
THIS PAGE INTENTIONALLY LEFT BLANK Ordered Presentations of TheoriesA Hierarchical Approach to Default ReasoningMark D. RyanPh.D. thesis1992
Author's address:Department of ComputingImperial CollegeLondon SW7 2BZEnglandE-mail: mdr@doc.ic.ac.uk

To my motherGeorgette Louise1936{1991 AbstractThe thesis motivates and examines the properties of hierarchies of sentences in a logic,where the hierarchy determines how any conicts between the sentences should beresolved. In the thesis such hierarchies are called ordered theory presentations (orOTPs). In an OTP, one sentence overrides another if it contradicts it and dominatesit in the hierarchy. One of the principal contributions of the thesis is the ability toallow such overriding to be partial. Thus, if a sentence in an OTP is dominated byanother which contradicts it, those aspects of it which are contradicted are overridden,but aspects of it which are not contradicted are preserved. Many properties of OTPsare proved, of both a `static' nature (relating to how conclusions can be drawn fromthem) and a `dynamic' nature (how they can be updated with new information).OTPs have applications in Arti�cial Intelligence and Software Engineering. Thethesis concentrates mainly on the applications in AI, where OTPs provide a logic-independent framework for representing and reasoning with default information, andfor revising belief states with conicting information. In SE, the topics of defaultsand revision occur again in the context of speci�cations, and the ability to handlethem mathematically is presented as an attempt to describe formally such concepts asincremental speci�cation and design by di�erence. These applications are described inthe thesis.The machinery introduced for OTPs works for a wide class of logics given in termsof a language, a set of interpretations and a satisfaction relation. The class includesclassical, intuitionistic and modal logics. The key de�nition gives, for each OTP, apre-order on interpretations which orders interpretations according to how well theysatisfy the OTP. Models of the OTP are de�ned to be the interpretations which aremaximal in the ordering. Consequences of the OTP are sentences which are true in allits models. Under the natural notion of adding new sentences to an OTP presentationthis consequence relation is non-monotonic, which means that the set of conclusionsmay shrink as the hierarchy of premises is extended. But if the underlying logic iscompact, the consequence relation retains the property of weak monotonicity prevalentin the literature. 3

Contents1 Introduction 71.1 Ordered theory presentations : 81.2 Applications in `practical' reasoning : 101.2.1 Default Reasoning : 101.2.2 Belief revision : 111.2.3 Prioritised evidence : 131.2.4 `Closeness to the truth' : 151.2.5 Software engineering : 161.3 Examples : 171.3.1 Criteria for the de�nitions for OTPs : : : : : : : : : : : : : : : 211.4 Related work : 221.5 Outline of the rest of the thesis : 222 Ordered theory presentations 242.1 Logical setting : 242.2 Ordered theory presentations : 282.2.1 The ordering v� : 302.2.2 The ordering v� (motivation) : : : : : : : : : : : : : : : : : : : 352.2.3 The `natural consequence' relation j=� : : : : : : : : : : : : : : : 362.2.4 The ordering v� (de�nition) : 412.2.5 Summary of de�nitions for OTPs : : : : : : : : : : : : : : : : : 453 Examples and Properties of OTPs 463.1 Worked examples : 463.1.1 Examples in propositional logic : : : : : : : : : : : : : : : : : : 463.1.2 Examples in predicate logic : 483.2 Existence of models for OTPs : 513.3 Adding information to OTPs : 544 Belief revision 584.1 Introduction : 584.2 The AGM theory : 594.2.1 Selection functions : 614.2.2 Epistemic entrenchment : 624.3 Criteria for belief revision : 634.4 Linear ordered theory presentations : 654.5 The AGM axioms : 664

CONTENTS 54.5.1 The AGM axioms K4 and K8 : : : : : : : : : : : : : : : : : : : 694.6 Examples : 705 Default Reasoning 715.1 Introduction : 715.2 Criteria for classifying default systems : : : : : : : : : : : : : : : : : : 725.3 Two examples of default reasoning : 735.3.1 Inheritance defaults : 735.3.2 Persistence defaults : 745.4 Default systems : 765.4.1 Reiter's `Default Logic' : 765.4.2 Circumscription : 785.4.3 Veltman's Update Semantics : 805.4.4 Ordered theory presentations : : : : : : : : : : : : : : : : : : : 815.4.5 Other systems with ordered defaults : : : : : : : : : : : : : : : 825.5 Formal properties of default systems : : : : : : : : : : : : : : : : : : : 825.5.1 Makinson's conditions : 835.5.2 Makinson's conditions and OTPs : : : : : : : : : : : : : : : : : 866 Applications in Software Engineering 886.1 Introduction : 886.2 The software process : 916.3 Speci�cations with defaults : 936.4 Design by di�erence, or speci�cation revision : : : : : : : : : : : : : : : 966.5 Structured speci�cations and modal action logic : : : : : : : : : : : : : 976.5.1 Mal, its syntax and semantics : : : : : : : : : : : : : : : : : : 976.5.2 The frame problem : 996.5.3 The structuring principle : 996.5.4 Speci�cations and OTPs : 1006.6 Related work : 1016.6.1 Deontic mal : 1016.6.2 Institutions : 1026.6.3 Other default logics : 1036.7 Objections : 1036.8 Conclusions : 1047 Conclusions and further work 1067.1 Un�nished work: verisimilitude : 1067.2 Further work : 1097.2.1 Institution independence : 1097.2.2 Proof theory : 1107.3 Related work: `the living database' : 1127.4 Recap and �nal remarks : 113A A Miranda program for propositional OTPs 115B Theory comparison diagrams 119

Acknow ledgem entsMy supervisor Steve Vickers provided much support, both technical and moral, forwhich I am very grateful. In spite of a considerable workload of his own, he was alwaysprepared to see me and give consideration to my problems. I am also indebted toothers who took a supervisory role, especially Tom Maibaum and Martin Sadler. Theyhave shown great interest in my work which at times I thought was unjusti�ed butwhich was always very much appreciated. Innumerable friends and colleagues gaveme support at various times, but I must single out (alphabetically): Abbas Edalat,Jos�e Fiadeiro, Lex Holt, Mark Dawson, and Murray Shanahan. I have also bene�ttedfrom discussions with many people at Imperial College and elsewhere, including Andr�eFuhrmann, Anthony Finkelstein, Dov Gabbay, Ian Hodkinson, Johan van Benthem,Frank Veltman, Marcelino Pequeno, Paul Taylor, Pierre-Yves Schobbens, and SamsonAbramsky.The following people kindly read drafts of this thesis and provided valuable feed-back: Anthony Finkelstein, Krysia Broda, Mark Dawson, Jonathan Mo�ett, MurrayShanahan, Paul Taylor, Steve Vickers, and Tom Maibaum.My family also provided moral support. My father has great con�dence in me whichalbeit sometimes unwarranted has the bene�cial e�ect of spurring me on. My motheralso had much faith in me, and her words on the subject of my Ph.D. are one of thereasons that it has come into being. Therefore, and for other reasons, I dedicate it toher. John Finnegan has guarded my sanity.
6

Chapter 1IntroductionLogic has been used since antiquity to study correct human reasoning. But until thelast few decades, it had been successful only in representing very precise reasoning,such as that found in mathematics. Logic is appropriate for mathematical reasoningbecause conclusions, when they follow from certain premises, do so inexorably. Onenever has to deal with conicting evidence in mathematics; it is always possible toresolve apparent conicts by further investigation. Furthermore, once a conclusion hasbeen shown to follow from a certain set of premises, the addition of further premisesin the argument cannot eliminate it.But recently, a variety of systems have been proposed for aspects of practical rea-soning. The reasoning humans perform in everyday life does not have the precise andexact avour of mathematical reasoning, but rather is often based on conicting evi-dence, on assumptions which are known not always to be valid or on prejudices frompast experience. Much of the motivation for such research has come from arti�cialintelligence. Speci�cally, at least two phenomena have been studied:Default reasoning. A default sentence is one which expresses a generality or preju-dice but which may be overridden by other, more certain information. Examplesinclude birds can y and tigers have four legs. Reasoning with defaults meansbeing able to use such sentences to draw conclusions, taking account of whetherthey are overridden by other sentences or not. In a more general setting, therecould be a hierarchy of sentences to consider.Belief revision. This is about incorporating new information about a situation whichpossibly conicts with the older information an agent already has. The informa-tion an agent has is encoded in its `belief state'. To incorporate new informationsuccessfully, the agent must arrive at another belief state which supports the newinformation while keeping as much of the old as is consistent.Default reasoning is concerned with a static aspect of reasoning, namely how best touse information to arrive at conclusions. Belief revision, on the other hand, is aboutthe dynamics of new information arriving. Nevertheless, there are strong relationshipsbetween these subjects. These relationships have already been explored by exhibitingequivalences between properties of default systems and properties of belief revisionsystems [48]. In this thesis we present a framework which treats default reasoningand belief revision in a uniform way, thus providing a further way to see relationshipsbetween the systems. 7

8 CHAPTER 1. INTRODUCTIONThere are other aspects of practical reasoning which can also be handled by theframework of this thesis. We will also discuss:Prioritised evidence. Suppose there are a number of sources providing informationabout a particular topic. If the sources contradict each other, but we have anordering as to their reliability, we may wish to use the ordering to resolve conictsand get as near to a consensus as possible.Verisimilitude, or closeness-to-the-truth. Given two descriptions of a situation, canwe say that one of them is closer to the truth (or perhaps to a third description)than the other one is?These topics have also been studied before, and we will compare our results with theexisting work. The contribution of this thesis is a uniform framework for handling atleast these four topics in practical reasoning, and perhaps others as well.1.1 Ordered theory presentationsThis thesis describes a new way of packaging sentences together to present a logicaltheory. It turns out that this provides a uniform way of dealing with the kinds ofpractical reasoning described above. As well as providing a framework for studying therelationships between topics, it also gives better results in the areas mentioned.� In default reasoning, we get an improved way of expressing defaults and theirinterrelationships by using the proposed framework (chapter 5).� In belief revision, we obtain a system which improves on existing systems byallowing repeated revision instead of just a single revision step. We depart fromtwo widely accepted postulates of belief revision, however; but this departure isjusti�ed with examples (chapter 4).� In prioritised evidence, we improve on the expressive power of the logic program-ming setting of D. Vermeir's work [40]. (As this topic is rather small comparedwith the others it is not dealt with beyond this chapter.)� In verisimilitude, we get results which more closely match our intuitions (chap-ter 7).We propose the concept of an ordered theory presentation for dealing withthese phenomena. An ordered theory presentation, or OTP for short, is a multi-set ofsentences equipped with a partial ordering. The partial ordering is read as `dominates'or `overrides'. The exact de�nition will be given and discussed in chapter 2. The reasonfor considering multi-sets instead of sets is that the same sentence may occur twice indi�erent parts of the ordering. In some circumstances we will impose the restrictionthat the multi-set be �nite.We will use a graphical notation for representing OTPs. For example, the notationp :p ^ qI@ @ @ @ � � � ��r
CHAPTER 1. INTRODUCTION 9represents the ordered theory presentation with the three sentencesp; :p ^ q; and rsuch that r dominates both p and :p ^ q. Notice that sentences lower in the orderingdominate those above. Thus, the arrow is read as `dominates'. Neither p nor :p ^ qdominates the other. In the following OTP:�p ^ q :p _ r�the sentences p ^ q and :p _ r are incomparable in the ordering. Therefore, they arewritten side-by-side with no arrows. The large brackets aren't really necessary, butthey are useful in delimiting the OTP on the page in the absence of any arrows.Examples motivating how to reason with OTPs will be given later (x1.3) and thede�nitions will be given in chapter 2. Examples to show how OTPs can be used forthe topics mentioned above are also given later.The concept of an ordered theory presentation may be seen as an extension of theconcept of theory presentation, thus explaining the nomenclature. A theory is a setof sentences closed under logical consequence. A theory presentation is a �nite way ofpresenting a theory. Usually it is just a �nite set of sentences. It presents the theoryobtained by taking its closure under consequence.As stated, an ordered theory presentation is a �nite partially-ordered multi-set ofsentences. It can be viewed as a theory presentation equipped with a partial order insuch a way that the same sentence can, if necessary, be present in two di�erent places inthe ordering. If all the sentences in an OTP are consistent then the theory it presentsis just the closure under consequence of that set, analogously to the non-ordered case.But if the sentences are not mutually consistent then the ordering has to be taken intoaccount to arrive at a consistent theory which the OTP presents. The way in which todo this is de�ned in chapter 2 and motivated later in this chapter (x1.3).From a logical point of view, there are issues for ordered theory presentations whichdid not arise in the context of ordinary theory presentations.� What are the natural ways of adding a sentence to an OTP? What are theproperties of these ways?� What are the natural ways of putting OTPs together to make bigger ones, andagain, what are the properties?These questions will be answered during the course of the thesis.From a technical point of view, the main question addressed by this thesis is howthe conicts between the sentences of an OTP are resolved in arriving at the presentedtheory. In order to answer this satisfactorily we introduce the idea of degrees of satis-faction between interpretations and sentences. This works as follows. In ordinary logic,given a language, an interpretation of the language and a sentence in the language, wemay say that the interpretation satis�es (or is a model of) the sentence or that it doesnot. Suppose we have two interpretations which fail to satisfy a sentence. In ordi-nary logic there is usually nothing more to be said. But using the idea of degrees ofsatisfaction introduced in this thesis we can consider whether one interpretation more

10 CHAPTER 1. INTRODUCTIONnearly satis�es the sentence than the other. This seems to represent a signi�cant de-parture from classical logic. The machinery for doing this is introduced in chapter 2,and examples of interpretations satisfying sentences to varying degrees are given.The remainder of this chapter is organised as follows. In the next section the fourexamples of practical reasoning described above are presented again, with more detailof how ordered theory presentations can be used in each case. In x1.3 some speci�cexamples of OTPs are given, together the theories they present. These examples areused to build (or test) the reader's intuitions; the de�nitions are given in the nextchapter. In x1.3.1, the criteria which a system for handling OTPs should satisfy arediscussed.1.2 Applications in `practical' reasoning1.2.1 Default ReasoningDefault reasoning is about using prejudices (or defaults) about the world to arrive atplausible conclusions in such a way that the conclusions can be withdrawn if evidenceto the contrary emerges. To take the most hackneyed example, everyone would acceptthat birds can y, which we write as1. 8x: �b(x)! f (x)�.It is undeniably true that penguins are birds:2. 8x: �p(x)! b(x)�,but it is also the case that penguins cannot y, that is3. 8x: �p(x)! :f (x)�.Of course these statements conict1 . The world is not contradictory, however, and mostpeople would agree that statement (1) should really say birds (other than penguins,ostriches and some others) can y:10. 8x: �b(x) ^ :(� � � _ � � �)! f (x)�.But it is not practical to spell out the exceptions, for almost every premise ofinterest in everyday reasoning is a generalisation for which it is infeasible to specifyall the exceptions. What is needed is a way of seeing the initial set of statements(numbered 1, 2 and 3 above) as a way of presenting a consistent theory. There isan implied way of resolving the conict, namely that statement (3) should overridestatement (1) whenever the two conict. In this particular example, the overridingcomes from the speci�city principle:Statements about a speci�c class of things should override statements abouta more general class.1Strictly speaking, there are models in which nothing satis�es the predicate p.
CHAPTER 1. INTRODUCTION 11In this case, the speci�c class is the class of penguins, and the general class is the classof birds. This fact is represented by sentence 2, which expresses something about thede�nition of penguins. We will have more to say about this principle elsewhere in thethesis. For the present, it is possible to take a perhaps na��ve view of this example, whichis that we will obtain intuitively correct results if we simply order the sentences in thepresentation according to their relative `priorities'. We can encode the informationabout this example with the following ordered theory presentation.16362Sentence 2 is the strongest|it dominates or overrides 1 and 3, because it is true `byde�nition'. Also, 3 overrides 1. The fundamental question of this thesis is: givensuch an OTP, how can a consistent theory be obtained, which includes as much of thesentences in the OTP as possible, taking account of their ordering? It should be seenthat this is not a trivial question. For example, one cannot argue as follows: becausesentence 1 conicts with 2 and 3 taken together, and because it is weaker than theyare in the ordering, we can ignore it. And because 2 and 3 are consistent, the theorywhich the ordered presentation is intended to denote is given by their conjunction. Thereason that this argument is wrong is that one cannot prove from the resulting theorythat birds which are not penguins can y. In logical terms, we cannot ignore the wholeof sentence 1; we must retain any `components' which are consistent with 2 and 3.Exactly what is this notion of `component' is one of the main questions addressed bythis thesis.There are, of course, hundreds of proposed ways of handling this example whichcan be found in the literature [25, 44]. This one is particular because of the explicitprioritisation of the sentences involved. The other approaches to default reasoning areclassi�ed in chapter 5, where OTPs are compared with other formalisms.1.2.2 Belief revisionThe basic question in belief revision is: how should new information be incorporatedinto a belief state to result in a belief state which contains the new information andas much of the original belief state as is consistent? The best-known work on thissubject is called the AGM theory (after its originators, C. Alchourr�on, P. G�ardenforsand D. Makinson), which models belief states as deductively-closed sets of sentences.Here is an example from G�ardenfors' book [23, page 1] on the subject2:Oscar used to believe he had given his wife a gold ring at their wedding.He had bought it from a jeweller who claimed it was made of 24 carat gold,and had taken it to the jeweller next door who had testi�ed to its goldcontent.2This is not an exact quotation; I have simpli�ed the story slightly.

12 CHAPTER 1. INTRODUCTIONHowever, some time after the wedding Oscar noticed that the sulphuricacid his wife was using in her laboratory stained her ring. He rememberedfrom school chemistry that the only acid that a�ected gold was aqua regia.So he had to revise his beliefs because they entailed a contradiction. Hetoyed with the idea that his wife had used aqua regia in the laboratoryinstead of sulphuric acid, but soon gave up that idea. Having greater con-�dence in his school chemistry than his own smartness, he concluded thering was not gold after all. He became convinced that the jewellers hadbeen lying, and guessed they were in collusion with each other.There are several morals to this story, but we will restrict attention to those that haveto do with belief revision. The essential points of the story seem to be:� Revision (rather than expansion) is demanded in the face of inconsistency. (Ex-pansion means just adding beliefs without removing others to keep consistency.)� There are several ways of doing any particular revision (in the story, Oscar toyedwith the alternatives), and the choice of which to do depends on how `entrenched'other beliefs are. For example, school chemistry was more entrenched than Os-car's belief in his own smartness, in the sense that he is more prepared to giveup the latter than the former in the face of inconsistency.� The new beliefs combine with the remaining old ones to give rise to further beliefs(he concludes that the jewellers were lying), which may themselves carry less thantotal certainty (he suspects that they were colluding with each other).All of these ideas will be discussed in chapter 4.One notable point about Oscar's story is that he revises his beliefs but once. Indeed,the AGM theory of belief revision only handles this kind of one-o� revision. Real agents(human or computer) revise their beliefs continually, and the theory we o�er is ableto model this easily. The reason why the AGM theory can only model single revisionsis that the revision functions do not return a fully speci�ed belief state of the kindthey demand as an argument. This point will be amply expanded in the chapter, butthe crucial problem is that belief states are represented by deductively-closed sets ofsentences in the AGM theory.It will come as no surprise that we advocate representing belief states by orderedtheory presentations. To revise an OTP with a contradicting sentence (whether thesentence contradicts the theory presentation or not), simply add the new sentence atthe bottom of the presentation. Thus, the presentation directly represents the relativedegrees of certainty. New information is placed in the most certain position. Of course,this is not desirable for all kinds of revision, and in the chapter we will attempt tocharacterise the applications for which this notion of revision is suitable.A fundamental notion in the topic of belief revision is that of minimal change.When revising a belief state, as much of the belief state should persist through therevision as possible. We will show that the AGM theory fails to capture this notion,but that the theory of belief revision based on OTPs scores highly on this point.The following example of belief revision concerns the understanding of explanations.Explanations are often structured so that broad generalisations are stated �rst and thenmore speci�c information which may contradict the earlier generalisations is given.
CHAPTER 1. INTRODUCTION 13Imagine an agent|a human, perhaps, or a robot|which acquires information aboutthe world in a sequential fashion. As stated, later information may contradict thatwhich was learned earlier, and the agent wants to resolve these conicts giving priorityto the later information. If explaining the operation of a motor car, for example, Imight say:1. When you turn the ignition key the starter motor turns the engine.2. The engine then catches and turns by itself.Of course this is not the full story, and if you want to know more I might say3. If the battery is at, the starter motor won't turn.4. And if there's no petrol, the engine won't catch.These latter statements partially override the earlier ones. Taken as a whole, theycontradict each other. For example, 1 is supposed to be true in any situation, whetherthe sun shines or not, whether it is a weekday or a weekend and whether the batteryis at or not, since none of these are mentioned as exceptions. Sentence 3 contradictsthis. Similarly, 2 and 4 contradict each other. The way to understand this explanation,and all such explanations for that matter, is as an example of belief revision:1626364As more information arrives, the agent simply adds it to the end of its belief state.If later information happens to be consistent with earlier information, as sometimeshappens, then the ordering will be ignored and the conjunction of the sentences willbe used.Note that, as before, we cannot ignore sentences higher in the ordering because theycontradict later ones. For example, 1 contradicts 3, but we still have to take accountof 1 when the contradiction does not arise.1.2.3 Prioritised evidenceIn the examples given so far, it has been necessary only to consider linearly orderedtheory presentations. This is necessarily the case in belief revision examples, since thepresentations are just revision histories. In examples of defaults, however, more com-plex structures can be appropriate; this will be seen in chapters 5 and 6. For anotherexample of general partial orderings between sentences, consider several advisors withdi�erent degrees of credibility. We imagine a situation in which we are seeking theconsensus of four politicians who have opposing points of view, but we have our ownopinion on the relative priorities we should give them and we want to use this to arrive

14 CHAPTER 1. INTRODUCTIONat a conclusion. Our politicians are called Patrick, Neil, Nigel and Margaret. Supposeit is believed that Neil is considered more believable than Margaret, and although nopriority is expressed between Nigel and Patrick, they both do better than Neil. Theseconsiderations lead to the following order; the arrows mean `is more believable than'.Margaret6Neil� �� I@ @Nigel PatrickThe issues of the day are the prospects for the ruling party at the next election, andwhat is likely to happen to interest rates and ination. Let r mean that the rulingparty is restored to power, i that interest rates increase and f that ination goes up.Margaret believes the ruling party will be re-elected, but also that interest rates willrise: r ^ i.Nigel believes that the party will lose unless interest rates come down: i! :r.Neil thinks that if ination is high then interest rates will be high too: f ! i.Patrick predicts that re-election of the ruling party will lead to ination: r! f .To take account of our preference between advisors, we have to consider the follow-ing presentation: r ^ i6f ! i� �� I@ @i! :r r! fFrom this OTP we should expect to be able to deduce :r ^ i, but nothing about f .To see that this is so, remember that we want to satisfy the constraints which occurlower in the ordering �rst, and then subject to satisfying those we want to satisfy thehigher ones. In this case the three lowest sentences are consistent; their conjunction is:r ^ (:f _ i). Now we want to satisfy the top sentence, or at any rate as much of itas we can. It says r ^ i. We are already committed to :r, but we can accept the i andconclude :r ^ i. In doing so we loose the ability to say anything about f .That conclusion was based on a particular ordering of our advisors. Now supposewe chose to re-order them according to a new opinion on their credibility. We maydecide that we have more con�dence in Margaret than we did before. Perhaps we thinkshe's even more honest than Nigel and Patrick. We might re-order the views as follows:Neil� �� I@ @Nigel PatrickI@ @ � ��Margaret
CHAPTER 1. INTRODUCTION 15Given this new ordering, the right presentation to use is:f ! i� �� I@ @i! :r r! fI@ @ � ��r ^ iIn this case we deduce r^i^f , which is the conjunction of the views of Neil, Patrick andMargaret. We cannot accept Nigel's view because it is incompatible with Margaret's,and she takes priority in the ordering. Although Neil has been assigned a low priority,we can accept his view because it does not conict with any view given a higher priority.The application of ordered theory presentations to prioritised evidence will not bediscussed further in the thesis, but it is not as light-hearted or impractical as the readermight think. There is an implementation of the de�nitions for ordered presentationsfor propositional logic (the code is given in appendix A). On an issue with a largenumber of inter-dependent propositions and with a large number of di�erent views,I consider that this idea would be a practical aid to gaining a feel for the `receivedopinion'. Of course the conclusion one might reach is much dependent on the orderingof the views, and a well-designed reasoning tool would o�er a graphical interface forchanging them around.1.2.4 `Closeness to the truth'Another outcome of the techniques developed in this thesis is the ability to measure the`distance' between competing theories to another theory, which may be thought of asrepresenting the true situation. This may be illustrated by means of an example to dowith the economy. The state of the economy is often described by certain parameterswhich take numeric values, such as unemployment, ination, the rate of interest, thegross domestic output, per-capita income, the value of the pound against other cur-rencies and so on. Typically, it is desirable for some of these to be high (e.g., domesticoutput, per-capita income) and for others to be low (e.g., interest rates, ination) whileyet others are best kept within certain bounds (e.g., the value of the pound). One maysimplify the representation of the state of the economy (as politicians are wont to do)by considering a family of atomic sentences expressing propositions about the valuesof these parameters, like the following:� u means unemployment is high;� i, interest rates are high;� c, per-capita income is high;� p1, p2 and p3 mean the pound is too low, within acceptable bounds, or too high;and so on. There may be undisputed relationships between the propositions, such asthe fact that precisely one of p1, p2 and p3 is true at a time.Now imagine that we are performing a post-hoc comparison of several economiststheories about what would be the case in the economy at the present time. We have

16 CHAPTER 1. INTRODUCTIONto hand the truth of the matter, a theory T which says how things actually are. Mostprobably this will be a logically complete theory, that is, one which contains everysentence in the language, or its negation. It need not be complete, however, if noteverything about the current state of the economy is known. The ideas being motivatedwork whether it is complete or not.The economists' predictions are set out in theories T1; T2; : : : ; Tn. These will prob-ably not be logically complete, and may have any of the usual boolean combinationsof the atomic sentences, like conditionals (such as i ! u), disjunctions (e.g. u _ c),negations and so on.Even if a certain Ti is not the same as (or a superset) of T , it may be closer to itthan some other theory Tj . In view of the expressive power of the Tis mentioned, thisis not just a matter of comparing sets of atoms. We want T to induce a pre-order onall the theories over the language in question, so that Ti 6T Tj means that Tj is asclose to T as Ti is. We expect certain principles, such as:If T � T 0 then T 0 is 6T -maximal.For example, if one of our economists predicted as much or more as is known aboutthe present economy, he or she must get full marks.This application has not yet been fully developed, but the beginnings of it are de-scribed in chapter 7 and appendix B. The provisional de�nitions for theory comparisonhave also been implemented for propositional logic. Indeed the diagrams given in ap-pendix B were computed by the program. Thus, the idea of using this as a practicalmeans of ranking predictions against a known outcome is not unrealistic.1.2.5 Software engineeringFinally, many of the ideas mentioned above can be applied to software engineering; achapter of the thesis is devoted to exploring these issues, although this work is still atan early stage. In software engineering one is interested in speci�cations and how toconstruct them. In logical terms, speci�cations denote theory presentations, and wewill advocate in chapter 6 that this be changed to ordered theory presentations. Thiswill enable us to deal with� Speci�cations involving default information. For example, certain componentsof the speci�cation may have default characteristics that we wish to accept oroverride.� The re-use of components which were speci�ed for a similar (but not identical)purpose to the one at hand.� Design by di�erence; that is, a system may be speci�ed as being like anotherexcept in certain speci�cally mentioned respects.� Fault tolerant systems. These systems have a normative behaviour which may beviolated if the system goes into a faulty state. We want to specify what happensin these states.There are relations between these ideas, which will be explored in chapter 6.
CHAPTER 1. INTRODUCTION 171.3 ExamplesTo recap: an ordered presentation of a theory is a partially ordered multi-set of sen-tences. It is a `multi-set' rather than a `set' because the same sentence may occurtwice, in di�erent places in the order (for example, two of our advisors might say thesame thing).Ordered theory presentations are a simple approach to studying a variety of phe-nomena in practical reasoning. We will see in other chapters how they relate to otherframeworks for practical reasoning. The good thing about OTPs are that they areintuitively very simple; it is easy to see what a particular OTP should mean, as thefollowing examples show.An informal syntax of graphs for OTPs was used in x1.1, and we will use thishere and indeed in the majority of the thesis. (In x2.2 we will introduce a more formalnotation.) We will start with some linear examples from propositional logic and proceedto more general ones, and then consider examples from predicate logic. If � is a set ofsentences, we write Cn(�) for the set of consequences of �.This section is intended to illustrate by example the intended behaviour of OTPs.The reader can check the examples against his or her intuitions. All of them work outsuccessfully in the theory described in chapter 2. While reading these examples, it isimportant to keep the following points in mind:1. In an OTP, sentences lower in the ordering take precedence over those above.2. When a sentence lower in the ordering contradicts a sentence above it in theordering, the lower sentence overrides the higher one. But in general, this over-riding is only partial. The lower sentence need not cancel the e�ect of the higherone completely.3. The ordering of sentences is a partial ordering. We can have sentences in an OTPwhich are incomparable in the ordering.4. In evaluating an OTP (that is, in working out the theory it presents), the idea isto use as much of the available information as possible but to avoid contradictions.Example 1.1 p6:p presents Cnf:pgThis OTP says: we want :p (remember, the bottom sentences are the most important),and, subject to that, we want as much of p as possible. Since p is atomic, we can'textract anything of it which does not conict with :p, so all we can deduce is :p.(Later, it will be seen that this analysis is not valid if p is replaced by an arbitrary �.)Of course, the partial order is important here. If the two sentences were incompa-rable in the ordering, nothing interesting could be deduced. If the ordering was theother way around, the ordered presentation would be equivalent to p:

18 CHAPTER 1. INTRODUCTION�p :p� presents Cnf>g; :p6p presents CnfpgThe notation on the left is the OTP with p and :p incomparably ordered. In thatcase we must remain agnostic about p. On the right, we see that p dominating :pis equivalent to p. The idea is to extract what we can from an ordered presentationwithout allowing contradictions. Notice that this means that an ordered presentationin which all the sentences are incomparable is not the same as the at presentationformed from the same sentences; for the at presentation fp;:pg is equivalent to ?,not >.Example 1.2 p ^ q6:p presents Cnf:p; qgWe want :p, and subject to that, as much of p^ q as possible. p^ q does conict with:p, so we can't have it all. But we can have the q component. Of course the orderingis signi�cant::p6p ^ q presents Cnfp; qg; �:p p ^ q� presents CnfqgExample 1.3 p ^ q6:p _ :q presents Cnfp$:qgThis seems similar to example 1.1, since :p_:q is identical to :(p^q) in the underlyinglogic (classical propositional logic in this case). But the analysis given there doesn'tscale up to this case. Here, we want :(p ^ q), and subject to that we want as much ofp ^ q. What we can have is either p or q but not both.Example 1.4 p6q6:p _ :q presents Cnf:p; qg
CHAPTER 1. INTRODUCTION 19This is like example 1.3, except now there is a priority expressed between p and q. Thispriority is expressed by their location in the ordering. The bottom sentence (the mostimportant) says that we want one of p and q to fail; but subject to that we want q.This gives us :p ^ q, since they are consistent. Then, subject to all that, we want p.But we've ruled that out by now, so we end up with :p ^ q.Example 1.5 p _ q6:q presents Cnfp;:qgHere, since p_ q and :q are consistent with each other, we can simply have them bothand it doesn't matter how they are ordered::q6p _ q presents Cnfp;:qg; �:q p _ q� presents Cnfp;:qgExample 1.6 p qI@ @ @ @ � � � ��:(p ^ q) presents Cnfp$:qgThere seems no reason to treat this di�erently from example 1.3. Therefore one mightask whether it is in general possible to squash trees into linear orders in this way? Thefollowing example answers this question negatively.Example 1.7 p :p ^ qI@ @ @ @ � � � ��r presents Cnfq; rgIt is not possible to reduce non-linear partial orders to linear ones by zipping them upwith ^s, since ?6r presents CnfrgIndeed, the remark that �p :p� presents Cnf>g while p ^ :p presents Cnf?gin example 1.1 was already an example of this. The intuitions for non-linear partialorders seem to depend on whether the branches share non-logical language or not. Thisis important in speci�cation theory applications (x1.2.5 and chapter 6).

20 CHAPTER 1. INTRODUCTIONExample 1.8 p :qI@ @ @ @ � � � ��p _ q presents Cnfp;:qgExample 1.9 Adding :p at a higher level cannot a�ect the outcome.:p� � � �� I@ @ @ @p :qI@ @ @ @ � � � ��p _ q presents Cnfp;:qgExample 1.10 p _ q p$ qI@ @ @ @ � � � ��:p presents Cnf:pgExample 1.11 Of course if the defaults in the last example had an order, the situationwould be di�erent. p _ q6p$ q6:p presents Cnf:p;:qgExample 1.12 This example will turn out to have crucial importance in chapter 4.p ^ q ^ r6:p _ :q _ :r6(p$ q) _ :r presents Cnfp$ q; p$:rgTo see this is correct, separate the cases of r and :r. If r, then we must have p$ qin order to satisfy the most important sentence (the bottom one). To satisfy the nextsentence, we must have :p or :q. Since we already have p$ q, this means we have:p^:q. Now we have determined the value of all three atoms, for we have :p^:q^r.On the other hand, if :r then both the bottom sentence and the middle one aresatis�ed. We want as much of the top one as possible, which is p ^ q. Therefore, weget p^ q ^:r. The presentation is thus equivalent to (:p^:q ^ r)_ (p^ q ^:r), whichis elementarily equivalent to (p$ q) ^ (p$:r).
CHAPTER 1. INTRODUCTION 21The next two examples were seen in x1.2.3Example 1.13 r ^ i6f ! i� � � �� I@ @ @ @i! :r r! f presents Cnf:r; igExample 1.14 f ! i� � � �� I@ @ @ @i! :r r ! fI@ @ @ @ � � � ��r ^ i presents Cnfr; i; fgExample 1.158x: p(x)69x::p(x) presents Cnf9x: (:p(x) ^ 8y: (x6=y ! p(y)))gThe more important sentence (the bottom one) says that there is at least one individualwhich has not got the property p. But, subject to satisfying that, we want to satisfy asmuch of the upper sentence as possible; it says that all individuals have the propertyp. We conclude therefore, that precisely one individual fails p; all the others satisfyit. As one would expect, di�erent orderings give di�erent results. If the two sentences8x: p(x) and 9x::p(x) are incomparable in the ordering (as shown below), then onecan conclude that there is one element whose claim to the property p is disputed, butthat all other elements have the property p.�8x: p(x) 9x::p(x)� presents Cnf9x:8y: (x6=y! p(y))g1.3.1 Criteria for the de�nitions for OTPsThe examples above serve as a benchmark for the development of the system for dealingwith ordered presentations given in this thesis. Some of the ideas mentioned there are:1. Sentences lower in the ordering override those higher. But the overriding is onlypartial (examples 1.2, 1.15, and others).2. We should be able to handle arbitrary partial orders.

22 CHAPTER 1. INTRODUCTION3. Inclusion of the sentence lowest in the ordering (if there is one) is a minimalrequirement on the theory being presented.4. If two sentences are at the bottom an OTP and are consistent, it doesn't matterhow they are ordered (example 1.5). Graphically: if � ^ 6= ? then6I@@@@ ������6 � 6I@@@@ ������ ^ That is to say, these two graphs present the same theories; � is formally de�nedin x3.3. We do not expect this to extend to the case that � and are inconsistent(example 1.1) or are not at the bottom of the OTP (example 1.4).Other requirements which we may add are:5. There should be no `hacks' to the connectives. The system we de�ne for handlingOTPs should not change the meanings of the connectives or interfere with themechanism of the underlying logic.6. The system should be de�ned as independently of the underlying logic as possi-ble. For example, substitution of logical equivalents at any point of an orderedpresentation should not change its meaning, as mentioned in the discussion ofexample 1.3. We would like to de�ne the behaviour of ordered theory presenta-tions over any logic meeting certain minimal requirements. These requirementson the underlying logic will be spelled out in chapter 2.7. In�nite OTPs should be allowed, provided there are no in�nite descending chains.Such an OTP would mean stronger and stronger sentences overriding earlier oneswithout any means of establishing what is ultimately wanted, which is clearlycounterintuitive. On the other hand, weaker and weaker sentences do not appearto pose a problem.1.4 Related workThere is no single chapter covering related work in this thesis. Discussion of relatedwork is contained in chapters 4, 5, 6, and 7.1.5 Outline of the rest of the thesisThe de�nitions and principal results concerning ordered presentations of theories areset out in chapters 2 and 3. Chapter 4 considers their application to the topic of beliefrevision, and comparisons are drawn with the standard work in that topic. Chapter 5compares OTPs with other frameworks for reasoning with defaults. Chapter 6 repre-sents work in progress to do with applying OTPs to software engineering. The idea
CHAPTER 1. INTRODUCTION 23is well motivated, though some technical details remain to be resolved. Conclusions,related work and future work are described in the �nal chapter.Parts of this thesis have been published or will be published as follows. Abouthalf of the content of chapters 2 and 3 appeared as [61]. The content of chapter 4 iscontained in [59]. Some of chapter 6 appeared as [60].

Chapter 2Ordered theory presentationsAs seen in chapter 1, an ordered presentation of a theory is a bag (or multi-set) ofsentences equipped with a partial order. We saw that if the sentences are mutuallyconsistent, it is safe to ignore the partial order. The models of such an ordered pre-sentation are just the models of the set of sentences. But if the sentences conict,sentences lower in the ordering are to be treated as having greater weight or priority.This does not mean that a sentence high in the ordering can be ignored, even if itconicts with sentences below it; some `components' of it may still be needed in de-termining the models of the presentation. In x1.3, examples of ordered presentationswere given to illustrate their intended behaviour, and criteria for judging a theory ofordered presentations were established.In this chapter we formally de�ne ordered theory presentations and establish aframework for reasoning from them. We prove many properties of the framework.In x2.1, the logical setting and notation is established, and the class of logics ischaracterised for which the behaviour of OTPs will be speci�ed. In x2.2 the modelsof an OTP are de�ned, through two kinds of ordering, v� and v� (x2.2.1 and x2.2.2).The second of these relies on a relation between sentences which we call `natural con-sequence'. The sequence of de�nitions is motivated and elucidated in x2.2.1 to x2.2.4,and a summary is given in x2.2.5.2.1 Logical settingThe de�nitions which will be given in x2.2 apply to any logic which is given in terms oflanguage interpretations and a satisfaction relation, subject to being able to de�ne thestandard notion of positive and negative occurrences of non-logical symbols. Such logicsinclude classical, intuitionistic and modal logics, in their propositional and predicateforms; Horn clause logic; equational logic, action logic and a host of others. We keepto this level of generality for most of the chapter as far as the de�nitions and resultsare concerned.In this section, some we will recap on some standard de�nitions to establish nota-tion. It will be useful to refer back to these later.De�nition 2.1 A language L is1. a �nite set of logical connectives; 24
CHAPTER 2. ORDERED THEORY PRESENTATIONS 252. a (possibly sorted) collection of non-logical symbols; and3. a set of rules for forming L-sentences.L considered as a set is the set of L-sentences.De�nition 2.2 A interpretation system hM;i for a language L is a setM of inter-pretations and a relation (called satisfaction) � M� L.De�nition 2.3 A logic hL;M;i is a language L together with an interpretationsystem hM;i for L.Of course this de�nition is not broad enough to capture every `logic' encounteredin the literature. For example, it excludes logics for default reasoning [47], linear logic[26], relevance logics [2], since any logic satisfying this de�nition is monotonic. Asalready mentioned, it includes propositional and predicate classical, intuitionistic andmodal logics, Horn clause logic and others. For a variety of logics de�ned in this way,including logics of partiality, see [70, 71]. It should also be noted that there are manyother characterisations of logic (see eg. [30]). De�nition 2.3 delineates the logics weconsider in this thesis.Example 2.4 Classical propositional logic. An appropriate language L has1. the connectives f^;_;!; $;:;?;>g;2. a set atoms(L) of propositional atoms; and3. the following rules for sentence formation:� > and ? are sentences;� if p 2 atoms(L) then p is a sentence; and� if � and are sentences then :�, � ^ , � _ , � ! and �$ are allsentences.Brackets are used to disambiguate expressions involving nested connectives; but wealso adopt the convention that : binds more closely than ^ and _, which are in turnmore binding than ! and $.M consists of assignments of truth values to propositional atoms; if M 2 M thenM : atoms(L) ! ft; fg. The satisfaction relation is de�ned in the following (standard)way: M >M 6 ?M p if M (p) = t and p 2 atoms(L)M :� if M 6 �M � ^ if M � and M M � _ if M � or M M �! if M � implies M M �$ if (M � i� M)

26 CHAPTER 2. ORDERED THEORY PRESENTATIONSExample 2.5 Classical predicate logic, with equality. L has1. each of the connectives of example 2.4 plus f8;9g;2. a set of predicate symbols, each with an arity n > 0, a set of function symbols,also each with an arity n > 0, and a set of variables; and3. the following rules for term formation, formula formation, and sentence formation:� if x is a variable, f a function symbol with arity n and t1; : : :; tn are termsthen x and f (t1; : : : ; tn) are terms.� if t1; t2; : : : ; tn are terms, p a predicate symbol with arity n, and � and are formulas and x is a variable then p(t1; : : : ; tn), t1 = t2, >, ?, :�, � ^ ,� _ , �! , �$, 9x: � and 8x: � are formulas.� if � is a formula with no free variables then � is a sentence.The de�nition of free variables is the standard one. See, for example, [31, de�ni-tion 3.8].Each M 2 M has� a domain of individuals DM ;� for each predicate symbol p with arity n, a subset M [[p]] of DnM (DnM isDM � : : :�DM| {z }n times);� for each function symbol f with arity n a function M [[f]] from DnM to DM ; and� for each variable x an element M [[x]] of DM .M [[�]] is extended to terms byM [[f (t1; : : : ; tn)]] = M [[f]](M [[t1]]; : : :;M [[tn]])for each function symbol f with arity n.For each variable x of L, an equivalence relation �x � M � M is de�ned asfollows: M �x N if DM = DN and for each predicate symbol p and function symbol f ,M [[p]] = N [[p]] and M [[f]] = N [[f]] and for each variable y with the possible exceptionof x, M [[y]] = N [[y]]. That is to say, M and N are alike in every way except possibly inhow they assign the variable x.The satisfaction relation is de�ned as follows: if � is of the form >, ?, :�, � ^ ,� _ , �! , or �$, then M � according to example 2.4. Otherwise,M p(t1; : : : ; tn) if hM [[t1]]; : : :;M [[tn]]i 2 M [[p]]M t1 = t2 if M [[t1]] = M [[t2]]M 8x: � if N � for each N s.t. M �x NM 9x: � if N � for some N s.t. M �x NWe now return to standard de�nitions and a result:
CHAPTER 2. ORDERED THEORY PRESENTATIONS 27De�nition 2.6 A (at) theory presentation over a language L, or an L-theory pre-sentation, is a �nite set of L-sentences.De�nition 2.7 Let � be a theory presentation. Then M � if M � for each� 2 �.De�nition 2.8 � is a consequence of �, or � entails �, written � j= �, if for eachM 2 M, M � implies M �.An expression like � j= � is called a sequent. Simple though these de�nitions are,there are some well known consequences.Proposition 2.9 Let L be a language and j= the consequence relation de�ned froman interpretation system hM;i. The following properties hold of j=:1. Inclusion: �; � j= �2. Monotonicity: � j= �; � j= 3. Cut: �; � j= 	 j= ��;	 j= As usual, �;	 and �; � are abbreviations for � [and � [f�g respectively. Thehorizontal rule means: if the top sequent holds then so does the bottom one.The last standard de�nition to consider is that of positive and negative occurrencesof non-logical symbols in formulas. The exact de�nition depends on the connectives andtheir interpretations. We will give examples for propositional and predicate classicallogic.Example 2.10 Let L, M and be classical propositional logic (example 2.4) withp 2 atoms(L).� p occurs positively in p.� If p occurs positively (negatively) in � then it occurs negatively (positively) in:�.� If p occurs positively (negatively) in � or in then it occurs positively (negatively)in � ^ and � _ .� If p occurs negatively (positively) in � or positively (negatively) in then itoccurs positively (negatively) in �! .� If p occurs at all in � or then it occurs both positively and negatively in �$.� p does not occur in either > or ?.

28 CHAPTER 2. ORDERED THEORY PRESENTATIONSNote, therefore, that p can occur positively, or negatively, or positively and negatively,or p need not occur at all. In�p! (q$ q ^ r)� ^ (q ! :p)p occurs negatively (twice), q occurs positively (twice) and negatively (three times)and r occurs positively and negatively (once). s does not occur.Example 2.11 In the case of predicate logic, if p is a predicate symbol and t1; : : : ; tnare terms then p occurs positively in p(t1; : : : ; tn). Each of the clauses for the propo-sitional connectives above applies. Moreover, if p occurs positively (negatively) in �then it occurs positively (negatively) in 8x: � and 9x: �. In the sentence8x:9y:�x 6= y ^ �p(x) ! q(x; y) _ p(y)��p occurs positively and negatively, q positively and r not at all. We need not talk ofthe occurrence of = as it is built in to the language.Thus, the class of logics for which OTPs are de�ned in this chapter is quite wide.(For other examples of such logics, see [63].) An interesting question is whether this canbe broadened still further. For example, a natural but abstract class of logics are theso-called institutions [27] used in speci�cation theory. Whether OTPs can be de�nedover arbitrary institutions is a matter of ongoing research.2.2 Ordered theory presentationsThe purpose of this section is to de�ne satisfaction for ordered presentations of theories,so that consequence for such presentations can be de�ned by de�nition 2.8. As beforewe assume we are working with a �xed language L and interpretation system hM;i.We have seen that an ordered theory presentation is a collection of sentencesequipped with a partial order. But to cover the case that the same sentence occursseveral times in di�erent places in the presentation, it is necessary to posit a `carrierset' on which the order is de�ned and whose points are labelled by sentences.De�nition 2.12 An ordered theory presentation � over a language L is a tuple hX;6; F i where1. X is a set (the carrier set).2. 6 is a well-founded partial order on X (that is, there are no in�nite descendingchains x1 > x2 > x3 > : : :).3. F is a function mapping X to L-sentences.A �nite ordered theory presentation is one whose carrier set is �nite. Some ofthe results given in this and the next chapter work only for �nite OTPs (this will beexplicitly stated each time).

CHAPTER 2. ORDERED THEORY PRESENTATIONS 29As usual, x < y means x 6 y and y 66 x, and x > y and x > y mean y 6 xand y < x respectively. The letters � and 	 were used for `at' theory presentations(de�nition 2.6); we shall use � and � for ordered presentations.The intuitive meaning of the ordering is: if x < y then the sentence F (x) has greaterpriority (or more inuence) than F (y). This information is used when F (x) and F (y)conict.We have already seen many ordered presentations in chapter 1 using the informalnotation of graphs; de�nition 2.12 is the formal de�nition.Example 2.13 The ordered presentationh ^ :c6:h ^ :c� � � �� I@ @ @ @h! :c c _ his formally written as follows:1. X = f1; 2; 3; 4g.2. 6 = f(1; 1); (1; 3); (1; 4); (2; 2); (2; 3); (2; 4); (3; 3); (3; 4); (4; 4)g3. F (1) = h! :c; F (2) = c _ h; F (3) = :h ^ :c; F (4) = h ^ :c.The requirement that X have no in�nite descending chains means that there is noin�nite sequence of ever more important sentences in the presentation, which obviouslywould not make sense. There is no need to exclude in�nite sequences of ever lessimportant sentences, however; an example of a situation in which this would be usefulwill be seen in chapter 5.A consequence of the requirement on X is that it is always possible to �nd minimalelements of any subset of X. Indeed, it will be useful to prove the slightly strongerresult:Lemma 2.14 Let hX;6; F i be an ordered theory presentation, and let X 0 � X andx 2 X 0. Then there is a y 2 X 0 such that y is minimal in X 0 and y 6 x.Proof If x is minimal in X 0 then set y = x. Otherwise, pick x1 2 X 0 such thatx1 < x. If x1 is minimal in X 0 then set y = x1; otherwise, pick x2 2 X 0 such thatx2 < x1. Proceed in this way until a minimal element is found. If none is found, wehave constructed an in�nite descending chain x > x1 > x2 > : : :, a contradiction. }We want to de�ne the models of an ordered theory presentation, that is, to extendthe satisfaction relation to ordered presentations analogously to its extension to atpresentations in de�nition 2.7. Let � = hX;6; F i be an ordered theory presentationover hL;M;i. If all the sentences of � are mutually consistent, then the models of� are just the models of that set of sentences. The interesting case is when sentencesin � are inconsistent with each other and we have to use the ordering to resolve the

30 CHAPTER 2. ORDERED THEORY PRESENTATIONSp ^ q6:p(i) 01600611610(ii) 00; 01611610(iii)Figure 2.1: an ordered theory presentation and candidate interpretation orderingsconict. In this case we cannot hope to satisfy all the sentences but models of � shouldsatisfy as many of them as possible, taking account of their ordering.The technique to be adopted is to order interpretations of L according to �, so thatthose higher up the ordering are better at satisfying �. This ordering is written v�.M v� N means N is at least as good as M at satisfying �. Models of � are then takento be the interpretations which are maximal according to v�.The remainder of x2.2 is structured as follows. In x2.2.1 we consider a proposal forthe de�nition of v� and �nd it to be wanting. The correct de�nition relies on what wecall `satisfaction orderings', which are motivated in x2.2.2. They rely on a restrictionof ordinary consequence which is de�ned in x2.2.3. With this to hand, satisfactionorderings are de�ned in x2.2.4. Finally, in view of this plethora of de�nitions andconsiderations, the situation is summarised in x2.2.5.2.2.1 The ordering v�The question addressed in this section is how v� is de�ned. If � were not itself ordered,this task would be easier. For example, one might say M v� N if N satis�es all thesentences of � that M does. But � is ordered, and our de�nition must take account ofthat. Consider again the interpretations M and N . If M v� N , but there is a sentence� in � such that M satis�es � and N does not, then there must be a more importantsentence which is satis�ed by N but not by M . Thus we might be tempted to de�nev� as follows:Proposal 2.15 M v� N if 8x 2 X:M F (x) and N 6 F (x) implies 9y 6 x:M 6F (y) and N F (y).To see that this is wrong, consider the ordered presentation given in example 1.2.A model of this theory is an interpretation which satis�es :p and as much of p ^ q asit can. Let hM;i be the usual interpretation system for this logic (see example 2.4).An interpretation M ofM is speci�ed by whether it satis�es the atoms p and q. Letus write 10 for the interpretation which satis�es p but not q; 11, 01 and 00 are de�nedanalogously.Intuitively we expect the interpretation 01 to be the only model of �. To see this,notice that it must be either 00 or 01 since :p is the most important sentence of �.Of these two 01 is better at satisfying � overall because, while neither of them satisfy
CHAPTER 2. ORDERED THEORY PRESENTATIONS 31p ^ q, it at least satis�es half of p ^ q. Further reasoning along these lines results inthe conclusion that �gure 2.1(ii) is the correct interpretation ordering for the theory inquestion. There, the arrows mean v�.But since neither of the interpretations 01 and 00 fully satisfy p^q, and proposal 2.15just looks at what sentences are satis�ed by the various interpretations, the proposalcannot distinguish between 01 and 00. In fact, according to the proposal v� is theorder given in �gure 2.1(iii). 01 and 00 are both maximal in this ordering, so bothwould be models of � according to the proposal.The problem is that we were not able to take account of the fact that, while neither01 nor 00 satisfy p^ q, 01 is actually better at it than 00; at least it satis�es q, which isa consequence of p^ q. This thought leads us to the idea that, given a sentence and aninterpretation, there is more we can say than whether the interpretation satis�es thesentence or not. We can compare two interpretations as to the degree to which theysatisfy the sentence.This intuition, about degrees of satisfaction, is formalised in the following way.We suppose the existence of an ordering v� on interpretations (for each sentence �)and use that to de�ne v�. M v� N means that N is as good as M at satisfying�. The example discussed above shows that we should be interested in ordering theinterpretations which fail to satisfy � according to how nearly they do; for example, 01is better than 00 at satisfying p ^ q (therefore, 00 @p^q 01). v� is called a `satisfactionordering', and we suppose it satis�es the following assumption.Assumption 2.16 Let hL;M;i be a logic, and for each � 2 L let v� be a �-satisfaction ordering. Then1. v� is a pre-order (i.e. reexive and transitive);2. M is v�-maximum i� M �.Recall that a point M in an order hM;vi is maximum if for each N 2 M, N v M .We will de�ne suitable orderings which meet this assumption in x2.2.4. A conse-quence of the assumption isLemma 2.17 If M 6 � and N � then M @� N .Proof We show (i) M v� N and (ii) N 6v� M . (i) M v� N since N is v�-maximumby the assumption. (ii) N 6v� M , for N � and M 6 �. }We have used some standard notation in this lemma. It is as well to �x thesederived orderings once and for all.Notation 2.181. M @� N if M v� N and N 6v� M .2. M �� N if M v� N and N v� M .3. vx will abbreviate vF(x) when in the context of a particular OTP; similarly for�x and @x.

32 CHAPTER 2. ORDERED THEORY PRESENTATIONS4. M @� N if M v� N and N 6v� M ; also, M �� N means M v� N and N v� M .5. M w� N means N v� M ; and similarly for M A� N , M w� N and M A� N .Given the satisfaction orderings of assumption 2.16, we can de�ne the interpretationordering induced by �. The de�nition captures the avour of proposal 2.15, which isthat if a sentence in � makes the `wrong' choice of two interpretations then there is asentence with greater priority which makes the `right' choice. But now, the choice thatthe sentence � makes is determined by v�.Let � = hX;6; F i be an OTP over hL;M;i.De�nition 2.19 M v� N if for each x 2 X, M 6vx N implies there exists y 6 x suchthat M @y N .One can read this as saying: N is as good as M overall [M v� N] if whenever itappears not to be so at a point x [M 6vx N] then there is a more important point y[y 6 x] where N is doing better than M [M @y N].Informally, the de�nition says: if things appear to go wrong at a particular x, thenthey go well at some y in a more important position than x. The condition that there beno descending chains in OTPs guarantees that the process of �nding `more importantys' terminates. To be precise:Lemma 2.20 M v� N i� 8x 2 X: (M 6vx N implies 9y 6 x:M @y N and 8z <y:M �z N).Proof (If) Immediate. (Only if) Suppose M v� N and M 6vx N for some x. LetX 0 = fy 2 X j M @y N and y 6 xg. X 0 6= � since M v� N . Let y be a minimalpoint in X 0 (this is possible by lemma 2.14). Then M @y N , and if z < y then z 62 X 0,so M 6@z N . Either M 6vz N or M �z N . If M 6vz N then 9z0 6 z: z0 2 X 0, acontradiction since then z0 < y. Therefore, M �z N . }De�nition 2.19 is only one out of four possible ways of capturing proposal 2.15. Wemight just as easily have said:� M 6vx N implies 9y 6 x:N 6vy M , or� N @x M implies 9y 6 x:M @y N , or� N @x M implies 9y 6 x:N 6vy M .Indeed, replacing y 6 x with y < x gives us another four plausible de�nitions. Some ofthese eight are equivalent. Without going into details, it turns out that only the onechosen for de�nition 2.19 has good formal properties. In particular, it is the only onewith the following property, which I consider clear-cut grounds for choosing it.Proposition 2.21 v� is a pre-order.

CHAPTER 2. ORDERED THEORY PRESENTATIONS 33Proof Reexivity is obvious. For transitivity, suppose L v� M v� N , and letL 6vx N . We shall show L @y N for some y 6 x.Suppose L vx M . Either M vx N or M 6vx N . If M vx N then L vx N , acontradiction. If M 6vx N , let y2 6 x be such that M @y2 N and M vz N for z 6 y2(lemma 2.20). If L 6vy2 M , then let y 6 y2 be such that L @y M . Then y 6 x andL @y N follows from L @y M and M vy N . If L vy2 M , set y = y2. Then y 6 x, andL @y N follows from L vy M and M @y N and assumption 2.16.On the other hand, suppose L 6vx M and let y1 6 x be such that L @y1 M andL vz M for all z 6 y1 (lemma 2.20). Again, consider separately the two casesM vy1 Nand M 6vy1 N . If M vy1 N , set y = y1. Then y 6 x, and L @y N follows from L @y Mand M vy N . If M 6vy1 N then let y 6 y1 be such that M @y N . Then y 6 x, andL @y N follows from L vy M and M @y N and assumption 2.16. }Proposition 2.22 Then M @� N implies 9z 2 X:M @z N .Proof Suppose M @� N . Then N 6v� M , so by de�nition 2.19 9x:N 6vx M . IfM 6vx N then by the de�nition 9y:M @y N , so set z = y. Otherwise, M vx N , soM @x N , so set z = x. }Proposition 2.23 Then M �� N i� M �x N for all x 2 X.Proof (If) immediate. (Only if) Suppose M 6�x N . Then M 6vx N or N 6vx M .Without loss of generality, assume M 6vx N . Since M v� N , by lemma 2.20 pick ysuch that M @y N and 8z < y:M �z N). Since N v� N , by de�nition 2.19 pick z 6 ysuch that N @z M . Clearly, z 6= y; therefore, z < y so M �z N , a contradiction. }The de�nition of on at presentations (de�nition 2.7) can now be extended toordered presentations in the way already described.De�nition 2.24 M � if M is v�-maximal.De�nition 2.24 further overloads . (To determine whether M A, we have tocheck whether A is a sentence, a at theory presentation or an ordered theory presen-tation and use de�nitions 2.2, 2.7 or 2.24 accordingly.) This overloading is justi�ed inthat for the most part the di�erent senses of correspond well. To be precise, we havethat M � i� M f�g, where � is a sentence. Also, M � implies M \�" where� is a set of sentences and \�" is the OTP with the same sentences and the discreteordering. If � is consistent then we have the converse, that M \�" implies M �.The one case of disagreement, then, is when � is inconsistent, in which case we haveM 6 � and M \�" for all M . An example of this was given (case 3 of example 1.1).Finally, consequence is de�ned in the standard way:De�nition 2.25 � j= � if for each M 2 M, M � implies M �.Now we give some results to continue to get the feel for the behaviour of OTPs.Naturally we expect that the minimum sentence (if there is one) is satis�ed by modelsof the theory:

34 CHAPTER 2. ORDERED THEORY PRESENTATIONSDe�nition 2.26 � is minimum in � = hX;6; F i if hX;6i has a minimum point 0and F (0) = �.Proposition 2.27 Let � = hX;6; F i be an ordered presentation and M 2 M suchthat M �. If � is minimum in � and � 6= ? then M �.Proof Let 0 be the minimum point in X. F (0) = �. Suppose for a contradictionthat M 6 �. Since � 6= ?, let N �. By lemma 2.17, M @0 N . We show M 6 �by showing M @� N . To show M v� N , suppose x is such that M 6vx N . Let y = 0.Then y 6 x and M @y N . To show N 6v� M , let x = 0. N 6vx M . If y 6 x, theny = 0 since 0 is minimum; but N 6@y M . }Already we have enough to look at some e�ects of putting ordered theory presen-tations together. Let �� be � and � `side by side', and let �� be � on top of �.Formally:De�nition 2.28 Let � = hX;6X; FXi and � = hY;6Y ; FY i, with X and Y disjoint.1. �� = hZ;6Z; FZi, with Z = X [Y , FZ(x) = FX(x) if x 2 X, otherwiseFZ(x) = FY (x), and x 6Z y if x 6X y or x 6Y y.2. �� = hZ;6Z; FZi, with Z and FZ as above and x 6Z y if x 6X y or x 6Y y or(x 2 Y and y 2 X).Example 2.29 If � and � are respectivelyp ^ r6:r p qI@ @ @ @ � � � ��:(p ^ q)then �� and �� are respectivelyp ^ r6:r p qI@ @ @ @ � � � ��:(p ^ q) p ^ r6:r� � � �� I@ @ @ @p qI@ @ @ @ � � � ��:(p ^ q)Proposition 2.301. M v�� N i� M v� N and M v� N .2. M @�� N i� (M @� N and M v� N) or (M v� N and M @� N).3. M v �� N i� M @� N or (M �� N and M v� N).
CHAPTER 2. ORDERED THEORY PRESENTATIONS 354. M @ �� N i� M @� N or (M �� N and M @� N).Proof 1. and 2. follow easily from the de�nitions, and 4. follows easily from 3.For 3., suppose M v �� N and M 6v� N . We show M @� N . (a) M v� N . Pickx 2 �1. Since M v �� N , we can �nd y 2 � satisfying the conditions of de�nition2.19. (b) N 6v� M . Suppose N v� M ; we derive a contradiction. Using the fact thatM 6v� N , pick x 2 � such that M 6vx N and 8y 2 � with y 6 x, M 6@y N . But sinceM v �� N , 9y 2 �:M @y N and 8z < y:M �z N . But N v� M and N 6vy M , so9z < y:N @z M , a contradiction.Conversely, we show: (i) M @� N implies M v �� N . Let x 2 �� be such thatM 6vx N . By proposition 2.22, pick z 2 � such that M @z N . Since z 6 x, we haveM v �� N . (ii) M �� N and M v� N imply M v �� N . Let x 2 �� be such thatM 6vx N . By proposition 2.23, x 2 �. Since M v� N , pick y 2 � such that M @y N .}Propositions 2.27 and 2.30 are meant to convince the reader that the de�nitionof v� is the right one. The next chapter contains further evidence, but we end thissection with a �nal remark in this direction. As before, let us write \�" for the OTPwith the single sentence �. Then we have, as a consequence of de�nition 2.19:Remark 2.31 M v\�" N i� M v� N . }2.2.2 The ordering v� (motivation)In x2.2.1 we assumed so-called satisfaction orderings v� satisfying the conditions ofassumption 2.16. In this section we show how such an ordering may be de�ned, andgive examples.Given a sentence � and an interpretation M , we are interested in how well Msatis�es �. If M �, then this is the best one could hope for; M satis�es � to thefullest possible extent. But if M 6 �, all is not lost; for it may more nearly satisfy� than some other interpretation N which also fails to satisfy �. In that case wewrite N @� M . The aim of v� is to order the interpretations which do not satisfy �according to how nearly they do.The de�nition of v� is motivated by the example given at the beginning of x2.2.1(see �gure 2.1). We concluded there that we wanted to have 00 @p^q 01, and we canextend the argument for the following diagram for vp^q:11� � � �� I@ @ @ @01 10I@ @ @ @ � � � ��00In other words, we wish that interpretations which satisfy p or q are better at satisfyingp ^ q than that which satis�es neither p nor q.As p and q are consequences of p ^ q, one might consider the following basis for ade�nition of v�:1We should really say: let � = hX;6X ; F i and pick x 2 X. But x 2 � is a convenient shorthand.

36 CHAPTER 2. ORDERED THEORY PRESENTATIONSThe more consequences of � that M satis�es, the higher it should be in v�.Thus one might consider the following de�nition for v�:Proposal 2.32 M v� N , if for each ,� j=) (M) N)However, one can immediately see that not all the consequences of � are appropriateto take into account in the de�nition of v�. Consider again example 2.47. p, p$ qand q are all consequences of p ^ q, but none of each other. Therefore proposal 2.32gives the following for vp^q: 116� � � �� I@ @ @ @01 00 10This is wrong according to the intuition mentioned. Indeed, it turns out that underthis de�nition v� always has a height of just 2. To be precise:Proposition 2.33 If v� is de�ned according to proposal 2.32 and the underlyinglogic has the property that for each interpretation there is a sentence which picks itout uniquely up to isomorphism (classical propositional logic over a �nite language hasthis property, as do certain fragments of �rst-order and modal logics), then M v� Nimplies N � or M = N .Proof Suppose M v� N and let � be the sentence which characterises M . Since� j= � _ � and M � _ �, it must be that N � _ �, i.e. N � or N = M . }2.2.3 The `natural consequence' relation j=�The problem encountered in the forgoing discussion is that not all the consequencesof � should be taken into consideration in deciding whether M v� N . In the case ofp ^ q, only the consequences in boxes in the following diagram are appropriate.>6� � � �� I@ @ @ @p _ :q p _ q :p _ q6 6� � � ��I@ @ @ @ � � � ��I@ @ @ @p p$ q q6I@ @ @ @ � � � ��p ^ q
CHAPTER 2. ORDERED THEORY PRESENTATIONS 37What distinguishes these consequences of p ^ q is that they are monotonic in p and q.That is to say, if a model M satis�es such a consequence , then so does the model Nobtained from M by increasing the `extension' of p or of q. To de�ne this we need tode�ne positive and negative occurrences. As stated previously, we assume that theseare given by the underlying logic (examples 2.10 and 2.11).De�nition 2.34 If � is an L-sentence other than ? and p a non-logical symbol in L,1. � is monotonic in p if it is equivalent to a sentence in which all occurrences of p(if any) are positive.2. � is anti-monotonic in p if it is equivalent to a sentence in which all occurrencesof p are negative.3. �+ and �� are the sets of symbols in which � is monotonic and anti-monotonicrespectively.The case that � = ? is handled separately, for reasons which will be explained later;we de�ne ?+ = ?� = �.Notice that although the de�nition uses the syntactic notion of positive and negativeoccurrences, it is semantic in the sense that it is not sensitive to the way � is written.Let us write � =jj= if � j= and j= �.Proposition 2.35 If � =jj= then �� = � .Proof If p 2 �+ then there is a sentence � such that � =jj= � and p occurs onlypositively in �. But then, =jj= �, so p 2 +. The converse, and the case for ��, areproved similarly. }The justi�cation for the terminology of `monotonic' and `anti-monotonic' is as fol-lows. One may de�ne the extension of a non-logical symbol p in a model to be theset of tuples of which p is true in the model. (In the propositional case, if p is truein a model then its extension is de�ned to be the singleton f�g; if p is false, it is �.)Extensions are naturally ordered by inclusion. Let us write M 6p N if M and N areexactly alike except that N has possibly a greater p-extension than M . It follows that� is monotonic in p i� (M 6p N) (M �) N �)), i.e. increasing p-extension ina model preserves �-satisfaction. Similarly, � is anti-monotonic in p i� (N 6p M)(M �) N �)).Thus, the monotonicities of � is a pair h�+; ��i of sets of non-logical symbols suchthat, if in any model of � the extension of any symbol of the �rst set is increased, orthe extension of any in the second set is decreased, the resulting interpretation is stilla model of �.

38 CHAPTER 2. ORDERED THEORY PRESENTATIONSExample 2.36 Let (L;M) be classical propositional logic over fp; qg. For severalexamples of �, �+ and �� are shown in the following table.� �+ ��> fp; qg fp; qgp fp; qg fqgq fp; qg fpgp ^ q; p _ q fp; qg �p! q fqg fpgp$ q � �? � �Example 2.37 Let (L;M) be classical predicate logic over p (unary) and q (binary).� �+ ��8x: p(x) fp; qg fqg9x: p(x) fp; qg fqg8x:9y: q(x; y) fp; qg fpg8x: (p(x)! 9y: q(x; y)) fqg fpg8x:8y: (q(x; y)! q(y; z)) fpg fpgWe are interested in the consequences of � which preserve these monotonicities.De�nition 2.38 A consequence of � is a natural consequence (written � j=�) if itpreserves the monotonicities of �:� j=� if � j= , �+ � + and �� � �Natural consequence is a sub-relation of ordinary consequence; in addition to ordi-nary entailment we require that the monotonicities of the premise be preserved by theconclusion.Proposition 2.39 j=� is reexive and transitive. }Example 2.40 The relations j= and j=� on the set of sentences formed from the lan-guage containing the propositions fp; qg are shown in �gure 2.2 for comparison. These�gures are the Lindenbaum algebras of j= and j=� . The nodes are the j= (resp. j=�)equivalence classes, and the `arrows'2 are the relation j= (resp. j=�). (We will provein proposition 2.41 that the equivalence classes are the same for j=� as for j= | thisjusti�es the second diagram.)Thus: p ^ q j=� p and p ^ q j=� p _ q, but p ^ q 6j=� p$ q and p 6j=� p _ q. Moreover,? j=� � for all �.The de�nition of natural consequence is perhaps not very satisfying, because (onemight ask), what is so special about preserving monotonicities? One way to answerthis is purely pragmatic: as we will see, it is essential for the next de�nition, which does2For TEXnical reasons the arrowheads are not shown in the diagram.
CHAPTER 2. ORDERED THEORY PRESENTATIONS 39>� � � � � � � � � � � �� � � � � � @ @ @ @ @ @H H H H H H H H H H H Hp _ :q p _ q :p _ :q :p _ q� � � � � � A A A A A AQ Q Q Q Q Q Q Q� � � � � � � � Q Q Q Q Q Q Q Qa a a a a a a a a a a a a a! ! ! ! ! ! ! ! ! ! ! ! ! !� � � � � � Q Q Q Q Q Q Q Q! ! ! ! ! ! ! ! ! ! ! ! ! !� � � � � � A A A A A Ap :q p$ q p$:q q :pA A A A A AQ Q Q Q Q Q Q Q� � � � � � a a a a a a a a a a a a a a� � � � � � Q Q Q Q Q Q Q Q! ! ! ! ! ! ! ! ! ! ! ! ! ! Q Q Q Q Q Q Q Q! ! ! ! ! ! ! ! ! ! ! ! ! ! A A A A A A� � � � � � � �� � � � � �p ^ :q p ^ q :p ^ :q :p ^ qH H H H H H H H H H H H@ @ @ @ @ @ � � � � � �� � � � � � � � � � � �?>� � � � � � � � � � � �# # # # # # # # # # # # # # # #� � � � � �� � � � � � � � � � � � S S S S S S S S S S S S@ @ @ @ @ @c c c c c c c c c c c c c c c cH H H H H H H H H H H Hp _ :q p _ q :p _ :q :p _ qQ Q Q Q Q Q Q QQ Q Q Q Q Q Q Q � � � � � �! ! ! ! ! ! ! ! ! ! ! ! ! !p :q p$ q p$:q q :pA A A A A AQ Q Q Q Q Q Q Q� � � � � � a a a a a a a a a a a a a aC C C C C C C C C C C C � � � � � � � � � � � �! ! ! ! ! ! ! ! ! ! ! ! ! ! A A A A A A� � � � � � � �� � � � � �p ^ :q p ^ q :p ^ :q :p ^ qH H H H H H H H H H H H@ @ @ @ @ @ � � � � � �� � � � � � � � � � � �?Figure 2.2: The ordinary and natural consequence relations over fp; qg

40 CHAPTER 2. ORDERED THEORY PRESENTATIONShave a satisfying feel. But �rst, we justify the term natural consequence by showingexamples of how much more natural this consequence really is.Natural consequence is something like relevant consequence; it stops us addingirrelevant disjuncts in our conclusions. (This is not the same notion of relevance asAnderson/Belnap [2], for there one is interested in stopping irrelevant conjuncts in thepremises.) The following sequents, which are ordinarily valid, are not naturally valid:p j= p _ qp j= p _ :q p j= q ! p:p j= p! q p ^ q j= p$ qThere are well-known objections to the classical validity of these entailments, so itis rather pleasing that they are not naturally valid. Regarding the �rst pair, thepremise p tells us nothing about q, and therefore it is suspect to introduce q or :q asa disjunct. The second pair are the standard inelegancies of material implication, andare rejected by `resource' logics like linear logic and relevance logics. Finally, we dislikep^ q j= p$ q because the right-hand side suggests that p and q are in some way boundtogether, whereas the left-hand side only says that they are both true.On the other hand, the simplicity of the de�nition and the fact that it is based onsatisfaction by models ensures that there is nothing untoward going on. In particular,if � and are classically equivalent then they are naturally equivalent; indeed:Proposition 2.41 � =jj= i� � �=jj�= .(� �=jj�= means � j=� and j=� �.)Proof Suppose � =jj= . Then, by proposition 2.35, �� = �. Therefore, � �=jj�= .The converse is immediate from de�nition 2.38. }Proposition 2.42 If � =jj= then � j=� � i� j=� �.Proof Suppose � j=� �. If � =jj= then j=� � by proposition 2.41, and by proposi-tion 2.39, j=� �. The converse is proved similarly. }We can also examine the structural properties of j=� . Clearly it is substructural, thatis, it fails the usual properties of inclusion, monotonicity and cut:Example 2.43 (See proposition 2.9 for the statement of the rules.)1. Inclusion fails: p ^ (:p _ q) 6j=� :p _ q, since the left hand is equivalent to p ^ qand is monotonic in p, while the right hand is not.2. Monotonicity fails: :p _ q j=� :p _ q, but, as above, p ^ (:p _ q) 6j=� :p _ q.3. Cut fails: Monotonicity is also built in to Cut, so the same example goes through.We have p ^ q j=� > and > ^ (:p _ q) j=� :p _ q, but (cutting >) we also have(p^q)^(:p_q) 6j=� :p_q (the left-hand side is equivalent to p^q and is monotonicin p, which the right-hand side is not).We do, however, have their weak varieties:
CHAPTER 2. ORDERED THEORY PRESENTATIONS 41Proposition 2.44 1. Reexivity: � j=� �.2. Weak monotonicity [10]: � j=� 1 � j=� 2� ^ 1 j=� 23. Weak cut: � j=� 1 � ^ 1 j=� 2� j=� 2Proof 1. (proposition 2.39.)2. Suppose � j=� 1 and � j=� 2. By de�nition of j=� , � j= 1, so by classicalproperties � j= � ^ 1. But also, � ^ 1 j= �, and since � j=� 2, we have� ^ 1 j=� 2 by proposition 2.42.3. Suppose � j=� 1 and �^ 1 j=� 2. By classical properties, � j= 2. Now supposep 2 ��. Then p 2 �1 , since � j=� 1. Therefore, p 2 (� ^ 1)�, and since� ^ 1 j=� 2, p 2 �2 , thus proving � j=� 2. }2.2.4 The ordering v� (de�nition)Finally we can de�ne v�. As expected, the de�nition is just like proposal 2.32, butwith j=� instead of j=.De�nition 2.45 M v� N , if for each ,� j=�) (M) N)Proposition 2.46 For each L-sentence �, v� is a pre-order.Proof Reexivity is obvious. For transitivity, suppose L v� M v� N , and let besuch that � j=� and L . Then, since L v� M , M . And since M v� N ,N . }Some examples of this ordering now follow. We omit the details except in the �rstcase; but the propositional examples have been checked by the Miranda program givenin appendix A.Example 2.47 Consider again the propositional language over fp; qg and the inter-pretations f00; 01; 10; 11g as before. The ordering vp^q is as follows:11� � � �� I@ @ @ @10 01I@ @ @ @ � � � ��00Thus, interpretations which satisfy p or q are better than that which satis�es neither pnor q. To see that this is so, �rst consider the natural consequences of p ^ q: they arefp ^ q; p; q;?g. Since 00 satis�es none of these, it is vp^q everything else; 01, on theother hand, satis�es q so it is vp^q only others which satisfy q, namely itself and 11.An analogous argument holds for 10; and since 11 satis�es p ^ q it is vp^q only itself.

42 CHAPTER 2. ORDERED THEORY PRESENTATIONSExample 2.48 If � is just p, then v� is as follows:10; 11600; 01This is because the only natural consequences of p are > and p. Intuitively, eitheran interpretation satis�es p or it doesn't; there is no question of partial satisfaction.Notice that v� is not necessarily antisymmetric. For here, 10 and 11 are equivalent asfar as satisfying p is concerned, but they are not equal.Example 2.49 v:p is simply vp turned upside down:00; 01610; 11(The natural consequences of :p are :p and >.) But v:(p^q) (or, equivalently, v:p_:q)bears little resemblance to vp^q (which was given in example 2.47):00; 01; 10611(The natural consequences of :(p _ q) are itself and >.)It should be clear that the ordering is only concerned with the interpretations whichfail to satisfy the sentence in question.Example 2.50 If � is >, then the ordering is the indiscrete one in which everything isequivalent, for no model is any better at satisfying > than any other. That is becausethey all satisfy it.Example 2.51 If � is ?, the ordering is the discrete one in which nothing is related;we have M v? N i� M = N . For suppose M 6= N ; pick any � such that M � andN 6 �. We have ? j=� �. Therefore, M 6v? N .As far as the theory of OTPs is concerned, the di�erence between v> and v? isof no importance. The fact that their strict versions, @> and @? , are both the emptyrelation is signi�cant, and is what one would expect. The reader may be concernedabout the fact that we stipulated that ?+ = ?� = � in de�nition 2.34. The reason forthis is simply that we thereby obtain ? j=� � for all �, and therefore ?s position in thesecond diagram of �gure 2.2. It is true that if we had not treated ? in any special wayin de�nition 2.34 we would have obtained that ? j=� � implies � = ? or � = >; we thenwould have obtained that v? is the indiscrete ordering (M v? N for all M;N) ratherthan the discrete one; but the rest of the theory of OTPs would remain the same. Itturns out that ? has a rather unusual r^ole in OTPs; we will return later to this topic(proposition 3.18). The relevant point here is that the question of how ? should betreated at this level has no signi�cant impact.
CHAPTER 2. ORDERED THEORY PRESENTATIONS 43Example 2.52 The orderings vp^q^r, v(p^q)_r and v(:p_:q)^:r are1116� � � �� I@ @ @ @011 101 1106 6� � � ��I@ @ @ @ � � � ��I@ @ @ @001 010 1006I@ @ @ @ � � � ��000 001; 011; 101110; 111� � � �� I@ @ @ @010 100I@ @ @ @ � � � ��000000; 010100� �� I@ @ @ @ @ @001� �� I@ @011 101 1106I@ @ @ @ @ @ � � � � � ��111We will show the working for just the last of these three diagrams.The positive and negative monotonicities of (:p _ :q) ^ :r are respectively �and fp; q; rg. Its natural consequences are therefore the sentences in the followingdiagram; the diagram orders them by logical strength (that is, in this diagram the

44 CHAPTER 2. ORDERED THEORY PRESENTATIONSarrow means j=). >6:p_:q_:r6� � � � � �� I@ @ @ @ @ @:p_:q :p_:r :q_:r6 6� � � � � ��I@ @ @ @ @ @ � � � � � ��I@ @ @ @ @ @:p_(:q^:r) (:p^:r)_:q (:p^:q)_:r6I@ @ @ @ @ @ � � � � � �� I@ @ @ @ @ @(:p^:q)_((p$:q)^:r) :rI@ @ @ @ @ @ � � � � � ��(:p_:q)^:rTo derive the model ordering from this diagram, the de�nitions say in e�ect to considereach interpretation as the upwards-closed set of sentences it satis�es in this diagram.The model ordering is then given by the inclusion ordering on these sets. For example,to check that 101 should appear lower than 011 in the diagram (as it does), we mustcheck that the natural consequences which 101 satis�es form a subset of those satis�edby 011. This is indeed so, since 101 satis�es f>;:p _ :q _ :r;:p _ :q;:q _ :r; (:p ^:r)_:qg; and 001 additionally satis�es f:p_:r;:p_ (:q ^:r); (:p^:q)_:r; (:p^:q) _ ((p$:q) ^ :r)g.Further examples, including ones in predicate logic, are given in x3.1.We �nish this subsection with a few de�nitions and results to reassure us thateverything is according to plan:Proposition 2.53 If � =jj= then v� = v .Proof Suppose M v� N , and j=� � and M �. By proposition 2.42, � j=� �, soN �. Therefore, M v N . The converse is proved similarly. }Proposition 2.54 M is v�-maximum i� M �.
CHAPTER 2. ORDERED THEORY PRESENTATIONS 45Proof (If) If M � then M whenever � j=� . Therefore, N v� M for any N .(Only if) If � = ? then M is not maximum by the argument given in example 2.51.Suppose � 6= ? and M 6 �. We show that M is not v�-maximum. Let N �.We show that M @� N . (i) M v� N , since by the (If)-part N is v�-maximum. (ii)N 6v� M , since � j=� �, N � and M 6 �. }Propositions 2.46 and 2.54 show that v� satis�es assumption 2.16.2.2.5 Summary of de�nitions for OTPsTo recap, we started with a logic given in terms of a language and a set of interpretationsin the standard way. Ordered presentations of theories in this logic consist of a poset ofpoints, each one labelled by a sentence in the language (de�nition 2.12). To de�ne themodels of ordered presentations, we �rst de�ne, for each sentence � in the language,an ordering on the interpretations written v� (de�nition 2.45). M v� N intuitivelymeans that N satis�es � at least as well as M . To de�ne v�, we need the notion ofnatural consequence (de�nition 2.38). Then we de�ne the ordering v� (de�nition 2.19).M v� N intuitively means that N is as good as M at satisfying �, taking account of�'s own ordering. Finally, models of � are the v�-maximal elements, and consequenceis de�ned in the standard way (de�nition 2.25).Here is a summary, for reference:1. We assume the underlying logic de�nes the notions of satisfaction (written)and positive and negative occurrence.2. � j=� if � j= and �� � � .3. M v� N if � j=� implies (M implies N).4. M v� N if 8x 2 X:9y 2 X: (M 6vx N implies y 6 x and M @y N).5. M � if M is v�-maximal.6. � j= � if, for all M , M � implies M �.This chapter has, I hope, motivated and explained the de�nitions for ordered theorypresentations. The next chapter considers some of their properties.

Chapter 3Examples and Properties of OTPsIn the last chapter the de�nitions of ordered theory presentations and their semanticswere given, in terms of an arbitrary logic de�ned in terms of interpretations and asatisfaction relation. In this chapter, some of the properties of these de�nitions areconsidered. An important result shows that there always are models of an OTP if theunderlying logic is compact. This is done in x3.2 by showing that, for each �, there aremaximal interpretations in the v� ordering. The question of how to add sentences toOTPs is examined in x3.3. We show that the operation extending an OTP by addingnew sentences to its bottom has natural properties.We begin with a section giving details of worked examples for propositional andpredicate calculus.3.1 Worked examplesIn x1.3 a number of examples were given which we expect our theory to satisfy, andindeed it does. In this section we recall some of the examples.3.1.1 Examples in propositional logicFor each sentence we illustrate v�. Then we show v�, where � is the whole presenta-tion. The reader can check that the v�-maximal elements are precisely the models ofthe sentence claimed to be equivalent to the ordered presentation in x1.3. The notationof 0s and 1s was introduced in x2.2.1.
46

CHAPTER 3. EXAMPLES AND PROPERTIES OF OTPS 47Example 3.1 (Example 1.3) 11� � � �� I@ @ @ @p ^ q : : : : : : : : : : : 01 106 I@ @ @ @ � � � ��0000,01,106:p _ :q : : : : : : : : : : : 11
9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>; 01 10I@ @ @ @ � � � ��00611Cf. examples 2.47 and 2.49 (second diagram) for how the left-hand orderings are com-puted. They are put together to obtain the right-hand ordering by de�nition 2.19.Again, it is worth emphasising that these diagrams can be computed by the codegiven in appendix A. Having already given worked examples for v� in the last chapter,we omit the working from the next three examples.Example 3.2 (Example 1.5) 01; 10; 116p _ q : : : : : : : : : : :6 0000; 106:q : : : : : : : : : : : 01; 11 9>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>; 10600601; 11Example 3.3 (Example 1.6) 10; 11 01; 116 6p q]J J J J J J

� 00; 01 00; 10: : : : : : : : 00; 01; 106:(p ^ q) 11 9>>>>>>>>>>>>>=>>>>>>>>>>>>>; 01 10I@ @ @ @ � � � ��00611

48 CHAPTER 3. EXAMPLES AND PROPERTIES OF OTPSExample 3.4 (Example 1.12)p ^ q ^ r6:p _ :q _ :r6(p$ q) _ :r
1116� �� I@ @011 101 1106 6� ��I@ @ � ��I@ @001 010 1006I@ @ � ��000000; 001; 010; 011100; 101; 1106111

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>; 011 101 1106 6� ��I@ @ � ��I@ @001 010 1006I@ @ � ��0006111000; 001; 010100; 110; 111� �� I@ @011 101
9>>>=>>>;

1106� ��010 100 0016I@ @ � ��0006111� �� I@ @101 0113.1.2 Examples in predicate logicLet � be the presentation 8x: p(x)69x::p(x)We will show that the models of � are the interpretations with precisely one elementwhich is not in the extension of p.The way to do this is to work out the orders v8x:p(x) and v:9x: p(x) (which weabbreviate to v8 and v9 respectively). This is done using de�nition 2.45. Then v�is obtained from this by de�nition 2.19. We will restrict our attention to countablemodels.Notation 3.5 For all a; b in f1; 2; 3; : : :; !g, let the expression (a; b) denote the classof interpretations with a+ b elements, of which a satisfy p and b do not.We start with the order v8. To compute this we are interested in the naturalconsequences of 8x: p(x).Lemma 3.6 If � is a non-tautologous natural consequence of 8x: p(x) then it can beexpressed in the form 8x19x28x39x4 � � � : where each xi is a tuple of variables and is quanti�er-free and contains only positiveoccurrences of p.

CHAPTER 3. EXAMPLES AND PROPERTIES OF OTPS 49Proof Consider � in prenex form, that is, with all quanti�ers at the beginning. Every�rst-order sentence can be written in this form [31, proposition 4.28]. Since � is aconsequence of 8x: p(x) it must begin with a 8. Since p 2 (8x: p(x))+, we have p 2 +.If p 2 � then can be written with no occurrences of p and if p 62 � then can bewritten with only positive occurrences of p (by de�nition 2.34). }Proposition 3.7 The order v8 is the following.(0; 0); (1; 0); (2; 0); (3; 0)(4; 0); (5; 0); : : : ; (!; 0)6�������������������

������������������� BBBBBBBBBBBBBBBBBBI@@@@(!; 1)I@@@@(!; 2)I..............(0; 1) (1; 1) (2; 1) (3; 1) (4; 1) � � � (!; !)6 6 6 6 6��������(0; 2) (1; 2) (2; 2) (3; 2)6 6 6(0; 3) (1; 3) (2; 3) (4; !)6 6 6(0; 4) (1; 4) (3; !)6 6(0; 5) (2; !)6(1; !)6(0; !)Proof It is su�cient to show:1. If n 6= ! or m 6= ! then (n;m) @8 (n+ 1;m� 1).Suppose M 2 (n;m) and N 2 (n + 1;m � 1). Let f : M ! N be a bijectivefunction which maps all elements satisfying p in M to elements satisfying p inM . Then there is precisely one element, say a 2 M , not satisfying p in M butsuch that f (a) satis�es p in N .Suppose � is a natural consequence of 8x: p(x) and M �. We must show thatN �. Consider � in the form speci�ed in lemma 3.6. We must show thatfor any tuple b1 of elements of N there is a tuple b2 of elements, such that forany tuple b3 there is : : : such that [bi=xi]. Consider such a tuple b1, and leta1 = f�1(b1). Since M �, we can �nd a tuple a2 such thatM 8x39x4 � � � : [a1=x1; a2=x2]

50 CHAPTER 3. EXAMPLES AND PROPERTIES OF OTPSLet b2 = f (a2). Similarly, given b3 we can �nd b4 by mapping into M and back.Proceed in this way until all the quanti�ers have been dealt with.Since [ai=xi] is true in M and p only occurs positively in , [ai=xi] cannotassert :p(a). Therefore, [bi=xi] is true in N . But the tuples b1, b3,: : : werearbitrary; therefore, N �.This shows that M v8 N . To show M @8 N we have additionally to exhibit anatural consequence satis�ed by N but not by M . If m 6= !, such a one is8x1; x2; : : : ; xm:�^i6=j xi 6= xj ! _k p(xk)�which says that in any selection of m distinct elements, one must satisfy p. Ifn 6= !, we can take8x1; : : :xn+1:9y1; : : :yn+1 :�^i6=j xi 6= xj ! ^h6=k yh 6= yk ^^l p(yl)�which says that if there are n+ 1 distinct elements then there are n+ 1 distinctones satisfying p. It is not hard to verify that these two sentences are indeednatural consequences of 8x: p(x).2. If n+m 6= n0+m0 and n; n0 > 0 then (n;m) and (n0;m0) are incomparable in theordering.Suppose M 2 (n;m) and N 2 (n0;m0). We can exhibit a natural consequenceof 8x:p(x) satis�ed by M and not by N , and another satis�ed by N but not M .First, let us adopt the notation thatsize > n abbreviates 9x1; : : :xn:�^i6=j xi 6= xj�:This formula expresses the fact that there are at least n elements. Additionally,let size = n abbreviate size > n ^ :(size > n+ 1)Then we have, for any n,8x: p(x) j=� 8x: p(x)_ size = nWe also haveM 8x: p(x)_ size = n+m; but N 6 8x: p(x)_ size = n+mIn the former case M satis�es the second disjunct. In the latter, N fails boththe �rst disjunct (since n0 > 0) and the second (since n0 +m0 6= n+m). On theother hand, we also have for similar reasons:M 6 8x: p(x)_ size = n0+m0; but N 8x: p(x)_ size = n0+m0 }
CHAPTER 3. EXAMPLES AND PROPERTIES OF OTPS 51Proposition 3.8 The order v9 is the following.(0; 1); (1; 1); (2; 1); : : : ;(0; 2); (1; 2); (2; 2); : : : ;... 6(0; 0); (1; 0); (2; 0); (3; 0); (4; 0); : : : ; (!; 0)Proof Easy. }Now note that if � = �6 then it follows from proposition 2.30(4) and remark 2.31 thatM @� N i� M @ N or (M @� N and M v N)Proposition 3.9 Let � be 8x: p(x)69x::p(x)as above. Then for each n, the interpretation (n; 1) is maximal.Proof Suppose (n; 1) @� (a; b). Then either (n; 1) @9 (a; b), which is impossibleby inspection of the diagram; or (n; 1) v9 (a; b) and (n; 1) @8 (a; b). The second ofthese conditions implies b = 0, which contradicts the �rst. Therefore (n; 1) @� (a; b) iscontradictory, therefore (n; 1) is maximal. }3.2 Existence of models for OTPsAs stated, models of an ordered presentation � are v�-maximal interpretations of thelanguage of �. When is it possible to �nd such maximal interpretations? In thissection we show that, if the underlying logic is compact, every ordered presentationhas a model.First, it is worth noting that there are simple cases of ordered presentations withno models, when compactness fails.Example 3.10 Let � be the OTP 8x: p(x)6domain is in�nite ^[[p]] is �nite

52 CHAPTER 3. EXAMPLES AND PROPERTIES OF OTPSThe bottom sentence says that the domain of individuals is in�nite, but that only�nitely many of its elements satisfy the predicate p. But the top sentence says that allthe individuals must satisfy p. These are sentences in second order predicate logic; it isnot possible to express �niteness of the interpretation of a predicate or in�niteness ofthe domain in �rst order logic. (For details of how precisely to state these constraintsin second order logic, see [73].)There are no models of this theory, because every candidate model M can beimproved to obtain an interpretation which is closer to being a model, ad in�nitum.That is to say, for all M 2 M there is an N 2 M such that M @� N . To see this,suppose M pretends to be a model of �.� If the domain of individuals of M is �nite, then construct N by adding in�nitelymany new individuals which do not satisfy p.� If M [[p]] is in�nite, then construct N from M by using the same domain butremoving all but �nitely many elements from [[p]].� If M [[p]] is �nite but the domain is in�nite, then N is obtained by adding onemore element to [[p]].In each of these cases, M @� N .Now we turn to the proof that if the underlying logic is compact (which second-order logic is not), then every ordered presentation has a model. The proof strategy isto use Zorn's lemma to �nd v�-maximal interpretations.Let L be a language and hM;i its interpretation system, and let � = hX;6; F ibe an ordered presentation over L.De�nition 3.11 The logic hL;M;i is compact if for all sets of sentences � � L, �has a model if each of its �nite subsets has a model.De�nition 3.12 For each M;N in M, the (M;N)-frontier, written fr(M;N), is theset of minimal elements of the set fx 2 X j M 6�x Ng.Lemma 3.13 For all M;N 2 M and x 2 X, either M �x N or 9y 6 x: y 2 fr(M;N).Proof By lemma 2.14, fx 2 X j M 6�x Ng has minimal elements. }Lemma 3.14 M @� N i� fr(M;N) 6= � and 8x 2 fr(M;N):M @x N .Proof (If) First we show M v� N . Suppose x 2 X with M 6vx N . By lemma 3.13,9y 2 fr(M;N) with y 6 x. By hypothesis, M @y N . Next, we show N 6v� M . Letx 2 fr(M;N). Then N 6vx M , but for each y < x, M �y N .(Only if) If fr(M;N) = � then M �� N , a contradiction. Let x 2 fr(M;N). EitherM 6vx N or N 6vx M . In the former case, 9y 6 x with M @y N ; since x 2 fr(M;N), ymust equal x. In the latter case, N 6vx M and if M vx N then M @x N . Therefore,in both cases M @x N as required. }
CHAPTER 3. EXAMPLES AND PROPERTIES OF OTPS 53Lemma 3.15 Let � be a �nite OTP and N be a non-empty chain in M with nomaximal element (i.e. for every M;N 2 N , if M 6= N then M @� N or N @� M ; andfor each M 2 N there is an N 2 N such that M @� N). There is a non-empty setY � X and a non-empty chain L � N such that1. For each a 2 Y and M;N 2 L, if M @� N then M va N ; and2. For each a 2 Y and M 2 L there exists P 2 L such that M @� P and M @a P .Proof Let X 0 = fx 2 X j 8M 2 N 9M1;M2 2 N (M @� M1 @� M2 and x 2fr(M1;M2))g.If X = X 0, let L = N . Otherwise, for each x 2 X �X 0 let Mx be such that, for allM1;M2 2 N , ifMx @� M1 @� M2 then x 62 fr(M1;M2). That such an Mx can be foundfollows immediately from the de�nition of X 0. Let MX = max(fMx j x 2 X � X 0g);we can take this maximum because X is �nite; and let L = fM 2 N j MX v� Mg.L 6= � since MX 2 L.Thus, whether X = X 0 or not, we have that L 6= �. Also, L is upwards closed(i.e. for all M;N 2 N , M 2 L and M v� N imply N 2 L). Let M1;M2 2 L withM1 6= M2. Then either M1 @� M2 or M2 @� M1. In either case, fr(M1;M2) 6= �. But,fr(M1;M2) � X 0, so X 0 6= �. Let Y be the minimal points of X 0.1. Suppose a 2 Y , M;N 2 L, and M @� N . If a 2 fr(M;N) then M @a N . Ifa 62 fr(M;N) and M 6va N then 9y 2 fr(M;N): y 6 a by lemma 3.13, so a 62 Y ,a contradiction.2. Suppose a 2 Y and M 2 L. Since a 2 X 0, 9M1;M2:M @� M1 @� M2 and a 2fr(M1;M2). Since M v� M1 v� M2, M va M1 va M2; and since a 2 fr(M1;M2),we have M va M1 @a M2. Let P = M2. }Lemma 3.16 If hL;M;i is compact and � is �nite then for each M 2 M, thereexists N 2 M such that M v� N and N is v�-maximal.Proof Let M 2 M. We show that fN j M v� Ng has maximal elements. Let Nbe a non-empty chain in that set. By Zorn's lemma it su�ces to show that everysuch chain has an upper bound. If N has a maximal element, that element is also anupper bound. Suppose, then, that N does not have a maximal element. Let Y and Lbe as given by lemma 3.15. Let Z = Y [fx 2 X j 8y 2 Y: y 66 xg. We now show thatfor each x 2 Z and M;N 2 L, M v� N implies M vx N . If x 2 Y , this follows fromlemma 3.15 part 1. If x 2 Z � Y , then 8y 2 Y: y 66 x by de�nition of Z. By lemma3.13, 9y0 6 x: y0 2 fr(M;N) � X 0, so 9y 2 Y: y 6 y0, a contradiction.For each M 2 L let M � be f j M and 9x 2 Z: F (x) j=� g. M � has a model,since it has M as a model. Also, M @� N implies M � � N �. For suppose 2 M �.Then M , and there is an x 2 Z s.t. F (x) j=� . Since M vx N , we have N .Therefore, 2 N �.Let � = SM2LM �. � has a model, since every M � and therefore every �nite subsetof � has a model, and the underlying logic is compact. Let K �. It remains toshow that 8M 2 L:M v� K, i.e. that K is an upper bound. Since L is a non-emptyupwards-closed subchain of N , it is su�cient to consider the case M 2 L. Let M 2 L.

54 CHAPTER 3. EXAMPLES AND PROPERTIES OF OTPSThe fact that M � � � implies that for each x 2 Z, M vx K. Suppose M 6vx K. Thenx 62 Z. We require that M @y K for some y 6 x. Since x 62 Z, 9y 2 Y: y 6 x. We nowshow that M @y K for every y 2 Y , completing the proof. By lemma 3.15, pick Psuch that M @� P and M @y P . It su�ces to show that P vy K. Suppose F (y) j=� and P . Then 2 P �, so 2 �, so K . }As an immediate corollary, we get:Proposition 3.17 Every �nite ordered presentation � over a compact logic has amodel.Proof By lemma 3.16, v� has maximal elements. }A consequence of this result is that contradictions can never be derived from anordered presentation, not even one with the contradictory sentence in it! Indeed,nothing can be derived from the theory with one sentence which is ?. That is becauseevery interpretation is a model of that theory. This may come as a surprise, but reallyit is quite rational.Proposition 3.18 If � j= � then � 6= ?.Proof Let M �. Since M �, � 6= ?. }Our policy about ? in the de�nitions in this thesis has been: \let ? do what itwants". That is to say, we have tried to avoid giving ? any special treatment in thede�nitions; a consequence of this is that it has perhaps surprising properties in thetheorems. If it had turned out that ? had positively unpleasant properties one mightbe inclined to return to the de�nitions and try to change them to avoid those properties.As it is, ? has turned out completely benign: we cannot derive anything from it, andit makes no di�erence to an OTP no matter where it is placed within it.Proposition 3.19 If \?" j= � then � = >.Proof Every M is v?-maximal (example 2.51), so is v\?"-maximal (remark 2.31).}3.3 Adding information to OTPsA natural way to add information to an ordered presentation is to add it at the bottom.This is not the only way, but it is obviously one with many interesting properties. Otherways of adding information will be considered in chapter 6.De�nition 3.20 Let � = hX;6; F i be an ordered theory presentation, let 0 62 X andlet � be a sentence. The ordered presentation � � � is hX 0;60; F 0i where1. X 0 = X [f0g,2. 60 = 6 [f(0; x) j x 2 X 0g, and

CHAPTER 3. EXAMPLES AND PROPERTIES OF OTPS 553. F 0(x) = (� if x = 0F (x) otherwiseThis situation is graphically illustrated as follows:...��De�nition 3.21 Let � and � be OTPs.1. � and � are statically equivalent, written � � �, if they have the same extension:� � � if for all M , (M � i� N �):2. � and � are dynamically equivalent, if, for all �, � � � � � � �.Example 3.22 p ^ q6:p � p6q6:p _ :qCompare examples 1.2 and 1.4.Dynamic equivalence implies static equivalence, but the converse is not so as thefollowing example shows.Example 3.23 p6q � p ^ q; but p6q6:p _ :q 6� p ^ q6:p _ :qProposition 3.24 M v��� N i� M @� N or (M v� N and M v� N).Proof Proposition 2.30 and remark 2.31. }Corollary 3.25 M @��� N i� M @� N or (M v� N and M @� N).

56 CHAPTER 3. EXAMPLES AND PROPERTIES OF OTPSIf � j= � we would not expect that revising � by � should change the set of models:Proposition 3.26 If hL;M;i is compact and � is �nite then � j= � implies � � ���.Proof Suppose M � and M 6 � � �. Since M � and � j= �, M � (de�ni-tion 2.25). Since M 6 � � �, there is an N such that M @��� N . By proposition 3.24,� either M @� N , a contradiction since M � (proposition 2.54);� or M v� N and M @� N , contradicting M �.Conversely, suppose M � � � and M 6 �. By lemma 3.16, take N such thatM @� N and N is v�-maximal, i.e. N �. By N � and de�nition 2.25, N �. Byproposition 2.54, M v� N . Therefore, by proposition 3.24, M @��� N , contradictingM � � �. }Let [[�]] = fM j M �g.Proposition 3.27 If hL;M;i is compact and � is �nite and � 6= ? then M � � �i� M is v�-maximal in [[�]].Proof (If.) We show that M 6 � � � implies M is not v�-maximal in [[�]]. SupposeM 6 � ��. Then M @��� N for some N . By lemma 3.16 we can take such an N suchthat N ���, and by proposition 2.27, N �, i.e. N 2 [[�]]. By corollary 3.25, eitherM @� N , in which case M 62 [[�]], or M @� N , in which case M is not v�-maximal in[[�]].(Only if.) Suppose M is not v�-maximal in [[�]]. If M 62 [[�]], pick any N 2 [[�]]. IfM 2 [[�]] and is not v�-maximal, pick N 2 [[�]] with M @� N . In either case, we haveM @��� N (by corollary 3.25), and so M 6 � � �. }We also obtain what we might loosely describe as weak analogues of proposition 2.9:Proposition 3.281. Weak inclusion: if � 6= ? then � � � j= �If hL;M;i is compact and � is �nite then2. Weak monotonicity: � j= � � j= � � � j= 3. Weak cut: � � � j= � j= �� j= Proof 1. Follows from proposition 2.27.2. and 3. Follow from proposition 3.26. }These principles are accepted as being requirements which a default system shouldhave (see for example [10, 46]).

CHAPTER 3. EXAMPLES AND PROPERTIES OF OTPS 57Proposition 3.29 Suppose the underlying logic is compact. Let � = hX;6; FXi bea �nite OTP and � and be mutually consistent sentences such that f1; 2g � X and6jf1;2g = f(1; 1); (1; 2); (2; 2)g and F (1) = and F (2) = �; and 1 is minimum in Xand 2 is minimum in X � f1g.Let � = hY;6jY ; FY i be such that Y = X � f1g, and FY (2) = � ^ and FY (x) =FX(x) if x 6= 2. Then � � �.Graphically, this seemingly complicated state of a�airs is simply illustrated:� = �6I@@@@ ������6 � = �6I@@@@ ������ ^ Compare requirement 4 in x1.3.1.Proof Let Z = X � f1; 2g and � = hZ;6jZ; F jZi. (� is shown in the diagram.) Wehave (by corollary 3.25):(A) M v� N i� M @ N or (M v N and (M @� N or (M v� N and M v� N)))(B) M v� N i� M @�^ N or (M v�^ N and M v� N)We will use the following intermediate result: if M � ^ then the following areequivalent:1. M v� N ;2. M v� N ;3. M v� N and N � ^ .Proof: First we note that by hypothesis M � and M . By proposition 2.54we have M 6@� N , M 6@ N , and M 6@�^ N . (1) 2) By (A), we have (in view ofthe forgoing) that M v� N , M v N and M v� N . Therefore N � and N .Therefore by (B) we have M v� N . (2) 3) By (B) we have M v�^ N and M v� N ;the former assures N � ^ . (3) 1) We have M v� N and M v N since M andN both satisfy � ^ , so by (A), M v� N .Now suppose M �. We will show M �. Suppose M v� N ; we will showN v� M . By proposition 2.27, M . Also, M �. For suppose not; then pick anyP � ^ (since they are consistent). Then M v P and M @� P , and so M @� Pby (A), a contradiction. By the intermediate result, M v� N and N � ^ . ButM �, so N v� M ; so again by the intermediate result, N v� M .Conversely, suppose M �; we will showM �. Again, if we supposeM v� N itis su�cient to show N v� M . By proposition 2.27, M � ^ ; so by the intermediateresult, M v� N and N �^ . ButM �, soN v� M ; so again by the intermediateresult, N v� M . }

Chapter 4Belief revision4.1 IntroductionThe central question in belief revision is the following: given a belief state and asentence, how should one obtain a new belief state in which the sentence is true, butwhich preserves as much of the old belief state as possible? In other words, one wantsa function � : belief states � sentences ! belief statessuch that1. � is true in � � �; that is, the revision has been e�ective; and2. given this constraint, � � � contains `as much' of � as is consistent; that is, oldbeliefs persist through revisions if they can.The case of interest, of course, is that in which :� is true in �, so that the revision ismore than just re�nement, or the addition of compatible information. We also hopethat3. � � � does not contain any extraneous information which was present in neither� nor �.In the above requirements, some things are easy to formulate and some are not. Weassume that any satisfactory representation of belief states comes with a function j � jwhich takes a belief state and returns the set of sentences true in it. j�j is called theextension of �. But formalising the `as much' requirement and the requirement of noextraneous information (numbers 2 and 3) is not so easy, and is the subject of thischapter.Belief revision has obvious applications in arti�cial intelligence (eg. robotics), com-puter science (eg. deductive databases|see eg. [14]), the philosophy of science, socialtheory and so on. It also has applications beyond the idea of revising `beliefs'. Forexample, in speci�cation theory and in AI, there is the well-known frame problem todo with the semantics of actions. Given (the representation of) a state of a systemand the post-condition of an action performed in the state, what is the state whichresults from performing the action? The same requirements on the revision function58
CHAPTER 4. BELIEF REVISION 59apply here too: the post-condition should be true in the resulting state, which (giventhis constraint) should preserve as much of the original state as possible.We begin the next section by describing the standard theory of belief revision,known as the AGM theory. The AGM theory su�ers from several disadvantages. Oneis that it represents belief states as in�nite objects, namely deductively closed sets ofsentences. Another is that existing belief revision models make too strong assumptionsabout what information is available to guide revisions. A consequence of this is thatrepeated revisions are impossible.Not surprisingly, we will advocate ordered theory presentations to represent beliefstates. The revision function will usually be the one which simply puts the revisingsentence in the most prominent position of the belief state (we say `usually', becausethere will be a special case to consider). We will be interested only in linear OTPs,that is, those in which the partial order is in fact total. In view of this, we can use asimpler notation for them; a linear OTP is simply a list of sentences.The result is a �nite representation of belief states. The revision operator is shownto satisfy some, but not all, of the AGM postulates. The counterexamples for the AGMpostulates which fail are motivated. The important point is that no information otherthan that encoded in the OTP is needed to e�ect the revision; this makes repeatedrevision easy.The remainder of the chapter is organised as follows. We look at the AGM theoryin the next section, and �nd it to be wanting. Criteria for belief revision are set up inx4.3, and also the axioms are rewritten in a more general form which allows comparisonwith systems of belief revision which do not model belief states as theories. Then linearOTPs are proposed as representations of belief states in x4.4; they are shown to satisfythe criteria. But, as shown in x4.5, they do not satisfy two of the AGM axioms. Thisfact is discussed in x4.5.1. We end with some examples (x4.6).The content of this chapter has been published as [59].4.2 The AGM theoryThe standard theory of belief revision|known as the AGM theory after its au-thors, C. Alchourr�on, P. G�ardenfors and D. Makinson [23]|models belief states asdeductively-closed sets of sentences. More recent developments of the AGM theory aredescribed in S. O. Hansson's thesis [33]. It describes a small set of postulates whichany belief revision operator should satisfy (see below). If K is a belief state and �a formula, then K � � is a belief state, the result of revising K with �. As alreadynoted, the case of interest is when :� 2 K, that is, when the revising sentence conictswith the current belief state. We suppose we are utilising classical logic with the usualconnectives, and the usual entailment relation j=.Notation 4.11. Let � be a set of sentences. Cn(�) = f� j � j= �g.2. L is the set of all sentences in the language.3. K + � = Cn(K [f�g).

60 CHAPTER 4. BELIEF REVISIONThe AGM postulates are the following:K1 K � � is a deductively-closed theory;K2 � 2 K � �;K3 K � � � K + �;K4 If :� 62 K then K + � � K � �;K5 K � � = L implies � = ?;K6 If j= �$ then K � � = K � ;K7 K � (� ^) � K � �+ ;K8 If : 62 K � � then K � �+ � K � (� ^).K1 says that K � � should be a belief state. K2 says that the revision should besuccessful, i.e. the resulting theory should at least contain �. The third axiom says thatK � � should have no more than what we would get by just adding � set-theoreticallyand closing under entailment. Of course, if � is inconsistent with K then adding itin that way would yield the whole of L (the theory with every sentence in it). K4asserts that if � is consistent with K then we get precisely the result of adding it set-theoretically. We should point out that this is one of the (two) axioms with which wetake issue in x4.5. K5 says that the revision yields the contradictory theory L only if �is inconsistent. This is not just that � is inconsistent with K, but is inconsistent on itsown. The converse, that revising with an inconsistent sentence yields the inconsistenttheory, is guaranteed by K2. K6 says simply that revising with logical equivalentsyields the same theory.K7 and K8 are more complicated, approximating what happens with repeated re-visions. They are analogues of K3 and K4.Note that K7 and K8 do not contain expressions like K � � � , and therefore donot constrain repeated revision in any explicit way. The only constraints on repeatedrevision are those inherited from the more general case of revision which K1{8 describe.I believe the AGM axioms to be neither sound not complete with respect to in-tuitively rational belief revision. Of course such a statement is necessarily imprecise,because `intuitively rational' belief revision is not amenable to mathematical descrip-tion. My argument to show lack of soundness is to give `counterexamples' to K4 andK8 later in the chapter. (Again the scare quotes show that these are not counterex-amples to any fully spelled-out conjecture.) My argument against completeness is thefollowing proposition, which shows that K1{8 admit revision functions which have noelement of the `persistence' requirement (number 2 above).Proposition 4.2 The revision functionK � � = (K + � if :� 62 KCnf�g otherwisesatis�es axioms K1{8.Proof K1{4 and K6 are immediate.

CHAPTER 4. BELIEF REVISION 61K5 Suppose K � � = L. By K3, K + � = L, so :� 2 K. Therefore, K � � = Cnf�g,so � = ?.K7 Suppose :(� ^) 2 K. Then K � (� ^) = Cn(� ^). If :� 2 K then(K ��) + = Cn(� ^); otherwise it is (K + �) + , which contains Cn(� ^).Otherwise :(� ^) 62 K, and so :� 62 K. K � (� ^) = K + (� ^) =(K + �) + = (K � �) + .K8 Suppose : 62 K��. Suppose also that :� 62 K. Then K�� = K+�. Therefore,K ��+ = K+�+ . Also, since : 62 K �� and K �� = K+�, we have that: 62 K+� and therefore :(�^) 62 K. Therefore, K � (�^) = K+(�^) =K + �+ , as required.Now suppose :� 2 K. Then :(� ^) 2 K, so K � � + = K + � + =K + (� ^) = K � (� ^). }Of course there are more interesting functions satisfying the axioms. The followingtwo are the most important in the AGM literature: partial meet revision; and revisionby epistemic entrenchment.4.2.1 Selection functionsSuppose K is a belief state and � is a sentence other than ?. LetKj� = the �-maximal elements of fK 0 � K j :� 62 Kg;that is, the set of maximal subsets of K which are consistent with �. Kj� may bepronounced `K without �'. The operation of partial meet revision assumes a selectionfunction SK which selects some of these subsets. Then revision is de�ned byK � � = (Cn�TSK(Kj�; �) [�� if � 6= ?;L otherwise.That is to say, if � 6= ? it is the intersection of those �-consistent maximal subsetschosen by SK with � added set-theoretically. If � = ? it is simply L, the inconsistenttheory (the set of all sentences).It should be clear that this is unsatisfactory, since the whole problem of how to makea revision has just been packaged up in the existence of a selection function, and hasnot been solved at all. Obviously, the selection function must depend on K. Therefore,we need not bother with the information K alone provides us, since everything we needmight just as well be given by this magical S! The drawback of coding everything inS is that repeated revisions are then impossible.There is a limiting case of partial meet revision, in which SK(Kj�; �) is always asingleton. This case is known as maxichoice contraction. There is another limitingcase in which SK (Kj�; �) = TKj�, the intersection of all the candidate theories, whichis known as full meet revision. The �rst of these is unsatisfactory for the same reasonas the general case, namely that the selection function remains to be de�ned. (It hasother, worse, problems too, detailed in G�ardenfors' book.) The second limiting case

62 CHAPTER 4. BELIEF REVISIONdoes not have this problem, and is worth spelling out in full, since it fully speci�es howto carry out a revision without the need for extra information. According to it,K � � = (Cn�TKj� [�� if � 6= ?;L otherwise.It is straightforward to check that this de�nition satis�es the postulates K1-K8. Butthere are problems. Consider, for example, how to revise Cn(fp; qg) with :p_:q. Intu-itively, there are at least three plausible answers: Cn(fpg), Cn(fqg) and Cn(fp$:qg).Full meet contraction gives us the last of these, because no information is availableto chose whether to give up p or to give up q. But, in practice there may be criteriafor choosing to give up one rather than the other. This is what leads to considerationof selection functions, since they could encode the extra information required. Butthen, as already remarked, repeated revision is impossible. The moral we draw fromthis situation is di�erent. It is that deductively closed theories are inadequate as rep-resentations of belief states. We return to this point later, after considering the othermain way of providing the information necessary to guide revisions, namely epistemicentrenchment orderings.4.2.2 Epistemic entrenchmentRevision by epistemic entrenchment is e�ected as follows. First we require an epistemicentrenchment ordering on the current belief state. This is a linear pre-order on thesentences in the state, which represents the degree to which they are believed. Thoseless entrenched according the ordering are dispensed with more readily in the case ofa revision which conicts with the current state. An epistemic entrenchment orderingfor a belief state K must satisfy the following axioms:E1 If � 6K and 6K � then � 6K � (transitivity);E2 If � j= then � 6K (dominance);E3 Either � 6K � ^ or 6K � ^ (conjunctiveness);E4 If K is consistent then � 6K for all i� � 62 K (minimality);E5 If � 6K for all �, then j= (maximality).As in the case of the K postulates, these axioms are intended to encode rationalityconstraints on what an epistemic entrenchment ordering might be. For example, E2says that it is always better to give up logically weaker sentences during the courseof a revision; therefore, these should be less entrenched. E3 says that giving up aconjunction is at least as hard as giving up either of the conjuncts. Taken together,axioms E1{E3 imply that 6K is a linear order, that is, either � 6K or 6K � (orboth). E4 says that a sentence is minimally entrenched in K i� it is not in K. E5 saysthat just the tautologies are maximally entrenched.Given a belief stateK, an epistemic entrenchment ordering 6K onK, and a sentence�, the revision of K by � is given byK � � = (Cn�f 2 K j :� <K :� _ g [f�g� if � 6= ?;L otherwise.
CHAPTER 4. BELIEF REVISION 63(< is the usual strict counterpart of 6, de�ned by: � < if � 6 and 66 �.)Full motivation for the K and EE axioms, as well as for the de�nition of � in termsof 6K , can be found in G�ardenfors' book [23].We now summarise the main weaknesses we have described of the AGM theory.Belief states are represented as deductively closed theories. This means that they are(in general) impossible to write down fully, or to store on a computer. Moreover, asnoted, they are incapable of representing the necessary information required to chosebetween alternative revisions. Therefore, extra information in the form of a selectionfunction or an EE ordering is required. This information is not deemed part of thebelief state, and is lost during the revision, making further revision impossible. It isworth pointing out that this means that the real intention of axiom K1 is not satis�edby these revision functions. Its intention is that after a revision we should end up withan object of the same type as the one with which we started. Obviously, both partialmeet revision and revision by epistemic entrenchment fail this requirement. In thosecases we start o� with a pair, respectively of type hK;SKi and hK;6Ki, and end upwith something of type K.There are some proposals for modifying the AGM theory to solve some of theseproblems. For example, some work has been done on theory base revision to addressthe problem of the in�nite nature of deductively closed sets of sentences. In thatwork, belief states are represented as �nite sets of sentences (theory bases or theorypresentations) [20, 34, 51]. But each of these authors assume the existence of somethinglike a selection function or an EE ordering, so are subject to objections on thosegrounds. There are proposals of non-deterministic revision [45], which alleviate theneed for a selection function, but they rely on in�nite belief state representations.There are proposals to allow repeated revision using EE orderings, either by keepinga single EE ordering for all belief states or assuming the existence of a function which,for every belief state, gives an EE ordering [57, 65]. But as neither the single orderingnor this function is itself revised in the course of belief revisions, it is easy to �ndexamples which are in contradiction with intuitions about iterated belief change [33].Another modi�cation of the AGM theory which allows EE orderings to be revisedis given by H. Rott [58]. He de�nes revision of EE orderings as follows. 6K�� � if �! 6K �! �:However, as he points out, this fails to capture much of the intuition of repeated revisionbecause any further revision of K � � always includes �.4.3 Criteria for belief revisionIn this section we enumerate what we claim are the criteria by which to judge a theoryof belief revision.1. Finite representation of belief states.2. Persistence.3. Iteration: what you put in is what you get out.

64 CHAPTER 4. BELIEF REVISION4. The \intentions" behind the K axioms of AGM.The criterion of �nite representation means that all belief states can be explicitlywritten down or represented on a computer. The advantages of this should be easy tosee; one in particular is that one can give examples of belief revision in action! (Seesection 4.6.)Persistence means that as much of the former belief state should survive a revisionas possible. We rule out revisions like the one of proposition 4.2.The iteration criterion says that you should get out of a revision an object of thesame type as you put in. As mentioned, this is violated by AGM, since you put ineither an EE ordering, or a theory coupled with a selection function; but, all you getout is a theory. We call this iteration since, if it obtains, it guarantees that revisionsmay be repeated. Its absence is a serious problem in AGM.The last criterion, concerning the K axioms of AGM, is deliberately expressed in avague way. Obviously, if belief states are not represented as deductively closed sets ofsentences then it is impossible to test them literally. Also, as we have noted, they donot specify what should happen under repeated revision, in terms of expressions of theform K �� � . This is presumably because the AGM models do not support repeatedrevision. Moreover, for reasons which we will discuss in section 4.5, we dispute two ofthe AGM axioms. In view of these reasons, we can only say that something like theintention of the AGM axioms is desirable.The AGM axioms K1{8 rely on a particular representation of belief states (namely,deductively closed sets of sentences). Therefore, direct comparison with theories ofbelief revision which use other representations of belief states is impossible. To over-come this we can we rewrite the axioms in a more general way, which assumes only thefollowing:1. A set of belief states, together with a subset of `contradictory' belief states.2. A function � (revision) which takes a belief state and a sentence to a belief state;3. A function j � j (extension) which takes a belief state and returns the set ofsentences true in it.Here are the axioms rewritten in this way. We will write K for a typical `abstract'belief state.K1 K � � is a belief state;K2 � 2 jK � �j;K3 jK � �j � jKj+ �;K4 If :� 62 jKj then jKj+ � � jK � �j;K5 K � � is contradictory implies � = ?;K6 If j= �$ then jK � �j = jK � j;K7 jK � (� ^)j � jK � �j+ ;K8 If : 62 jK � �j then jK � �j+ � jK � (� ^)j.
CHAPTER 4. BELIEF REVISION 654.4 Linear ordered theory presentationsWe present a system for belief revision which satis�es each of the criteria describedabove. Belief states are represented by linear ordered theory presentations. A linearOTP is a �nite list of formulas; � = [�1; �2; : : : ; �n]. Elsewhere in the thesis we writeit as �16�26...6�nHere, n is said to be the length of �. The extension of � is the deductively-closedtheory which � presents; that is, it is the set of sentences entailed by �, after takingaccount of the various conicts in �. This was de�ned in chapter 2 (de�nition 2.25).To be precise, we set: j�j = f� j � j= �gThere is an easy intuition for linear ordered theory presentations. The OTP � =[�1; �2; : : : ; �n] presents the theory which �rst of all has �n, and then has as much of�n�1 as possible while retaining consistency, and then : : : up to �1. Put another way,we start with �1. Then we `force in' �2, overriding as necessary. Then : : : and so onuntil �n.The following are examples of belief states.1: [p ^ q] 2: [p; q] 3: [p ^ q;:p]Their lengths are 1, 2 and 2 respectively. States 1 and 2 above both have the extensionCn(fp^qg). But in 2, p is less entrenched than q, and will disappear if a revision whichdemands that one of p and q goes. Thus, we stipulate:Sentences later in the list are more entrenched than those earlier.State 3 has the extension Cn(f:p ^ qg). This is because :p, which is more entrenchedthan p^ q, overrides the p component of p^ q. But the q component is not overridden.Thus,Sentences later in the list have the e�ect of overriding those earlier, in thecase of conict.It should now come as no surprise to �nd thatRevision of OTPs is in general e�ected by appending the revising sentenceto the end of the sequence.Thus, the three belief states mentioned above can be revised by :p _ :q, yielding10: [p ^ q;:p _ :q] 20: [p; q;:p _ :q] 30: [p ^ q;:p;:p _ :q]:

66 CHAPTER 4. BELIEF REVISIONThe extension of state 10 is Cn(fp$:qg), which was the outcome of the correspondingexample for full meet revision described above. But state 20 has as extension Cn(fqg).Since 1 and 2 had the same extension and 10 and 20 do not, it should be clear that thereis more to an OTP than its extension.Belief state 30 has the extension Cn(f:p ^ qg), which is the same as it had beforethe revision. This is because the revising sentence was consistent with the belief stateit revised.Let us note some important facts about OTP revision.1. OTPs have memory. If � is an OTP, then the extension of � � p � q � :(p ^ q)includes q^:p. This is because the theory was more recently revised with q thanwith p, so q is more entrenched. Older information is discarded more readily thannewer.2. But, information is never wantonly discarded.3. The more you revise an ordered presentation, the more complicated (= longer)it gets. That is because ordered presentations are nothing more than revisionhistories.The semantics of linear OTPs is of course just the special case of the semantics forarbitrary OTPs given in chapter 2. The crucial de�nition is that of v� (x2.2.4), whichis an ordering on interpretations which measures how nearly an interpretation satis�es�. For the purposes of this chapter, we may slightly extend proposition 3.24 to obtainthe following characterisation of v�:Proposition 4.31. M v[] N always; and2. M v��� N if M @� N or (M v� N and M v� N).This brings out the compositional nature of linear OTPs. ��� is � with � appended.Lemma 4.4 M @��� N if M @� N or (M v� N and M @� N).4.5 The AGM axiomsAs stated, we intend to use these ordered theory presentations as representations ofbelief states in order to model belief revision. The obvious way to do this is to letbelief states = ordered theory presentationsand de�ne ��� to be � with � appended (as in de�nition 3.20, but in the new notation).Of course we have been assuming this de�nition so far in the chapter. Note that underthis arrangement there are no contradictory theories (proposition 3.18).In this setting, we can investigate the truth or falsity of the abstract K axioms givenin section 4.3 (page 64). We obtain the following.
CHAPTER 4. BELIEF REVISION 671116� �� I@ @011 101 1106 6� ��I@ @ � ��I@ @001 010 1006I@ @ � ��000 000; 001; 010; 011100; 101; 1106111 000; 001; 010100; 110; 111� �� I@ @011 101011 101 1106 6� ��I@ @ � ��I@ @001 010 1006I@ @ � ��0006111 1106� ��010 100 0016I@ @ � ��0006111� �� I@ @101 011Figure 4.1: The counterexample to K4 (see text)K1 � � � is a belief state.This is true. If � is an OTP then so is � � �.K2 � 2 j� � �j.This is false. For example, ? 62 j[] � ?j; for, as one can check, j[] � ?j = Cn(�).However, K2 is true if � 6= ?, by proposition 2.27.K3 j� � �j � j�j+ �.True. We need to show that M � and M � imply M � � �. Supposenot, i.e. suppose M @��� N for some N . By lemma 4.4, either M @� N , whichcontradicts M � (proposition 2.54) or M @� N , which contradicts M �(de�nition 2.24).K4 If :� 62 j�j then j�j+ � � j� � �jThis is false. Let �1 = p ^ q ^ r, �2 = :p _ :q _ :r and �3 = (p$ q) _ :r. Thecounterexample is obtained by setting: � = [�1; �2] and � = �3. To see this, weshould �rst examine the orderings for each of �1, �2 and �3. They are shown inthe top half of �gure 4.1. Applying proposition 4.3, the orderings v� and v���(i.e. v[�1;�2] and v[�1;�2;�3] respectively) are as shown in the bottom half of the�gure. We can check the following:{ :�3 62 j[�1; �2]j, that is to say, there is a model M such that M is v[�1;�2]-maximal and M 6 :�3. Such an M is 110. Thus, the antecedent of K4holds.

68 CHAPTER 4. BELIEF REVISION{ But the consequent is false. For we can �nd such that � j= but ��� 6j= ,namely = (:p ^ q ^ r) _ (p ^ :q ^ r) _ (p ^ q ^ :r). We can see this byinspecting the diagrams. Every model of � is a model of . But there is amodel of � � � which is not a model of , namely 001.K5 � � � is contradictory implies � = ?.This is vacuously true since there are no contradictory belief states.K6 If j= �$ then j� � �j = j� � j.True. This follows from proposition 2.2.4.K7 j� � (� ^)j � j� � �j+ .True. We need to show that if M � � � and M then M � � (� ^). If� = ? then ��� � ��(�^), and we are done. So suppose � 6= ?, andM ���and M , but M @��(�^) N for some N . Since M � � � and � 6= ?, wehave M � by proposition 2.27. Therefore, M � ^ . By lemma 4.4, eitherM @�^ N , which contradicts M � ^ , or M @� N . But this also leads toa contradiction, for then, since M v� N , we obtain M @��� N by lemma 4.4,contradicting M � � �.K8 If : 62 j� � �j then j� � �j+ � j� � (� ^)jFalse. The counterexample given for K4 holds here too. Set � = [p ^ q ^ r],� = :p _ :q _ :r and = (p$ q) _ :r.On this way of using OTPs as belief states, we have shown that K1, K3, K5, K6and K7 are valid; that K2 is valid under the proviso that � 6= ?; and that K4 and K8are not valid.It is worth pointing out that the lack of contradictory belief states and the partialfailure of K2 are easily solved, by adding a new belief state to represent the contradic-tory belief state and modifying the de�nition of revision. Thus,belief states = ordered theory presentations [f?g.Revision on these belief states is de�ned as follows:� �� � = 8><>: ? if � = ?[�] if � 6= ? and � = ?� � � otherwiseThis emulates what the AGM axioms intend for ?, in that1. There is a unique contradictory belief state.2. Revising any state with the contradictory sentence results in the contradictorystate (K2).3. The contradictory state can only be obtained in this way (K5), so in particular4. Revising the contradictory state with a non-contradictory sentence will not resultin the contradictory state.

CHAPTER 4. BELIEF REVISION 69For the psychological plausibility of these stipulations, or otherwise, see [23]. Especiallythe �rst one is debatable! Our point is simply that if we take this de�nition of � �� �on board, we obtain that K1, K2, K3, K5, K6, and K7 are satis�ed, and K5 is satis�edin a more satisfying manner. K4 and K8 are still false for the same reasons.4.5.1 The AGM axioms K4 and K8K4 and K8 are serious violations of the AGM axioms, and there is no easy way ofmaking them satis�ed in the framework of OTPs. One must face the question: arethey desirable axioms for belief revision? We believe the answer is no.Consider the diagrams given in �gure 4.1. As far as our counterexample is con-cerned, the question of the validity of K4 hinges on whether 001 @�1 110 or not. If thiswas so, then we would also have 001 @[�1;�2;�3] 110 and [�1; �2; �3] would have only themodel 110. Therefore, K4 (and K8) would hold.Should 001 @p^q^r 110 be the case? At �rst sight it seems clear that 110 is betterat satisfying p^ q ^ r than 001 is, for 110 satis�es two of the atomic propositions while001 satis�es only one. But this kind of cardinality argument is awed. Why is it betterto satisfy p ^ q rather than r? Perhaps r itself expresses a conjunction of facts. Aretwo oranges better than one apple?The AGM book does not provide any argument in favour of K4 and K8. Considerthe following story. I am expecting a friend called John to arrive. He can come by car,bike, or train. I am doubtful about whether he will arrive or not, however, becauseI believe that his car and bike are both at the repairers; and also, the trains are notworking today (for a change). Let:p mean that his car is unavailable for useq his bike is unavailabler the trains are unavailableInitially I believe p ^ q ^ r:Now suppose John actually arrives. I have no reason to doubt that he came by oneof the usual means of transport (for example, he didn't ask me for money for a taxi).Therefore I revise my beliefs by :p _ :q _ :r:In the course of conversation it turns out that the repairer phoned him this morningto say that both his car and his bike were available for collection. I reason as follows.If the trains are still not working, he may have asked Richard for a lift to the repairer.His bike �ts in the back of Richard's car, so then they could have collected both items.But, Richard may have been unavailable or unwilling. Either way, he will have collectedboth items or neither, so I revise with:r! (p$ q)If the trains are working (:r) I cannot draw the conclusion p$ q, since he may havegone by train to pick up either the car or the bike, or neither, or he may still haveasked Richard and got both.

70 CHAPTER 4. BELIEF REVISIONThe question now is: have I got enough information to conclude which means oftransport were available for John to use? I believe no.To see why the answer is no, we use exactly the argument given in example 1.12,page 20. Suppose r, that is, the trains are still not working. I have already reasonedthat this implies p$ q, and since John is actually here (so :p _ :q _ :r), it must bethat :p ^ :q. Therefore, :p ^ :q ^ r. On the other hand, suppose :r, i.e. that thetrains are working. This tells me nothing about p and q. But since I started with thebelief that p ^ q and John's arrival (by train, presumably) is consistent with these, Iretain them. Therefore, p ^ q ^ :r. So I conclude (:p ^ :q ^ r) _ (p ^ q ^ :r), or,equivalently, (p$ q) ^ (p$:r).We have argued that it is not rational to conclude :r in this case. We have alsonoted that the theory of belief revision outlined in this chapter does not conclude :r.Indeed, we have argued that it concludes precisely what it is rational to conclude. Itshould be pointed out in fairness to the AGM theory that it does not insist on :r either.To see this, consider what happens if the revision function speci�ed in proposition 4.2is applied to the revision history in question. We getCnfp; q; rg � (:p _ :q _ :r) � (r ! (p$ q)) = Cnf:p _ :q _ :rg � (r! (p$ q))= Cnf(p ^ q) _ :rg:r is not derivable from this theory.What we have shown is that if we augment the system of OTPs for belief revisionso as to obtain K4 and K8, then we would have a system which concluded :r in thiscase, which is undesirable.4.6 ExamplesHere we list some facts about linear OTPs, together with some references to examplesin the literature to which the facts seem relevant.j[p]j = Cn(fpg)j[p; q]j = Cn(fp; qg)j[p; q;:q]j = Cn(fp;:qg)j[p; q;:p]j = Cn(f:p; qg)j[p ^ q;:p]j = Cn(f:p; qg)j[p ^ q;:p _ :q]j = Cn(fp$:qg)j[p; q;:p _ :q]j = Cn(f:p; qg)j[p _ q;:q]j = Cn(fp;:qg)We also have that s! p 2 j[s; s! p; s! q;:q;:p]j(cf. Hansson [33, page 7:12]), and, for example,p$ q 2 j[p; q]j; but p$ q 62 j[p; q;:p]jp$ q 2 j[p; p$ q]j and p$ q 2 j[p; p$ q;:p]j(cf. [33, page 4:3]).

Chapter 5Default ReasoningIn this chapter, existing frameworks for default reasoning are examined and comparedwith the theory presented in this thesis. We establish a set of criteria by which tocompare and contrast them, which includes how they handle two famous examples ofdefault reasoning in the literature. We also look at some formal properties of defaultsystems. Finally, we consider related frameworks.5.1 IntroductionClassical logics allow us to draw incontestable conclusions from sets of premises. Thisis very well when we have complete information about a situation. But usually we haveonly partial information, and we choose to augment it with prejudices or presumptionsor presuppositions in order to be able to reason e�ectively. Such presumptions, presup-positions or prejudices we will call defaults. The conclusions we draw with the aid ofthese defaults are not as certain as the ones we might have drawn had we had completeinformation; instead, they are defeasible|they can be defeated by the acquisition ofmore information, which might override some of the defaults we had.Examples of such defaults at work are ubiquitous, and we could not function ef-fectively as human beings without using them. We constantly enter into stereotypedsituations where hundreds of assumptions are made about our and other people's be-haviour, and quite often a small proportion of them are proved wrong. When we entera restaurant we assume the man approaching us will show us to a table; we assumethat the items on the menu have been cooked and will be served in portions suitablefor one person. The waiter assumes we will order food, that we will want a main coursebefore a desert and that we have enough money to pay the bill. Any of these defaultscan be overridden.There are a variety of frameworks for reasoning about these stereotyped situations,some of which are of a logical nature and others non-logical. Perhaps the best-knownnon-logical example is R. Schank's scripts [64]. A script is a parametrised representa-tion of a stereotyped story (such as the restaurant). The parameters can be set for theparticular story at hand; they may include the name of the restaurant, the number ofpersons dining, the particular dishes ordered, the amount paid, and so on. The scriptsrepresent the norms of restaurant behaviour; the values of the parameters just �ll inthe details. 71

72 CHAPTER 5. DEFAULT REASONINGThis chapter is concerned with the logical approaches to defaults. One of the best-known examples of a default in the logic literature is the information that birds can y.We can use this to deduce about any bird that it can y, unless there is informationavailable to the contrary. As J. McCarthy says [50]: \If I hire you to build me a birdcage and you don't put a top on it, I can get out of paying for it even if you tell thejudge that I never said my bird could y. However, I complain that you wasted moneyby putting a top on a cage I intended for a penguin, the judge will agree with you thatif the bird couldn't y I should have said so."Logics for expressing and manipulating defaults were �rst proposed in the early1980s in a special issue of Arti�cial Intelligence [1]. Since then there has been anabundance of new proposals and variations on existing proposals, and quite a fewissues have emerged. An important summary of the state-of-the-art as it was in 1987is contained in M. Ginsberg's Introduction to a collection of inuential papers [25].This chapter concerns logical formalisms used to represent and reason with defaults.In the literature the terms `default logics' and `non-monotonic logics' have been takenas synonymous and used to describe such formalisms. A non-monotonic logic is a logicwhich fails the property of monotonicity :� j� �; � j� :This property says that adding a premise can never inhibit a conclusion.I prefer the term `default logic' to `non-monotonic logic' because the latter term in-cludes any logic which happens to fail the monotonicity property. This property merelystates that the set of conclusions grows monotonically with the set of premises. A logicmay fail this property and have nothing to do with the representation of defaults; ex-amples include linear logic [26] and relevance logics [2]. It happens that default logicsare necessarily non-monotonic, but the converse is not true.But the term `default logic' is not ideal either, because some formalisms for defaultreasoning such as circumscription and model-minimisation are motivated as an alter-native way of using classical logic rather than an alternative logic. McCarthy makesthis point in [50], D. Poole in [53], and indeed we have motivated OTPs in this way too.Therefore `default reasoning system' seems to be a better term than `default logic'. Wewill use the term `default system' as a convenient abbreviation.5.2 Criteria for classifying default systemsWe will not attempt to summarise the huge variety of formalisms for defaults whichhave been proposed. Such surveys already exist elsewhere [25, 56, 47]. Instead we willlook at a small number of existing logics and classify them according to the followingthemes:1. Representation. How are defaults represented? We will see examples of defaultsystems which represent defaults by rules of inference; by sets of predicates; andby ordinary sentences.

CHAPTER 5. DEFAULT REASONING 732. Method. Given some way of representing defaults, how should the logic bede�ned? Existing default systems split into at least two cases, the proof-theoreticand the semantics based.3. Conicting defaults. How does a formalism deal with conicting defaults?This is the crucial element in assessing default systems. All of the `problems'mentioned in the literature (such as the two famous ones described below) haveto do with conicting defaults. We may distinguish between two principal ways ofresolving conicts, which we will call the explicit exception way and the externalheuristic way. In the former, exceptions to defaults are coded up in the theory,either as part of the defaults or separately from them. In the latter, no exceptionsare mentioned. Instead, an heuristic such as the speci�city principle mentionedin x1.2.1 is employed within the logic to resolve the conict. This distinction willbecome clearer with the examples of default systems below.Related to the question of conicting defaults is the question of whether onecan express relative priorities between defaults, to determine which one takesprecedence in the event of a conict.4. Application area. Some non-monotonic systems have been developed for par-ticular applications only, not for arbitrary defaults.5. Formal properties. Makinson [47] describes several properties such as weakcut, weak monotonicity and reexivity which classify default systems accordingto their underlying consequence relation.5.3 Two examples of default reasoningAs well as the criteria described above, we will also make use of the following twoexamples of default reasoning to classify the various existing systems (and our own).To the reader acquainted with default systems they will be very familiar. Althoughhackneyed, they are excellent examples for showing the key di�erences between theformalisms.The examples we chose concern inheritance and persistence, which are undoubtedlythe principal uses of defaults to be found in the literature. There are others, however.V. Lifschitz [44] distinguishes between �ve types of default reasoning and cites noless than 32 di�erent examples. Inevitably, therefore, the analysis we shall give isincomplete.5.3.1 Inheritance defaultsIf every object in a class has a certain property, then every object in any subclassalso has it; that is to say, properties of a class are inherited by any subclass. But, asalready remarked in the Introduction, this is not true of default properties. When weare interested in whether defaults about classes are inherited by subclasses, we will callthem `inheritance defaults'.We will consider the well-known example concerning birds and penguins andwhether they can y. The class of penguins is a subclass of the class of birds. But

74 CHAPTER 5. DEFAULT REASONINGthe property of being able to y, which holds of birds by default, is not inheritedby penguins. In the usual formulation of this example, we have the following factualpremisesPenguins are birds;together with the defaultsBirds can y, andPenguins cannot y.We want the following results:1. If Fred is stated to be a bird (whether he is also a penguin or not is not stated),we want to conclude that he can y.2. But if it is stated that he is a penguin, we want to conclude that he cannot y.The reason this example is interesting is that there are two defaults which competein certain circumstances. It is easy to get result 1 correctly, but it is in the case ofresult 2 that the defaults conict. Our intuition that the second of the two defaultsshould have priority and block the application of the �rst is based on the speci�cityprinciple mentioned in chapter 1:Defaults about a speci�c class of objects take priority over defaults abouta more general class.Some default systems have this principle `built in', while in others we have to expressthe desired priority between the defaults as part of the theory. In the latter case, wewill be interested in whether the means of expressing this priority always works.5.3.2 Persistence defaultsAnother kind of default widely discussed in the literature concerns the e�ects of actions.An action is usually described by stating what changes come about when the actiontakes place. For example, we may say that the action of putting block A on top ofblock B will result in block A being on top of block B. By this description we intendthat everything else, such as the position of block C, remains the same. More precisely,we intend that unless it can be shown from the axioms of the situation at hand thatthe action a�ects the position of block C, we should be able to deduce that it does nota�ect it.The problem of having to specify, for each action, the uents1 which are not changedby it is called the frame problem. In general, a given action leaves most uents un-changed. The problem of specifying this may be solved by employing defaults whichsay that actions have no e�ect on uents; these defaults are overridden by the axiomswhich say what e�ects actions do have. Since these defaults express the fact that thevalues of uents persist through the occurrence of actions, they are called persistencedefaults.1We suppose that the state of the system is speci�ed by the values of certain variables; thesevariables are called uents.

CHAPTER 5. DEFAULT REASONING 75There is a massive literature on this subject, and the reader is assumed to befamiliar at least with the general ideas; otherwise our description here will probablybe too terse. Introductory material is contained in [11, 24, 32, 36, 68].The most famous example of persistence defaults is called the Yale ShootingProblem2 , and was proposed by S. Hanks and D. McDermott [32]. It is well-known be-cause none of the then-available default systems could (starting from what was thoughtof as the intuitively correct coding) obtain the intuitively correct answer. It is an ex-ample we will use in our comparison of default systems.We have a gun and a man. The gun can be loaded or unloaded, the man can bealive or dead. Imagine 3 situations, which we will call 1, 2 and 3. 1 is the initialsituation, in which the gun is loaded and the man is alive. Situation 2 results fromwaiting an indeterminate period after situation 1. Situation 3 is the result of �ring thegun in situation 2. We have the following premisesThe gun is loaded in 1;The man is alive in 1; andIf the gun is loaded in 2, then the man is not alive in 3.together with the defaultsIf the man is alive in i then he is alive in i+ 1 (i 2 f1; 2g); andIf the gun is loaded in i then it is loaded in i+ 1 (i 2 f1; 2g).We want the following result:The man is not alive in 3.Again, we have competing defaults. Intuitively, nothing happens between 1 and 2.Therefore the gun is loaded in 2, and the man is alive in 2. Since the gun is loadedin 2, the man is dead in 3.The reason that this example is famous is that all the formalisms for default reason-ing available at the time it was introduced allow there to be another possible outcome.It is that the gun should miraculously become unloaded during the wait action between1 and 2. Then, when it is �red in 2, we cannot conclude that the man dies.Even before considering any particular formalism, we can see how the second sce-nario comes about. Let A be the scenario which we expect, in which the man dies. LetB be the one in which the gun becomes unloaded, and the man lives.� A can be obtained by starting with the factual premises, and using the defaultsto show that situation 2 is identical with 1. Since the gun is loaded in 2, the manmust be dead in 3.� B is also obtained by starting with the factual premises. We use the �rst defaultto conclude that the man is alive in 2, and then use it again to show that he isalive in 3. If he is alive in 3, it must be that the gun was not loaded in 2.The second scenario may seem a bit less natural than the �rst, because to obtain itinvolves reasoning from later situations to earlier ones. But that fact does not stop thelogical conclusions. Note that2Our description here is slightly (but immaterially) simpli�ed from the original.

76 CHAPTER 5. DEFAULT REASONING� A is obtained by using each default once (to get from 1 to 2) and by overridingthe �rst default once (to get from 2 to 3).� B is obtained by using the �rst and overriding the second default (to get from1 to 2) and by using the �rst again (to get from 2 to 3).The important point is that one cannot chose A on the grounds that it employs moredefaults or violates fewer defaults than B. Each scenario uses two instances of thedefaults and violates one.Much of the literature about this example focusses on the idea, due to Y. Shoham[68], that defaults relating to earlier states of the system should take priority overdefaults relating to later states. In the example, this successfully avoids scenario B.Thus, we may stipulate a principle for persistence defaults, analogous to the speci�cityprinciple for inheritance defaults. The chronology principle states that:Defaults about an earlier state take priority over defaults about a laterstate.(It is important to note that this principle is appropriate when using defaults to predictthe outcome of action sequences; that is, for so-called `prediction problems'. There areother examples of uses of persistence defaults, for example in `explanation problems'where it is desired to account for a known outcome, in which this principle manifestlygets the wrong answer. An example of this is H. Kautz' `stolen car problem' [36].)As for speci�city, some default systems have this principle `built in' (such asShoham's logic of chronological ignorance), while in others we have to express thedesired priority between the defaults as part of the theory. But in the latter case, themethod of expressing this priority often fails to have the desired e�ect, as we will see.5.4 Default systemsWe now consider some default reasoning formalisms in the light of the criteria andexamples described in the last two sections.5.4.1 Reiter's `Default Logic'In Reiter's `Default Logic' [55] defaults are represented as rules of inference whichhave a consistency-check side condition. In Reiter's system one would encode the �rstdefault about birds as b(x) : f (x)f (x)which is read as: if x is a bird and it is consistent to conclude that x can y, then xcan y. In general, a default rule is an expression of the form:� : � :The formula � is the precondition to the rule, � is the clause that is checked forconsistency with the database and is added to the database if � is consistent. A
CHAPTER 5. DEFAULT REASONING 77rule such as the one above about birds, where � = , is called a normal default rule.If � implies the rule is semi-normal; otherwise it is non-normal. In general, defaultrules are preferred to be semi-normal or normal, as non-normal rules have peculiarproperties.The method for reasoning with default rules is as follows. A default theory inReiter's formalism is a set of sentences S together with a set of default rules D. Anextension of this default theory is a logical theory such that1. None of the rules can consistently be applied to obtain a conclusion not alreadyin the extension.2. Subject to this condition, the extension is minimal.Consider D as an operator on a logical theory T , returning a new logical theory D(T)which is the result of applying zero or one rules in D to T . Then T � D(T). Anextension E is a least �xed point of this operator.Reiter's logic can deal with some examples of conicting defaults, but not others.It will work for the inheritance example (x5.3.1), but not the persistence example(x5.3.2).The inheritance example. One may consider coding the example into the defaulttheoryb(Fred) 8x: �p(x)! b(x)� b(x) : f (x)f (x) p(x) : :f (x):f (x)This corresponds to case 1 of the example. There is only one extension of the theory,which contains f (Fred). Thus, result 1 is satis�ed. Now suppose we replace b(Fred)with p(Fred), for case 2 of the example. It is easy to check that there are two extensions,one containing f (Fred) and the other with :f (Fred). There are two because there aretwo ways of obtaining the operator D, one for each order in which we can apply therules.To obtain result 2 correctly we have to state the �rst default in a more guardedfashion, namely: b(x) : :p(x) ^ f (x)f (x)This says that birds which are not known to be penguins (that is, it is consistent withcurrent information that they are not penguins) can y. Replacing the former rule bythis one yields a theory with a single extension in both cases 1 and 2, which containsthe right answer in both cases.Thus, this logic falls into the category of logics which employ explicit exceptions forresolving the conicts between defaults. The fact that penguins are exceptions to thedefault about birds is explicitly indicated in the rule.The persistence example. Again in this example it is a question of giving greaterpriority to some defaults than others; in this case the second default should be preferred.The facts are that `1 a1 `2 ! :a3

78 CHAPTER 5. DEFAULT REASONINGwhere `i and ai mean respectively that the gun is loaded and the man is alive in statei. Learning from the previous example, we should write the defaults asa1 : a2a2 a2 : :`2 ^ a3a3 `1 : `2`2The �rst default simply states that the property of aliveness persists from situations1 to 2. The second default says the same about situations 2 and 3, but we have codedin the fact that `2 is an exception to this, in the hope of making this rule yield priorityto the persistence of the loaded property. The third rule expresses this persistence fromstates 1 to 2. (Since we are not bothered about the value of `3 we have not botheredabout the persistence of ` from 2 to 3.)This is not the coding of the example given in Reiter's logic by Hanks and McDer-mott in the usual paper. We have simpli�ed rather dramatically by using a proposi-tional language and making explicit the identities of the states. This simpli�cation isjusti�ed since the same problem occurs in this simpler setting as occurred in Hanksand McDermott's, but the simpler setting is rather easier to understand. However, Iaccept that the simpler setting may not do justice to some of the subtler solutions tothe problem which have appeared in the literature. As these are not the main interestof this chapter, I feel this is not a signi�cant loss.Returning to the example, we �nd that there are still two extensions. They areobtained in the way already described above (x5.3.2).� Starting with the facts f`1; a1; `2 ! :a3g, apply the �rst default to give f`1; a1;a2; `2 ! :a3g, then the third default to give f`1; `2; a1; a2;:a3g. The seconddefault cannot be applied since we have :a3. We conclude that the man is deadin state 3. This is scenario A.� For scenario B, again start with f`1; a1; `2 ! :a3g and apply the �rst defaultto give f`1; a1; a2; `2 ! :a3g. Now apply the second default to give f`1;:`2; a1;a2; a3g. The third default cannot be applied since we have :`2. We conclude thatthe man is alive in state 3.Solutions to this problem using Reiter's logic have been proposed by Morris whichemploy non-normal defaults.5.4.2 CircumscriptionIn McCarthy's circumscription ([49, 50, 43] and others) defaults are represented asordinary �rst order sentences. Their status as defaults results from the fact that theycontain predicates which are minimised in the logic, in a way which will become clear.The simplest way of coding the default that birds can y is asb(x) ^ :abb(x)! f (x)This is read as: if x is a bird and x is not abnormal then x can y. The predicateabb is called an abnormality predicate. The subscript reects the fact that there maybe several such predicates; this one corresponds to abnormal birds. (In general, the
CHAPTER 5. DEFAULT REASONING 79predicate being minimised need not be called `ab' or represent abnormality; this issimply a useful idiom.)Themethod for reasoning with defaults in circumscription is the following. Insteadof considering all models of a circumscriptive theory, only models in which the extensionof the abnormality predicates is minimal are considered. This means, in e�ect, that weaugment a circumscriptive theory with the information that the abnormality predicatesare to be minimised.This is best illustrated with the examples. We will �nd, again, that circumscriptionworks well for the inheritance example, but not for the persistence example.The inheritance example. The correct way of coding case 1 of this example is thefollowing: b(Fred)8x: �p(x) ! b(x)�8x: �b(x) ^ :abb(x) ! f (x)�8x: �p(x) ^ :abp(x)! :f (x)�8x: �p(x) ! abb(x)�The last sentence in this set can be thought of as the particular way of coding incircumscription the fact that the default about penguins takes priority over the defaultabout birds. It says, in e�ect, that penguins are exceptions to the birds default becausethey are abnormal birds. Like Reiter's logic, circumscription also employs explicitexceptions to resolve the conict between competing defaults.As stated, we consider only models which are minimal in the ab predicates. Byinspection of the theory, we can see that this means that in such models abp and abbshall have empty extensions. The circumscription of this theory with respect to abb; abpcontains the �ve axioms above, and also8x: �:abb(x)�8x: �:abp(x)�We have :abb(Fred), and so by the birds default we conclude f (Fred).Now consider the �ve axioms, but with the �rst one replaced byp(Fred)The extension of abp is still empty, but the �fth of the axioms means that at leastFred must be in the extension of abb. The circumscription of the new �ve axioms withrespect to abb; abp contains the new �ve axioms, and also8x: �abb(x)$ (x = Fred)�8x: �:abp(x)�We conclude :f (Fred).We thus conclude the correct answer in both cases.

80 CHAPTER 5. DEFAULT REASONINGThe persistence example. We will code this as a propositional example again.(For the original predicate coding, see [32].) The theory to be circumscribed is formedfrom the sentences `1a1`2 ! :a3a1 ^ :aba1 ! a2a2 ^ :aba2 ! a3`1 ^ :ab`1 ! `2`2 ! aba2Again, we wish to minimise the abnormality propositions. This means making themfalse when possible. However, as the reader may by now expect, there is competitionbetween them about which ones can be made false.� aba1 and ab`1 can be made false, but the resulting theory then contains aba2. Italso contains :a3. This is scenario A.� aba1 and aba2 can be made false, but the resulting theory then contains ab`1, andalso contains a3. This is scenario B.Experts on the Yale Shooting Problem may be frustrated by this propositional versionwhich leaves out much of the latitude for solutions provided by the original coding.For example, it is not clear how the state-based minimisation of Baker [3] should workin this setting. Perhaps it cannot. But this is of no signi�cance for the emphasis ofthis chapter, which is the representation of defaults and their priorities.My view is that the Yale Shooting problem can be solved by making explicit thefact that the persistence of loadedness between states 1 and 2 takes priority over thepersistence of aliveness between 2 and 3. I claim that this was implicit in the originalcodings by the fact that loaded-in-2 is stated as an exception to the persistence ofalive between 2 and 3. But the early formulations of the problem failed because thismethod of stipulating the priorities between the defaults failed. All I have to add tothe debate is that the semantics given to default priorities in this thesis do not failin this respect. Proposals for the Yale Shooting Problem which address more generalproblems in temporal reasoning (such as Baker's mentioned above) are orthogonal tothe discussion of default priorities.5.4.3 Veltman's Update SemanticsVeltman's Update Semantics [74] is a much more recent approach to defaults, andis part of an emerging school in Amsterdam focussing on the `dynamics' of logic.According to that school, the meaning of a sentence is given not by its models butby the change it brings about in the information state of the agent which understandsit. Thus, sentences are functions between information states. (As was seen in chapter 4,theories of belief revision can be seen in this way too.)
CHAPTER 5. DEFAULT REASONING 81Whereas circumscription and Reiter's default logic are about any kind of defaults,Update Semantics was designed speci�cally for inheritance defaults. It represents de-faults simply by sentences in the language, with a special connective ; for defaultimplication. Case 1 of the inheritance example of birds and penguins becomes:b(Fred)8x: �p(x) ! b(x)�8x: �b(x); f (x)�8x: �p(x) ; :f (x)�This is the simplest representation we have seen so far. No explicit exceptions are men-tioned, and no arti�cial predicates like the abnormality predicates of circumscriptionneed be employed.The method by which Update Semantics works is complicated, and the readershould see Veltman's paper for full details. Here is an outline. As stated, sentencesdenote functions between information states. An information state is a collection ofmodels (representing the ways the world might be, given the current information)together with a family of pre-orders on the models. These pre-orders are called `ex-pectation patterns', and represent the defaults with which the agent is acquainted; inother words, they represent his expectations about the world. There is an expecta-tion pattern for each subset of the models in an information state, with `coherence'conditions relating them.By virtue of the fact that it is designed for inheritance defaults, Update Semanticsgets the correct answer for the theory above, and also for the theory with p(Fred)(f (Fred) and :f (Fred) respectively).5.4.4 Ordered theory presentationsOTPs represent defaults by sentences in the language. They obtain their status asdefaults by their position in the ordering. Sentences minimal in the ordering have thestatus of facts, and there are as many levels of defaults as may be needed by consideringOTPs of arbitrary depth. The mechanism of OTPs was given in chapter 2. Conictingdefaults may be resolved by rearranging the ordering.The ordered presentations corresponding to case 1 of the inheritance example andthe persistence example are the following.8x: �b(x)! f (x)�68x: �p(x) ! :f (x)�68x: �p(x) ! b(x)�^ b(Fred) a2 ! a36`1 ! `2 ^a1 ! a26`1 ^ a1 ^`2 ! :a3

82 CHAPTER 5. DEFAULT REASONINGThey respectively prove f (Fred) and :a3 as required. The OTP for case 2 of theinheritance example has p(Fred) instead of b(Fred), and proves :f (Fred).We do not intend to conclude from this analysis that the logic of ordered theorypresentations is superior to all the other default systems because it obtains the correctanswer to the Yale Shooting Problem. Such a conclusion would be terribly na��ve formany reasons. For one, our solution depends on ordering the persistence defaultsaccording to the precedence of the state in which they apply. In many formalisms thiswould mean decomposing a persistence default into lots of instances, which is at bestinelegant; at worst it is impossible. Another reason is that our solution is a crudeapplication of the chronology principle, but, as already seen, this is not appropriatefor all examples of reasoning about actions. What we have shown is that the theoryof OTP given in this thesis does correctly implement prioritisation of defaults in cases(such as the Yale shooting problem) where other logics fail. We also hope that wehave shown that the representation of defaults, and interacting defaults in particular,is clearer in the theory of OTPs than in many of its rivals.5.4.5 Other systems with ordered defaultsThere are other default systems in which hierarchies of defaults may be represented;in this section we mention the similarities and the di�erences with OTPs. The twosystems we will discuss D. Vermeir's Ordered Logic [75, 40] and G. Brewka's preferredsubtheories [7].Vermeir's motivation is to generalise logic programming by introducing an orderingamong the rules in a logic program. To this end he considers partially ordered sets of`rules'; a rule is a clause Q0 Q1; Q2; : : :; Qn. Each Qi may be negated, and n maybe 0. The intended meaning of such an `ordered program' is similar to the meaningwe give to the corresponding ordered theory presentation, except that the semantics ofthe connectives and negation is not the classical one; the framework is restricted tothe language mentioned; and there is no `partial' satisfaction of sentences such as theone we describe in this thesis.G. Brewka's preferred subtheories is presented as an extension of Reiter's defaultlogic (x5.4.1) and of Poole's default logic [53]. The motivations of this work are similarto those of this chapter, namely to give a system in which hierarchies of defaults maybe expressed. Compared with this work, there are both limitations and advantages ofBrewka's approach. Among the limitations are (i) the restriction to linear orderingsamong defaults; (ii) a restricted syntax and the restriction to that particular syntax;and (iii) no ability to handle partial satisfaction (that is, to adopt part of a defaultwhen the whole would lead to inconsistency). However, his semantics are simpler thanthe semantics presented in this thesis.More work comparing these systems to ours is in hand.5.5 Formal properties of default systemsThe study of default systems has, I believe, been transformed by a new concern, namelythe formal properties of the underlying consequence relation. The �rst default systemsintroduced in the 1980 special issue of Arti�cial Intelligence [1] did not even have well-
CHAPTER 5. DEFAULT REASONING 83de�ned consequence relations. D. Gabbay [22] and M. Clark [10] �rst observed that,instead of focussing on the negative properties of such consequence relations, that is,their non-monotonicity, one should instead ask what properties they do have. Theygave the name `cautious monotonicity' to the property� j� � � j� �; � j� :This property, which is weaker than full monotonicity, has become widely accepted asa desirable property for default systems.The story of the properties of default consequence relations has been pursued inthe work of S. Kraus, D. Lehmann and M. Magidor [38, 42] and also by D. Makinson[46, 47]. Makinson's [47] is, in my opinion, the most authoritative and systematicstudy to date. He describes and motivates a set of conditions on a default consequencerelation and analyses existing systems according to whether they have the conditions.In this section we outline his principal conditions and check the theory of OTPs of thisthesis against them.5.5.1 Makinson's conditionsMakinson describes a set of conditions on a default consequence relation j�, or, equiv-alently, a default consequence operation C. As usual, consequence relations and oper-ations are interchangeable: � j� i� 2 C(�):As elsewhere in this thesis, �, 	,: : : are sets of sentences, while �, , �,: : : are singlesentences.The expression � j� (or 2 C(�)) should be read as: follows from � in thecontext of an understood set of defaults. It is unfortunate (and detracts slightly fromthe systematic study) that these defaults are nowhere made explicit. Consequently, thebehaviour of the consequence relation under variations of the defaults|and for thatmatter, questions of default representation|are not examined at all in his work.Makinson's conditions also refer to classical consequence, written j� as a relation orCn as an operation. � j� is to be read as follows from � without using the defaults.The understood set of defaults can be thought of as augmenting classical consequenceto default consequence. Therefore, the �rst property we may expect isSupraclassicality � j� � j� or, in the language of consequence operations, Cn(�) � C(�).It says that anything which can be derived without the defaults can also be derivedwith them.The next three conditions are together called `cumulativity'. They are weak formsof Tarski's conditions on standard consequence relations (described in proposition 2.9).These weak forms have already been proved for natural consequence (proposition 2.44)and, in a certain context, for OTPs (proposition 3.28).

84 CHAPTER 5. DEFAULT REASONINGInclusion: If 2 � then � j� .Cautious monotonicity: � j� �; for all � 2 	 � j� �;	 j� Weak cut: � j� �; for all � 2 	 �;	 j� � j� They are jointly (but not quite individually) equivalent to the following conditions onC: � Inclusion: � � C(�).� Cautious monotonicity� : � � 	 � C(�) implies C() � C(�).� Weak cut�: � � 	 � C(�) implies C(�) � C().(The � signs represent the fact that these C versions of cautious monotonicity and weakcut are implied by the j� versions, but imply them only in the presence of inclusion.In other words, they are equivalent in the presence of inclusion but slightly weakerotherwise.)An inference relation is said to satisfy cumulativity if it satis�es cautious mono-tonicity and weak cut.For the justi�cation of these principles in intuitive terms, we cannot do betterthan quote Makinson. \Cut may be seen as expressing a determination not to allowthe length, intricacy or manner of a derivation of a conclusion to reduce the freedomwith which it is used in further inference. There is no `diminution of usability' withrespect to distance from origins. Once inferred, a proposition may be called uponin conjunction with the original information, unless genuinely new (i.e. uninferable)information is also added. Cautious monotonicity, on the other hand, may be seenas expressing a certain irreversibility in the drawing of conclusions. Once inferred, aproposition may be retained irrespective of what other inferred propositions are addedto the stock of usable information. We need never go back unless, once more, genuinelynew information is brought in" [47].The next condition we will consider isDistributivity: If � and 	 are Cn-closed sets of sentences (that is, � = Cn(�) and	 = Cn()) then � j� � 	 j� �� \ 	 j� � ;or, in the language of C: if � and 	 are Cn-closed then C(�)\C() � C(�\).Finally, the following condition has had attention in the literature [47, 38]
CHAPTER 5. DEFAULT REASONING 85Rationality: � j� � � 6j� �; j� �This is again a weak form of monotonicity, which says that premises may be added inan argument if their negations are not derivable from the original set. One interestingfeature of this rule is the negated j� relation above; Makinson describes such conditionsas `non-Horn' (because, when expressed as clauses, they are not Horn clauses).Makinson considers other conditions, but these are the principal ones. Before weturn to the question of which of these conditions are satis�ed by ordered theory presen-tations (and before we make that question precise), we will introduce some terminologyof Makinson's, together with a result, which will make the job easier.First, some background. As has been pointed out already, the technique of orderinginterpretations which we use so extensively in chapter 2 is not new. It originatesin McCarthy's �rst circumscription paper [49] in a rather narrow context which wasbroadened �rst by Shoham [67, 8], and independently by P. Besnard and P. Siegel[4] and Kraus/Lehmann/Magidor [38]. It is also used in Veltman's Update Semantics[74], from which we drew inspiration. In all of those papers, the ordering works in theopposite way to the one we have used in this thesis, that is, M < N means M is betterthan N ; and therefore, one is interested in minimal models3. Makinson has examinedconstraints on such `preferential model structures', as he calls them, and has relatedthese constraints to the conditions on j� described above.In brief, he de�nes a preferential model structure to be a triple hM;; <i whereM is an arbitrary set, is an arbitrary relation between M and the sentences in thelanguage and < is an arbitrary relation on M. If M 2M, then M satis�es � if M �holds; and M preferentially satis�es �, written M < �, if M � and for all N < M ,N 6 �. We also de�ne M � for a set of sentences � if M � for all � 2 �, andM < � if M � and for all N < M , N 6 �.A preferential model structure de�nes a preferential inference relation j� in thefollowing way: � j� i� 8M 2M:M < � implies M ;that is, every `minimal' model of � satis�es .Makinson then considers the following constraints on preferential model structures.The structure hM;; <i is� stoppered, if for all interpretations M and sets of sentences � with M �, thereis an N 6 M such that N < �. Intuitively, this means that any model of a setof sentences can be improved into a minimal model.3The reader may wonder why we chose to y in the face of this well-established convention, inchoosing to order interpretations in the opposite sense and therefore to seek v�-maximal interpreta-tions. There are two reasons. The �rst is that the fact that other workers order models in the oppositeway is for the historic reason that in circumscription one wants to minimise abnormality predicates;this reason does not apply in the more abstract setting of this thesis. On the contrary, it is moreintuitive to move upwards in an ordering when one is moving to better and better models. The secondreason is that one typically looks at ascending chains and maximal elements in domain theory andinformation systems theory, with which we see links with our work. Cf. lemmas 3.15 and 3.16.

86 CHAPTER 5. DEFAULT REASONING� classical, if behaves in the classical way with respect to the logical connectives(that is, the conditions on given in example 2.4 on page 25 hold).� transitive, if < is transitive.It turns out that di�erent combinations of these constraints give inference relationssatisfying various conditions of the ones described. We will just quote one result, whichwill be relevant for the next subsection.Proposition 5.1 (Makinson.) The inference relation of a classical and stoppered pref-erential model structure satis�es Supraclassicality, inclusion, cumulativity and distribu-tivity.5.5.2 Makinson's conditions and OTPsWe have already noted that Makinson's conditions make no reference to the set ofdefaults which are implicit in the relation j� (or the operation C). On the other hand,one of the attractive features of the framework of Ordered Theory Presentations as adefault system is that there is no di�erence between defaults on one hand and `surerules' or facts on the other, except the priority they are given in the ordering. We viewthis as a desirable feature since we believe that, philosophically, the so-called sure rulesand the defaults have the same provenance. They should all form part of the theory,or database, from which we make deductions. A sentence does not have the status of adefault in isolation, but only in relation to other sentences; to be precise, it is a defaultrelative to those sentences which can override it.Nevertheless, we can go quite some way in examining Makinson's conditions in thecontext of ordered theory presentations over classical logic hL;M;i. In order to emu-late variation of the facts with a �xed set of defaults, we can consider the consequencesof the ordered presentation ��� with � �nite and �xed and � varying4 . We can thinkof this OTP as a way of representing that which in other default formalisms might becalled `the theory � with defaults �'. Notice that � is itself an OTP; that is, we arestill allowing defaults with di�erent priorities.Recall that graphically � �� may be represented as...��4Strictly, we should write � � V�, not � � �. We will use the latter as an abbreviation for theformer for this section. In fact, it would not be hard to rede�ne ordered theory presentations such thatthe points were labelled by sets of sentences instead of just sentences, which would remove the needfor this abbreviation, and for the assumption that � is �nite which its use implies. All the de�nitionsand results of chapters 2 and 3 would go through.

CHAPTER 5. DEFAULT REASONING 87(For the exact de�nition, see de�nition 3.20.)Using this idea we can de�ne a consequence relation j� which embodies the defaults,as in Makinson's work. The obvious thing to do is to let � j� mean � � � j= .However, we know from proposition 3.18 that ? does not have its classical behaviourin the context of OTPs. We can get improved results by setting:De�nition 5.2 � j� if V� = ? or � �� j= .That is to say, if � is contradictory then it entails everything; otherwise, it entailsjust what the illustrated OTP entails.Lemma 5.3 j� is the inference relation corresponding to the preferential model struc-ture hM;;w�i.Proof We have to show:� �� j= or ^� = ? i� 8M:M w� � implies M If V� = ? then both sides are true; the left-hand because the second disjunct is true;and the right-hand is vacuously true. If V� 6= ? then by de�nitions 2.25 and 5.2, itis su�cient to show that M w� � i� M � � �. Since V� 6= ?, this follows fromproposition 3.27. }Proposition 5.4 The preferential model structure hM;;w�i is classical and stop-pered.Proof Classicality follows from the fact that hL;M;i is classical logic. We showthat it is stoppered as follows. Suppose M �. We seek N w� M with N w� �.By lemma 3.16 pick N such that M v��� N and N � � �. (Recall that classicallogic is compact, and we assumed � was �nite.) Then, by proposition 2.27, N �. Itremains to prove:1. N w� M , i.e. M v� N . Since M �� N , this follows from proposition 3.24.2. N w� �. We already have that N �. Suppose N 0 � with N @� N 0. SinceN vV� N 0, by corollary 3.25 we have N @��� N 0, which contradicts N � ��.}Corollary 5.5 j� satis�es supraclassicality, inclusion, cumulativity, and distributivity.Proof From proposition 5.1. }We have shown that OTPs over classical logic can yield a default inference relationin the sense of Makinson, with good formal properties.

Chapter 6Applications in SoftwareEngineeringThis chapter represents the beginnings of applications of the ordered theory presenta-tions described in this thesis to topics in software engineering. We start by describingsome of those topics in x6.1 and x6.2, and then we consider how our formal account ofdefaults and revisions may be applied in speci�cation theory (x6.3 and 6.4). In x6.5 wemake these ideas more concrete by working out an example in a particular logic calledmal. In x6.6 related work is compared and �nally, conclusions are drawn in x6.8.Some of the material in this chapter has been published as [60].6.1 IntroductionSoftware engineering is concerned with the design and development of software andsoftware systems. A software system is a system of one kind or another which is drivenby software; examples include lift systems, nuclear reactors, washing machines and soon. Software engineering includes the study of the software process|the process bywhich software is obtained from informally stipulated requirements|as well as issuesof software correctness, speci�cation theory, modularity, re-use and other topics. All ofthese will be discussed in one way or another in this chapter.One of the most important concepts in software engineering is the speci�cation.A speci�cation is a formal description of a piece of software or a software system.The speci�cation stands between the informally stipulated initial requirements and the�nal implementation (see �gure 6.2 on page 91); it is against it that correctness maybe measured. The connection between software engineering and logic is the fact thatthe speci�cation of a system denotes a theory presentation in a logic. As already seenin x2.1, a theory presentation is a �nite collection of sentences; they are the axioms ofthe speci�cation.It should come as no surprise to the reader that the principal idea of this chapter isthat better results can be achieved by giving the semantics of speci�cations in terms ofordered theory presentations. This will enable us to include defaults in speci�cations,and formally to describe speci�cation revision.An important notion in speci�cation theory is that of structure. Large systemsshould be split into small components and speci�ed independently, in order to en-88
CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERING 89hance readability, writability, and to improve the chances of being able to demonstratecorrectness. The components into which a speci�cation is split are variously calledmodules, objects and agents. The structure of a speci�cation is conveniently illus-trated in diagrams like those of �gure 6.1. Diagram (a) shows how an n-oor liftsystem is composed of a lift and n oors; a oor is itself composed of two buttons, onefor going up and one for going down. The lift is made of a panel of n lift buttons anda set of doors and the lift's position. Part (b) of the �gure shows how structuring isalso used to represent the provenance of speci�cation components; it may be in termsof aggregations, as in (a), or specialisations and revisions, as in (b), which shows sev-eral versions of a speci�cation of the behaviour of a Unix-like command shell. Theseexamples are considered more fully later in the chapter.In logical terms, the `objects' in structure diagrams represent a pair consisting ofthe language used to describe the component in question together with the axiomswhich express the behaviour. The language of an object is often called its signature.The axioms form a theory presentation over the language. The `arrows' are theorem-preserving maps between these theory presentations. That is to say, an arrow betweentwo objects is in the �rst instance a map between the languages, satisfying certainsyntactic criteria such as preserving sorts. In addition, the map can be extended tomapping sentences in an obvious way, and should be such that any consequence of theaxioms of the �rst object is mapped to a consequence of the axioms of the second object.In speci�cation terms, this means that the second object inherits the language of the�rst object (modulo possible renaming) and also inherits its behaviour or character.All this will be stated formally later in the chapter (x6.5).The main ideas in this chapter are the following:1. Ordered theory presentations are the right tool for giving semantics to speci�ca-tions with defaults and speci�cation revision. Thus, a speci�cation should denotean OTP rather than an ordinary theory presentation.2. Moreover, the structure of the OTP representing a speci�cation with defaultscomes from the structure of the speci�cation.3. And the structure of the OTP representing a speci�cation with a revision historycomes from the process by which the speci�cation was obtained.4. Finally, in an integrated framework for structured speci�cations, these ideas maybe combined to obtain the semantics of a speci�cation by an OTP whose structurecomes both from the speci�cation's structure and the process by which it wasobtained.This chapter represents work of a more speculative nature than the main body ofthe thesis, and is also the subject of ongoing research. Much of the outstanding researchpertinent to OTPs in general will be of use here; for example, the development of aproof theory is perhaps the biggest outstanding problem. There are also technical issueswhich are of particular relevance to this chapter; for example, making the concept ofordered presentations properly institution independent would mean wider applicability(this point will be expanded upon in x6.6.2). There is also some work in demonstratingthat the techniques advocated in this chapter are of value to software engineers. Someobjections to the ideas are raised and, I hope, quashed at the end of the chapter (x6.7).

90 CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERINGbutton � � � button@ @R 	� �lift-buttons door lift-position button button button button@ @R 	� ��� � � � @ @R 	� � @ @R 	� �lift oor � � � oorQ Q Q Q Q Q Q Q Q Qs �� � � � � � �� � � � � � � � � � � �lift-system(a) The structure of the lift systemna��ve-shell?simple-shell?networked-shell(b) The structure of a networked-shellFigure 6.1: Structures for speci�cations
CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERING 91

Codefor i:=1 to n dobeginA[i] := A[i] + B[i];end.
..

.....................................
...
.. revisionsrevisions8 � � �9 � � � implementationelicitationrequirementsSpeci�cationRequirements

Figure 6.2: The software process6.2 The software processThe `software process' is the means by which software systems are produced, startingfrom a loose speci�cation of requirements dictated by a `customer'. The idealisedpicture of how this takes place is shown in �gure 6.2 (one should for the moment ignorethe dotted arrows). There are three persons involved. The customer has the informalrequirements in his or her head. The speci�er has the job of eliciting these requirementsand writing them down in a formal speci�cation. The programmer implements thespeci�cation by writing a program which meets it.Of course, it is widely recognised that this never happens (see eg. [52]). Thereasons for this are mostly that revisions to the informal requirements take place inparallel with the processes of elicitation and implementation. These are representedby the dotted arrows. Some of these revisions have `external' causes; the customeris responding to demands from, say, his or her organisation. But some are inherentto the process of formalisation. The requirements elicitation process typically causes

92 CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERINGthe customer to realise that there are gaps in his requirements, or inconsistencies orundesirable consequences which cause him to change the requirements along the way.He did not realise for example (until it was pointed out to him) that asking for xand y meant that he would have to have z as well. So he changes things as he goesalong. Some of the undesirable consequences in his requirements may not turn upuntil the testing stage after the implementation has been carried out. For further waysin which the formalisation and implementation can bring about changes in the initialrequirements, see eg. Lehman [41].The fact that the process of elicitation leads to changes in the requirements isone of the bene�ts of formalisation, and should not be eschewed. The whole point isthat it is necessary to ush out the inconsistencies and undesirable consequences asearly in the software process as possible. But still, the model shown in the diagram isunattractive|every time the informal requirements change, the process of formalisingthe speci�cation has to start again from scratch. The question then arises, is there away of revising or changing a speci�cation en-route? This question has already hadsome attention in Finkelstein [19], where a low-level mark-up language for stipulatingrevisions to speci�cations is proposed. In this chapter, we will advocate applying theresults of chapter 4 to this situation, which will yield a high-level method of revisingspeci�cations. The speci�er can say, in e�ect: I want this speci�cation, or as much ofit as I can have, given that I also want this property.Another aspect of the idea of revising speci�cations, which again shows how theconcept is intrinsic to the software process, is so-called `incremental speci�cation'.What often happens in describing requirements is that the full story is not given all atonce. Rather, some broad generalisations are made in the �rst instance, and later onthese are quali�ed and modi�ed by more detailed statements. For example, considerthe following `speci�cation':The admission charge is $2. Students, old age pensioners and unemployedpersons get 20% reduction; but old-age pensioners resident in WestbourneLodge get 30%. There is a 10% surcharge at weekends (this applies whetherthe price is discounted or not). Parties of over 10 persons are admitted at$1�50 per person.In this speci�cation, later sentences �ll in details of (and thereby contradict) the gen-eralities of earlier sentences. Thus, the speci�cation is acquired incrementally andthe theory of belief revision will be of use in modelling this formally. The elicitationprocess|the process of obtaining a formal speci�cation from informal requirements|isthe most di�cult aspect of software engineering. Coding these kinds of generalisationsas defaults in the speci�cation will make it easier.We call these generalisations explanatory defaults. For a more computer-avouredexample, consider the process by which the behaviour of a command shell (in Unix,say) is explained. Typically, initial explanations will include statements like \rm �leremoves the named �le", but these statements should be regarded as defaults becausethey only hold most of the time. Such explanations are quickly followed by provisos,like \you must be in the same directory as �le", \you must be the owner of �le", andso on. These are the exceptions to the default. On small systems the list of suchexceptions may be small enough to enumerate, but systems which interact in widercontexts need more and more exceptions to be catered for. The �le system must be
CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERING 93mounted read-write, for example; the network must have the right authorisations, andso on. All we can really say in the last analysis is that rm �le tends to remove �le, anddoes so only if a multitude of other conditions are satis�ed.6.3 Speci�cations with defaultsThe examples of revision and defaults in the last section are intrinsic to the softwareprocess; they arise naturally and must be dealt with (whether formally or not) if one isto have an acceptable theory. In this section we consider defaults for themselves|oneswithout which we could do, but which make the speci�cation task easier. Defaults inspeci�cations occur when a component has a certain \normal" behaviour which maybe overridden when the component is incorporated into another.AggregationImagine specifying a lift system. There is a lift, with buttons and indicator lights inside,and there are doors. There are n oors, again with buttons and indicator lights. Theindicator lights switch on and o� in response to button pressings, and the lift goes fromoor to oor depending on the state of the lights. Sometimes it opens its doors to letpeople in and out.Here are some statements which might be included in the customer's informal re-quirements.1. If the lift is at the ith oor and it goes down by one oor, then it is at the i�1thoor (2 6 i 6 n).2. Pressing and releasing the alarm button causes the alarm to sound.3. The lift will not move up or down unless the doors are closed.4. When the lift is at the ith oor, the indicator light for the ith oor is o�.5. Pressing and releasing a button for a oor causes the corresponding indicatorlight to come on.6. Pressing and releasing a button for a oor causes the lift to arrive at that oor.Not all of these statements are true all of the time about lifts; and in particular, someof them contradict others. The statements are in increasing order of violability. The�rst is always true, for it simply says what it is for the lift to go down. The secondand third are nearly always true; only things like power failures can cause them notto happen. Number 4 is more routinely violated, for example by holding down the ithbutton. The �fth statement has yet more common exceptions; for example, if the lift isalready at that oor the indicator light will not come on. (Nevertheless, it is the normfor the light to come on when the button is pressed, and an exception when this fails.)Statement 6, as people who live or work in large blocks will know, is best described ashopeful.An `ideal' lift should satisfy all of these statements, insofar as they are consistentwith one another and the other statements in the speci�cation. Even when there are

94 CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERINGinconsistencies, we may want to retain `as much' of the sentences as possible. Wemay want one sentence partially to override another. Thus, for example, sentences 4and 5 are inconsistent, given certain other likely assumptions1. We may reject 5 forthe special case of the lift being at the oor for which the button is pressed, but wewant to retain it for all the other cases.Many questions arise from the above discussion.1. Can we handle these kinds of defaults in speci�cations by using OTPs?2. Where does the ordering in an OTP come from?3. Does the way in which sentences partially override each other in OTPs matchwith the requirement that sentence 4 partially overrides 5 in the example?We cannot give de�nitive answers. We can say the following.Not all the statements made in the informal requirements stipulations are appro-priate for inclusion in the speci�cation, or at least, not as they stand. Sentence 6,for example, is more the kind of thing one would want to check as a consequence ofthe speci�cation than code in directly. It might be coded in implicitly, by a lot ofaxioms constraining the behaviour of the lift in a more `local' way. On the other hand,sentences 1 and 2 are precisely the kinds of sentences one would expect to �nd in aspeci�cation. So are sentences 4 and 5, apart from the fact that, as we have observed,they conict.The conict between 4 and 5 can be resolved by appealing to the speci�city prin-ciple. It states thatDefault statements about a more speci�c class of objects override those abouta bigger class when there is conict.This principle (which was already introduced in x1.2.1) is well-known in arti�cial in-telligence [13, 69]. It applies in this case because statement 4 is about lifts, whilestatement 5 is about buttons. The structure of the lift speci�cation (�gure 6.1(a)) isthat the lift object (or module) incorporates (n copies of) the button object. Therefore,the class of lifts is more speci�c than that of buttons. The speci�city principle saysthen that statements about lifts override those about buttons, so 4 overrides 5.Our provisional answer to Question 1 is that we will in the main restrict ourselves todefaults to which the speci�city principle is applicable. This may be too restrictive, butwidening the class is left as a matter for further research. Even with the restriction, itshould become clear that these defaults form a huge class. This means we can alreadyanswer Question 2:The structure of the OTP for a speci�cation with defaults comes from thestructure of the speci�cation.The precise way in which this works will become clear in x6.5.4, where the example ofthe lift and sentences 4 and 5 is worked out in full.1The additional assumptions required are the `locality axioms' to be described in x6.5.3. In thiscase they say simply that the press-and-release action does not a�ect the directly a�ect the oor thelift is at.

CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERING 95As far as Question 3 is concerned, the answer is surely `yes'. The examples ofx1.3 and x4.6 should be enough to persuade the reader in the `static' case withoutactions. For the case with actions, there is a danger of phenomena like the so-calledYale shooting problem [32] to appear; this is discussed elsewhere (chapter 5).SpecialisationThe lift-button example has to do with aggregation, that is, to do with putting smallobjects (like buttons) together to form larger ones (like lifts). This can easily be seenby looking at the full structure of the lift speci�cation, given in �gure 6.1 (page 90).Defaults about the aggregated objects override those of the components.But specialisation is another speci�cation construct which has to do with speci�-cation structure, and the speci�city principle applies here too. A specialisation of anobject is another object of the same kind (loosely speaking) which contains all thefeatures of the �rst object and more besides. Consider, for example, the user-interfaceof an auto-teller (cash dispenser). As an object in its own right, it has actions suchas the pressings of keys, and state variables which describe the message on its screen.Its usual behaviour is to echo characters typed on its keyboard on its screen. Now onemay consider a specialisation of this object, which has the same features as before butthe additional feature of a `password mode', in which it does not echo characters onits screen.The proposed way to handle this situation is to stipulate that the echoing behaviouris a default which the specialisation overrides. The speci�city principle sees to it thatthe default of not echoing (the default of the specialised interface) overrides the echoingdefault, because the specialised interfaces form a more speci�c class. The key pointis that the behaviours of these interfaces di�er from one another on certain actions,although, of course, the behaviour of the specialised interface is mostly the same asthat of the original interface; that is why it is appropriate to speak of inheritance,albeit with exceptions.The key idea in such examples is that axioms or defaults in wider contexts canoverride defaults in smaller ones. A wider context may be created from a smaller oneby aggregation or specialisation, as in the above examples.Explanatory defaults againIt turns out that explanatory defaults can be viewed as defaults arising from special-isation, and are thus also amenable to analysis by our method. Consider again theexample of the Unix rm command. The �rst stage of the explanation, in which theaxiom \rm �le removes �le" is given, should be thought of as the speci�cation of the`na��ve shell'. Ultimately, after many elementary exceptions and speci�cations of vari-ant behaviour have been given, we may arrive at the speci�cation of the `simple shell'.It speci�es the way shells used to work, in the good old days before networks, and it isa specialisation of the na��ve shell in which some of the defaults have been overridden.Then, dozens of further exceptions and variations are given, until a supposedly exactdescription of the behaviour of unix shells in a networked setting is obtained. This inturn is a specialisation of the simple shell. The structure diagram is then the one givenin �gure 6.1(b) (page 90). Thus, explanatory defaults can be viewed as specialisation

96 CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERINGdefaults.6.4 Design by di�erence, or speci�cation revisionThe sections above described using defaults in speci�cations, with the resulting OTPhaving an order which came from the structure of the speci�cation. But there is anotherway in which the ordering of an OTP can arise during the software process, which isby speci�cation revision. This idea is still a matter for further research, but it is ofgreat importance if one is to get full value from speci�ed components. We mention itbriey here as a placeholder for the (yet to be developed) full story.The idea is to apply the methods of chapter 4 to speci�cations. This has bothsmall-scale and large-scale applications.� In the small, one can consider re-using components from a library of standardobjects. If a component doesn't quite �t the application because it has unwantedproperties, revise it with the desired properties.� In the large, whole speci�cations may be constructed in this way. For example,the recent Rover TV advertisement showed how the Metro motor-car was con-ceived as a Mini with certain properties added. These properties conicted withthe old ones, which means the revision is not merely a matter of re�nement orenrichment. Thus, the Metro is speci�ed by stipulating its di�erences from aMini.In practical terms one may envisage a software engineering environment (imple-mented on a computer) which allows one to explore a `design space' by both small-scaleand large-scale revisions of the type described here.The obvious di�erence in the case of speci�cation revision as against speci�cationswith defaults is that the ordering in the resulting OTP comes not from the structure ofthe speci�cation, as it did for defaults, but from the process by which the speci�cationwas obtained (the revision history). But in fact, these genealogies are not so di�erent.One can think of a revision history as showing the structure (through re�nement) ofa component; for example, one can think of the structure diagram for the networked-shell (�gure 6.1(b)) as a revision history or one can view the earlier objects as thecomponents of which the networked-shell is made. On the other hand, a non-linearstructure diagram such as that of �gure 6.1(a) represents a revision history in more thanone dimension. For example, the manufacturer's intention is that the button's lightilluminates when the button is pressed. This is encoded in the button's speci�cation.But the speci�cation was revised for incorporation in the lift, since in that context itis to have the property that it does not light when pressed in certain circumstances;namely, when the lift is in a state in which the request made by the user by pressingthe button is inappropriate. The revision is implemented via a complicated interfacebetween the components which may not even be part of the speci�cation|that is whydefaults are needed.

CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERING 976.5 Structured speci�cations and modal actionlogicIn this section the `classical' theory of structured speci�cations in modal action logicsis described formally (x6.5.1 to x6.5.3). Then the formal changes needed to use OTPsfor the semantics for speci�cations is given (x6.5.4).6.5.1 Mal, its syntax and semanticsModal action logics (also known as dynamic logics or multi-modal logics), have for overa decade been used to specify state-based software systems. The basic idea of modalaction logics is to model actions moving the system from one state to another. Such alogic has a family of modal operators, one for each action that the system can undergo,and its semantics is given by a set of states and a family of relations on the states, oneinterpreting each modality. For example, the fact that the action a if executed in astate satisfying condition � results in a state satisfying is expressed by the axiom� ! [a] :There are many accounts of modal action logics [17, 15, 29, 62]. We describe a simpleversion which we refer to as mal below. This logic satis�es the conditions of x2.1, sothe semantics of OTPs in it is de�ned in chapter 2.We have mentioned how a component within a speci�cation is, in logical terms, asignature together with a theory presentation over the signature. A mal signature isa set of action symbols and a set of proposition symbols; the action symbols are usedto describe the actions which the system may perform, and the proposition symbolsare used to represent the state of the system. Thus, actions update the values of thepropositions.A mal signature S = hA;P i consists, then, of two sets; a set of actions A and a setof propositions P . For example, here are the signatures for some of the objects of thelift system (�gure 6.1(a)):button has the signature hfpress; cancelg; flitgi. The button may be pressed or can-celled, and has a light which may be on or o�.door has the signature hfopen; closeg; fdoors-opengi.lift-position has the signature hfup; downg; foor1; : : : ; oorngi. oori representswhether the lift is at the ith oor or not.lift has the signature hfpress1; : : :; pressn; cancel1; : : : ; canceln; open; close; up; downg,flit1; : : : ; litn; oor1; : : : ; oorn; doors-opengi. Notice the renaming of the pressactions.lift-system has, in addition to the signature elements of the lift, the action press-alarm and the attribute alarm.Given a signature, atomic propositions are composed to form more complex sen-tences using the usual boolean operators ^, _, !, : etc. There is also the construct

98 CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERING[�] � which, as already mentioned, is used to describe the e�ects of actions. If a isan action symbol and � a sentence (which may also contain action terms) then [a]�expresses the fact that � holds after a has taken place. The syntax of formulas istherefore as follows:� If p 2 P then p is a sentence.� If � and are sentences and a 2 A then :�, � ^ , � _ , � ! , �$, and[a]� are sentences.To illustrate this syntax, here again are the �rst �ve of the six statements aboutthe lift given on 93.1. oori ! [down]oori�1 (for 2 6 i 6 n)2. [press-alarm]alarm3. doors-open ! ([up]? ^ [down]?)4. oori ! :liti5. [pressi]litiAn interpretation M for a signature is a function which takes states to an assignmentof truth values to the atomic propositions. States are represented by traces. A traceis a �nite sequence of actions in the signature, and denotes the state which resultsby performing the actions in the initial state. Thus, If � is a trace and p an atomicproposition, then M (�)(p) is a truth value which says whether p is true or false in thestate resulting from performing the actions in � in the initial state.Satisfaction in states is de�ned in the following way:M (�) p if M (�)(p) = tM (�) :� if M (�) 6 �M (�) � ^ if M (�) � and M (�) M (�) � _ if M (�) � or M (�) M (�) �! if M (�) � implies M (�) M (�) �$ if (M (�) � i� M (�))M (�) [a]� if M (� � a) �(In the last clause, � � a is � with a appended.) This is a rather na��ve way of handlingactions, which means that the logic cannot support concurrent actions. It has theadvantage of being simple, however, which suits the purposes of this chapter.Satisfaction in interpretations is then de�ned as follows:M � if for each �,M (�) �:This means that a sentence is true overall in an interpretation i� it is true in everystate of the interpretation.If � is a set of sentences and � a sentence, � j= � holds if for every M , if M for each 2 � then M �. � j= � is read � entails �. If � is the set of axioms of aspeci�cation and � j= �, then � is a consequence of the speci�cation.
CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERING 996.5.2 The frame problemThe frame problem is the problem of having to specify the action-attribute pairs whichare such that the action does not a�ect the attribute. For example, the `open' actionin the lift speci�cation does not a�ect the `oor1' proposition. This is of course thecase for the majority of such pairs. The number of frame axioms needed to do thisgrows rapidly with the size of the signature, and speci�cations therefore quickly becomecluttered with such axioms.This problem is widely known in AI, where the solution is to employ a default framerule which says for every action a and attribute p that (unless there is proof to thecontrary) a does not a�ect p. With OTPs one is of course in an excellent position tofollow this route; if � is the OTP encoding the axioms of the speci�cation2 in questionone might simply add the relevant default:V a2Ap2P (p$ [a]p)6����������� I@@@@@@@@@@�Such an approach must be augmented by an explicit priorisation of competing defaultsif problems like those of Hanks and McDermott [32] are to be avoided. These problemsand this remark are expanded upon in chapter 5, but other than for making thisremark we have not investigated the defaults approach. This is because the structuringmechanism mentioned earlier provides an alternative solution to the frame problem,which has been widely used in speci�cation theory.6.5.3 The structuring principleThe structuring principle mentioned in x6.1 (see �gure 6.1) is important in speci�cationnot only because it enhances readability and veri�ability but also because it overcomesthe frame problem which is a characteristic of action-based logics. This works becausethe structure of a speci�cation a�ords a way of telling, in the majority of cases, whetheran action can a�ect an attribute or not. There are several ways of arranging this,including the following:� The principle may dictate that an action can only a�ect the state-variables(propositions) in the signature in which the action is declared. Thus, for exam-ple, the `press' action can only a�ect the `lit' proposition in the lift speci�cation,since `press' is declared in button and `lit' is the only proposition declared inbutton. This is often called `object-orientation'.2The way in which � is obtained has not yet been described. This is done in x6.5.4.

100 CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERING� The dual of this approach would be to stipulate that a state-variable can only bechanged by actions in the signature in which the state-variable is declared.� Or, one may take a mixed approach (dubbed `agent-orientation' in [62]), in whichannotations to actions and state-variables control exactly the scopes in which theycan update and be updated.The object-oriented approach (the �rst one) is the most popular.Care must be taken in framing the `locality axioms' which these principles giverise to. For example, if one takes the object-oriented approach it is easy to be toorestrictive. The axiom oor3$ [press5]oor3says that the press5 action does not a�ect the oor3 proposition, as wanted, but itmeans further that the oor3 proposition can never be changed by an occurrence ofpress5. This is too strong if we want to allow concurrent actions, for a press5 mayoccur concurrently with an up, in which case oor3 may change. However, our simplesemantics has already ruled out concurrent actions.As well as controlling locality, the structuring principle is about making large spec-i�cations out of small ones. We have seen how the lift system speci�cation is composedout of smaller speci�cations and ultimately out of atomic ones. Each node in the lift-system structure diagram represents the speci�cation of a component, and the arrowsare maps between the speci�cations in the following way. If A f�! B is a map fbetween A and B, then� f is a map between the signatures of A and B; that is, it maps the actions of Ato actions of B, and also A-propositions to B-propositions. (In a more generalsetting, types and sorts also have to be preserved.) f can be extended to a mapfrom sentences in the signature of A to sentences in the signature of B in theobvious compositional way: f (� ^) = f (�) ^ f (), f ([a]�) = [f (a)]f (�), etc.� f preserves the properties of A. That is, if A j= � (the axioms of A entail asentence �) then B j= f (�)This is essentially the categorical framework of Goguen and Burstall [9].6.5.4 Speci�cations and OTPsThe idea is that a structured speci�cation denotes an OTP in which the ordering comesfrom the structure of the speci�cation. Thus, conict between sentences in di�erentcomponents is resolved by the speci�city principle. For example, part of the OTPcorresponding to the lift system showing how the conict between sentences 4 and 5 isresolved is given below. Only the `lift' branch of the tree in �gure 6.1(a) is given, and
CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERING 101only the axioms relevant to the discussion are shown:[press1]lit1[cancel1]:lit1 [press2]lit2[cancel2]:lit2 � � � [pressn]litn[canceln]:litn6I@ @ @ @ @ @ � � � � � ��� [open]doors-open[close]:doors-open Vn�1i=1 (oori ! [up]oori+1)Vni=2(oori ! [down]oori�1)Vni=1(oori$ Vj 6=i :oorj)6I@ @ @ @ @ @ � � � � � ��n^i=1(oori ! :liti)6.6 Related workThere has been similar work done by S. Brass and U. Lipeck in [5]. Those authors andI are currently working on a uni�cation of our ideas [6]. In this section we describeother, less directly related work.6.6.1 Deontic malIn the fully-edged version of mal presented in [62], there are also deontic predicateswritten per and obl which apply to action terms. See also [16, 35, 37]. These deonticpredicates are used to express the fact that certain actions are (or aren't) permitted orobliged in certain states. Deontic predicates provide a more elegant way of expressingsentence 3 of the lift speci�cation, for example:3. doors-open ! :per (up) ^ :per(down)In the earlier encoding of this sentence (x6.5.1) it was a logical impossibility for thelift to go up or down with the doors open. The ordering of the theory presentationmeant that we could violate this, but still the encoding with deontic predicates seemsneater. Deontic predicates add much to expressibility. For example, it is now possibleto express sentence 6:6. oori ^ i6j ! [pressj]obl(upj�i)oori ^ i>j ! [pressj]obl(downj�i)The �rst of these says that if you are at a certain oor and you press the button fora superior oor the lift is obliged to move upwards by the appropriate amount; thesecond is the opposite case. Of course this is rather fanciful, for we have not said whatupj�i means and still less what obl(upj�i) means; also, the lift will not in general obeythe request at once, but may interleave it with others. However, our aim here is merelyto motivate some of the issues which deontic mal is attempting to address, and inparticular to point out the nature of the increased expressive power.

102 CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERINGThe semantics of deontic predicates may be simpli�ed3 as follows. It was alreadyseen (x6.5.1) that mal interpretations are traces, i.e. sequences of action terms. Froma trace we can obtain the state which would result if the actions of the trace werecarried out, in order, starting with the initial state. We add to the interpretations twofunctions P and O which, given a trace, return the sets of actions which are permittedand obliged respectively. A trace is said to be normative if every action which takesplace in a state is permitted in that state (according to the function P); and everyobliged action (according to O) in a state is eventually performed in some later state.The question of crucial importance as far as this chapter is concerned is how thespeci�cation of norms with deontic predicates relates to its expression with defaults, orwith OTPs in particular. This question is of course open. It seems to be the case thatthe two modes of expression are complementary. For example, it was already notedthat the expression of sentence 3 is more elegant in the deontic framework4. But thedeontic framework has no hope of expressing norms like 4, for they are entirely staticand the deontic predicates act only on actions. If it is true that both ways of expressingnorms are desirable, one might ask how they interact together. In short, what are theproperties of ordered presentations of deontic theories? That is one line of research Ihope to undertake after my Ph.D.6.6.2 InstitutionsThe `proper' way of arranging matters when using logic for speci�cation is to use insti-tutions, because they provide an up-front way of interfacing components with di�erentsignatures. The structure diagrams are in fact diagrams in a category of speci�cationsin which the morphisms are theorem-preserving maps between the signatures. How,then, does this relate to the use of OTPs? Again, this is a matter for further work andI can only hint at the solution:The theory of institutions may be generalised to the so-called �-institutions of[18]. The di�erence is that �-institutions work for any logic satisfying the structuralproperties of proposition 2.9 (page 27), not just those de�ned in terms of modelsand satisfaction. Also, in �-institutions the theory presentation is the crucial unit ofinformation, not the theory. This suits our purposes. Morphisms exist, then, betweentheory presentations and it is proved that for the de�nition of morphism mentioned atthe end of x6.5.3 it is su�cient to require (in terms of what was said there) that f mapA-axioms to B-axioms: if � 2 A then f (�) 2 B.This leads naturally to the idea of morphisms between OTPs, and therefore toinstitutions handling defaults, which we dub `d-institutions'. It is obvious from x6.5.4that we require that A-axioms be mapped to B-axioms, but they may be further upthe ordering in B than in A. Thus,Proposal 6.1 Ordered theory presentations are now paired with their signatures. Let� = hL;X;6X; F i and �0 = hL0; X 0;6X 0; F 0i be theory presentations with signaturesL and L0. Let f : L ! L0 be a map between their signatures. f is a morphism from3See [16] for the full story.4Although, it has yet to be shown that the deontic framework alone can enable reasoning afternorms have been violated.

CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERING 103� to �0 if there's a morphism of partial orders g : X ! X 0 such that for each x 2 X,f (F (x)) = F (g(x)).In other words, � is mapped into �0 in a way that preserves its ordering. Thereare options, such as: can two x's in X collapse to the same one in X 0? (The proposalsays yes, but we could change it.) What about the other way around? etc. Moreinvestigation is needed.6.6.3 Other default logicsThe idea of using default information in speci�cations was motivated in sections6.1 to 6.4 as a way of giving a formal account of many issues in software engineer-ing hitherto treated informally. But why should one use OTPs, given the plethora ofarguably better established default logics on the market? A full examination of thesealternative logics for defaults is given in chapter 5. In short, the reasons for which theframework of OTPs scores highly over rival non-monotonic logics are:1. Defaults are represented by ordinary sentences in the language. The alternativestaken by other default formalisms, for example in representing defaults by rulesof inference or sets of predicates to be minimised, would mean that the speci�erhad to expend more e�ort in coding up the defaults required. (More detail onthis point can be found in chapter 5.)2. The interaction between defaults of di�erent priorities is simple to express inOTPs, and much harder in other formalisms.3. The speci�city principle yields the appropriate ordering of defaults in cases in-volving inheritance (like the button/lift example). This means that we do notneed to enumerate the exceptions to defaults, as is necessary in most other defaultlogics. (This point is ampli�ed in chapter 5.)4. The ability to handle defaults not just in classical logic but in modal and multi-modal logics is available with OTPs. (It is hoped that future work will extendthe theory of OTPs to arbitrary institutions).5. Ordered theory presentations exhibit the relationship between theory revisionand default theories. They would therefore be a suitable theory to form the basisof a software engineers' tool which supports both of these ideas.6.7 ObjectionsIt was pointed out at the beginning of this chapter that the ideas presented here areof a more speculative nature than elsewhere in the thesis. The reader may dislike theidea of the `loose' speci�cations motivated here. This section is devoted to presentingobjections to defaults and revision in speci�cations and, I hope, to allaying them.The most common objection raised is that speci�cations are by nature exact, and itgoes against the grain to introduce the slack which comes with defaults and revisions.I have much sympathy with this view, but I believe that the bene�ts gained from

104 CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERINGdefaults and revisions outweigh the disadvantages. Among the bene�ts are the abilityto represent normative behaviour when it really is a characteristic of the object beingspeci�ed; the ability to explore a design space; the improvement in modularisationwhich can be obtained (see below); and freedom from the chore of �lling in every littledetail, instead being able to allow conicts to resolve automatically. Furthermore, froma methodological point of view, we narrow the gap between the informal requirementsand the speci�cation in �gure 6.2; without, I believe, the price of widening the gapon the other side, between speci�cation and code. This is because the speci�er hasan improved medium for expressing the intuitions and intentions behind his or herspeci�cations.The improvement in modularisation referred to above can be seen by consideringthe e�ect of coding in the exception to sentence 5 of the lift speci�cation (x6.5.1).Sentence 5 expresses the fact that the buttons light when pressed, and is an axiom ofthe button object. The exception noted is when the lift is already at the relevant oor,so taking account of this the axiom would become::oori ! [pressi]liti:But this cannot now be an axiom of the button object after all, but must be an axiomof the complete lift system. This is because the vocabulary it uses is not availablein the button signature. Thus the motivation for structuring (that is, dividing thespeci�cation into constituent objects and axiomatising them individually) in the �rstplace is foiled: every axiom has to be part of the biggest object in order to list all theexceptions.It might be objected that if some axioms are allowed to override others, we mayquickly get into a mess in which we do not know which axioms are being a�ected bywhich others. To counter this objection, it should be possible to check at any stagewhether a certain axiom expressing a norm is being overridden or not, by checkingwhether it is a consequence of the speci�cation. And again, the advantage is that onecan explore the design space by changing the order around until the desired e�ect isachieved. This gives great exibility to the speci�er. Of course, the ability to do thesethings assumes a sophisticated interactive software environment which supports OTPs;such a thing is yet to be developed.Another technical objection is that not all axioms express behaviour which may beoverridden. For example, we may wish to keep locality axioms inviolable. This wouldbe prudent, for if we override such axioms we may lose our intuitive understandingof the speci�cation. There are other axioms which should never be overridden too;for example, we already noted that sentence 1 of the lift is true `by de�nition'. Apurely technical manoeuvre will accommodate this, we can stipulate that a speci�cationdenotes a pair h�;�i consisting of an ordinary theory presentation � (the inviolableaxioms) and an ordered theory presentation � (the norms). Models of the pair h�;�iare de�ned as the v�-maximal models of �.6.8 ConclusionsMuch work remains to be done, both technically and motivationally. The technicalwork includes the development of a proof theory for OTPs and making them properly
CHAPTER 6. APPLICATIONS IN SOFTWARE ENGINEERING 105institution-independent. The motivational work is to give more elaborate exampleswhich are more fully worked out in order to convince practitioners of the value of theideas. Of course, these two areas of work go hand-in-hand; technical developments willenable the motivational ones, which in turn give direction to the technical ones. Theultimate word on this subject is still a long way o�, but I hope that this chapter hasat least introduced the story.

Chapter 7Conclusions and further workIn this chapter, we describe un�nished work, further work, related work and thenrecap on the main points of the thesis. The un�nished work we discuss is the topic ofverisimilitude, introduced in chapter 1. This is done in x7.1. A variety of topics comeunder the heading of further work, and are dealt with in x7.2. Much related work hasalready been discussed in chapters 4, 5 and 6, but an important example has been leftuntil this chapter, described in x7.3. Final remarks are given in x7.4.7.1 Un�nished work: verisimilitudeThe topic of verisimilitude concerns the measurement of theories with respect to thetruth. Its origins are in the philosophy of science, and it attempts to give a formalaccount to the idea, for example, that Einstein's relativistic physics (while perhaps notcompletely true) is genuinely closer to the truth than Newton's classical physics; andthe latter, in turn, is closer than Aristotle's physics.As far as a formal account is concerned, the subject is still a long way from beingable to account for the improvements in scienti�c theories described above. One reasonis the so-called incommensurability of these theories (T. Kuhn [39]); this means thatthe language of (say) Newtonian physics cannot be translated into the language ofrelativistic physics, because the latter deals with entirely di�erent concepts to theformer. The formal accounts of verisimilitude currently available not only assumeinter-translatability; they assume that the two theories are expressed in exactly thesame language.From the point of view of computer science, the philosophical demands are not sogreat, and the bene�ts of a formal account of verisimilitude are more tangible. Wehave already given the example of predictions in the economy in x1.2.4; this kind ofapplication is relevant for expert systems and in arti�cial intelligence more generally.In software engineering, one may view speci�cations and implementations as logicaltheories, as explained in chapter 6, and the ability to order implementations which donot fully satisfy a speci�cation according to how nearly they do has obvious bene�ts.In the literature on verisimilitude (our main source has been T. Kuipers' [12]) the`truth' is taken to be a logical theory which is complete1 . However, many of the1Recall that a theory is a consequence-closed set of sentences. A theory T is complete if for all ,T j� or T j� : . 106
CHAPTER 7. CONCLUSIONS AND FURTHER WORK 107.. ..T B AFigure 7.1: The shaded parts are empty i� B 4 T � A 4 Tformalisations of verisimilitude in fact de�ne a ternary relation on arbitrary theories:A 6T B if B is as close to T as A is.The �rst formal de�nition of this relation is due to Popper [54]:De�nition 7.1 A 6(P)T B if B 4 T � A4 T .If A, B and T are sets (here they are sets of sentences), the condition B 4 T �A 4 T is illustrated in �gure 7.1. The shaded areas are empty if the condition issatis�ed. This can be restated as the following two conditions:A \ T � B; and B � T � ASince T contains only true sentences, the �rst of these can be thought of as saying thatB has all the true sentences that A has. If T is complete then its complement consistsentirely of false sentences, in which case the second condition means that B has nomore false sentences in it than A has. If T is not complete then the second conditionis not so intuitive.Another de�nition of the same relation, due to D. Miller and T. Kuipers (see vanBenthem [72]) isDe�nition 7.2 A 6(K)T B if [[B]]4 [[T]]� [[A]]4 [[T]].Recall that [[A]] is the set of models of A. The same diagram and the equivalentconditions still hold, with appropriate substitutions ([[A]] for A, etc.). We can para-phrase the two conditions as: any A-model which might have been the true situationmust also be a model of B (so B doesn't loose any models); and any models of B whichcouldn't have been the true situation must be A-models (so B doesn't introduce anybad models).We can also show that A 6(P)T B implies A 6(K)T B

108 CHAPTER 7. CONCLUSIONS AND FURTHER WORKbut the converse implication is false.These are the principal de�nitions discussed in the literature. It turns out, however,that both have undesirable consequences. The following observations are apparentlydue to P. Tich�y:Proposition 7.31. If 6 is 6(P), then A <T B implies B � T .2. If 6 is 6(K), then A 6T B if [[A]]\ [[T]] = [[B]] = �.(As usual, A < T if A 6 T and T 66 A.)The �rst means that 6(P) cannot strictly order \false" theories (that is, theorieswith at least one false sentence in them). From the point of view of comparing scien-ti�c theories, this is obviously inadequate, because although Newton's and Aristotle'stheories of physics are both known to be false, the former is closer to the truth thanthe latter. The second point says that the contradictory theory B (with no models) isan improvement on any theory A which shares no models with T . It is counterintuitivethat the contradictory theory should be an improvement on anything.A proof of the �rst is given in [66, page 49]; the second is trivial to demonstrate. Itshould be noted that the second item is not seen as grounds for complete rejection of6(K); it is still widely discussed.Neither of the two de�nitions considered have the maximality property mentionedin x1.2.4, that A 6T B if T � B:Indeed, this property is not even mentioned by van Benthem [72] who considers avariety of constraints of this kind on notions of verisimilitude. I �nd this surprising.This condition holds trivially if T really is `the truth', for then T is a complete theoryand T � B implies T = B for any theory B. It is hard to think of examples when T isincomplete in the philosophy of science (perhaps there are some in quantum physics?),but in the computer science examples mentioned earlier, examples abound. In arti�cialintelligence, we may have partial knowledge about a particular domain against whichwe wish to measure theories; and in software engineering, the speci�cations againstwhich we measure implementations are typically incompleteIt turns out that the de�nitions introduced in chapter 2 easily yield a notion ofverisimilitude which has good intuitive properties, does not have the problems of propo-sition 7.3, and satis�es our maximality property. Moreover, the Miranda program codeof appendix A which implements the de�nitions of chapter 2 can easily be extendedto compute verisimilitude orderings for propositional theories, and a few of these aregiven in appendix B.The de�nition of verisimilitude is essentially the ordering v� of x2.2.4. First, wecan de�ne this ordering in terms of a theory T rather than a sentence �:De�nition 7.41. p 2 T+(�) if T can be presented with only positive (negative) occurrences.2. T j=� if T j= and T� � ��.

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 1093. M vT N if T j=� implies (M implies N).Compare de�nitions 2.34, 2.38, and 2.45.Since theories can be thought of as sets of models (namely, those that they satisfy),we need to raise this de�nition from being the de�nition of an ordering on points tosets of points. We do this in the Egli-Milner way.De�nition 7.5 A 6(R)T B if 8M A:9N B:M vT N and 8N B:9M A:M vTN This says that for every model of A we can �nd a model of B which more nearlysatis�es T ; and also, every model of B more nearly satis�es T than some model of A.It is easy to check that neither points of proposition 7.3 holds if 6 is 6(R), byinspecting the diagrams in appendix B.A full comparison of this de�nition with the existing work on verisimilitude has notbeen carried out; that is why this section is called `un�nished work'.7.2 Further workThere are many ways in which the work described in the thesis can be extended andimproved; some of these have already been mentioned in earlier chapters. Some of themare about improving the match between the theory of OTPs and related subjects (suchas default reasoning and belief revision); others aim to further the theory of OTPsitself. I mention two of the latter kind here which strike me as important.7.2.1 Institution independenceOrdered theories have been de�ned for logics that are speci�ed in terms of models andsatisfaction and which have an appropriate notion of positive and negative occurrencesof symbols in sentences. This level of abstraction is close to the notion of institutionintroduced by R. Burstall and J. Goguen [9, 27]. An institution is roughly a logicspeci�ed in terms of models and satisfaction, but also with additional emphasis onmodularity and composability of languages and theories. We would like to generalisethe de�nitions for OTPs so they work with an arbitrary institution. The main mo-tivation for the additional modularity which institutions provide is from speci�cationtheory.A fundamental notion in the topic of institutions is that of signature, introduced inchapter 6. A signature is a set of non-logical symbols which are used to form sentences.By `non-logical' symbols we mean those other than the operators which are built intothe logic like ^, ! and so on. A signature is a collection of proposition symbols,predicate symbols, function symbols, sort symbols, etc. A signature morphism is amap between signatures which preserves signature structure|for example, it mapspredicates of a certain arity to predicates of the same arity, it preserves sorts, and soon. The precise requirements on a signature morphism depend on the signatures inquestion.Informally, an institution consists of a collection of signatures and signature mor-phisms, together with for each signature �

110 CHAPTER 7. CONCLUSIONS AND FURTHER WORK� a collection of �-sentences,� a collection of �-interpretations, and� a �-satisfaction relation between �-interpretations and �-sentencessuch that a certain condition called the satisfaction condition holds. It says that whenyou change signatures (with a signature morphism), the satisfaction relation betweensentences and models changes consistently [28].A theory in an institution is a signature � together with a consequence closed setof �-sentences. A morphism between theories is a morphism between their signatureswhich preserves satisfaction; that is, every model of the sentence translated by themorphism can be reverse-translated into a model of the sentence. In this way, a complexobject is speci�ed by a diagram of smaller objects, and its overall behaviour is givenby the colimit of the diagram.The institution concept allows intertranslatability between theories and the opera-tion of putting theories together to form bigger ones with the possibility of identifyingsignature elements.I have not looked in detail at how the notion of extension of extra-logical symbolsin an interpretation which is crucial to the de�nitions of OTPs may be derived froman institution. That is why it is a matter of further work. I hope that the substantialstructure that institutions provide|particularly the morphisms between interpreta-tions of the same signature|will provide the necessary hooks. If they do not, it willbe necessary to extend the institution concept.As well as making OTPs more general, this exercise may improve their de�nitionby making the notion of extension of extra-logical symbols in an interpretation moreprimitive than the de�nition of positive and negative occurrences from which it ispresently derived.7.2.2 Proof theoryIn his thesis, Y. Shoham [68] argues that proof theory does not make sense for defaultlogics. Many of the notions that are quite clear in monotonic logic, such as com-plete axiomatisation, cease to make sense in the context of non-monotoniclogic. The whole motivation behind non-monotonic logics is the desire tobe able to jump to conclusions, inferring new facts not only from whatis already known but also from what is not known. This seems to implythat traditional inference rules, which are rules for deriving new sentencesfrom old ones, are inadequate. : : : Rules that demand checking consistencyno longer have the computational advantages of traditional inference rules.Perhaps something else is possible, along the lines of what are known assystems for truth maintenance, in which the entities manipulated by pro-grams are not sentences, but rather beliefs and records of justi�cations foreach belief.Plainly we must read `default logic' for `non-monotonic logic', for the fact that a logicis `non-monotonic' (i.e. a logic failing the monotonicity property) is not enough to
CHAPTER 7. CONCLUSIONS AND FURTHER WORK 111prevent it having a proof theory presented in a perfectly respectable way; witnesslinear logic's sequent calculus. Moreover, simply the loss of computational propertiesis not a su�cient reason for concluding that there can be no proof theory, since manyproof theories are undecidable. However, I argue that Shoham's intuition is correct,and that the reasons go beyond computational questions.The distinction between proof theory and model theory is blurred, and there aremany borderline cases. I propose a characterisation of these concepts which I think isintuitive, but has some surprising cases. For example, according to it, Reiter's defaultlogic (x5.4.1) is a semantics based de�nition, in spite of the apparent `rules of inference'.A proof theory is a system which yields proofs. Thus, given a presentation � anda sentence �, if � j� � then we should be able to �nd a positive demonstration of thisfact, namely a proof of � from �. On the other hand, if � 6j� � then this is very hard toshow in proof theory. We have to show of all the `potential' proofs that none of themare proofs of � from �. As there are in�nitely many `potential' proofs this is hard.Thus, in proof theory we may convincingly show that � j� �, but we cannot easilyshow that � 6j� �.Whereas proof theory deals in proofs, model theory deals in models. To show that� j= �, we need to show that each of the possibly in�nite collection of models of � is amodel of �. This is di�cult. To show that � 6j= �, on the other hand, is much easier.We simply exhibit a single model of � which is not a model of �. In conclusion, theprimitive notion of proof theory is j�, whereas the primitive notion in model theory is6j=. This idea also goes some way towards explaining why soundness proofs are in generalmuch easier than completeness proofs. To show soundness, we show for all � and � that� j� � implies � j= �. Expressing this in terms of the `primitive' notions, soundnessbecomes: not�� j� � and � 6j= ��We might expect this to be relatively easy to do because we just show that both � j� �and � 6j= � cannot hold at once. Completeness proofs, on the other hand, involveshowing that (in terms of the primitives):� j� � or � 6j= �This is more di�cult because it is a disjunction; which of � j� � or � 6j= � we showdepends on the particular � and �.If one accepts these characterisations of proof theory and model theory, one isled to the conclusion that all the usual default formalisms are model-theoretic; thusperhaps supporting Shoham's claim. For example, Reiter's `default logic' cannot beproof theoretic because it does not yield proofs. To show that � j� � in his system,one has to show that all extensions of � contain �. These extensions are really models,so this �ts squarely with our model theory characterisation, not the proof theory one.Thus, we can show that � does not follow from � by exhibiting one extension of �which doesn't have �; but to show that it does follow is more di�cult.As Shoham points out, the reason that it is hard to get a proof theoretic accountof default logics is because in any such logic there must be some kind of consistencycheck before a default can be used. This may appear in a disguised form, for example

112 CHAPTER 7. CONCLUSIONS AND FURTHER WORKin the form of the model orderings present in circumscription and in this thesis, but itis there nevertheless.As far as OTPs are concerned, we may be able to go some way towards a prooftheory before encountering the problems associated with this consistency check. Specif-ically, it is possible that the relation of natural consequence (de�nition 2.38) can begiven a proof theory. Showing weak structural properties (proposition 2.44) is someway towards this, and one idea which I have not yet had time to explore is a connectionbetween natural consequence and linear logic. For example, the natural consequencerelation exempli�ed on page 39 does not identify logical-^ and meet, nor _ and join,which the classical Lindenbaum algebra does. This means we get two `conjunctions'and two `disjunctions'. Distributivity rules seem to fail however; but the connections,if any, have yet to be established. A connection with linear logic would, of course,answer the question of proof theory for natural consequence.Two people have suggested algorithms for the special case of linear propositionalOTPs, namely Dov Gabbay and Pierre-Yves Schobbens (private communications). Forreasons already discussed, such an algorithm necessarily involves a consistency check.The task of comparing these algorithms with each other and with the semantics ofOTPs remains to be done.7.3 Related work: `the living database'Dov Gabbay's `living database' is an ambitious research programme whose ultimateaim is to incorporate all of the examples of practical reasoning mentioned in the intro-duction, and many more besides. A living database is a database|it represents somefacet of the world|but also has built in to it its own behaviour under updates andrevisions, changes of priorities between units of information, temporal changes, and soon. It has structure which encodes some dynamic aspects of the database as well asjust facts about the domain in question. Any unit information in the database comeswith some `meta-information', such as:� its provenance; this is perhaps the agent which asserts it, or its justi�cation onterms of other sentences.� the time at which it is true.� some measure of its reliability.� information to do with how it interacts with other sentences currently in thedatabase or sentences which may appear in the database as a result of someupdate.The list is potentially endless, and any particular piece of information can have anycombination of these annexes.It is obvious that the ordered theory presentations of this thesis are a move in thisdirection, in which the additional meta-information which accompanies each sentenceis its location in the partial order. As described in other chapters, this information mayrepresent provenance, time or reliability depending on whether one views the partialorder as arising from the structure of a speci�cation, a revision history, or the stipulated
CHAPTER 7. CONCLUSIONS AND FURTHER WORK 113interaction of defaults or evidence. Much remains to be done to make this truly living,however. For example, the revision strategy which is the subject of chapter 4 onlyworks by giving the revising sentence maximum priority; we would like a more re�nedway of updating with sentences whose priority can be expressed in terms meaningfulto the database. Also, continual revision in the way of chapter 4 yields rather stringy`databases'; a truly living database is constantly reformatting itself as it sorts outconicts and works through deductions|rather like human brains.The living database programme embraces a range of particular theories of whichthis thesis represents one with a model-theoretic avour. Gabbay's own main examplesare databases expressed within a labelled deductive system (LDS) [21] which has a prooftheoretic avour. In LDS each sentence is explicitly paired with a label and each proofrule of the system has side conditions applying to the labels which determine whetherthe rule can be applied or not; and if so, how its conclusion will be labelled. Take, forexample, the familiar rules of ! introduction and elimination in natural deduction:[�]... �! � �! :The �rst rule says that if can be deduced from � then � ! can be deduced;and moreover the conclusion � ! doesn't depend on �, which can therefore be`discharged' (as represented by the square brackets). The second rule says that from� and �! one may deduce . Gabbay gives an example of LDS in which the labelof a sentence is a set of nodes upon which it depends; for example, it may be a set ofsentences in another theory. The rules become:[�a]... b a � b(�!)b�a �a (� !)b a[b :Thus, !-elimination accumulates dependencies; is dependent on anything that � or� ! was. But this is not true for !-introduction, for � ! does not depend onthings on which � depended. The side-condition a � b must hold for the rule to beapplicable.Other rules may combine the labels in di�erent ways. In this example the labelswere just unstructured sets, but more generally they may have a complex algebra oftheir own. Indeed, in many examples the labels themselves form a logic; so one canconsider what logic arises from, say, classical logic with labels from intuitionistic logic.For more details, see Gabbay's forthcoming book [21].7.4 Recap and �nal remarksThis thesis is about the framework of ordered theory presentations as a means ofunifying many aspects of practical reasoning, in arti�cial intelligence and in softwareengineering.

114 CHAPTER 7. CONCLUSIONS AND FURTHER WORKAs we have mentioned in the proceeding sections, the work of this thesis is on going.I hope that improvements to the OTP de�nitions may be obtained by connecting withthe framework of institutions, in such a way that much of the theory of OTPs canremain in place. To this end, I have emphasised where appropriate the modularity ofthese de�nitions; in particular, properties of the de�nition of v� in terms of v� do notdepend on the de�nition ofv� except insofar as it is required to satisfy assumption 2.16.Notwithstanding this further work, I hope that OTPs as they stand are seen asa direct way of linking at least the topics of belief revision and default reasoning. Ihave shown that they have good properties in the terms of those topics. I believe thatthey provide links with other aspects of practical reasoning, such as verisimilitude andprioritised evidence, as has been indicated. Appendix AA Miranda program forpropositional OTPsThe Miranda code for ordered theory presentations in propositional logic is closelybased on the mathematical de�nitions given in chapter 2. One of the virtues of Mirandais that this is possible.A formula is de�ned to be either an atom P, Q, R,: : : , or >, or ?, or it is thenegation, conjunction, disjunction, implication or bi-implication of other formulas.formula ::= P | Q | R | S |TOP | BOT |N formula |formula $A formula | formula $O formula |formula $I formula | formula $J formulaFirst we specify � by means of a set of points, and a set of pairs pt ord used togenerate the ordering. The function sent maps points to sentences. For example, tospecify the OTP speci�es p :p ^ qI@ @ @ @ � � � ��rwe de�ne points = [1,2,3]pt_ord = [(1,2),(1,3)]sent 1 = Rsent 2 = Psent 3 = (N P) $A QGiven such an OTP, we work out the names of the atoms actually used.atoms = sort (mkset (used (map sent points)))whereused ((x $I y):t) = used (x:[]) ++ used (y:t)115

116 APPENDIX A. A MIRANDA PROGRAM FOR PROPOSITIONAL OTPSused ((x $J y):t) = used (x:[]) ++ used (y:t)used ((x $A y):t) = used (x:[]) ++ used (y:t)used ((x $O y):t) = used (x:[]) ++ used (y:t)used ((N x):t) = used (x:t)used (x:t) = [x] ++ used tused [] = []Now generate the set of interpretations of the language used. An interpretation isa map from the atoms to ft; fg; we represent them by sequences of 0's and 1's.interps = mods (#atoms)wheremods n= [('0':m)|m<-p]++[('1':m)|m<-p], if n>0= [[]], otherwisewhere p=mods(n-1)leqX is the ordering on points. It is the reexive transitive closure of pt ordviewed as a relation.leqX x y= x=y \/ or [leqX z y | z<-points; member pt_ord (x,z)]Now we de�ne a function sat which takes an interpretation and a sentence andevaluates whether the sentence is satis�ed or not in the interpretation.sat m (N s) = ~sat m ssat m (s1 $A s2) = sat m s1 & sat m s2sat m (s1 $O s2) = sat m s1 \/ sat m s2sat m (s1 $I s2) = ~sat m s1 \/ sat m s2sat m (s1 $J s2) = sat m (s1 $I s2) & sat m (s2 $I s1)sat m TOP = Truesat m BOT = Falsesat m p = m!(idx p atoms)='1'whereidx x (x:y) = 0idx x [] = error"can't idx empty list"idx x (y:z) = 1+idx x zThe models of a sentence are the interpretations which satisfy it. (This kind ofde�nition makes one glad one is using Miranda!)models sent = [m | m<-interps; sat m sent]We represent formulas by the sets of their models. Therefore, the set of formulas isthe power-set of the set of interpretations.

APPENDIX A. A MIRANDA PROGRAM FOR PROPOSITIONAL OTPS 117formulas = powerset interpswherepowerset [] = [[]]powerset (x:y) = (map (f x) (powerset y)) ++ (powerset y)where f a b = (a:b)The positive monotonicities of a sentence are the atoms with the property that iftheir extension is increased in a model of the sentence, the result is also a model of thesentence. Negative monotonicities are de�ned similarly.monoP phi = [p | p<-atoms; subset (map (inc p) phi) phi]where inc p m = subst '1' (idx p atoms) mmonoN phi = [p | p<-atoms; subset (map (dec p) phi) phi]where dec p m = subst '0' (idx p atoms) mThe natural consequences of a sentence are the consequences which preserve themonotonicities.natcons phi = [psi | psi<-formulas; subset phi psi;subset (monoP phi) (monoP psi);subset (monoN phi) (monoN psi)]We have M v� N if for all such that � j=� , M 6 or N .leq phi m n= and [~member psi m \/ member psi n | psi<-natcons phi]For convenience, we de�ne vx and @x too.lep x m n = leq (models(sent x)) m nltp x m n = lep x m n & ~lep x n mM v� N if any point x which has the misfortune of having the property thatM 6vx N is at least good in that there is a y 6 x with M @y N .leG m n = and (map good [x | x<-points; ~(lep x m n)])where good x = or [ltp y m n | y<-points; leqX y x]Also, M @� N if M v� N and N 6v� M .ltG m n = leG m n & ~leG n mThe maximal models are those which have nothing above them.maxmods = [m | m<-interps; ~or [ltG m n | n<-interps]]We also used subset (it checks whether its �rst argument is a subset of its second)and subst (which substitutes a token in a list at a speci�ed position).

118 APPENDIX A. A MIRANDA PROGRAM FOR PROPOSITIONAL OTPSsubset [] l = Truesubset (x:y) l = member l x & subset y lsubst tok 0 (h:t) = tok:tsubst tok n (h:t) = h:subst tok (n-1) tsubst tok n [] = error"string too short in function subst"This code is su�cient to compute the models of a propositional ordered theorypresentation. I have written other functions which display orderings among interpre-tations and sentences, but it is not reproduced here. It is surprising that so little codeis needed (hardly more than a page, without the comments).Using these de�nitions and the example OTP given, maxmods evaluates to["011","111"], which is q ^ r (example 1.7). Appendix BTheory comparison diagram sFor a variety of theories T over the language fp; qg, we give the ordering 6T whichorders other theories in the language according to their closeness to T . See x7.1 fordetails of the de�nition.In each diagram, the formula � appears as an abbreviation for the theory Cn(f�g).p; p ^ q; p ^ :q6:p _ :q ; q; :q ; p _ q; >p$:q ; p _ :q ;:p _ q ; p$ q6:p;:p ^ q;:p ^ :q ?Figure B.1: The ordering for Cn(fpg)
119

120 APPENDIX B. THEORY COMPARISON DIAGRAMSp ^ q� � � �� I@ @ @ @q p� � � � � � � � � �� I@ @ @ @ � � � �� I@ @ @ @ @ @ @ @ @ @p _ q� � � �� I@ @ @ @:p ^ q p$:q p _ :q :p _ q> p$ q p ^ :qI@ @ @ @ @ @ @ @ @ @ I@ @ @ @ � � � �� � � � � � � � � � ��:p _ :q� � � �� I@ @ @ @:p :qI@ @ @ @ � � � ��:p ^ :q ?
Figure B.2: The ordering for Cn(fp; qg)p ^ q:p ^ :qp$ q� � � �� I@ @ @ @:p ; q:p _ q p; :qp _ :q� � � �� I@ @ @ @ � � � �� I@ @ @ @:p ^ q p _ q; >:p _ :q p ^ :q6p$:q ?Figure B.3: The ordering for Cn(fp$ qg)

APPENDIX B. THEORY COMPARISON DIAGRAMS 121p$:q; :p ^ q; p ^ :qp ^ q; p; q; p _ q6:p _ :q ;:p ;:q ;>p _ :q ;:p _ q ; p$ q6:p ^ :q ?Figure B.4: The ordering for Cn(fp _ qg)p$ q; p ^ q; :p ^ :q:p ^ q; :p; q; :p _ q6p _ :q ; p ;:q ;>:p _ :q ; p _ q ; p$:q6p ^ :q ?Figure B.5: The ordering for Cn(fp! qg)

Bibliography[1] Arti�cial intelligence. Special Issue on Non-Monotonic Logic, volume 13, 1980.[2] A. R. Anderson and N. D. Belnap. Entailment, volume 1. Princeton UniversityPress, 1975.[3] A. B. Baker. Nonmonotonic reasoning in the framework of situation calculus.Arti�cial Intelligence, 49:5{23, 1991.[4] Philippe Besnard. The preferential-models approach to non-monotonic logics. InP. Smets, A. Mamdani, D. Dubois, and H. Prade, editors, Non-standard Logicsfor Automated Reasoning. Academic Press, 1988.[5] S. Brass and U. W. Lipeck. Semantics of inheritance in logical object speci�ca-tions. In C. Delobel, M. Kifer, and Y. Masunaga, editors, 2nd Int. Conf. on De-ductive and Object-Oriented Databases (DOOD'91), pages 411{430. Lecture Notesin Computer Science 566, Springer-Verlag, 1991.[6] S. Brass, M. Ryan, and U. Lipeck. Hierarchical defaults in speci�cation. Toappear, 1992?[7] G. Brewka. Preferred subtheories: An extended logical framework for defaultreasoning. In Proc. International Joint Conf. on Arti�cial Intelligence (IJCAI),pages 1043{1048. Morgan Kaufmann, 1989.[8] A. L. Brown and Y. Shoham. New results on semantical non-monotonic reason-ing. In M. Reinfrank, J. de Kleer, and M. L. Ginsberg, editors, Non-monotonicReasoning. Lecture Notes in Arti�cial Intelligence 346, Springer-Verlag, 1988.[9] R. Burstall and J. Goguen. Putting theories together to make speci�cations. InProc. Fifth International Joint Conference on Arti�cial Intelligence, pages 1045{1058. Morgan Kaufmann, 1977.[10] M. R. B. Clarke and D. M. Gabbay. An intuitionistic basis for non-monotoniclogic. In P. Smets, A. Mamdani, D. Dubois, and H. Prade, editors, Non-standardLogics for Automated Reasoning. Academic Press, 1988.[11] F. Brown (editor). The Frame Problem in Arti�cial Intelligence: Proceedings ofthe 1987 Workshop. Morgan Kaufmann, Los Altos, CA, 1987.[12] T. Kuipers (editor). What is Closer-to-the-Truth. Rodopi, Amsterdam, 1987.122
BIBLIOGRAPHY 123[13] D. Etherington and R. Reiter. On inheritance hierarchies with exceptions. InProc. Third National Conference on Arti�cial Intelligence, pages 104{108, 1983.[14] R. Fagin, J. D. Ullman, and M. Y. Vardi. On the semantics of updates in databases.In Proc. 2nd ACM SIGACT-SIGMOD Symp. on Principles of Database Systems,pages 352{365, 1983.[15] J. Fiadeiro and T. Maibaum. Describing, structuring and implementing objects.In Proc. REX Workshop on Foundations of Object-Oriented Languages. Springer-Verlag, 1991.[16] J. Fiadeiro and T. Maibaum. Temporal reasoning over deontic speci�cations.Journal of Logic and Computation, 1(3):357{395, 1991.[17] J. Fiadeiro and T. Maibaum. Towards object calculi. Technical report, Deprtmentof Computing, Imperial College, London, 1992.[18] J. Fiadeiro and A. Sernadas. Structuring theories on consequence. In D. Sanellaand A. Tarlecki, editors, Recent Trends in Data Type Speci�cation, LNCS 332.Springer Verlag, 1988.[19] A. Finkelstein. Reviewing and correcting speci�cations. In Proc. Computers andWriting IV, pages 219{237. Kluwer, 1991.[20] A. Fuhrmann. Theory contraction through base contraction. Journal of Philo-sophical Logic, 20:175{203, 1991.[21] D. M. Gabbay. Labelled deductive systems. Manuscript in preparation, 1991.[22] D. M. Gabbay. Theoretical foundations for non-monotonic reasoning. part 2:Structured non-monotonic theories. In Proc. Third Scandanavian Conference onArti�cial Intelligence (SCAI'91), 1991.[23] P. G�ardenfors. Knowledge in Flux: Modelling the Dynamics of Epistemic States.MIT Press, 1988.[24] M. R. Genesereth and N. J. Nilson. Logical Foundations of Arti�cial Intelligence.Morgan Kaufmann, Los Altos, CA, 1987.[25] M. Ginsberg. Introduction. In M. Ginsberg, editor, Readings in Non-monotonicLogic. Morgan Kaufmann, 1988.[26] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50, 1987.[27] J. A. Goguen and R. M. Burstall. Introducing institutions. In E. Clarke andD. Kozen, editors, Proc. Workshop on Logics of Programming. Lecture Notes inComputer Science 164, Springer-Verlag, 1984.[28] J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for com-puter science. Manuscript, 1985.[29] R. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes, 1987.

124 BIBLIOGRAPHY[30] Ian Hacking. What is logic. Journal of Philosophy, 76:285{318, 1979.[31] A. G. Hamilton. Logic for Mathematicians. Cambridge University Press, 1978.[32] S. Hanks and D. McDermott. Default reasoning, non-monotonic logics and theframe problem. In Proc. Fifth National Conference on Arti�cial Intelligence(AAAI), pages 328{333, 1986.[33] S. O. Hansson. Belief Base Dynamics. PhD thesis, Department of Philosophy,Uppsala University, 1991.[34] S. O. Hansson. From logical atoms to basic beliefs. Submitted for publication,1992.[35] A. J. I. Jones and M.J. Sergot. On the role of deontic logic in the characterista-tion of normative systems. In First International Conference on Deontic Logic inComputer Science, 1991.[36] H. Kautz. The logic of persistence. In Proc. Fifth National Conference on Arti�cialIntelligence, pages 401{405, 1986.[37] S. Khosla and T. S. E. Maibaum. The prescription and description of state basedsystems. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Temporal Logic inSpeci�cation. Lecture Notes in Computer Science 398, Springer-Verlag, 1989.[38] S. Kraus, D. Lehmann, and M. Magidor. Non-monotonic reasoning, preferentialmodels and cumulative logics. Arti�cial Intelligence, 44:167{207, 1990.[39] T. S. Kuhn. The Structure of Scienti�c Revolutions. Univeristy of Chicago Press,1970.[40] E. Laenens and D. Vermeir. A �xpoint semantics for ordered logic. Journal ofLogic and Computation, 1(2):159{185, 1990.[41] M. M. Lehman. Software engineering, the software process and their support.Software Engineering Journal, 6(5):243{258, 1991.[42] D. Lehmann. What does a conditional knowledge base entail? In Proc. First In-ternational Conference on Principles of Knowledge Representation and Reasoning(KR'89). Morgan Kaufmann, 1989. Toronto.[43] V. Lifschitz. Computing circumscription. In Ninth International Joint Conferenceon Arti�cial Intelligence, pages 121{127, 1985.[44] V. Lifschitz. Benchmark problems for formal non-monotonic reasoning, version2.00. In M. Reinfrank, J. de Kleer, and M. L. Ginsberg, editors, Non-monotonicReasoning. Lecture Notes in Arti�cial Intelligence 346, Springer-Verlag, 1988.[45] S. Lindstr�om and W. Rabinowicz. Epistemic entrenchment with incomparabilitiesand relational belief revision. In A. Fuhrmann and M. Morreau, editors, The Logicof Theory Change. Lecture Notes in Arti�cial Intelligence 465, Springer Verlag,1991.

BIBLIOGRAPHY 125[46] D. Makinson. General theory of cumulative inference. In M. Reinfrank, J. de Kleer,and M. L. Ginsberg, editors, Non-monotonic Reasoning. Lecture Notes in Arti�cialIntelligence 346, Springer-Verlag, 1988.[47] D. Makinson. General patterns in non-monotonic reasoning. In D. Gabbay, C. Hog-ger, and J. Robinson, editors, Handbook of Logic in Arti�cial Intelligence. OxfordUniversity Press, 1992. Forthcoming.[48] D. Makinson and P. G�ardenfors. Relations between the logic of theory change andnon-monotonic logic. To appear.[49] J. McCarthy. Circumscription|a form of non-monotonic reasoning. Arti�cialIntelligence, 13:27{39, 1980.[50] J. McCarthy. Applications of circumscription to formalising common-sense knowl-edge. Arti�cial Intelligence, 28:89{116, 1986.[51] B. Nebel. Reasoning and Revision in Hybrid Representation Systems. LectureNotes in Arti�cial Intelligence 422, Springer Verlag, 1990.[52] D. L. Parnas and P. C. Clements. A rational design process: How and why tofake it. In IEEE Transactions on Software Engineering, volume 2, pages 251{257,1986.[53] D. Poole. A logical framework for default reasoning. Arti�cial Intelligence, 36:27{47, 1988.[54] K. R. Popper. Conjectures and Refutations. Routledge and Kegan Paul, London,1963.[55] R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13:81{132, 1980.[56] R. Reiter. Non-monotonic reasoning. Annual Reviews of Computer Science, 1987.[57] H. Rott. Preferential belief change using generalised epistemic entrenchment. Kon-stanzer Berichte zur Logik und Wissenschaftstheorie 15.[58] H. Rott. Two methods of constructing contractions and revisions of knowledgesystems. Journal of Philosophical Logic, 20:149{173, 1991.[59] M. D. Ryan. Belief revision and ordered theory presentations. In P. Dekker andM. Stokhof, editors, Proc. Eighth Amsterdam Colloquium on Logic, 1991. Toappear.[60] M. D. Ryan. Defaults and normativity in speci�cations. In J. J. Ch. Meyerand R. Wieringa, editors, Proc 1st International Conference in Deontic Logic inComputer Science (DEON'91), 1991. To appear.[61] M. D. Ryan. Defaults and revision in structured theories. In IEEE Symposium onLogic in Computer Science (LICS), pages 362{373, 1991.

126 BIBLIOGRAPHY[62] M. D. Ryan, J. Fiadeiro, and T. Maibaum. Sharing actions and attributes in modalaction logic. In T. Ito and A. Meyer, editors, Theoretical Aspects of ComputerSoftware, pages 569{593. Lecture Notes in Computer Science 526, Springer Verlag,1991.[63] M. D. Ryan and M. R. Sadler. Valuation systems and consequence relations. InD. Gabbay S. Abramsky and T. Maibaum, editors, Handbook of Logic in ComputerScience, volume 1. Oxford University Press, 1992. Forthcoming.[64] R. C. Schank and R. P. Abelson. Scripts, Plans, Goals and Understanding. Erl-baum, Hillsdale, N.J., 1977.[65] K. Schlechta. Some results on theory revision. In A. Fuhrmann and M. Morreau,editors, The Logic of Theory Change. Lecture Notes in Arti�cial Intelligence 465,Springer Verlag, 1991.[66] G. Schurz and P. Weingertner. Verisimilitude de�ned by relevant consequenceelements. In T. Kuipers, editor, What is Closer-to-the-Truth, pages 47{78. Rodopi,Amsterdam, 1987.[67] Y. Shoham. A semantical approach to nonmonotonic logics. In Proc. 10th Interna-tional Conf. on Arti�cial Intelligence (IJCAI), pages 388{392. Morgan Kaufmann,1987.[68] Y. Shoham. Reasoning about Change: Time and Causation from the Standpointof Arti�cial Intelligence. MIT Press, 1988.[69] D. Touretzky. Implicit ordering of defaults in inheritance systems. In Proc. FifthNational Conference on Arti�cial Intelligence, pages 332{325, 1984.[70] J. van Benthem. Partiality and non-monotonicity in classical logic. Technicalreport, CSLI, 1984.[71] J. van Benthem. A Manual of Intensional Logic. CSLI Lecture Notes, 1985.[72] J. van Benthem. Verisimilitude and conditionals. In T. Kuipers, editor, What isCloser-to-the-Truth, pages 103{128. Rodopi, Amsterdam, 1987.[73] J. van Benthem and K. Doets. Higher order logic. In D. Gabbay and F. Guenthner,editors, Handbook of Philosophical Logic, volume 1. Dordrecht: D. Reidel, 1983.[74] Frank Veltman. Defaults in update semantics I. In Hans Kamp, editor, Condi-tionals, Defaults and Belief Revision, pages 28{64. Center for Cognitive Science,Edinburgh, 1990. DYANA deliverable R2.5A.[75] D. Vermeir, P. Geerts, and D. Nute. A logic for defeasible perspectives. InProc. T�ubingen Workshop on Semantic Networks and Non-monotonic Reasoning,volume 1, 1989.

