Representing Defaults as Sentences with Reduced Priority*

Mark Ryan
Department of Computing
Imperial College
London SW7 2BZ, UK

E-mail: mdr@doc.ic.ac.uk

Abstract

We distinguish between two ways of thinking about de-
faults. The first way, in which defaults augment known
premises by ‘strengthening’ the underlying logic, is
the traditional approach taken by most existing for-
malisms. In the second way, defaults are represented
in the set of premises, but obtain their default sta-
tus by having a reduced priority relative to the known
premises. In this paper we:

1. Compare and contrast the approaches. We argue
that the second approach makes for simpler represen-
tation of defaults and their interactions.

2. Describe a syntax and semantics for the second, less
well-known approach; we introduce the notion of or-
dered theory presentation (OTP) to represent theories
with defaults.

3. Show how ordered theory presentations can rep-
resent familiar examples of interacting defaults in an
intuitively clear and simple way; we give the Tweety
example and the Yale Shooting example. We also show
that the OTP framework is particularly well suited to
inheritance examples.

4. Show formal properties of OTPs, in particular cu-
mulativity, and suggest connections with circumscrip-
tion.

5. Show how OTPs may be used to model belief revi-
ston and compare the result with the standard theory.

1 Introduction

Most systems for reasoning with defaults treat them
as a way of strengthening the underlying logic. For
example, in circumscription defaults are represented
by the policy of minimising certain predicates. Mod-
els of the circumscribed theory are those models of the
original theory which have minimal extensions of those
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predicates. In particular, anything that can be proved
without the defaults (i.e., without the minimisation)
can also be proved with them; thus, the process of min-
imisation strengthens the deductive power of the logic.
The same is true in, for example, negation as failure
viewed as a default system; the default mechanism (in
which the defaults are the negations of atomic formu-
las) allows us to derive more from a set of clauses than
is classically derivable.

There is another view of defaults which is less widely
known, although it has been described before [Bib85,
Bre89, Poo88]. Whereas on the first view we had too
few consequences of a theory, and used the default
mechanism to add to them, on the second view we
have too many consequences and the default mecha-
nism reduces their number. In the second view, de-
faults are represented as sentences in the theory in-
stead of as a means of augmenting the logic. The set
of facts together with the set of defaults is in general
contradictory. But the defaults are assigned a lower
status, or reduced priority, than the other more cer-
tain sentences in the theory; this avoids contradictory
conclusions. Much of this paper will flesh out both the
syntax and the semantics of this ‘reduced priority’.

We consider that the second view of defaults is prefer-
able. Firstly, it provides a clearer way of specifying
the default information. The fact that defaults are
expressed as ordinary sentences using the full range
of logical operators obviates the need for coding tricks
which are often necessary in, for example, circumscrip-
tion. Secondly, it treats defaults as part of the knowl-
edge being represented, instead of as part of the logic.
This gives improved knowledge representation.

In this paper we describe a system for representing
defaults which falls into the second view of the two
described above. In that system, a theory is presented
as a partially-ordered set of sentences. (The exact def-
inition is given in §2.) All of the sentences which we
wish to represent are included in this set. That some
of them are defaults and some are not is represented by
their position in the ordering. The lower a sentence is
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Figure 1: Three OTPs

in the ordering, the less of a default it is, and the min-
imal sentences are those which are not defaults at all.
In the system we describe, we can have several levels
of defaults—those below in the ordering override those
above, if there 1s a conflict. Sentences can be a default
relative to one sentence but not relative to another.
We can specify which sentences are to override exactly
which others.

This way of presenting a theory we call an ordered
theory presentation, or OTP for short. Consider the
first example of an OTP in figure 1 to make the above
discussion of priority a little more concrete. In that
ordered presentation, there is one ‘fact’, namely ¢1. It
has a greater priority than the other sentences. The
others are defaults, but still, some are stronger than
others. For example, ¢35 is stronger than ¢s5, weaker
than ¢2 and incomparable in strength with ¢4. Thus,
the arrow 1s read as ‘is stronger than’ or ‘dominates’.
This information is part of the knowledge being rep-
resented.

If a sentence dominates another, that means that it
can override it if the two conflict. The meaning of the
second OTP in figure 1 is ¢ A if ¢ and ¢ are mutually
consistent; otherwise it is ¢ with as much of ¢ as is
consistent with . Thus, if they are inconsistent,
overrides ¢. But this overriding, when it happens, is
in general only partial. ¢ doesn’t override all of ¢,
just those bits which conflict with it. The machinery
needed for this is described later in the paper.

OTPs were first described in [Rya91], where they were
called ‘structured theories’. This paper is self con-
tained, but some technical details and many proofs
have been omitted here to leave space for new re-
sults. The most complete account of OTPs to date
is [Rya92a], copies of which are available from the au-
thor.

The remainder of the paper is organised as follows. In
§2 we give examples of ordered theory presentations
and define their semantics. In §3 we examine some
standard examples of default reasoning using OTPs,
and in §4 we show the relation with other default sys-
tems. Finally, in §5 we show how to use OTPs for
belief revision.

2 Ordered theory presentations

An ordered presentation of a theory is a partially or-
dered multi-set of sentences. Sentences lower in the
ordering take priority over those above. Earlier we
simplified by saying that it was a partially ordered set,
but we have to consider multi-sets because the same
sentence may occur twice, in different places in the or-
der. An informal syntax of graphs for OTPs was used
in §1, which is used for much of the paper; a more
formal notation is introduced in §2.2.

2.1 Examples and motivation

This section is intended to illustrate by example the
intended behaviour of OTPs. The reader can check
the examples against his or her intuitions. All of them
work out successfully in the formalism described in the
paper. While reading these examples, it is important
to keep the following points in mind:

1. In an OTP, sentences lower in the ordering take
precedence over those above.

2. When a sentence lower in the ordering contradicts
a sentence above it in the ordering, the lower sen-
tence overrides the higher one. But in general,
this overriding is only partial. The lower sentence
does not cancel the effect of the higher one com-
pletely.

3. In evaluating an OTP (that is, in working out the
theory it presents), the idea is to use as much of
the available information as possible but to avoid
contradictions.

We take the underlying logic (classical propositional
logic or classical predicate logic) as given.

Example 2.1 Here are two OTPs and the ordinary
sentences to which they are equivalent.

PAY PAY
T = -pAg t = peg.
-p —pV g

In the first case, the OTP consists of the sentences —p
and p A ¢, but with the former overriding the latter.
Thus, pAg is a default relative to =p. The OTP means
that we want —p first and foremost, and subject to
that, as much of p A ¢ as possible. But p A ¢ conflicts
with —p, so we can’t have it all; we can only have the
g component. Therefore we get —p and q.

In the second case, the default (pAq) is the negation of
the given sentence (—pV —¢). The overall effect of the
OTP is to give us the certain sentence (the —pV —g),
and then as much of the default as is consistent. Of
p A q, we can have either p or ¢ but not both. That is
why we end up with p < —q.
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This is like the second case of example 2.1, except now
there 1s a priority expressed between p and ¢. This
priority is expressed by their location in the ordering.
The bottom sentence (the most important) says that
we want one of p and ¢ to fail; but subject to that we
want ¢. This gives us =p A ¢, since they are consistent.
Then, subject to all that, we want p. But we’ve ruled
that out by now, so we end up with —p A q.

Example 2.3 This example will turn out to have im-
portance in §5.
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To see this is correct, separate the cases of r and —r.
If », then we must have p < ¢ in order to satisfy the
most important sentence (the bottom one). To satisfy
the next sentence, we must have —p or —g. Since we
already have p < ¢, this means we have =p A =¢. Now
we have determined the value of all three atoms, for we
have =p A =¢ A r. On the other hand, if =r then both
the bottom sentence and the middle one are satisfied.
We want as much of the top one as possible, which is
p A q. Therefore, we get p A ¢ A =r. The presentation
is thus equivalent to (=p A=g A7)V (pAgA-r), which
is elementarily equivalent to (p < ¢) A (p < —r).

(p=aq)AN(p—-r)

Example 2.4
V. p(x)

b=

Jx. —p(x)

Jx. (—p(x) AVy. (e#y — p(y)))

The more important sentence (the bottom one) says
that there is at least one individual which has not got
the property p. But, subject to satisfying that, we
want to satisfy as much of the upper sentence as pos-
sible; it says that all individuals have the property p.
We conclude therefore, that precisely one individual
fails p; all the others satisfy it. This is stated by the
theory on the right.

The examples illustrate the intended behaviour of or-
dered presentations. Our aim in the next section is to
define their semantics formally. We do so in a logically
clean way, so that our definitions do not interfere with
the mechanism of the underlying logic.

2.2 The semantics of ordered theory
presentations

We will define the models of ordered theory presenta-
tions. Since the sentences of an OTP are in general
inconsistent, we cannot expect its models to satisfy all
the sentences. Instead, they should satisfy the lower
ones, and then as much of the higher ones as possi-
ble. To achieve this we define for each OTP an or-
dering of the interpretations of the language. This
ordering ranks interpretations according to how well
they satisfy the sentences of the OTP; and this rank-
ing respects the ordering of the sentences in the OTP.
Then models of the OTP are taken to be the maxi-
mal interpretations. This strategy of ordering mod-
els is well-known in the default reasoning literature

[Bes88, Mc(C80, Sho88]

First, it 1s necessary to have a more formal notation
for OTPs than the graphs of the last section. We have
seen that an ordered theory presentation is a collec-
tion of sentences equipped with a partial order. But
to cover the case that the same sentence occurs sev-
eral times in different places in the presentation, it is
necessary to posit a ‘carrier set’ on which the order 1s
defined and whose points are labelled by sentences.

Definition 2.5 An ordered theory presentation I' is
a tuple (X, <, F') where X is a finite set (the carrier
set), < is a partial order on X, and F is a function
mapping X to sentences.

The intuitive meaning of the ordering is: if z < y then
the sentence F'(x) has greater priority (or more influ-
ence) than F'(y). This information is used when F(x)
and F(y) conflict. We will assume that we are work-
ing with a fixed language L over propositional logic
or predicate logic with equality’, with interpretations
M and a satisfaction relation |F C M x L between
interpretations of the language and sentences.

As already stated, to define the models of an ordered
theory presentations I' we define an ordering T on
interpretations in M which measures how well an in-
terpretation satisfies I. M CU N shall mean that N
is as good (or better) than M at satisfying I'. Models
of I' are then taken to be maximal interpretations in
this ordering?. The definition of the ordering relies on
orderings Cg4, one for each sentence ¢ of the language.

'n fact, the definitions and results presented here work
with other logics, including modal and intuitionistic logics.
But in this paper we restrict ourselves to classical logic.

?The technique of ordering interpretations which is
used in in this paper is well-established in the litera-
ture. It originates in McCarthy’s first circumscription pa-
per [McC80], and has been generalised in various ways
[Sho88, Bes88, KLM90, Vel9l, etc.]. In all of those pa-
pers, the ordering works in the opposite way to the one we
have used for OTPs, that is, M < N means M is better
than N; and therefore, one is interested in minimal models.
The reader may wonder why we chose to fly in the face of



The relation C, grades interpretations according to
how well they satisfy ¢. To define Ty, it is necessary
to define a notion which we call ‘natural entailment’,
written F=. This definition in turn relies on the notion
of the monotonicities of a sentence. We start there-
fore with the definition of monotonicities. Then we
proceed to the definition of =, then Cg, then cl.

The positive monotonicities of a sentence are the pred-
icates whose extension can be increased in any model
of the sentence. The negative monotonicities are the
predicates which can be decreased in the model. We
define this formally as follows:

Definition 2.6 1. In predicate logic, the extension
of a predicate symbol p in a model is the set of
tuples of which p is true in the model. In proposi-
tional logic, the extension of a proposition p in a
model is a singleton {x} if p is true in the model;
if p is false, 1t 1s @.

2. Extensions are naturally ordered by inclusion. We
define M <P N if M and N are exactly alike
except that the p-extension of M is included in
that of V.

3.If ¢ # L then ¢ is monotonic in p (written
pe¢t)if M <P N and M IF ¢ imply N IF ¢.
Similarly ¢ is anti-monotonic in p (p € ¢~) if
N <P M and M IF ¢ imply N IF ¢. The case that
¢ = 1 is handled separately, for technical reasons
which will become clear; we define 1Lt = 1~ = @.

That is to say, p € $7(=) if increasing (decreasing) the
extension of p in any model of ¢ results in another

model of ¢.

Example 2.7 Let (L, M) be classical propositional
logic over {p,q}. For several examples of ¢, the sets

this well-established convention, in choosing to order inter-
pretations in the opposite sense and therefore to seek CF-
mazimal interpretations. There are two reasons. The first
is that the fact that other workers order models in the op-
posite way is for the historic reason that in circumscription
one wants to minimise abnormality predicates; this reason
does not apply in the more abstract setting of OTPs. On
the contrary, it is more intuitive to move upwards in an
ordering when one is moving to better and better models.
The second reason is that one typically looks at ascending
chains and mazimal elements in domain theory and infor-
mation systems theory, where we see links with our work.
Cf. proposition 2.19.

¢T and ¢~

are shown in the following table.

¢ ¢t ¢~
T pa} | g}
p g} | e}
q ipa} | Ap}
pAq, pVa| {p,q} %)
p—yq {4} {r}
p—q %
1 o o

Example 2.8 Let (L, M) be classical predicate logic
over p (unary) and ¢ (binary).

6 | ot | ¢

Y.

p(x) pa} | e}
3. p(x) g} | e}
V. 3y q(x,y) pq} | Ar}
V. (p(x) — Jy. q(x, v)) {a} {r}
Ve Vy. (q(z,y) — q(y, 2)) {r} {r}

In classical logic we may characterise ¢ more syntac-
tically, by means of positive and negative occurrences.
Recall that p occurs positively in ¢ if it occurs in ¢
within the scope of an even number of negation opera-
tors, after the operators — and < have been unpacked
in terms of their standard definitions. Similarly, if in
such circumstances it appears in the scope of an odd
number of negation signs then it occurs negatively.

Proposition 2.9 p € ¢1(=) iff ¢ can be written with
only positive (negative) occurrences of p.

Notice that the definition is semantic in the sense that
it 18 not sensitive to the way ¢ is written. That 1s,
writing ¢ g9 ¢ if ¢ & 1/) and ¢ | ¢, we have that
6 = v implies 6% = v*.

Having defined monotonicities, we turn to the defini-
tion of natural entailment. Let ¢ and 1 be sentences

of L.

Definition 2.10 ¢ naturally entails v, written ¢ =
¥, if ¢ | ¢, and ¢t C Yt and ¢~ C 7.

Natural entailment is a sub-relation of ordinary entail-
ment; in addition to ordinary entailment we require
that the monotonicities of the premise be preserved
by the conclusion.

Remark 2.11
lation.

1. = is a reflexive and transitive re-

2. We have that pAg = p and pAg = pVg, but pAgq [~
p<qand p }= pVq. Moreover, L = ¢ for all ¢.
(That was the reason for requiring 1+ = @.) The
full picture for natural and ordinary entailment
for propositional logic with the predicates p,q is
given in figure 2.
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Figure 2: The ordinary and natural consequence rela-
tions over {p, ¢}

3. Also, Ya.p(z) = ¢ implies ¢ can be written with
no negative occurrences of p and no occurrences
of any other predicate.

Natural entailment is something like ‘relevant entail-
ment’; it stops us adding irrelevant disjuncts in our
conclusions. The simplicity of the definition and the
fact that it is based on satisfaction by models ensures
that there is nothing untoward going on. In particu-
lar, if ¢ and ¢ are classically equivalent then they are
naturally equivalent; indeed

o SE v iff ¢ JE 0.

Our interest in natural entailment is in order to
achieve the definition of Ty, to which we now turn.
As stated, M T4 N means that IV is as good at satis-
fying ¢ as M is. It is not just that N satisfies ¢ and M
does not; perhaps neither satisfy ¢, but N more nearly
does. For example, let M be a propositional interpre-
tation which assigns false to both p and ¢; and let N

assign true and false to p and ¢ respectively. Then
M Cyag N, while N Zyng M. Neither satisfy p A g,
but at least N satisfies p; M doesn’t satisfy either of
p and gq.

This example shows that one has to look at which
consequences of ¢ are satisfied by M and N. How-
ever, defining M Cg4 N to mean that N satisfies all
the consequences of ¢ which M does gives us precisely
the bipartite ordering rejected in the preceding para-
graph. This is because ¢ has too many irrelevant con-
sequences; we should just look at the natural ones.

Definition 2.12 M satisfies ¢ no worse than N, writ-
ten M Cy N, if for each 9 such that ¢ | o, M I
implies N I 4.

Examples will be given shortly. It is easy to verify that

Proposition 2.13 1. C, is a pre-order, that is to
say, it is reflexive and transitive.

2. If ¢ # L, the maximal elements of C, (which are
in fact maximum) are just the models of ¢.

3. If ¢ == 1) then T, = Cy.

We have defined, for each sentence ¢, an ordering on
interpretations Cy which measures the extent to which
interpretations satisfy ¢. If M satisfies ¢ to the fullest
extent (that is, if it simply satisfies it) then M is Cy-
maximum. If M does not fully satisfy ¢ then it may
satisfy 1t to a greater, lesser, equal or incomparable
extent than some N which perhaps also fails fully to
satisfy ¢. We now define C! in terms of C4 as follows.

Definition 2.14 M CU N ifforeachz € X, M Zr()
N implies there exists y < x such that M Cpg,) N.

One can read this as saying: N is as good as M overall
[M CU N]if whenever it appears not to be so at a point
z [M I, N] then there is a more important point y
[y < z] where N is doing better than M [M C, N].
Informally, the definition says: if things appear to go
wrong at a particular z, then they go well at some y
in a more important position than .

Remark 2.15 The definition of C! is more perspicu-
ous if I is linear. Let I' be the third OTP of figure 1.
Then C' is the lexicographic combination of the Cs.s,
le.
MCUN iff MCy N
or (M Cyg, Nand M Cy4, N)
or (M Cgy,0. NV and M Ty, N)
or ... or
(M Eg, 4., Nand M Cy, N).
Proposition 2.16 CU is also a pre-order.

Finally, we define the models of I'. They are simply
the interpretations which are rated maximally by CF.



Definition 2.17 M IF T if M is C'-maximal.

These definitions represent the guts of the system we
propose. Before turning to examples, we present some
results.

Proposition 2.18 If ¢ and ¢ are mutually consistent

N

¥

Proposition 2.19 Let I' be an OTP and M € M.
There exists N € M such that M CF N and N is
Cl-maximal.

Proposition 2.20 If T = ¢ then ¢ # L.

The last of these says that no contradictions may be
concluded from any OTP. This may seem surprising,
but is really quite rational!

The proofs of these propositions may be found in
[Rya92a]. They rely on the compactness of the un-
derlying logic (which in this paper we have assumed is
classical propositional or predicate logic).

We now turn to some examples, applying the defini-
tions given so far.

Example 2.21 The working for example 2.3 is given
in figure 3. For each sentence ¢ in the OTP, the order-
ing C4 is shown. Then these are combined in the man-
ner of remark 2.15 to yield the final model ordering,
whose maximal elements are 001 and 110. The formula
with precisely these modelsis (p = q) A (p — —r).

In figure 3, we show the ordering on interpretations by
means of similar diagrams to the ordering of sentences
in OTPs. It is hoped that this is not confusing. If
such a diagram has sentences at its nodes, it is an
OTP. If it has interpretations at its nodes, it is the
diagram corresponding to an ordering Cg or T for
some sentence ¢ or OTP I

Further examples of C,; and CT for propositional and
predicate logic are given in [Rya92a].

3 Representing defaults in OTPs

We will concentrate on two classic examples, one about
inheritance and one about temporal reasoning. To the
reader acquainted with default systems they will be
very familiar. Although hackneyed, they are excellent
examples for showing the key differences between for-
malisms.

Inheritance example. We will consider the well-
known example concerning birds and penguins and
whether they can fly. The class of penguins i1s a sub-
class of the class of birds. But the property of be-
ing able to fly, which holds of birds by default, is not
inherited by penguins. In the usual formulation of
this example, we have the factual premise ‘Penguins
are birds’, together with the defaults ‘Birds can fly’
and ‘Penguins cannot fly’. Using predicates to repre-
sent the obvious classes, we have V. (p(x) — b(a:)),

Y. (b(a:) — f(a:)), and Y. (p(a:) — ﬁf(x))

We want the following results:

1. Tf Fred is stated to be a bird (whether he is also a
penguin or not is not stated), we want to conclude
that he can fly.

2. But if it is stated that he is a penguin, we want
to conclude that he cannot fly.

The reason this example is interesting is that there are
two defaults which compete in certain circumstances.
It 1s easy to get result 1 correctly, but it is in the case of
result 2 that the defaults conflict. Our intuition that
the second of the two defaults should have priority
and block the application of the first is based on the
specificity principle, which states that defaults about a
specific class of objects take priority over defaults about
a more general class. We use this principle to order
the sentences, obtaining for case 1:

f
V. (p(x) — ﬁf(x))
f

V. (p(x) — b(x))
A b(Fred)

This OTP proves f(Fred) as required. The OTP for
case 2 of the example has p(Fred) instead of b(Fred),
and proves = f(Fred).

This shows the fundamental difference between the
two approaches to default representation discussed in
the Introduction. We have here a set of sentences
which we wish to represent, but like much of what
is taken to be common knowledge, they conflict with
each other. To handle this, we regard some as being
weaker than others. The stronger sentences may par-
tially override the weaker ones. These are the basic
principles of this second way of representing defaults.

Multiple inheritance The framework of ordered
theory presentation is much better suited to inheri-
tance examples than the above analysis indicates. In-
stead of expressing the fact that penguins are birds by
the formula V. (p(x) — b(x)), we construct a specifi-
cation for birds, and then construct a specification for
penguins by stating that they inherit the properties of
birds.
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Figure 3: The working for example 2.21

Our specification for birds is
fne

meaning that they fly and lay eggs. Now we con-
struct the specification of penguins by inheriting the
properties of birds and overriding as necessary:

fAe

~f

The ordering for the OTP comes straight from the
inheritance ordering.

Although our examples of OTPs in this paper have
been linear, the definitions allow the sentence ordering
to be partial. (Examples of partially ordered theory
presentations are given in [Rya92a].) In that way we
can handle multiple inheritance. For example, a ren-
dering of the familiar inheritance situation for Nixon
is given in the first of the following diagrams (in which
the arrows mean ‘is-a’), while the second shows the
corresponding OTP, in which we have propositions ex-
pressing the properties biped, pacifist, believer in God,
supporter of Bush, and being named Nixon.

person b
quaker republican pAG -pAB
nixon N

Temporal example. We will describe our solution
to the Yale Shooting problem. We assume familiarity
with the description of the problem and with the well-
known pitfalls in representing the facts and defaults
in a way which yields the correct prediction [HMS86,
Kau86, Sho88, Bak91, Sha92].

At the basis of the problem there are two competing
defaults, one expressing the persistence of the loaded-
ness of the gun and the other the persistence of the
man’s aliveness. The essence of a large class of solu-
tions focusses on the idea, due to Y. Shoham [Sho88],
that defaults relating to earlier states of the system
should take priority over defaults relating to later
states. Thus, we may stipulate a principle for per-
sistence defaults®, analogous to the specificity princi-
ple for inheritance defaults. The chronology principle
states that: defaults about an earlier state take priority
over defaults about a later state.

We can use this principle directly in the context of
ordered theory presentations. To illustrate this, we
shall dramatically simplify the problem by coding it
in propositional logic with three states, which we rep-

resent by indices on the propositions?®.

It is important to note that this principle is appro-
priate only when using defaults to predict the outcome of
action sequences, i.e. for ‘prediction problems’. It is not
appropriate for other examples of uses of persistence de-
faults, such as ‘explanation problems’ where it is desired
to account for a known outcome, in which this principle
manifestly gets the wrong answer. An example of this is
H. Kautz’ ‘stolen car problem’ [Kau86].

*This is not the coding of the example given in Re-
iter’s logic by Hanks and McDermott in the usual paper.



Let the three states be represented by the set {1,2,3},
in which 1 is the result of the loading action, 2 is the
result of waiting and 3 results from the shoot action.
Let ¢; and a; mean respectively that the gun is loaded
and the man is alive in state ¢. We have the facts

0 ay ly — —ag

and we have the defaults

(1e{l,2}

Notice that we have not represented the fact that being
loaded 1n a state is an exception to the persistence
of alive in the state which follows a shoot action—as
was done in the original coding of [HM86]. We do not
need to do this, because that fact is represented by the
chronology principle, which says that the persistence of
earlier fluents shall have priority over the persistence
of later ones. We use this to arrive at the ordered
theory presentation:

a; — Uiq1 by =l

a9 — A3

!

(El — fz) A

(a1 — as)

T

fy Nap A
(bs — —az)

This OTP proves —as as required.

We do not intend to conclude from this analysis that
the logic of ordered theory presentations is superior
to all the other default systems because it obtains the
correct answer to the Yale Shooting Problem. Such
a conclusion would be naive for many reasons. For
example, our solution is a crude application of the
chronology principle, but, as H. Kautz’ stolen car ex-
ample shows [Kau86], this is not appropriate for all ex-
amples of reasoning about actions. We have illustrated
that the theory of OTP given in this paper does cor-
rectly implement prioritisation of defaults in a natural
way which allows for clear knowledge representation.
We also hope that we have shown that the representa-
tion of defaults, and interacting defaults in particular,
is clearer in the theory of OTPs than in many of its
rivals.

We have simplified rather dramatically by using a propo-
sitional language and making explicit the identities of the
states. This simplification is justified since the same prob-
lem occurs in this simpler setting as occurred in Hanks
and McDermott’s, but the simpler setting is rather easier
to understand. However, it is true that the simpler setting
may not do justice to some of the subtler solutions to the
problem which have appeared in the literature. As these
are not the main interest of this paper, I feel this is not a
significant loss.

4 Relation with other default systems

4.1 Circumscription

PRELIMINARY REPORT

The aim of this topic, which has not yet been achieved,
is to provide theorems which show how to translate
between OTPs and circumscriptive theories. In this
section we give the story so far by means of results,
examples and conjectures.

We assume familiarity with the ideas of circum-
scription [McC80, Lif85], prioritised circumscription
[Lif87], and also with propositional circumscription.
Circumscribing a proposition in a theory means try-
ing to make it false, just as circumscribing a predicate
means trying to make its extension as small as possi-
ble. It 1s easy to show that the circumscription of a
set of propositions (allowing another set to vary) in a
propositional theory is again a propositional theory.

We also adopt the following notation:

o Circp.,(¢) is the circumscription of p in ¢, allowing
z to vary and keeping everything else constant. p
and z may be tuples of propositions or predicates.

o Circ,(¢) is also the circumscription of p in ¢, but
keeping z fixed and allowing everything else to

vary.

It turns out that OTPs translate into circumscriptive
theories in which everything is allowed to vary, so we
will often be interested in the special case Circf(qb),
which we abbreviate to Circy(¢).

From circumscription to OTPs. The simplest
case is Circ,(¢) where p is a single proposition or pred-
icate. The corresponding OTPs are respectively

-p Vz.—p(z)
T
¢ ¢

This follows from the facts that:

o If p is a proposition, M C-, N iff N IF p implies
M - p.

o If p is a predicate, M Cyg—pp) N Ul M, N are
isomorphic structures in terms of the functions of
the language and (modulo that isomorphism) the
p-extension of N is included in that of M.

The parallel circumscription of several propositions or
predicates Circ,,. ,, (@) is respectively

V. —pi(z) Va.—pn(z)

N

—P1 e Pn



and the prioritised circumscription Circp, s 5p, (¢) be-
comes

—Pn Va.—pn(x)
—p1 Va.—pi(x)
) )

since, as implied by [Lif87, eq. 9], in the context of the
given priorities we have

iff p1Cpy
or (p1 C p} and pz C pb)
or (p1,2 C pl 5 and p3 C p3)
or ... or
(P1.n—1 E Py 1 and p, C pj,).

pCyp

Compare remark 2.15. Here, ps < p; means that p; is
circumscribed with a greater priority than ps, while
p C p' (p C p/) means that the extension of p is
(strictly) included in that of p/’.

A corollary of this analysis 1s the obvious definition of
‘partially prioritised circumscription’, in which predi-
cates are circumscribed with priorities specified by a
partial order.

Definition 4.1 Let < be a partial order on the tuple

p of predicates pi,...,p,. Then p C p’ if for each ¢

with p; T pj there exists j with p; < p; such that
/

pi Cp;-

Compare definition 2.14.

From OTPs to Circumscription. The situation
in this direction is rather more complicated. We will
consider only the simplest case of

|

W

It will not be hard to generalise. Let ' be this
OTP. The basic idea is to split ¢(z) into ‘components’
é1(2) A .. A ¢p(2) and consider the circumscription

Circabl...aan’ A /\(_'qj’l(x) — ab;(2)))

But what constraints should there be on the way ¢
1s split into componentsI’ As a minimum one would
expect to require conjunctive normal form, but this is
not good enough, as we now show.

Example 4.2 Suppose ¢ = p A gq. There are several
normal forms, two such being pAq itself and pA(—pVy).
We have

= Circabl,ab2(¢ A(p — aby) A (¢ — aba))

whatever ¥ may be, but we also have that
r# Circabl,ab2(¢ A(p — aby) A(—p Vg — aba)).

For example, set ¢/ = =p. Then I' = =p A ¢, but the
right-hand side is simply —p.

The example shows that we probably also require that
the split of ¢ must not contain unnecessary occur-
rences of propositions or predicates of the ‘wrong’ po-
larity. It is a consequence of Lyndon’s Theorem [CK90]
that:

Proposition 4.3 For any formula ¢ there is an equiv-
alent formula ¢’ such that every predicate occurring
positively (negatively) in ¢’ occurs positively (nega-
tively) in every formula equivalent to ¢.

In other words, we can find for every ¢ an equivalent
¢' with no eliminable occurrences of predicates. We
conjecture that this is the normal form we seek.

4.2 Formal properties of OTPs

The study of default systems has been transformed
by a new concern, namely the formal properties of
the generated consequence relation. The first default
systems introduced in the 1980 special issue of Ar-
tificial Intelligence [AIJ80] did not even have well-
defined consequence relations. Gabbay and Clark
[Gab91, CG88] first observed that, instead of focussing
on the negative properties of such consequence rela-
tions, that is, their non-monotonicity, one should in-
stead ask what positive properties they have. They
gave the name ‘cautious monotonicity’ to the property

SlLo Ly
oLy

This property, which is weaker than full monotonicity,
has become widely accepted as a desirable property for
default systems.

The story of the properties of default conse-
quence relations has been pursued in the work of
Kraus/Lehmann/Magidor [KLM90, Leh89] and also
by Makinson [Mak88, Mak92]. Makinson’s [Mak92]
1s, in my opinion, the most authoritative and system-
atic study to date. He describes and motivates a set of
conditions on a default consequence relation and anal-
yses existing systems according to whether they have
the conditions. In this section we outline his principal
conditions and check the theory of OTPs of this paper
against them.

In Makinson’s work, the expression ® p 1 should be
read as: @ follows from ® in the context of an under-
stood set of defaults. Tt is unfortunate (and detracts
slightly from Makinson’s systematic study) that these
defaults are nowhere made explicit. Consequently, the
behaviour of the consequence relation under variations



of the defaults—and for that matter, questions of de-
fault representation—are not examined at all in his
work.

Makinson’s conditions also refer to classical conse-
quence, written |[L. ® [L + is to be read as ¢ follows
from ® without using the defaults. The understood
set of defaults can be thought of as augmenting clas-
sical consequence to default consequence. Therefore,
the first property we may expect is

Supraclassicality:

@y
Oy

It says that anything which can be derived without the
defaults can also be derived with them.

The next three conditions are together called ‘cumu-
lativity’. The first is simply

Inclusion: if ¢ € ® then ® .

The next two are weak forms of the standard Tarski
conditions of cut and monotonicity:

Cautious monotonicity:

O o forallgeV @ p o
P

Weak cut:
O o forallpgeT STy

@ h o

For the justification of these principles in intuitive
terms, we cannot do better than quote Makinson.
“Cut may be seen as expressing a determination not
to allow the length, intricacy or manner of a derivation
of a conclusion to reduce the freedom with which it is
used in further inference. There i1s no ‘diminution of
usability” with respect to distance from origins. Once
inferred, a proposition may be called upon in conjunc-
tion with the original information, unless genuinely
new (i.e. uninferable) information is also added. Cau-
tilous monotonicity, on the other hand, may be seen
as expressing a certain irreversibility in the drawing of
conclusions. Once inferred, a proposition may be re-
tained irrespective of what other inferred propositions
are added to the stock of usable information. We need
never go back unless, once more, genuinely new infor-
mation is brought in” [Mak92].

The next condition we will consider 1s

Distributivity: If ® and ¥ are |L-closed sets of sen-
tences (that is, @ [L ¢ implies ¢ € &, and similarly

for W) then
o Vpho
PNV o
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Makinson considers other conditions, but these are the
principal ones.

We have already noted that Makinson’s conditions
make no reference to the set of defaults which are im-
plicit in the relation p. On the other hand, one of the
attractive features of the framework of Ordered The-
ory Presentations as a default system is that there 1s
no difference between defaults on one hand and ‘sure
facts’ or facts on the other, except the priority they
are given in the ordering. We view this as a desirable
feature since we believe that, philosophically, the so-
called sure facts and the defaults have the same prove-
nance. They should all form part of the theory from
which we make deductions. A sentence does not have
the status of a default in isolation, but only in relation
to other sentences; to be precise, it is a default relative
to those sentences which can override it.

Nevertheless, we can go quite some way in examining
Makinson’s conditions in the context of ordered theory
presentations over classical logic. In order to emulate
variation of the facts with a fixed set of defaults, we
can consider the consequences of the following ordered
presentation with A fixed and @ varying:

(A)

!

P

This is the OTP A with ® appended at the bottom,
which we will write as A % ® until the end of this sec-
tion. We can think of this OTP as a way of represent-
ing that which in other default formalisms might be
called ‘the theory ® with defaults A’. Notice that A
1s itself an OTP; that is, we are still allowing defaults
with different priorities. Using this idea we can define
a consequence relation p which embodies the defaults,
as in Makinson’s work. The obvious thing to do is to
let @ b ¢ mean A *x ® |= ¢. However, we know from
proposition 2.20 that L does not have its classical be-
haviour in the context of OTPs. We can get improved
results by setting:

Definition 4.4 S ¢ if AP = Lor Ax® = ¢

That is to say, if ® is contradictory then it entails ev-
erything; otherwise, it entails just what the illustrated
OTP entails.

Recall that the technique of model ordering which
originates in McCarthy’s first circumscription paper
[McC80] has been generalised in various ways [Sho88,
Bes88, KLM90, Vel91, ete.]. Tt is further generalised
by Makinson in [Mak92], where he proves that prefer-
ential model structures which satisfy a condition which
he calls ‘stopperedness’ generate inference relations
which satisfy each of the conditions on inference re-
lations defined above. We therefore need simply show
that the relation p~ of definition 4.4 is such a relation
to prove that



Proposition 4.5 | satisfies supraclassicality, inclu-
sion, cumulativity, and distributivity.

This is indeed the case, the condition of stopperedness
following from our proposition 2.19. As before, the
full proofs are spelled out in [Rya92a]. We thus have
shown that OTPs over classical logic can yield a de-
fault inference relation in the sense of Makinson, with
good formal properties.

5 Belief Revision

Ordered theory presentations have significant applica-
tion in belief revision, whose basic question is: how
should new information be incorporated into a belief
state to result in a belief state which contains the new
information and as much of the original belief state as
is consistentl’ The best-known work on this subject
is called the AGM theory (after its originators, C. Al-
chourrén, P. Gardenfors and D. Makinson) [Gar88].

A full account of the AGM theory and the belief re-
vision functions obtained from ordered theory presen-
tations is given in [Rya92b] and [Rya92a]. We sum-
marise our main findings below, but the interested
reader should consult the more expansive references.

The AGM theory represents belief states as
deductively-closed sets of sentences. Let K be such
a belief state and ¢ a sentence. The revision of K by
¢ 1s written Kx¢. The AGM theory sets out eight pos-
tulates which a belief revision function * must satisfy,
known as K1-K8. (These may be found in any of the
standard references; we repeat them in a generalised
form below.)

We argue, however, that the eight axioms are neither
sound not complete with respect to intuitively rational
belief revision. Of course such a statement is necessar-
ily imprecise, because ‘intuitively rational’ belief revi-
sion is not amenable to mathematical description. The
argument to show lack of soundness is to give ‘coun-
terexamples’ to K4 and K8, which are given later in
the paper. My argument against completeness is the
following proposition, which shows that K1-8 admit
revision functions which fail to preserve any of the
original belief state in many cases.

Proposition 5.1 The revision function

. _ [ Cn{K U ¢}
K *¢_{Cn{¢}

satisfies axioms K1-8.

if =6 ¢ K

otherwise

In addition to this undesirable property of the AGM
system, there is the further fact of that system that one
cannot perform revision more than once. Repeated or
iterated revision is not constrained by the axioms, and
none of the models proposed for the AGM axioms (like
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revision by selection functions and epistemic entrench-

ment [Gar88]) define it?.

Before considering how belief revision works in the con-
text of OTPs, we have to generalise the AGM axioms.
As things stand, they rely on a particular representa-
tion of belief states (namely, deductively closed sets
of sentences). Therefore, direct comparison with the-
ories of belief revision which use other representations
of belief states is impossible. To overcome this we can
we rewrite the axioms in a more general way, which
assumes only the following:

1. A set of belief states, together with a subset of
‘contradictory’ belief states.

2. A function * (revision) which takes a belief state
and a sentence to a belief state;

3. A function | - | (extension) which takes a belief
state and returns the set of sentences true in it.

Here are the axioms rewritten in this way. We
will write K for a typical ‘abstract’ belief state.

K1 K * ¢ 1s a belief state;

K2 ¢ €K+l

K3 K+ 6| C K|+ 6;

K4 If ~¢ ¢ |K| then |[K|+ ¢ C |K * 6|;

K5 K * ¢ is contradictory implies ¢ = L;

K6 If E ¢ < then |[K x| = |K x|

KT K+ (6 A )] C IK + 6]+ o

K8 If =) & |K * ¢| then |K * ¢+ C |K * (¢ A1)

We now turn to the belief revision theory offered by

the OTP framework. We define
belief states = ordered theory presentations U{_L}.

As belief revision gives rise only to linear OTPs we
can write them with a more succinct notation. The
OTP of example 2.2 will be written [p, ¢, —pV —g¢].

Revision on these belief states is defined as follows:

1 if¢=L1
F*¢:{[¢] if¢#ALand =L
I' appended with ¢ otherwise

The general case, therefore, is that we simply append
the revising sentence. In other words, belief states are
(usually) just revision histories.

®For the expert reader, we remark that there are pro-
posals to allow repeated revision using EE orderings, either
by keeping a single EE ordering for all belief states or as-
suming the existence of a function which, for every belief
state, gives an EE ordering [Rot, Sch91]. But as neither
the single ordering nor this function is itself revised in the
course of belief revisions, it is easy to find examples which
are in contradiction with intuitions about iterated belief
change [Han91].



We argue that this function performs intuitively cor-
rect belief revision. As well as allowing repeated re-
vision, it has the ‘persistence’ requirement mentioned
above. However, this belief revision function, while
satisfying K1, K2, K3, K5, K6 and K7, fails to satisfy
K4 and K8. The counterexample to these two is given
by example 2.3 and figure 3 of this paper, by setting
K=[pAqAr,-pV—-qV-r]land ¢ = (p—q)V-r
for K4; and K = [pAqgA 7], $ = -pV —gV —r and
¢ = (p—q)V -rfor K4. An explanation in both tech-
nical and intuitive terms of this counterexample may
be found in the references already cited.

Acknowledgements

I am very grateful to Murray Shanahan for useful
discussions, particularly concerning the relationships
with Circumscription.

References

[ATJ80] Artificial Intelligence.  Special Issue on Non-
Monotonic Logic, volume 13, 1980.

[Bak91] A. B. Baker. Nonmonotonic reasoning in the
framework of situation calculus. Artificial Intelligence,
49:5-23, 1991.

[Bes88] P. Besnard. The preferential-models approach
to non-monotonic logics. In P. Smets, A. Mamdani,
D. Dubois, and H. Prade, editors, Non-standard Logics
for Automated Reasoning. Academic Press, 1988.

[Bib85] W. Bibel. Methods of automated reasoning. In
J. Bibel, editor, Fundamentals in Artificial Intelligence.
Lecture Notes in Computer Science 232, Springer Verlag,
1985.

[Bre89] G. Brewka. Preferred subtheories: An extended
logical framework for default reasoning. In Proc. Inter-
national Joint Conf. on Artificial Intelligence (1JCAI),
pages 1043-1048. Morgan Kaufmann, 1989.

[CG88] M. R. B. Clarke and D. M. Gabbay. An intuitionis-
tic basis for non-monotonic logic. In P. Smets, A. Mam-
dani, D. Dubois, and H. Prade, editors, Non-standard
Logics for Automated Reasoning. Academic Press, 1988.

[CK90] C. C. Chang and H. K. Keisler. Model Theory.
North-Holland, third edition, 1990.

[Gab91] D. M. Gabbay. Theoretical foundations for non-
monotonic reasoning. part 2: Structured non-monotonic
theories. In Proc. Third Scandanavian Conference on

Artificial Intelligence (SCAI’91), 1991.

[Gar88] P. Gardenfors. Knowledge in Fluz: Modelling the
Dynamics of Fpistemic States. MIT Press, 1988.

[Han91] S. O. Hansson. Belief Base Dynamics. PhD thesis,
Department of Philosophy, Uppsala University, 1991.

[HM86] S. Hanks and D. McDermott. Default reason-
ing, non-monotonic logics and the frame problem. In
Proc. Fifth National Conference on Artificial Intell:-
gence (AAAIT), pages 328-333, 1986.

[Kau86] H. Kautz. The logic of persistence. In Proc. Fifth
National Conference on Artificial Intelligence, pages
401-405, 1986.

12

[KLM90] S. Kraus, D. Lehmann, and M. Magidor. Non-
monotonic reasoning, preferential models and cumula-
tive logics. Artificial Intelligence, 44:167-207, 1990.

[Leh89] D. Lehmann. What does a conditional knowledge
base entail? In Proc. First International Conference on

Principles of Knowledge Representation and Reasoning
(KR’89). Morgan Kaufmann, 1989.

Lif85] V. Lifschitz. Computing circumscription. In Ninth
g
International Joint Conference on Artificial Intelligence,
pages 121-127, 1985.

[Lif87] V. Lifschitz. Pointwise circumscription. In M. L.
Ginsberg, editor, Readings in Non-monotonic Logic.
Morgan Kaufmann, 1987.

[Mak88] D. Makinson. General theory of cumulative infer-
ence. In M. Reinfrank, J. de Kleer, and M. L. Ginsberg,
editors, Non-monotonic Reasoning. Lecture Notes in Ar-
tificial Intelligence 346, Springer-Verlag, 1988.

[Mak92] D. Makinson. General patterns in non-monotonic
reasoning. In D. Gabbay, C. Hogger, and J. Robinson,
editors, Handbook of Logic in Artificial Intelligence. Ox-
ford University Press, 1992.

[McC80] J. McCarthy. Circumscription—a form of non-
monotonic reasoning. Artificial Intelligence, 13:27-39,
1980.

[Poo88] D. Poole. A logical framework for default reason-
ing. Artificial Intelligence, 36:27-47, 1988.

[Rot] H. Rott. Preferential belief change using generalised
epistemic entrenchment. Konstanzer Berichte zur Logik
und Wissenschaftstheorie 15.

[Rya91] M. D. Ryan. Defaults and revision in structured
theories. In Proc. Sizth IFEE Symposium on Logic in
Computer Science (LICS), pages 362-373, 1991.

[Rya92a] M. Ryan. Ordered Presentations of Theories:
Default Reasoning and Belief Revision. PhD thesis, De-
partment of Computing, Imperial College, 1992. Copies
available from author.

[Rya92b] M. D. Ryan. Belief revision and ordered theory
presentations. In P. Dekker and M. Stokhof, editors,
Proc. Fighth Amsterdam Colloquium on Logic, 1992.

[Sch91] K. Schlechta. Some results on theory revision. In
A. Fuhrmann and M. Morreau, editors, The Logic of
Theory Change. Lecture Notes in Artificial Intelligence
465, Springer Verlag, 1991.

[Sha92] M. Shanahan. A circumscriptive calculus of
events. Technical report, Imperial College Department
of Computing, 1992.

[Sho88] Y. Shoham. Reasoning about Change: Time and
Causation from the Standpoint of Artificial Intelligence.
MIT Press, 1988.

[Vel91] F. Veltman. Defaults in update semantics. Techni-
cal Report LP-91-02, Institute for Language, Logic and
Information, Amsterdam, 1991.



