

These principles are accepted as being requirements which a default system should
have (see for example [10, 46]).
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Proposition 3.29 Suppose the underlying logic is compact. Let 7 = (X, <, Fx) |
a finite OTP and ¢ and ¢ be mutually consistent sentences such that {1,2} C X a
<2y = {(1,1).(1,2),(2,2)} and F(1) = ¢ and F(2) = ¢; and 1 is minimum in
and 2 is minimum in X 1 {1}.

Let A = (Y, <|y, Fy) be such that Y = X L {1}, and Fy¥(2) = ¢ A ¢ and Fy(z)
Fx(z)if z # 2. Then ? = A,

Graphically, this seemingly complicated state of affairs is simply illustrated:

A
Nt

Compare requirement 4 in §1.3.1.

Proof Let Z =X 1{1,2} and A =(Z.<|z, F|z). (A is shown in the diagram.) V
have (by corollary 3.25):

(A) MCTNIf MCy Nor (MCy N and (M Cyg Nor (M Cy N and M C* N))
B) M CA Niff M Cypy N ot (M Cypy N and M CA N
$AY SAY

We will use the following intermediate result: if M Ik ¢ A ¢ then the following a
equivalent:

1. MCU N,
2. MC?N;
3 MC*Nand NIF¢ Ay,

Proof: First we note that by hypothesis M Ik ¢ and M I+ ¢. By proposition 2.!
we have M ¢4 N. M Zy N, and M Zgay N. (1 = 2) By (A), we have (in view
the forgoing) that M Cy N, M Cy N and M C* N. Therefore N IF ¢ and N |-
Therefore by (B) we have M C N. (2 = 3) By (B) we have M Cyay N and M C* |
the former assures N IF ¢ A ). (3 = 1) We have M Cy N and M Cy N since M a1
N both satisfy ¢ A ¢, so by (A), M CT N.

Now suppose M IF 7. We will show M IF A Suppose M C? N we will she
N CA M. By proposition 2.27, M IF ¢. Also, M IF ¢. For suppose not; then pick a1
P Ik ¢ A9 (since they ate consistent). Then M Cy P and M Cy P, and so M CT
by (A), a contradiction. By the intermediate result, M CU' N and N IF ¢ A 9. B
M IF?, 50 N CT M; so again by the intermediate result, N C* M.

Conversely, suppose M IF A: we will show M I 7. Again, if we suppose M CT N
is sufficient to show N CF M. By proposition 2.27, M IF ¢ A ¢; so by the intermedia
result, M C2 Nand N IF ¢A¢. But M IF A, so N C? M; so again by the intermedia
result, N C" M.



Chapter 4

Belief revision

4.1 Introduction

The central question in belief revision is the following: given a belief state and a
sentence, how should one obtain a new belief state in which the sentence is true, but
which preserves as much of the old belief state as possible? In other words, one wants
a function

* : belief states X sentences — belief states

such that
1. ¢ is true in 7 x ¢; that is, the revision has been effective; and

2. given this constraint, 7 % ¢ contains ‘as much’ of 7 as is consistent; that is, old
beliefs persist through revisions if they can.

The case of interest, of course, is that in which —¢ is true in 7, so that the revision is
more than just refinement, or the addition of compatible information. We also hope
that

3. 7 % ¢ does not contain any extraneous information which was present in neither
7 nor ¢.

In the above requirements, some things are easy to formulate and some are not. We
assume that any satisfactory representation of belief states comes with a function |- |
which takes a belief state and returns the set of sentences true in it. |?] is called the
extension of 7. But formalising the ‘as much’ requirement and the requirement of no
extraneous information (numbers 2 and 3) is not so easy, and is the subject of this
chapter.

Belief revision has obvious applications in artificial intelligence (eg. robotics), com-
puter science (eg. deductive databases—see eg. [14]), the philosophy of science, social
theory and so on. It also has applications beyond the idea of revising ‘beliefs’. For
example, in specification theory and in Al there is the well-known frame problem to
do with the semantics of actions. Given (the representation of) a state of a system
and the post-condition of an action performed in the state, what is the state which
results from performing the action? The same requirements on the revision function
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apply here too: the post-condition should be true in the resulting state, which (giv
this constraint) should preserve as much of the original state as possible.

We begin the next section by describing the standard theory of belief revisio
known as the AGM theory. The AGM theory suffers from several disadvantages. O
is that it represents belief states as infinite objects, namely deductively closed sets
sentences. Another is that existing belief revision models make too strong assumptio
about what information is available to guide revisions. A consequence of this is th
repeated revisions are impossible.

Not surprisingly, we will advocate ordered theory presentations to represent beli
states. The revision function will usually be the one which simply puts the revisit
sentence in the most prominent position of the belief state (we say ‘usually’. becau
there will be a special case to consider). We will be interested only in linear OTF
that is, those in which the partial order is in fact total. In view of this, we can use
simpler notation for them; a linear OTP 1s simply a list of sentences.

The result is a finite representation of belief states. The revision operator is show
to satisfy some, but not all, of the AGM postulates. The counterexamples for the AG
postulates which fail are motivated. The important point is that no information oth
than that encoded in the OTP is needed to effect the revision; this makes repeate
revision easy.

The remainder of the chapter is organised as follows. We look at the AGM theo
in the next section, and find it to be wanting. Criteria for belief revision are set up
§4.3, and also the axioms are rewritten in a more general form which allows comparisc
with systems of belief revision which do not model belief states as theories. Then line.
OTPs are proposed as representations of belief states in §4.4; they are shown to satis
the criteria. But, as shown in §4.5, they do not satisfy two of the AGM axioms. Th
fact is discussed in §4.5.1. We end with some examples (§4.6).

The content of this chapter has been published as [59].

4.2 The AGM theory

The standard theory of belief revision—known as the AGM theory after its a
thors, C. Alchourrén, P. Gardenfors and D. Makinson [23]—models belief states

deductively-closed sets of sentences. More recent developments of the AGM theory a
described in S. O. Hansson's thesis [33]. It describes a small set of postulates whi
any belief tevision operator should satisfy (see below). If K is a belief state and
a formula, then K % ¢ is a belief state, the result of revising K with ¢. As alreac
noted, the case of interest is when —¢ € K, that is, when the revising sentence conflic
with the current belief state. We suppose we are utilising classical logic with the usu
connectives, and the usual entailment relation |=.

Notation 4.1
1. Let @ be a set of sentences. Cn(®) = {¢ | ¢ = ¢}.

2. L is the set of all sentences in the language.

3. K+¢=Cn(KU{¢)).
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The AGM postulates are the following:

K1 K x ¢ is a deductively-closed theory;

K2 ¢ Kx¢

K3 Kx¢ C K+ ¢,

K4 If -¢ € K then K +¢ C K * ¢;

K5 Kx¢=Limplies ¢ = L;

K6 If = ¢ < ¢ then K x¢ = K * ¢,

K7 Kx(dA)CKxp+;

K8 If-y g Kxg¢then Kxop+ ¢ C Kx*(dAY).

K1 says that K = ¢ should be a belief state. K2 says that the revision should be
successful, 1.e. the resulting theory should at least contain ¢. The third axiom says that
K x ¢ should have no more than what we would get by just adding ¢ set-theoretically
and closing under entailment. Of course, if ¢ is inconsistent with K then adding it
in that way would yield the whole of L (the theory with every sentence in it). K4
asserts that if ¢ is consistent with K then we get precisely the result of adding it set-
theoretically. We should point out that this is one of the (two) axioms with which we
take issue in §4.5. Kb says that the revision yields the contradictory theory L only if ¢
is inconsistent. This is not just that ¢ is inconsistent with K, but is inconsistent on its
own. The converse, that revising with an inconsistent sentence yields the inconsistent
theory, 1s guaranteed by K2. K6 says simply that revising with logical equivalents
yields the same theory.

K7 and K8 are more complicated, approximating what happens with repeated re-
visions. They are analogues of K3 and K4.

Note that K7 and K8 do not contain expressions like K x ¢ % ¢, and therefore do
not constrain repeated revision in any explicit way. The only constraints on repeated
revision are those inherited from the more general case of revision which K1-8 describe.

I believe the AGM axioms to be neither sound not complete with respect to in-
tuitively rational belief revision. Of course such a statement is necessarily imprecise,
because ‘intuitively rational’ belief revision is not amenable to mathematical descrip-
tion. My argument to show lack of soundness is to give ‘counterexamples’ to K4 and
K8 later in the chapter. (Again the scare quotes show that these are not counterex-
amples to any fully spelled-out conjecture.) My argument against completeness is the
following proposition, which shows that K1-8 admit revision functions which have no
element of the ‘persistence’ requirement (number 2 above).

Proposition 4.2 The revision function

L (K44 if-pgK
Kx¢= {Cn{¢} otherwise

satisfies axioms K1-8.

Proof Kl1-4 and K6 are immediate.
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K5 Suppose K x¢ = L. By K3, K+ ¢ = L, so =¢ € K. Therefore, K * ¢ = Cn{¢
S0 ¢ = L.

K7 Suppose =(¢ A¢) € K. Then K x (¢ A¢p) = Cn(¢ Ay). If =¢ € K the
(K *¢)+ v =Cn(¢ A¢); otherwise it is (K + ¢) + ¢, which contains Cn(¢ A ¢

Otherwise (¢ A ) ¢ K, and so 7¢ ¢ K. Kx(¢A¢) = K+ (¢ Ao)
(K+¢)+y=(Kx¢)+19.

K8 Suppose =9 € Kx*¢. Suppose also that —=¢ ¢ K. Then K*x¢ = K+ ¢. Therefor
Kx¢p+¢y =K+¢+19. Also, since =¢p § Kx¢ and K+ ¢ = K+ ¢, we have th
-9 & K+ ¢ and therefore =(¢ At)) ¢ K. Therefore, Kx(¢A¢) = K+ (dAY)
K + ¢ + 9, as required.

Now suppose -i¢p € K. Then =(¢ A¢) € K, so Kx¢+v = K+o¢+19
K+(@Ag) =K x(dAp)

Of course there are more interesting functions satisfying the axioms. The followi
two are the most important in the AGM literature: partial meet revision; and revisic
by epistemic entrenchment.

4.2.1 Selection functions

Suppose K 1s a belief state and ¢ is a sentence other than L. Let
K|y = the C-maximal elements of {K' C K | =¢ ¢ K},

that is, the set of maximal subsets of K which are consistent with ¢. K|, may |
pronounced ‘K without ¢’. The operation of partial meet revision assumes a selectic
function Sk which selects some of these subsets. Then revision is defined by

Kwp= {Cn(msK<K|¢,¢> V) ito# L,
L otherwise.
That is to say, if ¢ # L it is the intersection of those ¢-consistent maximal subse
chosen by Sk with ¢ added set-theoretically. If ¢ = L it is simply L, the inconsiste:
theory (the set of all sentences).

It should be clear that this is unsatisfactory, since the whole problem of how to ma
a revision has just been packaged up in the existence of a selection function, and h
not been solved at all. Obviously, the selection function must depend on K. Therefor
we need not bother with the information K alone provides us, since everything we ne
might just as well be given by this magical S! The drawback of coding everything
S is that repeated revisions are then impossible.

There is a limiting case of partial meet revision, in which Sk (K4, ¢) is always
singleton. This case i1s known as maxichoice contraction. There is another limiti
case in which Sk (Klg, @) = N K4, the intersection of all the candidate theories, whi
is known as full meet revision. The first of these is unsatisfactory for the same reasc
as the general case, namely that the selection function remains to be defined. (It h
other, worse, problems too, detailed in Gérdenfors’ book.) The second limiting ca
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does not have this problem, and is worth spelling out in full, since it fully specifies how
to carry out a revision without the need for extra information. According to it,

Kxp= {En(nm Ug) ifg# L

otherwise.

It is straightforward to check that this definition satisfies the postulates K1-K8. But
there are problems. Consider, for example, how to revise Cn({p, ¢}) with =pV —g. Intu-
itively, there are at least three plausible answers: Cn({p}), Cn({q}) and Cn({p < —g¢}).
Full meet contraction gives us the last of these, because no information is available
to chose whether to give up p or to give up ¢. But, in practice there may be criteria
for choosing to give up one rather than the other. This is what leads to consideration
of selection functions, since they could encode the extra information required. But
then, as already remarked, repeated revision is impossible. The moral we draw from
this situation is different. It is that deductively closed theories are inadequate as rep-
resentations of belief states. We return to this point later, after considering the other
main way of providing the information necessary to guide revisions, namely epistemic
entrenchment orderings.

4.2.2 Epistemic entrenchment

Revision by epistemic entrenchment is effected as follows. First we require an epistemic
entrenchment ordering on the current belief state. This i1s a linear pre-order on the
sentences in the state, which represents the degree to which they are believed. Those
less entrenched according the ordering are dispensed with more readily in the case of
a revision which conflicts with the current state. An epistemic entrenchment ordering
for a belief state K must satisfy the following axioms:

El TIf ¢ <x ¢ and ¢ <x x then ¢ <k x (transitivity);

E2 If ¢ = ¢ then ¢ <g ¢ (dominance);

E3 FEither ¢ <x ¢ A or ¥ <x ¢ A (conjunctiveness);

E4 If K is consistent then ¢ g ¥ for all ¥ iff ¢ € K (minimality),
E5 If ¢ <k ¢ for all ¢, then |= ¢ (mazimality).

As in the case of the K postulates, these axioms are intended to encode rationality
constraints on what an epistemic entrenchment ordering might be. For example, E2
says that it is always better to give up logically weaker sentences during the course
of a revision; therefore, these should be less entrenched. E3 says that giving up a
conjunction is at least as hard as giving up either of the conjuncts. Taken together,
axioms E1-E3 imply that <x is a linear order, that is, either ¢ <x ¥ or ¥ <k ¢ (or
both). E4 says that a sentence is minimally entrenched in K iff it is not in K. E5 says
that just the tautologies are maximally entrenched.

Given a belief state K| an epistemic entrenchment ordering <x on K, and a sentence
¢, the revision of K by ¢ is given by

Kw:{z”({“"" ~¢ <k ~@VYIU{g}) if ¢ # L;

otherwise.
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(< is the usual strict counterpart of €, defined by: ¢ < ¥ if ¢ < ¥ and ¥ £ ¢.)

Full motivation for the K and EE axioms, as well as for the definition of * in tern
of <k, can be found in Gérdenfors’ book [23].

We now summarise the main weaknesses we have described of the AGM theor
Belief states are represented as deductively closed theories. This means that they a
(in general) impossible to write down fully, or to store on a computer. Moreover,
noted, they are incapable of representing the necessary information required to cho
between alternative revisions. Therefore, extra information in the form of a selectic
function or an EE ordering is required. This information is not deemed part of t.
belief state, and is lost during the revision, making further revision impossible. It
worth pointing out that this means that the real infention of axiom K1 is not satisfie
by these revision functions. Its intention is that after a revision we should end up wi
an object of the same type as the one with which we started. Obviously, both parti
meet revision and revision by epistemic entrenchment fail this requirement. In tho
cases we start off with a pair, respectively of type (K, Sk} and (K, <g), and end 1
with something of type K.

There are some proposals for modifying the AGM theory to solve some of the
problems. For example, some work has been done on theory base revision to addre
the problem of the infinite nature of deductively closed sets of sentences. In th
work, belief states are represented as finite sets of sentences (theory bases or theo
presentations) [20, 34, 51]. But each of these authors assume the existence of somethi
like a selection function or an EE ordering. so are subject to objections on tho
grounds. There are proposals of non-deterministic revision [45], which alleviate t]
need for a selection function, but they rely on infinite belief state representations.

There are proposals to allow repeated revision using EE orderings, either by keepi
a single EE ordering for all belief states or assuming the existence of a function whic
for every belief state, gives an EE ordering [57, 65]. But as neither the single orderi
nor this function is itself revised in the course of belief revisions, it i1s easy to fir
examples which are in contradiction with intuitions about iterated belief change [33

Another modification of the AGM theory which allows EE orderings to be revis
is given by H. Rott [58]. He defines revision of EE orderings as follows.

Y <kwg X1 =P <k ¢ — X

However, as he points out, this fails to capture much of the intuition of repeated revisic
because any further revision of K x ¢ always includes ¢.

4.3 Criteria for belief revision

In this section we enumerate what we claim are the criteria by which to judge a theo
of belief revision.

1. Finite representation of belief states.
2. Persistence.

3. Iteration: what you put in is what you get out.
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4. The “intentions” behind the K axioms of AGM.

The criterion of finite representation means that all belief states can be explicitly
written down or represented on a computer. The advantages of this should be easy to
see; one in particular is that one can give examples of belief revision in action! (See
section 4.6.)

Persistence means that as much of the former belief state should survive a revision
as possible. We rule out revisions like the one of proposition 4.2.

The iteration criterion says that you should get out of a revision an object of the
same type as you put in. As mentioned, this is viclated by AGM, since you put in
either an EE ordering, or a theory coupled with a selection function; but, all you get
out is a theory. We call this iteration since, if it obtains, it guarantees that revisions
may be repeated. Its absence is a serious problem in AGM.

The last criterion, concerning the K axioms of AGM, is deliberately expressed in a
vague way. Obviously, if belief states are not represented as deductively closed sets of
sentences then it is impossible to test them literally. Also, as we have noted, they do
not specify what should happen under repeated revision, in terms of expressions of the
form K x ¢ *¢. This is presumably because the AGM models do not support repeated
revision. Moreover, for reasons which we will discuss in section 4.5, we dispute two of
the AGM axioms. In view of these reasons, we can only say that something like the
intention of the AGM axioms is desirable.

The AGM axioms K1-8 rely on a particular representation of belief states (namely,
deductively closed sets of sentences). Therefore, direct comparison with theories of
belief revision which use other representations of belief states is impossible. To over-
come this we can we rewrite the axioms in a more general way, which assumes only the
following:

1. A set of belief states, together with a subset of ‘contradictory’ belief states.
2. A function x (revision) which takes a belief state and a sentence to a belief state;

3. A function |- | (extension) which takes a belief state and returns the set of
sentences true in it.

Here are the axioms rewritten in this way. We will write K for a typical ‘abstract’
belief state.

K1 K x¢is a belief state;

K2 ¢€Kx4¢l;

K3 Jx 6] C K]+

K4 If ~¢ & |K| then |K|+¢ C [Kxg|;

K5 K x ¢ is contradictory implies ¢ = L;

K6 If |E ¢ < o then |[Kx¢| = |Kx

KT |Kx(¢Ay)| CICxo[+ ¢

K8 If = & |K % ¢| then |[K % ¢| + 9 C |Kx (¢ A ).
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4.4 Linear ordered theory presentations

We present a system for belief revision which satisfies each of the criteria describe
above. Belief states are represented by linear ordered theory presentations. A line
OTP is a finite list of formulas; ? = [¢1, @9, ..., ¢»]. Elsewhere in the thesis we wri
it as

1

f
2
t

¢n
Here, n is said to be the length of 7. The extension of 7 is the deductively-close
theory which 7 presents; that is, it is the set of sentences entailed by 7, after taki

account of the various conflicts in 7. This was defined in chapter 2 (definition 2.2%
To be precise, we set:

I7I=4¢1 7 = ¢}
There is an easy intuition for linear ordered theory presentations. The OTP 7
[¢1. ¢2, ..., ¢n] presents the theory which first of all has ¢, and then has as much

¢n—1 as possible while retaining consistency, and then ... up to ¢;. Put another wa
we start with ¢;. Then we ‘force in’ ¢, overriding as necessary. Then ... and so «
until ¢,.

The following are examples of belief states.

1. [pAg] 2. [p.q] 3. [pAg ]

Their lengths are 1, 2 and 2 respectively. States 1 and 2 above both have the extensic
Cn({pAgq}). Butin 2, pis less entrenched than ¢, and will disappear if a revision whi
demands that one of p and ¢ goes. Thus, we stipulate:

Sentences later in the list are more entrenched than those earlier.

State 3 has the extension Cn({—p A ¢}). This is because —p, which is more entrenche
than p A ¢, overrides the p component of p A g. But the ¢ component is not overridde
Thus,

Sentences later in the list have the effect of overriding those earlier; in the
case of conflict.

It should now come as no surprise to find that

Revision of OTPs 1s in general effected by appending the revising sentence
to the end of the sequence.

Thus, the three belief states mentioned above can be revised by —p V =g, yielding

U [pAg-pVv-q 2 [pg-pVv-g 3. [pAg-p-pV gl
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The extension of state 1’ is Cn({p < —¢}), which was the outcome of the corresponding
example for full meet revision described above. But state 2’ has as extension Cn({g}).
Since 1 and 2 had the same extension and 1’ and 2’ do not, it should be clear that there
ts more to an OTP than its ertension.

Belief state 3' has the extension Cn({=p A ¢}), which is the same as it had before
the revision. This is because the revising sentence was consistent with the belief state
1t revised.

Let us note some important facts about OTP revision.

1. OTPs have memory. If 7 is an OTP, then the extension of ? x p* g x =(p A q)
includes ¢ A=p. This is because the theory was more recently revised with ¢ than
with p, so ¢ is more entrenched. Older information is discarded more readily than

newer.
2. But, information is never wantonly discarded.

3. The more you revise an ordered presentation, the more complicated (= longer)
it gets. That is because ordered presentations are nothing more than revision
histories.

The semantics of linear OTPs is of course just the special case of the semantics for
arbitrary OTPs given in chapter 2. The crucial definition is that of Cy (§2.2.4), which
is an ordering on interpretations which measures how nearly an interpretation satisfies
¢. For the purposes of this chapter, we may slightly extend proposition 3.24 to obtain
the following characterisation of CT:

Proposition 4.3
1. M Cll N always; and
2. MC™ Nif M Ty Nor (MCy Nand MLCT N).
This brings out the compositional nature of linear OTPs. 7 x¢is 7 with ¢ appended.

Lemma 4.4 M C™ Nif M Cy N or (M Cy Nand MCT N).

4.5 The AGM axioms

As stated, we intend to use these ordered theory presentations as representations of
belief states in order to model belief revision. The obvious way to do this is to let

belief states = ordered theory presentations

and define ? x¢ to be 7 with ¢ appended (as in definition 3.20, but in the new notation).
Of course we have been assuming this definition so far in the chapter. Note that under
this arrangement there are no contradictory theories (proposition 3.18).

In this setting, we can investigate the truth or falsity of the abstract K axioms given
in section 4.3 (page 64). We obtain the following.
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K1

K2

K3

K4

111
011 101 110 000,001, 010, 011 000,001, 010
1 1 100,101,110 100,110,111

001><010><100 T // \

\ 1 / 111 011 101

000

011 101 110 /T

1>< ><T 010 100 001
001 010 100 \T/

\]/ 000

000 I

f 111

111 / \\
101 011

Figure 4.1: The counterexample to K4 (see text)

7 % ¢ 1s a belief state.

This is true. If 7 is an OTP then so 18 7 x ¢.

¢ €[ xgl.
This is false. For example, L ¢ |[] L|; for, as one can check, |[]* L] = Cn(¢
However, K2 is true if ¢ # L, by proposition 2.27.

2 gl C P+
True. We need to show that M IF 7 and M Ik ¢ imply M I+ 7 * ¢. Suppo
not, i.e. suppose M CI*? N for some N. By lemma 4.4, either M Cys N, whi
contradicts M I+ ¢ (proposition 2.54) or M CT N, which contradicts M IF
(definition 2.24).

It~ & |7 then [?]+ ¢ C |7 % ¢

This is false. Let ¢1 = pAgA T, do=-pV-gV-rand ¢3=(p—=gq)V-r T
counterexample is obtained by setting: ? = [¢1, ¢2] and ¢ = ¢5. To see this,
should first examine the orderings for each of ¢1, ¢2 and ¢3. They are shown
the top half of figure 4.1. Applying proposition 4.3, the orderings C and CV
(i.e. CPv#2] and Cl#1:4295] regpectively) are as shown in the bottom half of t
figure. We can check the following:

— =3 € |[¢1, b2]|, that is to say, there is a model M such that M is Cl#v#
maximal and M [ —¢;. Such an M is 110. Thus, the antecedent of k
holds.
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— But the consequent is false. For we can find ¢ such that ? |= ¢ but 7 x¢ = ¢,
namely ¥ = (-pAgAT)V(pA-gAT)V(pAgA-r) We can see this by
inspecting the diagrams. Every model of 7 is a model of 4. But there is a
model of 7 % ¢ which is not a model of ¢, namely 001.

K5 7 % ¢ is contradictory implies ¢ = L.

This is vacuously true since there are no contradictory belief states.

K6 If | ¢ < ¢ then |? x ¢| = |7 x ¢|.
True. This follows from proposition 2.2.4.

KT 7 x(@Ad) C17 6]+ ¢

True. We need to show that if M F 7 x ¢ and M IF ¢ then M Ik ? x (¢ A ¢). If
¢ = L then 7x¢ = ? *x(pA), and we are done. So suppose ¢ # L, and M [F ? x¢
and M IF ¢, but M C™*60M) N for some N. Since M IF ? x ¢ and ¢ # L, we
have M I+ ¢ by proposition 2.27. Therefore, M I+ ¢ A ¢p. By lemma 4.4, either
M Cyny N, which contradicts M IF ¢ A ¢, or M CT N. But this also leads to
a contradiction, for then, since M C4 N, we obtain M C™*® N by lemma 4.4,
contradicting M IF 7 * ¢.

K8 If ) & | % 6] then |2 % 6|+ C |7 (6 A )
False. The counterexample given for K4 holds here too. Set 7 = [pAgAT7]
d=-pV-gV-orand Y =(p—gq)V-r.

On this way of using OTPs as belief states, we have shown that K1, K3, K5, K6
and K7 are valid; that K2 is valid under the proviso that ¢ # L; and that K£4 and K8
are not valid.

It is worth pointing out that the lack of contradictory belief states and the partial
failure of K2 are easily solved, by adding a new belief state to represent the contradic-
tory belief state and modifying the definition of revision. Thus,

belief states = ordered theory presentations U{L}.

Revision on these belief states is defined as follows:

1 ifg=1
T%¢={ [¢] ifg#Land? =L

7 % ¢ otherwise
This emulates what the AGM axioms intend for L, in that
1. There is a unique contradictory belief state.

2. Revising any state with the contradictory sentence results in the contradictory
state (K2).

3. The contradictory state can only be obtained in this way (K5), so in particular

4. Revising the contradictory state with a non-contradictory sentence will not result
in the contradictory state.
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For the psychological plausibility of these stipulations, or otherwise, see [23]. Especial
the first one is debatable! Our point is simply that if we take this definition of 7 %
on board, we obtain that K1, K2, K3, K5, K6, and K7 are satisfied, and K5 1s satisfic

in a more satisfying manner. K4 and K8 are still false for the same reasons.

4.5.1 The AGM axioms K4 and K8

K4 and K8 are serious violations of the AGM axioms, and there is no easy way
making them satisfied in the framework of OTPs. One must face the question: a
they desirable axioms for belief revision? We believe the answer is no.

Consider the diagrams given in figure 4.1. As far as our counterexample is co
cerned, the question of the validity of K4 hinges on whether 001 Cy, 110 or not. If th
was 50, then we would also have 001 Cl##2:431 110 and [¢1, ¢2, ¢3] would have only t]
model 110. Therefore, K4 (and K8) would hold.

Should 001 Cyagar 110 be the case? At first sight it seems clear that 110 is bett
at satisfying p A ¢ A r than 001 is, for 110 satisfies two of the atomic propositions whi
001 satisfies only one. But this kind of cardinality argument is flawed. Why is it bett
to satisfy p A ¢ rather than r7 Perhaps r itself expresses a conjunction of facts. A
two oranges better than one apple?

The AGM book does not provide any argument in favour of K4 and K8. Consid
the following story. I am expecting a friend called John to arrive. He can come by ca
bike, or train. I am doubtful about whether he will arrive or not, however, becau
I believe that his car and bike are both at the repairers; and also, the trains are n
working today (for a change). Let:

p mean that his car is unavailable for use
¢ his bike is unavailable

r the trains are unavailable

Initially T believe

pAgAT.
Now suppose John actually arrives. I have no reason to doubt that he came by o
of the usual means of transport (for example, he didn’t ask me for money for a tax
Therefore I revise my beliefs by

—SpVoog Voor.

In the course of conversation it turns out that the repairer phoned him this morni
to say that both his car and his bike were available for collection. I reason as follow
If the trains are still not working, he may have asked Richard for a lift to the repaire
His bike fits in the back of Richard’s car, so then they could have collected both item
But, Richard may have been unavailable or unwilling. Either way, he will have collecte
both items or neither, so I revise with:

r—(p+gq)

If the trains are working (—7) I cannot draw the conclusion p < ¢, since he may ha
gone by train to pick up either the car or the bike, or neither, or he may still ha
asked Richard and got both.
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The question now 1s: have I got enough information to conclude which means of
transport were available for John to use? I believe no.

To see why the answer is no, we use exactly the argument given in example 1.12,
page 20. Suppose r, that is, the trains are still not working. I have already reasoned
that this implies p < ¢, and since John is actually here (so —p V =g V =r), it must be
that =p A —~¢. Therefore, =p A =¢ A r. On the other hand, suppose —r, i.e. that the
trains are working. This tells me nothing about p and ¢. But since I started with the
belief that p A ¢ and John’s arrival (by train, presumably) is consistent with these, T
retain them. Therefore, p A ¢ A =r. So I conclude (=p A =g A7)V (p A gA —r), or,
equivalently, (p < q) A (p < —r).

We have argued that it is not rational to conclude —r in this case. We have also
noted that the theory of belief revision outlined in this chapter does not conclude —r.
Indeed, we have argued that it concludes precisely what it is rational to conclude. It
should be pointed out in fairness to the AGM theory that it does not insist on —r either.
To see this, consider what happens if the revision function specified in proposition 4.2
is applied to the revision history in question. We get

Cnip, q,r}x(mpV gV ar)x(r—=(p=q) = Cn{-pVgV-r}x(r—(p=gq))
= Cn{(pAg)V-r}

—r 18 not derivable from this theory.

What we have shown is that if we augment the system of OTPs for belief revision
80 as to obtain K4 and K8, then we would have a system which concluded —r in this
case, which is undesirable.

4.6 Examples

Here we list some facts about linear OTPs, together with some references to examples
in the literature to which the facts seem relevant.

Il = Cn({p})
Ile,qll = Cn({p,q})
Ilp,q,~q]l = Cn({p,~q})
Ilp,q,-pll = Cn({-p,q})
IlpAg =Pl = Cn({-p,q})
lpAg,-pV—gll = Cn{{p = —q})
Ilp,¢,—pV —gll = Cn({-p,q})
IlpVvg,—gll = Cn{{p,~q})

We also have that
s—p€lls,s —p,s— g g

(cf. Hansson [33, page 7:12]), and, for example,

p=q€llpdl, but p=qgélpg-pl
p=q€llpp=qll and peg€|lp,peq -p

(cf. [33, page 4:3]).

Chapter 5

Default Reasoning

In this chapter, existing frameworks for default reasoning are examined and compar:
with the theory presented in this thesis. We establish a set of criteria by which

compare and contrast them, which includes how they handle two famous examples

default reasoning in the literature. We also look at some formal properties of defau
systems. Finally, we consider related frameworks.

5.1 Introduction

Classical logics allow us to draw incontestable conclusions from sets of premises. Th
is very well when we have complete information about a situation. But usually we ha
only partial information, and we choose to augment it with prejudices or presumptio:
or presuppositions in order to be able to reason effectively. Such presumptions, presu
positions or prejudices we will call defaults. The conclusions we draw with the aid
these defaults are not as certain as the ones we might have drawn had we had comple
information; instead, they are defeasible—they can be defeated by the acquisition
more information, which might override some of the defaults we had.

Examples of such defaults at work are ubiquitous, and we could not function ¢
fectively as human beings without using them. We constantly enter into stereotype
situations where hundreds of assumptions are made about our and other people’s b
haviour, and quite often a small proportion of them are proved wrong. When we ent
a restaurant we assume the man approaching us will show us to a table; we assun
that the items on the menu have been cooked and will be served in portions suitab
for one person. The waiter assumes we will order food, that we will want a main cour
before a desert and that we have enough money to pay the bill. Any of these defaul
can be overridden.

There are a variety of frameworks for reasoning about these stereotyped situation
some of which are of a logical nature and others non-logical. Perhaps the best-know
non-logical example is R. Schank’s scripts [64]. A script is a parametrised represent
tion of a stereotyped story (such as the restaurant). The parameters can be set for 1!
particular story at hand; they may include the name of the restaurant, the number
persons dining, the particular dishes ordered, the amount paid, and so on. The scrip
represent the norms of restaurant behaviour; the values of the parameters just fill
the details.

71
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This chapter is concerned with the logical approaches to defaults. One of the best-
known examples of a default in the logic literature is the information that birds can fly.
We can use this to deduce about any bird that it can fly, unless there is information
available to the contrary. As J. McCarthy says [50]: “If T hire you to build me a bird
cage and you don’t put a top on it, I can get out of paying for it even if you tell the
judge that I never said my bird could fly. However, I complain that you wasted money
by putting a top on a cage I intended for a penguin, the judge will agree with you that
if the bird couldn’t fly I should have said so0.”

Logics for expressing and manipulating defaults were first proposed in the early
1980s in a special issue of Artificial Intelligence [1]. Since then there has been an
abundance of new proposals and variations on existing proposals, and quite a few
issues have emerged. An important summary of the state-of-the-art as it was in 1987
is contained in M. Ginsberg’s Introduction to a collection of influential papers [25].

This chapter concerns logical formalisms used to represent and reason with defaults.
In the literature the terms ‘default logics’ and ‘non-monotonic logics’ have been taken
as synonymous and used to describe such formalisms. A non-monotonic logic 1s a logic
which fails the property of monotonicity:

@y
@y

This property says that adding a premise can never inhibit a conclusion.

I prefer the term ‘default logic’ to ‘non-monotonic logic’ because the latter term in-
cludes any logic which happens to fail the monotonicity property. This property merely
states that the set of conclusions grows monotonically with the set of premises. A logic
may fail this property and have nothing to do with the representation of defaults; ex-
amples include linear logic [26] and relevance logics [2]. It happens that default logics
are necessarily non-monotonic, but the converse is not true.

But the term ‘default logic’ is not ideal either, because some formalisms for default
reasoning such as circumscription and model-minimisation are motivated as an alter-
native way of using classical logic rather than an alternative logic. McCarthy makes
this point in [50], D. Poole in [53], and indeed we have motivated OTPsin this way too.
Therefore ‘default reasoning system’ seems to be a better term than ‘default logic’. We
will use the term ‘default system’ as a convenient abbreviation.

5.2 Criteria for classifying default systems

We will not attempt to summarise the huge variety of formalisms for defaults which
have been proposed. Such surveys already exist elsewhere [25, 56, 47]. Instead we will
look at a small number of existing logics and classify them according to the following
themes:

1. Representation. How are defaults represented? We will see examples of default
systems which represent defaults by rules of inference; by sets of predicates; and
by ordinary sentences.
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2. Method. Given some way of representing defaults, how should the logic |
defined? Existing default systems split into at least two cases, the proof-theore
and the semantics based.

3. Conflicting defaults. How does a formalism deal with conflicting default
This is the crucial element in assessing default systems. All of the ‘problem
mentioned in the literature (such as the two famous ones described below) ha
to do with conflicting defaults. We may distinguish between two principal ways
resolving conflicts, which we will call the explicit exceplion way and the extern
heuristic way. In the former, exceptions to defaults are coded up in the theor
either as part of the defaults or separately from them. In the latter, no exceptio
are mentioned. Instead, an heuristic such as the specificity principle mentione
in §1.2.1 1s employed within the logic to resolve the conflict. This distinction w
become clearer with the examples of default systems below.

Related to the question of conflicting defaults is the question of whether o
can express relative priorities between defaults, to determine which one tak
precedence in the event of a conflict.

4. Application area. Some non-monotonic systems have been developed for pa
ticular applications only, not for arbitrary defaults.

5. Formal properties. Makinson [47] describes several properties such as we;
cut, weak monotonicity and reflexivity which classify default systems accordi
to their underlying consequence relation.

5.3 Two examples of default reasoning

As well as the criteria described above, we will also make use of the following tv
examples of default reasoning to classify the various existing systems (and our own
To the reader acquainted with default systems they will be very familiar. Althoug
hackneyed, they are excellent examples for showing the key differences between tl
formalisms.

The examples we chose concern inheritance and persistence, which are undoubted
the principal uses of defaults to be found in the literature. There are others, howeve
V. Lifschitz [44] distinguishes between five types of default reasoning and cites 1
less than 32 different examples. Inevitably, therefore, the analysis we shall give
incomplete.

5.3.1 Inheritance defaults

If every object in a class has a certain property, then every object in any subcla
also has it; that 1s to say, properties of a class are inherited by any subclass. But,
already remarked in the Introduction, this is not true of default properties. When
are interested in whether defaults about classes are inherited by subclasses, we will c:
them ‘inheritance defaults’.

We will consider the well-known example concerning birds and penguins a
whether they can fly. The class of penguins is a subclass of the class of birds. B
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the property of being able to fly, which holds of birds by default, is not inherited
by penguins. In the usual formulation of this example, we have the following factual
premises

Penguins are birds;
together with the defaults

Birds can fly, and

Penguins cannot fly.
We want the following results:

1. If Fred is stated to be a bird (whether he is also a penguin or not is not stated),
we want to conclude that he can fly.

2. But if it is stated that he is a penguin, we want to conclude that he cannot fly.

The reason this example is interesting is that there are two defaults which compete
in certain circumstances. It is easy to get result 1 correctly, but it is in the case of
result 2 that the defaults conflict. Our intuition that the second of the two defaults
should have priority and block the application of the first is based on the specificity
principle mentioned in chapter 1:

Defaults about a specific class of objects take priority over defaults about
a more general class.

Some default systems have this principle ‘built in’, while in others we have to express
the desired priority between the defaults as part of the theory. In the latter case, we
will be interested in whether the means of expressing this priority always works.

5.3.2 DPersistence defaults

Another kind of default widely discussed in the literature concerns the effects of actions.
An action is usually described by stating what changes come about when the action
takes place. For example, we may say that the action of putting block A on top of
block B will result in block A being on top of block B. By this description we intend
that everything else, such as the position of block C, remains the same. More precisely,
we intend that unless it can be shown from the axioms of the situation at hand that
the action affects the position of block C, we should be able to deduce that it does not
affect it.

The problem of having to specify, for each action, the fluents® which are not changed
by it is called the frame problem. In general, a given action leaves most fluents un-
changed. The problem of specifying this may be solved by employing defaults which
say that actions have no effect on fluents; these defaults are overridden by the axioms
which say what effects actions do have. Since these defaults express the fact that the
values of fluents persist through the occurrence of actions, they are called persistence
defaults.

1We suppose that the state of the system is specified by the values of certain variables; these
variables are called fluents.
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There is a massive literature on this subject, and the reader is assumed to |
familiar at least with the general ideas; otherwise our description here will probab
be too terse. Introductory material is contained in [11, 24, 32, 36, 68].

The most famous example of persistence defaults is called the Yale Shootir
Problem?, and was proposed by S. Hanks and D. McDermott [32]. It is well-known b
cause none of the then-available default systems could (starting from what was thoug
of as the intuitively correct coding) obtain the intuitively correct answer. It is an e
ample we will use in our comparison of default systems.

We have a gun and a man. The gun can be loaded or unloaded, the man can |
alive or dead. Imagine 3 situations, which we will call 1, 2 and 3. 1 is the initi
situation, in which the gun is loaded and the man is alive. Situation 2 results fro
walting an indeterminate period after situation 1. Situation 3 is the result of firing t!
gun in situation 2. We have the following premises

The gun is loaded in 1;
The man is alive in 1; and

If the gun is loaded in 2, then the man is not alive in 3.
together with the defaults

If the man is alive in 7 then he is alive in i +1 (¢ € {1,2}); and
If the gun is loaded in ¢ then it is loaded in 14+ 1 (3 € {1,2}).

We want the following result:
The man is not alive in 3.

Again, we have competing defaults. Intuitively, nothing happens between 1 and
Therefore the gun is loaded in 2, and the man is alive in 2. Since the gun is loade
in 2, the man is dead in 3.

The reason that this example is famous is that all the formalisms for default reaso
ing available at the time it was introduced allow there to be another possible outcom
It 1s that the gun should miraculously become unloaded during the wait action betwe:
1 and 2. Then, when it is fired in 2, we cannot conclude that the man dies.

Even before considering any particular formalism, we can see how the second sc
nario comes about. Let A be the scenario which we expect, in which the man dies. L
B be the one in which the gun becomes unloaded, and the man lives.

o A can be obtained by starting with the factual premises, and using the defaul
to show that situation 2 is identical with 1. Since the gun is loaded in 2, the m:
must be dead in 3.

o B is also obtained by starting with the factual premises. We use the first defat
to conclude that the man is alive in 2, and then use it again to show that he
alive in 3. If he is alive in 3, it must be that the gun was not loaded in 2.

The second scenario may seem a bit less natural than the first, because to obtain
involves reasoning from later situations to earlier ones. But that fact does not stop t.
logical conclusions. Note that

20ur description here is slightly (but immaterially) simplified from the original.
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e A is obtained by using each default once (to get from 1 to 2) and by overriding
the first default once (to get from 2 to 3).

¢ B is obtained by using the first and overriding the second default (to get from
1 to 2) and by using the first again (to get from 2 to 3).

The important point is that one cannot chose A on the grounds that it employs more
defaults or violates fewer defaults than B. Each scenario uses two instances of the
defaults and violates one.

Much of the literature about this example focusses on the idea, due to Y. Shoham
[68], that defaults relating to earlier states of the system should take priority over
defaults relating to later states. In the example, this successfully avoids scenario B.
Thus, we may stipulate a principle for persistence defaults, analogous to the specificity
principle for inheritance defaults. The chronology principle states that:

Defaults about an earlier state take priority over defaults about a later
state.

(Tt is important to note that this principle is appropriate when using defaults to predict
the outcome of action sequences; that is, for so-called ‘prediction problems’. There are
other examples of uses of persistence defaults, for example in ‘explanation problems’
where 1t 1s desired to account for a known outcome, in which this principle manifestly
gets the wrong answer. An example of this is H. Kautz’ ‘stolen car problem’ [36].)
As for specificity, some default systems have this principle ‘built in’ (such as
Shoham’s logic of chronological ignorance), while in others we have to express the
desired priority between the defaults as part of the theory. But in the latter case, the
method of expressing this priority often fails to have the desired effect, as we will see.

5.4 Default systems

We now consider some default reasoning formalisms in the light of the criteria and
examples described in the last two sections.

5.4.1 Reiter’s ‘Default Logic’

In Reiter’s ‘Default Logic’ [55] defaults are represented as rules of inference which
have a consistency-check side condition. In Reiter’s system one would encode the first
default about birds as

b(z): f(x)

f(z)
which 1s read as: if # is a bird and it i1s consistent to conclude that z can fly, then z

can fly. In general, a default rule is an expression of the form:

a:p

y

The formula « is the precondition to the rule, § is the clause that is checked for
consistency with the database and 7 is added to the database if 3 is consistent. A
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rule such as the one above about birds, where § = 4, i1s called a normal default rul
If 8 implies  the rule is semi-normal; otherwise it is non-normal. In general, defat
rules are preferred to be semi-normal or normal, as non-normal rules have peculi
properties.

The method for reasoning with default rules is as follows. A default theory
Reiter’s formalism is a set of sentences S together with a set of default rules D. 2
extension of this default theory is a logical theory such that

1. Nomne of the rules can consistently be applied to obtain a conclusion not alreac
in the extension.

2. Subject to this condition, the extension is minimal.

Consider D as an operator on a logical theory 7', returning a new logical theory D(’
which is the result of applying zero or one rtules in D to T. Then T C D(T). 2
extension F is a least fixed point of this operator.

Reiter’s logic can deal with some examples of conflicting defaults, but not other
It will work for the inheritance example (§5.3.1), but not the persistence examr
(85.3.2).

The inheritance example. One may consider coding the example into the defau
theory

b(Fred) Yz. (p(x) — b(x))

This corresponds to case 1 of the example. There is only one extension of the theor
which contains f(Fred). Thus, result 1 is satisfied. Now suppose we replace b(Fre
with p(Fred), for case 2 of the example. It is easy to check that there are two extension
one containing f(Fred) and the other with = f(Fred). There are two because there a
two ways of obtaining the operator D, one for each order in which we can apply t!
rules.

To obtain result 2 correctly we have to state the first default in a more guard:
fashion, namely:

b(a): —plx) A f(z)
f(z)

This says that birds which are not known to be penguins (that is, it is consistent wi
current information that they are not penguins) can fly. Replacing the former rule |
this one yields a theory with a single extension in both cases 1 and 2, which contai:
the right answer in both cases.

Thus, this logic falls into the category of logics which employ explicit exceplions {
resolving the conflicts between defaults. The fact that penguins are exceptions to tl
default about birds is explicitly indicated in the rule.

The persistence example. Again in this example it is a question of giving great
priority to some defaults than others; in this case the second default should be preferre
The facts are that

Zl 13} ZZ — Ty
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where ¢, and a, mean respectively that the gun is loaded and the man is alive in state
t. Learning from the previous example, we should write the defaults as

ay @ ap ag -~y A as y dy

] [£%:3 ZZ

The first default simply states that the property of aliveness persists from situations
1 to 2. The second default says the same about situations 2 and 3, but we have coded
in the fact that {3 1s an exception to this, in the hope of making this rule yield priority
to the persistence of the loaded property. The third rule expresses this persistence from
states 1 to 2. (Since we are not bothered about the value of {; we have not bothered
about the persistence of { from 2 to 3.)

This is not the coding of the example given in Reiter’s logic by Hanks and McDer-
mott in the usual paper. We have simplified rather dramatically by using a proposi-
tional language and making explicit the identities of the states. This simplification is
justified since the same problem occurs in this simpler setting as occurred in Hanks
and McDermott’s, but the simpler setting is rather easier to understand. However, I
accept that the simpler setting may not do justice to some of the subtler solutions to
the problem which have appeared in the literature. As these are not the main interest
of this chapter, I feel this is not a significant loss.

Returning to the example, we find that there are still two extensions. They are
obtained in the way already described above (§5.3.2).

o Starting with the facts {{1, a1, {; — —a3}, apply the first default to give {£;, a1,
as, {3 — —as}, then the third default to give {1, 4s, a1, a2, 7as}. The second
default cannot be applied since we have —a;. We conclude that the man is dead
in state 3. This is scenario A.

o For scenario B, again start with {¢;,a1,{; — —as} and apply the first default
to give {{1, a1, as, { — —as}. Now apply the second default to give {{;, 3, ay,
as, a3 }. The third default cannot be applied since we have —¢;. We conclude that
the man 1s alive in state 3.

Solutions to this problem using Reiter’s logic have been proposed by Morris which
employ non-normal defaults.

5.4.2 Circumscription

In McCarthy’s circumscription ([49, 50, 43] and others) defaults are represented as
ordinary first order sentences. Their status as defaults results from the fact that they
contain predicates which are minimised in the logic, in a way which will become clear.
The simplest way of coding the default that birds can fly is as

b(z) A maby(z) — f(=)

This i1s read as: if z is a bird and x is not abnormal then z can fly. The predicate
aby 1s called an abnormality predicate. The subscript reflects the fact that there may
be several such predicates; this one corresponds to abnormal dirds. (In general, the
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predicate being minimised need not be called ‘ab’ or represent abnormality; this
simply a useful idiom.)

The method for reasoning with defaults in circumscription is the following. Inste
of considering all models of a circumscriptive theory, only models in which the extensi
of the abnormality predicates is minimal are considered. This means, in effect, that
augment a circumscriptive theory with the information that the abnormality predicat
are to be minimised.

This i1s best illustrated with the examples. We will find, again, that circumscriptic
works well for the inheritance example, but not for the persistence example.

The inheritance example. The correct way of coding case 1 of this example is t]
following:

The last sentence in this set can be thought of as the particular way of coding

circumscription the fact that the default about penguins takes priority over the defau
about birds. It says, in effect, that penguins are exceptions to the birds default becau
they are abnormal birds. Like Reiter’s logic, circumscription also employs explic
exceptions to resolve the conflict between competing defaults.

As stated, we consider only models which are minimal in the ab predicates. F
inspection of the theory, we can see that this means that in such models ab, and a
shall have empty extensions. The circumscription of this theory with respect to aby, a
contains the five axioms above, and also

Yz. (ﬂabb(x))
Yz. (ﬂabp(x))

We have —aby(Fred), and so by the birds default we conclude f(Fred).
Now consider the five axioms, but with the first one replaced by

p(Fred)

The extension of ab, is still empty, but the fifth of the axioms means that at lea
Fred must be in the extension of aby. The circumscription of the new five axioms wi
respect to aby, ab, contains the new five axioms, and also

Yz. (abb(x) —(z = Fred))
Yz. (ﬂabp(x)

We conclude = f(Fred).
We thus conclude the correct answer in both cases.
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The persistence example. We will code this as a propositional example again.
(For the original predicate coding, see [32].) The theory to be circumscribed is formed
from the sentences

4

@1

Uy — —as

a; A nab,, — ag

as A mab,, — a3

Zl A —|abll d ZZ

ZZ d aba2

Again, we wish to minimise the abnormality propositions. This means making them
false when possible. However, as the reader may by now expect, there is competition
between them about which ones can be made false.

e ab,, and ab;, can be made false, but the resulting theory then contains ab,,. It
also contains —a3. This 1s scenario A.

e ab,, and ab,, can be made false, but the resulting theory then contains ab,,, and
also contains as. This is scenario B.

Experts on the Yale Shooting Problem may be frustrated by this propositional version
which leaves out much of the latitude for solutions provided by the original coding.
For example, it is not clear how the state-based minimisation of Baker [3] should work
in this setting. Perhaps it cannot. But this i1s of no significance for the emphasis of
this chapter, which is the representation of defaults and their priorities.

My view is that the Yale Shooting problem can be solved by making explicit the
fact that the persistence of loadedness between states 1 and 2 takes priority over the
persistence of aliveness between 2 and 3. I claim that this was implicit in the original
codings by the fact that loaded-in-2 is stated as an exception to the persistence of
alive between 2 and 3. But the early formulations of the problem failed because this
method of stipulating the priorities between the defaults failed. All I have to add to
the debate 1s that the semantics given to default priorities in this thesis do not fail
in this respect. Proposals for the Yale Shooting Problem which address more general
problems in temporal reasoning (such as Baker’s mentioned above) are orthogonal to
the discussion of default priorities.

5.4.3 Veltman’s Update Semantics

Veltman’s Update Semantics [74] is a much more recent approach to defaults, and
is part of an emerging school in Amsterdam focussing on the ‘dynamics’ of logic.
According to that school, the meaning of a sentence is given not by its models but
by the change it brings about in the information state of the agent which understands
it. Thus, sentences are functions between information states. (As was seen in chapter 4,
theories of belief revision can be seen in this way too.)
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Whereas circumscription and Reiter’s default logic are about any kind of default
Update Semantics was designed specifically for inheritance defaults. It represents d
faults simply by sentences in the language, with a special connective ~» for defat
implication. Case 1 of the inheritance example of birds and penguins becomes:

b(Fred)
V. (p(x) — b(x))
Va. (p(z) ~ = ()

This is the simplest representation we have seen so far. No explicit exceptions are me
tioned, and no artificial predicates like the abnormality predicates of circumscriptic
need be employed.

The method by which Update Semantics works is complicated, and the read
should see Veltman’s paper for full details. Here is an outline. As stated, sentenc
denote functions between information states. An information state is a collection
models (representing the ways the world might be, given the current informatios
together with a family of pre-orders on the models. These pre-orders are called ‘e
pectation patterns’, and represent the defaults with which the agent is acquainted;
other words, they represent his expectations about the world. There is an expect
tion pattern for each subset of the models in an information state, with ‘coherenc
conditions relating them.

By virtue of the fact that it is designed for inheritance defaults, Update Semanti
gets the correct answer for the theory above, and also for the theory with p(Fre
(f(Fred) and - f(Fred) respectively).

5.4.4 Ordered theory presentations

OTPs represent defaults by sentences in the language. They obtain their status
defaults by their position in the ordering. Sentences minimal in the ordering have t]
status of facts, and there are as many levels of defaults as may be needed by considerir
OTPs of arbitrary depth. The mechanism of OTPs was given in chapter 2. Conflictiz
defaults may be resolved by rearranging the ordering.

The ordered presentations corresponding to case 1 of the inheritance example a
the persistence example are the following.

Yz. (b(x) — f(x)) a3 T as
vz (pla) — = /() b
Vo (pla) = b)) 4 A ag A

A b(Fred) b — nay
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They respectively prove f(Fred) and -a; as required. The OTP for case 2 of the
inheritance example has p(Fred) instead of b(Fred), and proves = f(Fred).

We do not intend to conclude from this analysis that the logic of ordered theory
presentations is superior to all the other default systems because it obtains the correct
answer to the Yale Shooting Problem. Such a conclusion would be terribly naive for
many reasons. For one, our solution depends on ordering the persistence defaults
according to the precedence of the state in which they apply. In many formalisms this
would mean decomposing a persistence default into lots of instances, which is at best
inelegant; at worst 1t is impossible. Another reason is that our solution is a crude
application of the chronology principle, but, as already seen, this is not appropriate
for all examples of reasoning about actions. What we have shown is that the theory
of OTP given in this thesis does correctly implement prioritisation of defaults in cases
(such as the Yale shooting problem) where other logics fail. We also hope that we
have shown that the representation of defaults, and interacting defaults in particular,
is clearer in the theory of OTPs than in many of its rivals.

5.4.5 Other systems with ordered defaults

There are other default systems in which hierarchies of defaults may be represented;
in this section we mention the similarities and the differences with OTPs. The two
systems we will discuss D. Vermeir's Ordered Logic [75, 40] and G. Brewka’s preferred
subtheories [7].

Vermeir’s motivation is to generalise logic programming by introducing an ordering
among the rules in a logic program. To this end he considers partially ordered sets of
‘rules’; a rule is a clause @y — @Q1,@2,...,@n. Each @; may be negated, and n may
be 0. The intended meaning of such an ‘ordered program’ is similar to the meaning
we give to the corresponding ordered theory presentation, except that the semantics of
the connectives « and negation is not the classical one; the framework is restricted to
the language mentioned; and there is no ‘partial’ satisfaction of sentences such as the
one we describe in this thesis.

G. Brewka’s preferred subtheories is presented as an extension of Reiter’s default
logic (§5.4.1) and of Poole’s default logic [53]. The motivations of this work are similar
to those of this chapter, namely to give a system in which hierarchies of defaults may
be expressed. Compared with this work, there are both limitations and advantages of
Brewka's approach. Among the limitations are (i) the restriction to linear orderings
among defaults; (ii) a restricted syntax and the restriction to that particular syntax;
and (iii) no ability to handle partial satisfaction (that is, to adopt part of a default
when the whole would lead to inconsistency). However, his semantics are simpler than
the semantics presented in this thesis.

More work comparing these systems to ours is in hand.

5.5 Formal properties of default systems
The study of default systems has, I believe, been transformed by a new concern, namely

the formal properties of the underlying consequence relation. The first default systems
introduced in the 1980 special issue of Artificial Intelligence [1] did not even have well-
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defined consequence relations. D. Gabbay [22] and M. Clark [10] first observed the
instead of focussing on the negative properties of such consequence relations, that :
their non-monotonicity, one should instead ask what properties they do have. Th
gave the name ‘cautious monotonicity’ to the property

PlLo dILy
6Ly

This property, which is weaker than full monotonicity, has become widely accepted
a desirable property for default systems.

The story of the properties of default consequence relations has been pursued
the work of S. Kraus, D. Lehmann and M. Magidor [38, 42] and also by D. Makins
[46, 47]. Makinson’s [47] is, in my opinion, the most authoritative and systemat
study to date. He describes and motivates a set of conditions on a default consequen:
relation and analyses existing systems according to whether they have the condition
In this section we cutline his principal conditions and check the theory of OTPs of th
thesis against them.

5.5.1 Makinson’s conditions

Makinson describes a set of conditions on a default consequence relation p~, or, equi
alently, a default consequence operation C. As usual, consequence relations and ope
ations are interchangeable:

¢ kg iff ¢ € C(D).
As elsewhere in this thesis, &, W,... are sets of sentences, while ¢, ¢, x.... are sing
sentences.

The expression & ~ ¢ (or ¢ € C(®)) should be read as: % follows from & in ¢
context of an understood set of defaults. It is unfortunate (and detracts slightly fro
the systematic study) that these defaults are nowhere made explicit. Consequently, 1!
behaviour of the consequence relation under variations of the defaults—and for th
matter, questions of default representation—are not examined at all in his work.

Makinson's conditions also refer to classical consequence, written [L as a relation
Cn as an operation. ® [L 9 is to be read as % follows from ® without using the defaulf
The understood set of defaults can be thought of as augmenting classical consequen
to default consequence. Therefore, the first property we may expect is

Supraclassicality
By
CpNy
or, in the language of consequence operations, Cn(®) C C(P).

It says that anything which can be derived without the defaults can also be derive
with them.

The next three conditions are together called ‘cumulativity’. They are weak forr
of Tarski’s conditions on standard consequence relations (described in proposition 2.
These weak forms have already been proved for natural consequence (proposition 2.4
and, in a certain context, for OTPs (proposition 3.28).
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Inclusion: If ¢y € ® then &  ¢.
Cautious monotonicity:

dho forallpe¥ dpy
U by

Weak cut:
Sk g forallpe T STy
P hy

They are jointly (but not quite individually) equivalent to the following conditions on

C:
¢ Inclusion: ® C C(®).
¢ Cautious monotonicity™: & C ¥ C C(®) implies C(¥) C C(D).
o Weak cut™: & C ¥ C C(®) implies C(P®) C C(T).

(The ~ signs represent the fact that these C versions of cautious monotonicity and weak
cut are implied by the p versions, but imply them only in the presence of inclusion.
In other words, they are equivalent in the presence of inclusion but slightly weaker
otherwise.)

An inference relation is said to satisfy cumulativity if it satisfies cautious mono-
tonicity and weak cut.

For the justification of these principles in intuitive terms, we cannot do better
than quote Makinson. “Cut may be seen as expressing a determination not to allow
the length, intricacy or manner of a derivation of a conclusion to reduce the freedom
with which it is used in further inference. There is no ‘diminution of usability’ with
respect to distance from origins. Once inferred, a proposition may be called upon
in conjunction with the original information, unless genuinely new (i.e. uninferable)
information is also added. Cautious monotonicity, on the other hand, may be seen
as expressing a certain irreversibility in the drawing of conclusions. Once inferred, a
proposition may be retained irrespective of what other inferred propositions are added
to the stock of usable information. We need never go back unless, once more, genuinely
new information is brought in” [47].

The next condition we will consider is

Distributivity: If ® and U are Cn-closed sets of sentences (that is, ® = Cn(®) and
¥ = Cn(¥)) then
Sho Tho

ONT kg
or, in the language of C: if ® and ¥ are Cn-closed then C(®)NC(¥) C C(PNT).

)

Finally, the following condition has had attention in the literature [47, 38]
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Rationality:

g PRy
R

This is again a weak form of monotonicity, which says that premises may be added
an argument if their negations are not derivable from the original set. One interestis
feature of this rule is the negated p~ relation above; Makinson describes such conditios
as ‘non-Horn® (because, when expressed as clauses, they are not Horn clauses).

Makinson considers other conditions, but these are the principal ones. Before ¥
turn to the question of which of these conditions are satisfied by ordered theory prese
tations (and before we make that question precise), we will introduce some terminolog
of Makinson’s, together with a result, which will make the job easier.

First, some background. Ashas been pointed out already, the technique of orderi
interpretations which we use so extensively in chapter 2 is not new. It originat
in McCarthy's first circumscription paper [49] in a rather narrow context which w
broadened first by Shoham [67, 8], and independently by P. Besnard and P. Sieg
[4] and Kraus/Lehmann/Magidor [38]. It is also used in Veltman’s Update Semanti
[74], from which we drew inspiration. In all of those papers, the ordering works in t!
opposite way to the one we have used in this thesis, that is, M < N means M is bett
than IN; and therefore, one is interested in minimal models®. Makinson has examinc
constraints on such ‘preferential model structures’, as he calls them, and has relate
these constraints to the conditions on p described above.

In brief, he defines a preferential model structure to be a triple (M, IF, <) whe
M is an arbitrary set, |F is an arbitrary relation between M and the sentences in t
language and < is an arbitrary relation on M. If M € M, then M satisfies ¢ if M IF
holds; and M preferentially satisfies ¢, written M k¢ ¢, if M I ¢ and for all N < A
N I ¢. We also define M I & for a set of sentences ® if M Ik ¢ for all ¢ € &, a1
MIFe @if M IF & and forall N < M, N ¥ &.

A preferential model structure defines a preferential inference relation p in tl
following way:

Sy iff VM e M. M ke & implies M IF ¢,

that is, every ‘minimal’ model of & satisfies 9.
Makinson then considers the following constraints on preferential model structure
The structure (M, Ik, <) is

o stoppered, if for all interpretations M and sets of sentences & with M I+ &, the
is an N < M such that N [k ®. Intuitively, this means that any model of a s
of sentences can be improved into a minimal model.

3The reader may wonder why we chose to fly in the face of this well-established convention,
choosing to order interpretations in the opposite sense and therefore to seek CF-mazimal interpret
tions. There are two reasons. The first is that the fact that other workers order models in the oppos
way 1is for the historic reason that in circumscription one wants to minimise abnormality predicat
this reason does not apply in the more abstract setting of this thesis. On the contrary, it is mc
intuitive to move upwards in an ordering when one is moving to better and better models. The seco
reason is that one typically looks at ascending chains and mazimal elements in domain theory a
information systems theory, with which we see links with our work. Cf. lemmas 3.15 and 3.16.
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o classical, if IF behaves in the classical way with respect to the logical connectives
(that is, the conditions on I given in example 2.4 on page 25 hold).

o transitive, if < is transitive.

It turns out that different combinations of these constraints give inference relations
satisfying various conditions of the ones described. We will just quote one result, which
will be relevant for the next subsection.

Proposition 5.1 (Makinson.) The inference relation of a classical and stoppered pref-
erential model structure satisfies Supraclassicality, inclusion, cumulativity and distribu-
tivity.

5.5.2 Makinson’s conditions and OTPs

We have already noted that Makinson’s conditions make no reference to the set of
defaults which are implicit in the relation p (or the operation C). On the other hand,
one of the attractive features of the framework of Ordered Theory Presentations as a
default system is that there is no difference between defaults on one hand and ‘sure
rules’ or facts on the other, except the priority they are given in the ordering. We view
this as a desirable feature since we believe that, philosophically, the so-called sure rules
and the defaults have the same provenance. They should all form part of the theory,
or database, from which we make deductions. A sentence does not have the status of a
default in 1solation, but only in relation to other sentences; to be precise, it is a default
relative to those sentences which can override it.

Nevertheless, we can go quite some way in examining Makinson’s conditions in the
context of ordered theory presentations over classical logic (L, M, IF). In order to emu-
late variation of the facts with a fixed set of defaults, we can consider the consequences
of the ordered presentation Ax® with A finite and fixed and ® varying*. We can think
of this OTP as a way of representing that which in other default formalisms might be
called ‘the theory ® with defaults A’. Notice that A is itself an OTP; that is, we are
still allowing defaults with different priorities.

Recall that graphically A x ® may be represented as

)
\

4Strictly, we should write A * A ®, not A *+ . We will use the latter as an abbreviation for the
former for this section. In fact, it would not be hard to redefine ordered theory presentations such that
the points were labelled by sets of sentences instead of just sentences, which would remove the need
for this abbreviation, and for the assumption that @ is finite which its use implies. All the definitions
and results of chapters 2 and 3 would go through.
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(For the exact definition, see definition 3.20.)

Using this idea we can define a consequence relation ~ which embodies the default
as in Makinson’s work. The obvious thing to do is to let ® ¢ mean A x & =
However, we know from proposition 3.18 that L does not have its classical behavio
in the context of OTPs. We can get improved results by setting:

Definition 5.2 d ¢ if AP =L or Ax® = 9.

That 1s to say, if ® is contradictory then it entails everything; otherwise, it enta
just what the illustrated OTP entails.

Lemma 5.3 | is the inference relation corresponding to the preferential model stru
ture (M, F, 34,

Proof We have to show:
Ax® =1 or /\<I>: L iff VM. M IF5a @ implies M IF 3

If A® = L then both sides are true; the left-hand because the second disjunct is tru
and the right-hand is vacuously true. If A® # L then by definitions 2.25 and 5.2,
is sufficient to show that M IFqa & iff M IF A% ®. Since AP # L, this follows fro
proposition 3.27. )

Proposition 5.4 The preferential model structure {M, I, J%) is classical and sto
pered.

Proof Classicality follows from the fact that (L, M, IF) is classical logic. We shc
that it is stoppered as follows. Suppose M IF & We seek N I M with N lkqa
By lemma 3.16 pick N such that M C**® N and N IF A x & (Recall that classic
logic is compact, and we assumed A was finite.) Then, by proposition 2.27, N Ik ®.
remains to prove:

1. NJ® M, ie M C? N. Since M =¢ N, this follows from proposition 3.24.

2. N lk3a ®. We already have that N IF ®. Suppose N'IF ¢ with N C* N'. Sin
NEpe N’ by corollary 3.25 we have N C2*® N’ which contradicts N - A

Corollary 5.5 | satisfies supraclassicality, inclusion, cumulativity, and distributivit
Proof From proposition 5.1.

We have shown that OTPs over classical logic can yield a default inference relatic
in the sense of Makinson, with good formal properties.



Chapter 6

Applications in Software

Engineering

This chapter represents the beginnings of applications of the ordered theory presenta-

tions described in this thesis to topics in software engineering. We start by describing

some of those topics in §6.1 and §6.2, and then we consider how our formal account of

defaults and revisions may be applied in specification theory (§6.3 and 6.4). In §6.5 we

make these ideas more concrete by working out an example in a particular logic called

MAL. In §6.6 related work is compared and finally, conclusions are drawn in §6.8.
Some of the material in this chapter has been published as [60].

6.1 Introduction

Software engineering is concerned with the design and development of software and
software systems. A software system is a system of one kind or another which is driven
by software; examples include lift systems, nuclear reactors, washing machines and so
on. Software engineering includes the study of the software process—the process by
which software is obtained from informally stipulated requirements—as well as issues
of software correctness, specification theory, modularity, re-use and other topics. All of
these will be discussed in one way or another in this chapter.

Onmne of the most important concepts in software engineering is the specification.
A specification 1s a formal description of a piece of software or a software system.
The specification stands between the informally stipulated initial requirements and the
final implementation (see figure 6.2 on page 91); it is against it that correctness may
be measured. The connection between software engineering and logic is the fact that
the specification of a system denotes a theory presentation in a logic. As already seen
in §2.1, a theory presentation is a finite collection of sentences; they are the axioms of
the specification.

It should come as no surprise to the reader that the principal idea of this chapter is
that better results can be achieved by giving the semantics of specifications in terms of
ordered theory presentations. This will enable us to include defaults in specifications,
and formally to describe specification revision.

An important notion in specification theory is that of structure. Large systems
should be split into small components and specified independently, in order to en-
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hance readability, writability, and to improve the chances of being able to demonstra
correctness. The components into which a specification is split are variously calle
modules, objects and agents. The structure of a specification is conveniently illu
trated in diagrams like those of figure 6.1. Diagram (a) shows how an n-floor I
system 1s composed of a lift and n floors; a floor 1s itself composed of two buttons, o
for going up and one for going down. The lift is made of a panel of n lift buttons a
a set of doors and the lift’s position. Part (b) of the figure shows how structuring
also used to represent the provenance of specification components; it may be in tern
of aggregations, as in (a), or specialisations and revisions, as in (b), which shows se
eral versions of a specification of the behaviour of a UNIiX-like command shell. The
examples are considered more fully later in the chapter.

In logical terms, the ‘objects’ in structure diagrams represent a pair consisting
the language used to describe the component in question together with the azior
which express the behaviour. The language of an object i1s often called its signatur
The axioms form a theory presentation over the language. The ‘arrows’ are theorer
preserving maps between these theory presentations. That is to say, an arrow betwee
two objects is in the first instance a map between the languages, satisfying certa
syntactic criteria such as preserving sorts. In addition, the map can be extended
mapping sentences in an obvious way, and should be such that any consequence of tl
axioms of the first object is mapped to a consequence of the axioms of the second objec
In specification terms, this means that the second object inherits the language of t.
first object (modulo possible renaming) and also inherits its behaviour or characte
All this will be stated formally later in the chapter (§6.5).

The main ideas in this chapter are the following:

1. Ordered theory presentations are the right tool for giving semantics to specific
tions with defaults and specification revision. Thus, a specification should deno
an OTP rather than an ordinary theory presentation.

2. Moreover, the structure of the OTP representing a specification with defaul
comes from the structure of the specification.

3. And the structure of the OTP representing a specification with a revision histo
comes from the process by which the specification was obtained.

4. Finally, in an integrated framework for structured specifications, these ideas m.
be combined to obtain the semantics of a specification by an OTP whose structu
comes both from the specification’s structure and the process by which it w
obtained.

This chapter represents work of a more speculative nature than the main body
the thesis, and is also the subject of ongoing research. Much of the outstanding resear
pertinent to OTPs in general will be of use here; for example, the development of
proof theory is perhaps the biggest outstanding problem. There are also technical issu
which are of particular relevance to this chapter; for example, making the concept
ordered presentations properly institution independent would mean wider applicabili
(this point will be expanded upon in §6.6.2). There is also some work in demonstrati
that the techniques advocated in this chapter are of value to software engineers. Son
objections to the ideas are raised and, I hope. quashed at the end of the chapter (§6.7
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lift-system

(a) The structure of the lift system

naive-shell

%

simple-shell

L

networked-shell
(b) The structure of a networked-shell

Figure 6.1: Structures for specifications
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Requirements

requirements revisions
elicitation ‘ . revisions
Specification
YV...3...
implementation
Code
for 1:=1 to n do
begin
Ali] .= A[l] + B[i];
end.

Figure 6.2: The software process

6.2 The software process

The ‘software process’ is the means by which software systems are produced, startir
from a loose specification of requirements dictated by a ‘customer’. The idealise
picture of how this takes place is shown in figure 6.2 (one should for the moment igno
the dotted arrows). There are three persons involved. The customer has the inform
requirements in his or her head. The specifier has the job of eliciting these requiremen
and writing them down in a formal specification. The programmer implements t]
specification by writing a program which meets it.

Of course, it is widely recognised that this never happens (see eg. [52]). TI
reasons for this are mostly that revisions to the informal requirements take place
parallel with the processes of elicitation and implementation. These are represente
by the dotted arrows. Some of these revisions have ‘external’ causes; the custom
is responding to demands from, say, his or her organisation. But some are inhere
to the process of formalisation. The requirements elicitation process typically caus
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the customer to realise that there are gaps in his requirements, or inconsistencies or
undesirable consequences which cause him to change the requirements along the way.
He did not realise for example (until it was pointed out to him) that asking for =
and y meant that he would have to have z as well. So he changes things as he goes
along. Some of the undesirable consequences in his requirements may not turn up
until the testing stage after the implementation has been carried out. For further ways
in which the formalisation and implementation can bring about changes in the initial
requirements, see eg. Lehman [41].

The fact that the process of elicitation leads to changes in the requirements is
one of the benefits of formalisation, and should not be eschewed. The whole point is
that it is necessary to flush out the inconsistencies and undesirable consequences as
early in the software process as possible. But still, the model shown in the diagram is
unattractive—every time the informal requirements change, the process of formalising
the specification has to start again from scratch. The question then arises, is there a
way of revising or changing a specification en-route? This question has already had
some attention in Finkelstein [19], where a low-level mark-up language for stipulating
revisions to specifications i1s proposed. In this chapter, we will advocate applying the
results of chapter 4 to this situation, which will yield a high-level method of revising
specifications. The specifier can say, in effect: T want this specification, or as much of
it as I can have, given that I also want this property.

Another aspect of the idea of revising specifications, which again shows how the
concept is intrinsic to the software process, is so-called ‘incremental specification’.
What often happens in describing requirements is that the full story is not given all at
once. Rather, some broad generalisations are made in the first instance, and later on
these are qualified and modified by more detailed statements. For example, consider
the following ‘specification’:

The admission charge 1s £2. Students, old age pensioners and unemployed
persons get 20% reduction; but old-age pensioners resident in Westbourne
Lodge get 30%. There is a 10% surcharge at weekends (this applies whether
the price is discounted or not). Parties of over 10 persons are admitted at
£1-50 per person.

In this specification, later sentences fill in details of (and thereby contradict) the gen-
eralities of earlier sentences. Thus, the specification is acquired incrementally and
the theory of belief revision will be of use in modelling this formally. The elicitation
process—the process of obtaining a formal specification from informal requirements—is
the most difficult aspect of software engineering. Coding these kinds of generalisations
as defaults in the specification will make it easier.

We call these generalisations explanatory defaults. For a more computer-flavoured
example, consider the process by which the behaviour of a command shell (in UNIX,
say) is explained. Typically, initial explanations will include statements like “rm file
removes the named file”, but these statements should be regarded as defaults because
they only hold most of the time. Such explanations are quickly followed by provisos,
like “you must be in the same directory as file”, “you must be the owner of file”, and
so on. These are the exceptions to the default. On small systems the list of such
exceptions may be small enough to enumerate, but systems which interact in wider
contexts need more and more exceptions to be catered for. The file system must be
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mounted read-write, for example; the network must have the right authorisations, ar
so on. All we can really say in the last analysis is that rm file tends to remove file, a1
does so only if a multitude of other conditions are satisfied.

6.3 Specifications with defaults

The examples of revision and defaults in the last section are intrinsic to the softwa
process; they arise naturally and must be dealt with (whether formally or not) if one
to have an acceptable theory. In this section we consider defaults for themselves—on
without which we could do, but which make the specification task easier. Defaults
specifications occur when a component has a certain “normal” behaviour which m:
be overridden when the component is incorporated into another.

Aggregation

Imagine specifying a lift system. There 1s a lift, with buttons and indicator lights insid
and there are doors. There are n floors, again with buttons and indicator lights. TI
indicator lights switch on and off in response to button pressings, and the lift goes fro
floor to floor depending on the state of the lights. Sometimes it opens its doors to |
people in and out.

Here are some statements which might be included in the customer’s informal 1
quirements.

1. If the lift is at the ¢th floor and it goes down by one floor, then it is at the s L1
floor (2 <7< n).

2. Pressing and releasing the alarm button causes the alarm to sound.
3. The lift will not move up or down unless the doors are closed.
4. When the lift is at the ¢th floor, the indicator light for the sth floor is off.

5. Pressing and releasing a button for a floor causes the corresponding indicat
light to come on.

6. Pressing and releasing a button for a floor causes the lift to arrive at that floo

Not all of these statements are true all of the time about lifts; and in particular, son
of them contradict others. The statements are in increasing order of wiolability. T
first 1s always true, for it simply says what it is for the lift to go down. The secor
and third are nearly always true; only things like power failures can cause them n
to happen. Number 4 is more routinely violated, for example by holding down the ¢
button. The fifth statement has yet more common exceptions; for example, if the lift
already at that floor the indicator light will not come on. (Nevertheless, it is the nos
for the light to come on when the button is pressed, and an ezception when this fails
Statement 6, as people who live or work in large blocks will know, is best described
hopeful.

An ‘ideal’ lift should satisfy all of these statements, insofar as they are consiste
with one another and the other statements in the specification. Even when there a
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inconsistencies, we may want to retain ‘as much’ of the sentences as possible. We
may want one sentence partially to override another. Thus, for example, sentences 4
and 5 are inconsistent, given certain other likely assumptions'. We may reject 5 for
the special case of the lift being at the floor for which the button is pressed, but we
want to retain it for all the other cases.

Many questions arise from the above discussion.

1. Can we handle these kinds of defaults in specifications by using OTPs?
2. Where does the ordering in an OTP come from?

3. Does the way in which sentences partially override each other in OTPs match
with the requirement that sentence 4 partially overrides 5 in the example?

We cannot give definitive answers. We can say the following.

Not all the statements made in the informal requirements stipulations are appro-
priate for inclusion in the specification, or at least, not as they stand. Sentence 6,
for example, is more the kind of thing one would want to check as a consequence of
the specification than code in directly. It might be coded in implicitly, by a lot of
axioms constraining the behaviour of the lift in a more ‘local’ way. On the other hand,
sentences 1 and 2 are precisely the kinds of sentences one would expect to find in a
specification. So are sentences 4 and 5, apart from the fact that, as we have observed,
they conflict.

The conflict between 4 and 5 can be resolved by appealing to the specificity prin-
ciple. Tt states that

Default statements about a more specific class of objects override those about
a bigger class when there is conflict.

This principle (which was already introduced in §1.2.1) is well-known in artificial in-
telligence [13, 69]. It applies in this case because statement 4 is about lifts, while
statement 5 is about buttons. The structure of the lift specification (figure 6.1(a)) is
that the lift object (or module) incorporates (n copies of ) the button object. Therefore,
the class of lifts is more specific than that of buttons. The specificity principle says
then that statements about lifts override those about buttons, so 4 overrides 5.

Our provisional answer to Question 1 is that we will in the main restrict ourselves to
defaults to which the specificity principle is applicable. This may be too restrictive, but
widening the class is left as a matter for further research. Even with the restriction, it
should become clear that these defaults form a huge class. This means we can already
answer Question 2:

The structure of the OTP for a specification with defaults comes from the
structure of the specification.

The precise way in which this works will become clear in §6.5.4, where the example of
the lift and sentences 4 and 5 is worked out in full.

1The additional assumptions required are the ‘locality axioms’ to be described in §6.5.3. In this
case they say simply that the press-and-release action does not affect the directly affect the floor the
lift is at.
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As far as Question 3 is concerned, the answer is surely ‘yes’. The examples
§1.3 and §4.6 should be enough to persuade the reader in the ‘static’ case witho
actions. For the case with actions, there is a danger of phenomena like the so-calle
Yale shooting problem [32] to appear; this is discussed elsewhere (chapter 5).

Specialisation

The lift-button example has to do with aggregation, that 1s, to do with putting sm:
objects (like buttons) together to form larger ones (like lifts). This can easily be se:
by looking at the full structure of the lift specification, given in figure 6.1 (page 9(
Defaults about the aggregated objects override those of the components.

But specialisation is another specification construct which has to do with speci
cation structure, and the specificity principle applies here too. A specialisation of
object is another object of the same kind (loosely speaking) which contains all 1l
features of the first object and more besides. Consider, for example, the user-interfa
of an auto-teller (cash dispenser). As an object in its own right, it has actions su
as the pressings of keys, and state variables which describe the message on its scree
Its usual behaviour is to echo characters typed on its keyboard on its screen. Now o
may consider a specialisation of this object, which has the same features as before b
the additional feature of a ‘password mode’, in which it does not echo characters «
its screen.

The proposed way to handle this situation is to stipulate that the echoing behavio
is a default which the specialisation overrides. The specificity principle sees to it th
the default of not echoing (the default of the specialised interface) overrides the echoir
default, because the specialised interfaces form a more specific class. The key poi
is that the behaviours of these interfaces differ from one another on certain action
although, of course, the behaviour of the specialised interface is mostly the same
that of the original interface; that is why it is appropriate to speak of inheritanc
albeit with exceptions.

The key idea in such examples is that axioms or defaults in wider contexts c:
override defaults in smaller ones. A wider context may be created from a smaller o
by aggregation or specialisation, as in the above examples.

Explanatory defaults again

It turns out that explanatory defaults can be viewed as defaults arising from specic
isation, and are thus also amenable to analysis by our method. Consider again t.
example of the UNIX rm command. The first stage of the explanation, in which tl
axiom ‘rm file removes file” 1s given, should be thought of as the specification of t
‘naive shell’. Ultimately, after many elementary exceptions and specifications of va:
ant behaviour have been given, we may arrive at the specification of the ‘simple shel
It specifies the way shells used to work, in the good old days before networks, and it
a specialisation of the naive shell in which some of the defaults have been overridde
Then, dozens of further exceptions and variations are given, until a supposedly exa
description of the behaviour of unix shells in a networked setting is obtained. This
turn is a specialisation of the simple shell. The structure diagram is then the one give
in figure 6.1(b) (page 90). Thus, explanatory defaults can be viewed as specialisatic
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defaults.

6.4 Design by difference, or specification revision

The sections above described using defaults in specifications, with the resulting OTP
having an order which came from the structure of the specification. But there is another
way in which the ordering of an OTP can arise during the software process, which is
by specification revision. This idea is still a matter for further research, but it is of
great importance if one is to get full value from specified components. We mention it
briefly here as a placeholder for the (yet to be developed) full story.

The 1dea is to apply the methods of chapter 4 to specifications. This has both
small-scale and large-scale applications.

o In the small, one can consider re-using components from a library of standard
objects. If a component doesn’t quite fit the application because it has unwanted
properties, revise it with the desired properties.

o In the large, whole specifications may be constructed in this way. For example,
the recent Rover TV advertisement showed how the Metro motor-car was con-
ceived as a Mini with certain properties added. These properties conflicted with
the old ones, which means the revision is not merely a matter of refinement or
enrichment. Thus, the Metro is specified by stipulating its differences from a
Mini.

In practical terms one may envisage a software engineering environment (imple-
mented on a computer) which allows one to explore a ‘design space’ by both small-scale
and large-scale revisions of the type described here.

The obvious difference in the case of specification revision as against specifications
with defaults is that the ordering in the resulting OTP comes not from the structure of
the specification, as it did for defaults, but from the process by which the specification
was obtained (the revision history). But in fact, these genealogies are not so different.
One can think of a revision history as showing the structure (through refinement) of
a component; for example, one can think of the structure diagram for the networked-
shell (figure 6.1(b)) as a revision history or one can view the earlier objects as the
components of which the networked-shell is made. On the other hand, a non-linear
structure diagram such as that of figure 6.1(a) represents a revision history in more than
one dimension. For example, the manufacturer’s intention is that the button’s light
illuminates when the button is pressed. This is encoded in the button’s specification.
But the specification was revised for incorporation in the lift, since in that context it
is to have the property that it does not light when pressed in certain circumstances;
namely, when the lift is in a state in which the request made by the user by pressing
the button is inappropriate. The revision is implemented via a complicated interface
between the components which may not even be part of the specification—that is why
defaults are needed.
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6.5 Structured specifications and modal actio
logic

In this section the ‘classical’ theory of structured specifications in modal action logi
is described formally (§6.5.1 to §6.5.3). Then the formal changes needed to use OT]
for the semantics for specifications is given (§6.5.4).

6.5.1 MaL, its syntax and semantics

Modal action logics (also known as dynamic logics or multi-modal logics), have for ov
a decade been used to specify state-based software systems. The basic idea of mod
action logics 1s to model actions moving the system from one state to another. Such
logic has a family of modal operators, one for each action that the system can underg
and its semantics is given by a set of states and a family of relations on the states, o
interpreting each modality. For example, the fact that the action @ if executed in
state satisfying condition ¢ results in a state satisfying ¢ i1s expressed by the axiom

¢ — [aly.

There are many accounts of modal action logics [17, 15, 29, 62]. We describe a simp
version which we refer to as MAL below. This logic satisfies the conditions of §2.1,
the semantics of OTPs in it is defined in chapter 2.

We have mentioned how a component within a specification is, in logical terms,
signature together with a theory presentation over the signature. A MAL signature
a set of action symbols and a set of proposition symbols; the action symbols are use
to describe the actions which the system may perform, and the proposition symbc
are used to represent the state of the system. Thus, actions update the values of t
propositions.

A MAL signature S = (A, P) consists, then, of two sets; a set of actions A and a s
of propositions P. For example, here are the signatures for some of the objects of tl
lift system (figure 6.1(a)):

button has the signature {{press, cancel}, {lit}). The button may be pressed or ca
celled, and has a light which may be on or off.

door has the signature {({open, close}, {doors-open}).

lift-position has the signature ({up,down}, {floory,... floor,}). floor, represen
whether the lift 15 at the ¢th floor or not.

lift has the signature ({press;,..., press,, cancely, ..., cancel,, open, close, up, down
{lity, ..., lit,, floory, ..., floor,, doors-open}). Notice the renaming of the pre
actions.

lift-system has, in addition to the signature elements of the lift, the action pres
alarm and the attribute alarm.

Given a signature, atomic propositions are composed to form more complex se
tences using the usual boolean operators A, V, —, — etc. There is also the constru
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[-]- which, as already mentioned, is used to describe the effects of actions. If a is
an action symbol and ¢ a sentence (which may also contain action terms) then [a]¢
expresses the fact that ¢ holds after a has taken place. The syntax of formulas is
therefore as follows:

o If p € P then p is a sentence.

o If ¢ and ¢ are sentences and a € A then —¢, A Y, ¢V Y, ¢ = ¢, ¢ = ¢, and
[a]¢ are sentences.

To illustrate this syntax, here again are the first five of the six statements about
the lift given on 93.

1. floor; — [down]floor;—; (for 2 < i < n)
2. [press-alarm]alarm

3. doors-open — ([up]L A [down]L)

4. floor; — —lit,

5. [press,]lit;

Aninterpretation M for a signature is a function which takes states to an assignment
of truth values to the atomic propositions. States are represented by traces. A trace
is a finite sequence of actions in the signature, and denotes the state which results
by performing the actions in the initial state. Thus, If ¢ is a trace and p an atomic
proposition, then M(c)(p) is a truth value which says whether p is true or false in the
state resulting from performing the actions in ¢ in the initial state.

Satisfaction in states is defined in the following way:

M(o)lkp if M(o)p) =t
M(o) Ik =g it M(o) ¥ ¢
M) IF ¢ Ad it M(o) Ik ¢and M(o) IF 4
M)k ¢V i M(o)IFéor M(o)IF 3
M(o)IF ¢ = if M(o) I ¢ implies M(s) I 4

M(o) Ik ¢ = if (M(o) I ¢ iff M(o) IF 9)
M(o) Ik [a]¢p if M{ocoa)lk¢

(In the last clause, 0 0 a is o with @ appended.) This is a rather naive way of handling

actions, which means that the logic cannot support concurrent actions. It has the

advantage of being simple, however, which suits the purposes of this chapter.
Satisfaction in interpretations is then defined as follows:

M IF ¢ if for each o, M(c) IF ¢.

This means that a sentence is true overall in an interpretation iff it is true in every
state of the interpretation.

If 7 is a set of sentences and ¢ a sentence, ? = ¢ holds if for every M, if M I+ ¢
for each 9 € 7 then M IF ¢. 7 |= ¢ is read 7 entails ¢. If 7 is the set of axioms of a
specification and ? |= ¢, then ¢ is a consequence of the specification.
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6.5.2 The frame problem

The frame problem is the problem of having to specify the action-attribute pairs whi
are such that the action does not affect the attribute. For example, the ‘open’ actic
in the lift specification does not affect the ‘floor;” proposition. This is of course tl
case for the majority of such pairs. The number of frame axioms needed to do th
grows rapidly with the size of the signature, and specifications therefore quickly becon
cluttered with such axioms.

This problem is widely known in Al, where the solution is to employ a default frar
rule which says for every action a and attribute p that (unless there is proof to t
contrary) a does not affect p. With OTPs one is of course in an excellent position
follow this route; if 7 is the OTP encoding the axioms of the specification? in questic
one might simply add the relevant default:

/\ a€A (]J - [a}p)
PEP

Such an approach must be augmented by an explicit priorisation of competing defaul
if problems like those of Hanks and McDermott [32] are to be avoided. These problen
and this remark are expanded upon in chapter 5, but other than for making th
remark we have not investigated the defaults approach. This is because the structuri
mechanism mentioned earlier provides an alternative solution to the frame probler
which has been widely used in specification theory.

6.5.3 The structuring principle

The structuring principle mentioned in §6.1 (see figure 6.1) is important in specificatic
not only because it enhances readability and verifiability but also because it overcom
the frame problem which 1s a characteristic of action-based logics. This works becau
the structure of a specification affords a way of telling, in the majority of cases, wheth
an action can affect an attribute or not. There are several ways of arranging thi
including the following:

o The principle may dictate that an action can only affect the state-variabl
(propositions) in the signature in which the action is declared. Thus, for exar
ple, the ‘press’ action can only affect the 'lit’ proposition in the lift specificatio
since ‘press’ is declared in button and ‘lit’ is the only proposition declared
button. This is often called ‘object-orientation’.

2The way in which T is obtained has not yet been described. This is done in §6.5.4.
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o The dual of this approach would be to stipulate that a state-variable can only be
changed by actions in the signature in which the state-variable is declared.

o Or, one may take a mixed approach (dubbed ‘agent-orientation’ in [62]), in which
annotations to actions and state-variables control exactly the scopes in which they
can update and be updated.

The object-oriented approach (the first one) is the most popular.

Care must be taken in framing the ‘locality axioms’ which these principles give
rise to. For example, if one takes the object-oriented approach it is easy to be too
restrictive. The axiom

floors « [press;|floor;

says that the press; action does not affect the floors proposition, as wanted, but it
means further that the floors proposition can never be changed by an occurrence of
pressy. This i1s too strong if we want to allow concurrent actions, for a press; may
occur concurrently with an up, in which case floors may change. However, our simple
semantics has already ruled out concurrent actions.

As well as controlling locality, the structuring principle is about making large spec-
ifications out of small ones. We have seen how the lift system specification is composed
out of smaller specifications and ultimately out of atomic ones. Each node in the lift-
system structure diagram represents the specification of a component, and the arrows

are maps between the specifications in the following way. If A L Bisa map f
between A and B, then

o f1s a map between the signatures of A and B; that is, it maps the actions of A
to actions of B, and also A-propositions to B-propositions. (In a more general
setting, types and sorts also have to be preserved.) f can be extended to a map
from sentences in the signature of A to sentences in the signature of B in the

obvious compositional way: f(¢ A ) = f(¢) A f(¥), f(lalg) = [f(a)]f(8), etc.

o f preserves the properties of A. That is, if A |= ¢ (the axioms of A entail a
sentence ¢) then B = f(¢)

This is essentially the categorical framework of Goguen and Burstall [9].

6.5.4 Specifications and OTPs

The idea is that a structured specification denotes an OTP in which the ordering comes
from the structure of the specification. Thus, conflict between sentences in different
components is resolved by the specificity principle. For example, part of the OTP
corresponding to the lift system showing how the conflict between sentences 4 and 5 is
resolved is given below. Only the ‘lift’ branch of the tree in figure 6.1(a) is given, and
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only the axioms relevant to the discussion are shown:

[press, lity [press,|lits [press,|lit,
[cancel;]-lit; [cancely]-lity -« [cancel,]-lit,

" Nfloor;, — [up]floor, ;)
[open]doors-open *y(floor, — [down]floor,_1)
[close]-doors-open Al (floor; < Az, ~floor;)

(floor; — —lit;)

T

0l
—_

6.6 Related work

There has been similar work done by S. Brass and U. Lipeck in [5]. Those authors a1
I are currently working on a unification of our ideas [6]. In this section we descril
other, less directly related work.

6.6.1 Deontic MAL

In the fully-fledged version of MAL presented in [62], there are also deontic predicat
written per and ob! which apply to action terms. See also [16, 35, 37]. These deont
predicates are used to express the fact that certain actions are (or aren’t) permitted
obliged in certain states. Deontic predicates provide a more elegant way of expressi

sentence 3 of the lift specification, for example:
3. doors-open — —per(up) A —per(down)

In the earlier encoding of this sentence (§6.5.1) it was a logical impossibility for t
lift to go up or down with the doors open. The ordering of the theory presentatic
meant that we could viclate this, but still the encoding with deontic predicates seer
neater. Deontic predicates add much to expressibility. For example, it is now possib
to express sentence 6:

6. floor, A i) — [press;]obl(up?™ Mfloor, A i22j — [press;]obl(down’™")

The first of these says that if you are at a certain floor and you press the button f
a superior floor the lift is obliged to move upwards by the appropriate amount; t
second 1s the opposite case. Of course this is rather fanciful, for we have not said wh
up’~* means and still less what ob/(up’™") means; also, the lift will not in general ob
the request at once, but may interleave it with others. However, our aim here is mere
to motivate some of the issues which deontic MAL is attempting to address, and

particular to point out the nature of the increased expressive power.
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The semantics of deontic predicates may be simplified® as follows. It was already
seen (§6.5.1) that MAL interpretations are traces, i.e. sequences of action terms. From
a trace we can obtain the state which would result if the actions of the trace were
carried out, in order, starting with the initial state. We add to the interpretations two
functions P and O which, given a trace, return the sets of actions which are permitted
and obliged respectively. A trace is said to be normative if every action which takes
place in a state is permitted in that state (according to the function P); and every
obliged action (according to O) in a state is eventually performed in some later state.

The question of crucial importance as far as this chapter is concerned is how the
specification of norms with deontic predicates relates to its expression with defaults, or
with OTPs in particular. This question is of course open. It seems to be the case that
the two modes of expression are complementary. For example, it was already noted
that the expression of sentence 3 is more elegant in the deontic framework!. But the
deontic framework has no hope of expressing norms like 4, for they are entirely static
and the deontic predicates act only on actions. If it is true that both ways of expressing
norms are desirable, one might ask how they interact together. In short, what are the
properties of ordered presentations of deontic theories? That is one line of research T
hope to undertake after my Ph.D.

6.6.2 Institutions

The ‘proper’ way of arranging matters when using logic for specification is to use insti-
tutions, because they provide an up-front way of interfacing components with different
signatures. The structure diagrams are in fact diagrams in a category of specifications
in which the morphisms are theorem-preserving maps between the signatures. How,
then, does this relate to the use of OTPs? Again, this 1s a matter for further work and
I can only hint at the solution:

The theory of institutions may be generalised to the so-called 7-institutions of
[18]. The difference is that =-institutions work for any logic satisfying the structural
properties of proposition 2.9 (page 27), not just those defined in terms of models
and satisfaction. Also, in 7-institutions the theory presentation is the crucial unit of
information, not the theory. This suits our purposes. Morphisms exist, then, between
theory presentations and it is proved that for the definition of morphism mentioned at
the end of §6.5.3 it is sufficient to require (in terms of what was said there) that f map
A-axioms to B-axioms: if ¢ € A then f(¢) € B.

This leads naturally to the idea of morphisms between OTPs, and therefore to
institutions handling defaults, which we dub ‘d-institutions’. It is obvious from §6.5.4
that we require that A-axioms be mapped to B-axioms, but they may be further up
the ordering in B than in A. Thus,

Proposal 6.1 Ordered theory presentations are now paired with their signatures. Let
7 =(L,X,&<x, F) and 7' = (L', X', <x', F") be theory presentations with signatures
Land L'. Let f: L — L' be a map between their signatures. f is a morphism from

3See [16] for the full story.
4Although, it has yet to be shown that the deontic framework alone can enable reasoning after
norms have been violated.
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? to 7' if there’s a morphism of partial orders g : X — X' such that for each z € _

J(F(z)) = Flg(z)).

In other words, 7 is mapped into 7' in a way that preserves its ordering. The
are options, such as: can two z’'s in X collapse to the same one in X'? (The propos
says yes, but we could change it.) What about the other way around? etc. Mo
investigation is needed.

6.6.3 Other default logics

The idea of using default information in specifications was motivated in sectio:
6.1 to 6.4 as a way of giving a formal account of many issues in software enginee
ing hitherto treated informally. But why should one use OTPs, given the plethora
arguably better established default logics on the market? A full examination of the
alternative logics for defaults is given in chapter 5. In short, the reasons for which t
framework of OTPs scores highly over rival non-monotonic logics are:

1. Defaults are represented by ordinary sentences in the language. The alternativ
taken by other default formalisms, for example in representing defaults by rul
of inference or sets of predicates to be minimised, would mean that the specifi
had to expend more effort in coding up the defaults required. (More detail «
this point can be found in chapter 5.)

2. The interaction between defaults of different priorities is simple to express
OTPs, and much harder in other formalisms.

3. The specificity principle yields the appropriate ordering of defaults in cases 1
volving inheritance (like the button/lift example). This means that we do n
need to enumerate the exceptions to defaults, asis necessary in most other defat
logics. (This point is amplified in chapter 5.)

4. The ability to handle defaults not just in classical logic but in modal and mul
modal logics is available with OTPs. (It is hoped that future work will exter
the theory of OTPs to arbitrary institutions).

5. Ordered theory presentations exhibit the relationship between theory revisic
and default theories. They would therefore be a suitable theory to form the bas
of a software engineers’ tool which supports both of these ideas.

6.7 Objections

It was pointed out at the beginning of this chapter that the ideas presented here a
of a more speculative nature than elsewhere in the thesis. The reader may dislike t]
idea of the ‘loose’ specifications motivated here. This section is devoted to presentin
objections to defaults and revision in specifications and, I hope, to allaying them.
The most common objection raised is that specifications are by nature exact, and
goes against the grain to introduce the slack which comes with defaults and revision
I have much sympathy with this view, but I believe that the benefits gained fro
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defaults and revisions outweigh the disadvantages. Among the benefits are the ability
to represent normative behaviour when 1t really is a characteristic of the object being
specified; the ability to explore a design space; the improvement in modularisation
which can be obtained (see below); and freedom from the chore of filling in every little
detail, instead being able to allow conflicts to resolve automatically. Furthermore, from
a methodological point of view, we narrow the gap between the informal requirements
and the specification in figure 6.2; without, I believe, the price of widening the gap
on the other side, between specification and code. This is because the specifier has
an improved medium for expressing the intuitions and intentions behind his or her
specifications.

The improvement in modularisation referred to above can be seen by considering
the effect of coding in the exception to sentence 5 of the lift specification (§6.5.1).
Sentence 5 expresses the fact that the buttons light when pressed, and is an axiom of
the button object. The exception noted is when the lift is already at the relevant floor,
so taking account of this the axiom would become:

—floor; — [press,]lit,.

But this cannot now be an axiom of the button object after all, but must be an axiom
of the complete lift system. This is because the vocabulary it uses is not available
in the button signature. Thus the motivation for structuring (that is, dividing the
specification into constituent objects and axiomatising them individually) in the first
place is foiled: every axiom has to be part of the biggest object in order to list all the
exceptions.

It might be objected that if some axioms are allowed to override others, we may
quickly get into a mess in which we do not know which axioms are being affected by
which others. To counter this objection, 1t should be possible to check at any stage
whether a certain axiom expressing a norm is being overridden or not, by checking
whether it 1s a consequence of the specification. And again, the advantage 1s that one
can explore the design space by changing the order around until the desired effect is
achieved. This gives great flexibility to the specifier. Of course, the ability to do these
things assumes a sophisticated interactive software environment which supports OTPs;
such a thing is yet to be developed.

Another technical objection is that not all axioms express behaviour which may be
overridden. For example, we may wish to keep locality axioms inviolable. This would
be prudent, for if we override such axioms we may lose our intuitive understanding
of the specification. There are other axioms which should never be overridden too;
for example, we already noted that sentence 1 of the lift is true ‘by definition’. A
purely technical manoeuvre will accommodate this, we can stipulate that a specification
denotes a pair {A,?) consisting of an ordinary theory presentation A (the inviolable
axioms) and an ordered theory presentation ? (the norms). Models of the pair (A7)
are defined as the C'-maximal models of A.

6.8 Conclusions

Much work remains to be done, both technically and motivationally. The technical
work includes the development of a proof theory for OTPs and making them properly
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institution-independent. The motivational work i1s to give more elaborate exampl
which are more fully worked out in order to convince practitioners of the value of t
ideas. Of course, these two areas of work go hand-in-hand; technical developments w
enable the motivational ones, which in turn give direction to the technical ones. T
ultimate word on this subject is still a long way off, but I hope that this chapter h
at least introduced the story.



Chapter 7

Conclusions and further work

In this chapter, we describe unfinished work, further work, related work and then
recap on the main points of the thesis. The unfinished work we discuss is the topic of
verisimilitude, introduced in chapter 1. This is done in §7.1. A variety of topics come
under the heading of further work, and are dealt with in §7.2. Much related work has
already been discussed in chapters 4, 5 and 6, but an important example has been left
until this chapter, described in §7.3. Final remarks are given in §7.4.

7.1 Unfinished work: verisimilitude

The topic of verisimilitude concerns the measurement of theories with respect to the
truth. Its origins are in the philosophy of science, and it attempts to give a formal
account to the idea, for example, that Einstein’s relativistic physics (while perhaps not
completely true) is genuinely closer to the truth than Newton’s classical physics; and
the latter, in turn, is closer than Aristotle’s physics.

As far as a formal account is concerned, the subject is still a long way from being
able to account for the improvements in scientific theories described above. One reason
is the so-called incommensurability of these theories (T. Kuhn [39]); this means that
the language of (say) Newtonian physics cannot be translated into the language of
relativistic physics, because the latter deals with entirely different concepts to the
former. The formal accounts of verisimilitude currently available not only assume
inter-translatability; they assume that the two theories are expressed in exactly the
same language.

From the point of view of computer science, the philosophical demands are not so
great, and the benefits of a formal account of verisimilitude are more tangible. We
have already given the example of predictions in the economy in §1.2.4; this kind of
application is relevant for expert systems and in artificial intelligence more generally.
In software engineering, one may view specifications and implementations as logical
theories, as explained in chapter 6, and the ability to order implementations which do
not fully satisfy a specification according to how nearly they do has obvious benefits.

In the literature on verisimilitude (our main source has been T. Kuipers’ [12]) the
‘truth’ is taken to be a logical theory which is complete!. However, many of the

1Recall that a theory is a consequence-closed set of sentences. A theory T is complete if for all 4,

ThyorT| .
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Figure 7.1: The shaded parts are empty if BAT CAAT

formalisations of verisimilitude in fact define a ternary relation on arbditrary theories
A <y Bif Bis as close to T as A is.

The first formal definition of this relation is due to Popper [54]:
Definition 7.1 A< B#f BATCAAT.

If A, B and T are sets (here they are sets of sentences), the condition B A T

A A T is illustrated in figure 7.1. The shaded areas are empty if the condition
satisfied. This can be restated as the following two conditions:

ANTCB, and BLTCA

Since T contains only {rue sentences, the first of these can be thought of as saying th
B has all the true sentences that A has. If T is complete then its complement consis
entirely of false sentences, in which case the second condition means that B has 1
more false sentences in it than A has. If T is not complete then the second conditic
is not so intuitive.

Another definition of the same relation, due to D. Miller and T. Kuipers (see v:
Benthem [72]) is

Definition 7.2 A <\ B if [B] A [T] C [A] A [T].

Recall that [A] is the set of models of A. The same diagram and the equivale:
conditions still hold, with appropriate substitutions ([A] for A, etc.). We can par
phrase the two conditions as: any A-model which might have been the true situatic
must also be a model of B (so B doesn’t loose any models); and any models of B whi
couldn’t have been the true situation must be A-models (so B doesn’t introduce a
bad models).

We can also show that

AP B implies A< B
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but the converse implication is false.

These are the principal definitions discussed in the literature. It turns out, however,
that both have undesirable consequences. The following observations are apparently
due to P. Tichy:

Proposition 7.3

1. If <is <P, then A <7 B implies BC T.

2. If < is <) then A ¢ B if [A] N [T] = [B] = 9.
(Asusual, A<Tif AT and T £ A)

The first means that < cannot strictly order “false’ theories (that is, theories
with at least one false sentence in them). From the point of view of comparing scien-
tific theories, this 1s obviously inadequate, because although Newton’s and Aristotle’s
theories of physics are both known to be false, the former is closer to the truth than
the latter. The second point says that the contradictory theory B (with no models) is
an improvement on any theory A which shares no models with T'. Tt is counterintuitive
that the contradictory theory should be an improvement on anything.

A proof of the first is given in [66, page 49]; the second is trivial to demonstrate. Tt
should be noted that the second item is not seen as grounds for complete rejection of
<Y it is still widely discussed.

Neither of the two definitions considered have the maximality property mentioned
in §1.2.4, that

AgrB if TCB.

Indeed, this property is not even mentioned by van Benthem [72] who considers a
variety of constraints of this kind on notions of verisimilitude. I find this surprising.
This condition holds trivially if T' really is ‘the truth’, for then T is a complete theory
and T C B implies T' = B for any theory B. It is hard to think of examples when T is
incomplete in the philosophy of science (perhaps there are some in quantum physics?),
but in the computer science examples mentioned earlier, examples abound. In artificial
intelligence, we may have partial knowledge about a particular domain against which
we wish to measure theories; and in software engineering, the specifications against
which we measure implementations are typically incomplete

It turns out that the definitions introduced in chapter 2 easily yield a notion of
verisimilitude which has good intuitive properties, does not have the problems of propo-
sition 7.3, and satisfies our maximality property. Moreover, the Miranda program code
of appendix A which implements the definitions of chapter 2 can easily be extended
to compute verisimilitude orderings for propositional theories, and a few of these are
given in appendix B.

The definition of verisimilitude is essentially the ordering T4 of §2.2.4. First, we
can define this ordering in terms of a theory T rather than a sentence ¢:

Definition 7.4
1. p € TT) if T can be presented with only positive (negative) occurrences.

2. T if T |= ¢ and T* C ¢*.
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3. MCr NifT |= ¢ implies (M IF ¢ implies N [k ).
Compare definitions 2.34, 2.38, and 2.45.

Since theories can be thought of as sets of models (namely, those that they satisfy
we need to raise this definition from being the definition of an ordering on poinis
sets of points. We do this in the Egli-Milner way.

Definition 7.5 A < BifVMIF A. 3N+ B.M Cr Nand YN - B.IMIF A. M C
N

This says that for every model of A we can find a model of B which more near
satisfies T'; and also, every model of B more nearly satisfies T' than some model of .

It is easy to check that neither points of proposition 7.3 holds if € is <, 1
inspecting the diagrams in appendix B.

A full comparison of this definition with the existing work on verisimilitude has n
been carried out; that is why this section is called ‘unfinished work’.

7.2 Further work

There are many ways in which the work described in the thesis can be extended a1
improved; some of these have already been mentioned in earlier chapters. Some of the
are about improving the match between the theory of OTPs and related subjects (su
as default reasoning and belief rtevision); others aim to further the theory of OTI
itself. T mention two of the latter kind here which strike me as important.

7.2.1 Institution independence

Ordered theories have been defined for logics that are specified in terms of models a1
satisfaction and which have an appropriate notion of positive and negative occurrenc
of symbols in sentences. This level of abstraction is close to the notion of instituti
introduced by R. Burstall and J. Goguen [9, 27]. An institution is roughly a log
specified in terms of models and satisfaction, but also with additional emphasis
modularity and composability of languages and theories. We would like to generali
the definitions for OTPs so they work with an arbitrary institution. The main m
tivation for the additional modularity which institutions provide is from specificatic
theory.

A fundamental notion in the topic of institutions is that of signature, introduced
chapter 6. A signature is a set of non-logical symbols which are used to form sentence
By ‘non-logical’ symbols we mean those other than the operators which are built in
the logic like A, — and so on. A signature i1s a collection of proposition symbo
predicate symbols, function symbols, sort symbols, etc. A signature morphism is
map between signatures which preserves signature structure—for example, it ma
predicates of a certain arity to predicates of the same arity, it preserves sorts, and
on. The precise requirements on a signature morphism depend on the signatures
question.

Informally, an institution consists of a collection of signatures and signature mc
phisms, together with for each signature X
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o a collection of X-sentences,
o a collection of X-interpretations, and
o a Y-satisfaction relation between X-interpretations and 3-sentences

such that a certain condition called the satisfaction condition holds. It says that when
you change signatures (with a signature morphism), the satisfaction relation between
sentences and models changes consistently [28].

A theory in an institution is a signature 3 together with a consequence closed set
of ¥-sentences. A morphism between theories is a morphism between their signatures
which preserves satisfaction; that is, every model of the sentence translated by the
morphism can be reverse-translated into a model of the sentence. In this way, a complex
object 1s specified by a diagram of smaller objects, and its overall behaviour is given
by the colimit of the diagram.

The institution concept allows intertranslatability between theories and the opera-
tion of putting theories together to form bigger ones with the possibility of identifying
signature elements.

I have not looked in detail at how the notion of extension of extra-logical symbols
in an interpretation which is crucial to the definitions of OTPs may be derived from
an institution. That is why it is a matter of further work. I hope that the substantial
structure that institutions provide—particularly the morphisms between interpreta-
tions of the same signature—will provide the necessary hooks. If they do not, it will
be necessary to extend the institution concept.

As well as making OTPs more general, this exercise may improve their definition
by making the notion of extension of extra-logical symbols in an interpretation more
primitive than the definition of positive and negative occurrences from which it is
presently derived.

7.2.2 Proof theory

In his thesis, Y. Shoham [68] argues that proof theory does not make sense for default
logics.

Many of the notions that are quite clear in monotonic logic, such as com-
plete axiomatisation, cease to make sense in the context of non-monotonic
logic. The whole motivation behind non-monotonic logics is the desire to
be able to jump to conclusions, inferring new facts not only from what
is already known but also from what is not known. This seems to imply
that traditional inference rules, which are rules for deriving new sentences
from old ones, are inadequate. ... Rules that demand checking consistency
no longer have the computational advantages of traditional inference rules.
Perhaps something else is possible, along the lines of what are known as
systems for truth maintenance, in which the entities manipulated by pro-
grams are not sentences, but rather beliefs and records of justifications for
each belief.

Plainly we must read ‘default logic’ for ‘non-monotonic logic’, for the fact that a logic
is ‘non-monotonic’ (i.e. a logic failing the monotonicity property) is not enough to
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prevent it having a proof theory presented in a perfectly respectable way: witne
linear logic’s sequent calculus. Moreover, simply the loss of computational properti
is not a sufficient reason for concluding that there can be no proof theory, since mas
proof theories are undecidable. However, I argue that Shoham’s intuition is correc
and that the reasons go beyond computational questions.

The distinction between proof theory and model theory is blurred, and there a
many borderline cases. I propose a characterisation of these concepts which I think
intuitive, but has some surprising cases. For example, according to it, Reiter’s defat
logic (§5.4.1) is a semantics based definition, in spite of the apparent ‘tules of inference

A proof theory is a system which yields proofs. Thus, given a presentation ? a
a sentence ¢, if ? |L ¢ then we should be able to find a positive demonstration of tt
fact, namely a proof of ¢ from ?. On the other hand, if ? |£ ¢ then this is very hard
show in proof theory. We have to show of all the ‘potential’ proofs that none of the
are proofs of ¢ from 7. As there are infinitely many ‘potential’ proofs this is har
Thus, in proof theory we may convincingly show that ? |[L ¢, but we cannot easi
show that 7 |4 ¢.

Whereas proof theory deals in proofs, model theory deals in models. To show th
? |= ¢, we need to show that each of the possibly infinite collection of models of 7 is
model of ¢. This is difficult. To show that ? [~ ¢, on the other hand, is much easie
We simply exhibit a single model of ? which is not a model of ¢. In conclusion, t!
primitive notion of proof theory is |[L, whereas the primitive notion in model theory

.

This idea also goes some way towards explaining why soundness proofs are in gener
much easier than completeness proofs. To show soundness, we show for all 7 and ¢ th
? IL ¢ implies ? |= ¢. Expressing this in terms of the ‘primitive’ notions, soundne
becomes:

not(? L ¢ and 7 ¥ g)

We might expect this to be relatively easy to do because we just show that both 7 |L
and ? £ ¢ cannot hold at once. Completeness proofs, on the other hand, invel
showing that (in terms of the primitives):

T oor T

This is more difficult because it is a disjunction; which of 7 |L ¢ or ? & ¢ we shc
depends on the particular 7 and ¢.

If one accepts these characterisations of proof theory and model theory, one
led to the conclusion that all the usual default formalisms are model-theoretic; th
perhaps supporting Shoham’s claim. For example, Reiter’s ‘default logic’ cannot |
proof theoretic because it does not yield proofs. To show that ? [L ¢ in his syster
one has to show that all extensions of 7 contain ¢. These extensions are really model
80 this fits squarely with our model theory characterisation, not the proof theory on
Thus, we can show that ¢ does not follow from 7 by exhibiting one extension of
which doesn’t have ¢; but to show that it does follow is more difficult.

As Shoham points out, the reason that it is hard to get a proof theoretic accou
of default logics is because in any such logic there must be some kind of consisten
check before a default can be used. This may appear in a disguised form, for examp
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in the form of the model orderings present in circumscription and in this thesis, but it
is there nevertheless.

As far as OTPs are concerned, we may be able to go some way towards a proof
theory before encountering the problems associated with this consistency check. Specif-
ically, it is possible that the relation of natural consequence (definition 2.38) can be
given a proof theory. Showing weak structural properties (proposition 2.44) is some
way towards this, and one idea which I have not yet had time to explore is a connection
between natural consequence and linear logic. For example, the natural consequence
relation exemplified on page 39 does not identify logical-A and meet, nor V and join,
which the classical Lindenbaum algebra does. This means we get two ‘conjunctions’
and two ‘disjunctions’. Distributivity rules seem to fail however; but the connections,
if any, have yet to be established. A connection with linear logic would, of course,
answer the question of proof theory for natural consequence.

Two people have suggested algorithms for the special case of linear propositional
OTPs, namely Dov Gabbay and Pierre-Yves Schobbens (private communications). For
reasons already discussed, such an algorithm necessarily involves a consistency check.
The task of comparing these algorithms with each other and with the semantics of
OTPs remains to be done.

7.3 Related work: ‘the living database’

Dov Gabbay’s ‘living database’ is an ambitious research programme whose ultimate
alm 1is to incorporate all of the examples of practical reasoning mentioned in the intro-
duction, and many more besides. A living database is a database—it represents some
facet of the world—but also has built in to it its own behaviour under updates and
revisions, changes of priorities between units of information, temporal changes, and so
on. It has structure which encodes some dynamic aspects of the database as well as
just facts about the domain in question. Any unit information in the database comes
with some ‘meta-information’; such as:

o its provenance; this is perhaps the agent which asserts it, or its justification on
terms of other sentences.

o the time at which it is true.
o some measure of its reliability.

o information to do with how it interacts with other sentences currently in the
database or sentences which may appear in the database as a result of some
update.

The list 1s potentially endless, and any particular piece of information can have any
combination of these annexes.

It is obvious that the ordered theory presentations of this thesis are a move in this
direction, in which the additional meta-information which accompanies each sentence
is its location in the partial order. As described in other chapters, this information may
represent provenance, time or reliability depending on whether one views the partial
order as arising from the structure of a specification, a revision history, or the stipulated

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 1

interaction of defaults or evidence. Much remains to be done to make this truly livin
however. For example, the revision strategy which is the subject of chapter 4 on
works by giving the revising sentence maximum priority; we would like a more refine
way of updating with sentences whose priority can be expressed in terms meaningf
to the database. Also, continual revision in the way of chapter 4 yields rather strin
‘databases’; a truly living database is constantly reformatting itself as it sorts o
conflicts and works through deductions—rather like human brains.

The living database programme embraces a range of particular theories of whi
this thesis represents one with a model-theoretic flavour. Gabbay’s own main exampl
are databases expressed within a labelled deductive system (LDS) [21] which has a pro
theoretic flavour. In LDS each sentence is explicitly paired with a label and each pro
rule of the system has side conditions applying to the labels which determine wheth
the rule can be applied or not; and if so, how its conclusion will be labelled. Take, f
example, the familiar rules of — introduction and elimination in natural deduction:

[¢]

s 6 4=
¢ v
¢—

The first rule says that if ¢ can be deduced from ¢ then ¢ — ¢ can be deduce
and moreover the conclusion ¢ — ¥ doesn’t depend on ¢, which can therefore |
‘discharged’ (as represented by the square brackets). The second rule says that fro
¢ and ¢ — ¥ one may deduce . Gabbay gives an example of LDS in which the lab
of a sentence 1s a set of nodes upon which it depends; for example, it may be a set
sentences in another theory. The rules become:

[¢d]
: ¢a (¢ — )
La g b zz)aL.Jb
(¢ = ¥)p-a

Thus, —-elimination accumulates dependencies; 9 is dependent on anything that ¢
¢ — 1 was. But this is not true for —-introduction, for ¢ — ¢ does not depend ¢
things on which ¢ depended. The side-condition a C b must hold for the rule to |
applicable.

Other rules may combine the labels in different ways. In this example the labe
were just unstructured sets, but more generally they may have a complex algebra
their own. Indeed, in many examples the labels themselves form a logic; so one c:
consider what logic arises from, say, classical logic with labels from intuitionistic logi
For more details, see Gabbay’s forthcoming book [21].

7.4 Recap and final remarks
This thesis is about the framework of ordered theory presentations as a means

unifying many aspects of practical reasoning, in artificial intelligence and in softwa
engineering.
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As we have mentioned in the proceeding sections, the work of this thesis is on going.
I hope that improvements to the OTP definitions may be obtained by connecting with
the framework of institutions, in such a way that much of the theory of OTPs can
remain in place. To this end, I have emphasised where appropriate the modularity of
these definitions; in particular, properties of the definition of CT in terms of C, do not
depend on the definition of Cy4 except insofar as it is required to satisfy assumption 2.16.

Notwithstanding this further work, I hope that OTPs as they stand are seen as
a direct way of linking at least the topics of belief revision and default reasoning. I
have shown that they have good properties in the terms of those topics. I believe that
they provide links with other aspects of practical reasoning, such as verisimilitude and
prioritised evidence, as has been indicated.

Appendix A

A Miranda program for
propositional OTPs

The Miranda code for ordered theory presentations in propositional logic is close
based on the mathematical definitions given in chapter 2. One of the virtues of Miranc
is that this i1s possible.

A formula is defined to be either an atom P, Q, R,..., or T, or L, or it is t
negation, conjunction, disjunction, implication or bi-implication of other formulas.

formula ::= P | Q| R | S|
TOP | BOT |
N formula |
formula $A formula | formula $0 formula |
formula $I formula | formula $J formula

First we specify 7 by means of a set of points, and a set of pairs pt_ord used
generate the ordering. The function sent maps points to sentences. For example,
specify the OTP specifies

p\ “pAg
NS

r
we define
points = [1,2,3]
pt_ord = [(1,2),(1,3)]
sent 1 = R
sent 2 = P

sent 3 = (N P) $4A Q
Given such an OTP, we work out the names of the atoms actually used.

atoms = sort (mkset (used (map sent points)))
where
used ((x $I y):t) = used (x:[]) ++ used (y:t)
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used ((x $J y):t) = used (x:[]) ++ used (y:t)
used ((x $A y):t) = used (x:[]) ++ used (y:t)
used ((x $0 y):t) = used (x:[]) ++ used (y:t)
used ((N x):t) = used (x:t)

used (x:t) = [x] ++ used t

used [1 =[]

Now generate the set of interpretations of the language used. An interpretation is
a map from the atoms to {t,f}; we represent them by sequences of 0’s and 1’s.

interps = mods (#atoms)
where
mods n
= [0 :m) [m<-p]++[(’1° :m) Im<-p], if n>0
= [[11, otherwise
where p=mods(n-1)

leqX is the ordering on points. It is the reflexive transitive closure of pt_ord
viewed as a relation.

legX x ¥y
= x=y \/ or [leqX z y | z<-points; member pt_ord (x,z)]

Now we define a function sat which takes an interpretation and a sentence and
evaluates whether the sentence is satisfied or not in the interpretation.

sat m (N s) = “sat m s

sat m (s1 $A s2) = sat m s1 & sat m s2

sat m (s1 $0 s2) = sat m s1 \/ sat m s2

sat m (s1 $I s2) = "sat m s1 \/ sat m s2

sat m (s1 $J s2) = sat m (s1 $I s2) & sat m (s2 $I s1)
sat m TOP = True

sat m BOT = False

sat m p = m!(idx p atoms)=’1’

where
idx x (x:y) =0
idx x [l = error'can’t idx empty list"

idx x (y:z) = 1+idx x z

The models of a sentence are the interpretations which satisfy it. (This kind of
definition makes one glad one is using Miranda!)

models sent = [m | m<-interps; sat m sent]

We represent formulas by the sets of their models. Therefore, the set of formulas is
the power-set of the set of interpretations.
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formulas = powerset interps
where
powerset [1 = [[]1]
powerset (x:y) = (map (f x) (powerset y)) ++ (powerset y)
where f a b = (a:b)

The positive monotonicities of a sentence are the atoms with the property that
their extension is increased in a model of the sentence, the result is also a model of t
sentence. Negative monotonicities are defined similarly.

monoP phi = [p | p<-atoms; subset (map (inc p) phi) phil
where inc p m = subst 1’ (idx p atoms) m

monoN phi = [p | p<-atoms; subset (map (dec p) phi) phil
where dec p m = subst >0’ (idx p atoms) m

The natural consequences of a sentence are the consequences which preserve t
monotonicities.

natcons phi = [psi | psi<-formulas; subset phi psi;
subset (monoP phi) (monoP psi);
subset (monoN phi) (monol psi)]

We have M Cy N if for all ¢ such that ¢ = ¢, M ¥ ¢ or N IF 9.

leq phi m n
= and ["member psi m \/ member psi n | psi<-natcons phi]

For convenience, we define C, and C, too.

lep x m n = leq (models(sent x)) m n
ltp x m n lep xmn & “lep x nm

M C" N if any point 2 which has the misfortune of having the property th
M Z, N is at least good in that thereisay <z with M C, N.

leG m n = and (map good [x | x<-points; "(lep x m n)])
where good x = or [1tp y m n | y<-points; leqX y x]

Also, MCU Nif M CT N and N g M.
1tG mn =1eGmn & "leGnm

The maximal models are those which have nothing above them.
maxmods = [m | m<-interps; “or [1tG m n | n<-interps]]

We also used subset (it checks whether its first argument is a subset of its secon.
and subst (which substitutes a token in a list at a specified position).
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subset [] 1 = True
subset (x:y) 1 = member 1 x & subset y 1

subst tok 0 (h:t) = tok:t
subst tok n (h:t) = h:subst tok (n-1) t
subst tok n [] = error"string too short in function subst"

Appendix B

This code is sufficient to compute the models of a propositional ordered theory
presentation. I have written other functions which display orderings among interpre- . .
tations and sentences, but it is not reproduced here. It i1s surprising that so little code T h eo I'y com p arison d 1A g rams
is needed (hardly more than a page, without the comments).
Using these definitions and the example OTP given, maxmods evaluates to
["011","111"], which is ¢ A v (example 1.7).
For a variety of theories T over the language {p, ¢}, we give the ordering <7 whi
orders other theories in the language according to their closeness to T'. See §7.1 f
details of the definition.
In each diagram, the formula ¢ appears as an abbreviation for the theory Cn({¢]

p.pAg pPATg

pVogig ot pVe T
peo g pV g pVgpeg

ap.op A g op A g

Figure B.1: The ordering for Cn({p})
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APPENDIX B. THEORY COMPARISON DIAGRAMS
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Figure B.2: The ordering for Cn({p, ¢})

pPAq
—|p/\—|q

PH(]\

P Lg P, ¢
pVyg PV g

AN N

Vg T
—|pV—|q

N

pAg pATg

Py

Figure B.3: The ordering for Cn({p < ¢})

APPENDIX B. THEORY COMPARISON DIAGRAMS

pe g Tp g pATg
pPAg p.og PV

“pVog,op,og, T
pV g, opVg.peg

—‘p/\—‘q

Figure B.4: The ordering for Cn({p V ¢})

peg phg TpA g
pAg Tp, g TPV

pV-gp.7g. T
pV g pVg.pe= g

pA—g

Figure B.5: The ordering for Cn({p — ¢})
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