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predicates. In particular, anything that can be provedwithout the defaults (i.e., without the minimisation)can also be proved with them; thus, the process of min-imisation strengthens the deductive power of the logic.The same is true in, for example, negation as failureviewed as a default system; the default mechanism (inwhich the defaults are the negations of atomic formu-las) allows us to derive more from a set of clauses thanis classically derivable.There is another view of defaults which is less widelyknown, although it has been described before [Bib85,Bre89, Poo88]. Whereas on the �rst view we had toofew consequences of a theory, and used the defaultmechanism to add to them, on the second view wehave too many consequences and the default mecha-nism reduces their number. In the second view, de-faults are represented as sentences in the theory in-stead of as a means of augmenting the logic. The setof facts together with the set of defaults is in generalcontradictory. But the defaults are assigned a lowerstatus, or reduced priority, than the other more cer-tain sentences in the theory; this avoids contradictoryconclusions. Much of this paper will 
esh out both thesyntax and the semantics of this `reduced priority'.We consider that the second view of defaults is prefer-able. Firstly, it provides a clearer way of specifyingthe default information. The fact that defaults areexpressed as ordinary sentences using the full rangeof logical operators obviates the need for coding trickswhich are often necessary in, for example, circumscrip-tion. Secondly, it treats defaults as part of the knowl-edge being represented, instead of as part of the logic.This gives improved knowledge representation.In this paper we describe a system for representingdefaults which falls into the second view of the twodescribed above. In that system, a theory is presentedas a partially-ordered set of sentences. (The exact def-inition is given in x2.) All of the sentences which wewish to represent are included in this set. That someof them are defaults and some are not is represented bytheir position in the ordering. The lower a sentence is1



�5��� I@@�3 �4I@@ ����2�16 � 6 �n�2��������6��16Figure 1: Three OTPsin the ordering, the less of a default it is, and the min-imal sentences are those which are not defaults at all.In the system we describe, we can have several levelsof defaults|those below in the ordering override thoseabove, if there is a con
ict. Sentences can be a defaultrelative to one sentence but not relative to another.We can specify which sentences are to override exactlywhich others.This way of presenting a theory we call an orderedtheory presentation, or OTP for short. Consider the�rst example of an OTP in �gure 1 to make the abovediscussion of priority a little more concrete. In thatordered presentation, there is one `fact', namely �1. Ithas a greater priority than the other sentences. Theothers are defaults, but still, some are stronger thanothers. For example, �3 is stronger than �5, weakerthan �2 and incomparable in strength with �4. Thus,the arrow is read as `is stronger than' or `dominates'.This information is part of the knowledge being rep-resented.If a sentence dominates another, that means that itcan override it if the two con
ict. The meaning of thesecond OTP in �gure 1 is �^ if � and  are mutuallyconsistent; otherwise it is  with as much of � as isconsistent with  . Thus, if they are inconsistent,  overrides �. But this overriding, when it happens, isin general only partial.  doesn't override all of �,just those bits which con
ict with it. The machineryneeded for this is described later in the paper.OTPs were �rst described in [Rya91], where they werecalled `structured theories'. This paper is self con-tained, but some technical details and many proofshave been omitted here to leave space for new re-sults. The most complete account of OTPs to dateis [Rya92a], copies of which are available from the au-thor.The remainder of the paper is organised as follows. Inx2 we give examples of ordered theory presentationsand de�ne their semantics. In x3 we examine somestandard examples of default reasoning using OTPs,and in x4 we show the relation with other default sys-tems. Finally, in x5 we show how to use OTPs forbelief revision.

2 Ordered theory presentationsAn ordered presentation of a theory is a partially or-dered multi-set of sentences. Sentences lower in theordering take priority over those above. Earlier wesimpli�ed by saying that it was a partially ordered set,but we have to consider multi-sets because the samesentence may occur twice, in di�erent places in the or-der. An informal syntax of graphs for OTPs was usedin x1, which is used for much of the paper; a moreformal notation is introduced in x2.2.2.1 Examples and motivationThis section is intended to illustrate by example theintended behaviour of OTPs. The reader can checkthe examples against his or her intuitions. All of themwork out successfully in the formalismdescribed in thepaper. While reading these examples, it is importantto keep the following points in mind:1. In an OTP, sentences lower in the ordering takeprecedence over those above.2. When a sentence lower in the ordering contradictsa sentence above it in the ordering, the lower sen-tence overrides the higher one. But in general,this overriding is only partial. The lower sentencedoes not cancel the e�ect of the higher one com-pletely.3. In evaluating an OTP (that is, in working out thetheory it presents), the idea is to use as much ofthe available information as possible but to avoidcontradictions.We take the underlying logic (classical propositionallogic or classical predicate logic) as given.Example 2.1 Here are two OTPs and the ordinarysentences to which they are equivalent.p ^ q:p6 � :p ^ q p ^ q:p _ :q6 � p$:q:In the �rst case, the OTP consists of the sentences :pand p ^ q, but with the former overriding the latter.Thus, p^q is a default relative to :p. The OTP meansthat we want :p �rst and foremost, and subject tothat, as much of p ^ q as possible. But p ^ q con
ictswith :p, so we can't have it all; we can only have theq component. Therefore we get :p and q.In the second case, the default (p^q) is the negation ofthe given sentence (:p_:q). The overall e�ect of theOTP is to give us the certain sentence (the :p _ :q),and then as much of the default as is consistent. Ofp ^ q, we can have either p or q but not both. That iswhy we end up with p$:q.2



Example 2.2 pq6:p_ :q6 � :p^ qThis is like the second case of example 2.1, except nowthere is a priority expressed between p and q. Thispriority is expressed by their location in the ordering.The bottom sentence (the most important) says thatwe want one of p and q to fail; but subject to that wewant q. This gives us :p^ q, since they are consistent.Then, subject to all that, we want p. But we've ruledthat out by now, so we end up with :p ^ q.Example 2.3 This example will turn out to have im-portance in x5.p ^ q ^ r:p_ :q _ :r6(p$ q) _:r6 � (p$ q) ^ (p$:r)To see this is correct, separate the cases of r and :r.If r, then we must have p$ q in order to satisfy themost important sentence (the bottom one). To satisfythe next sentence, we must have :p or :q. Since wealready have p$ q, this means we have :p^:q. Nowwe have determined the value of all three atoms, for wehave :p^ :q ^ r. On the other hand, if :r then boththe bottom sentence and the middle one are satis�ed.We want as much of the top one as possible, which isp ^ q. Therefore, we get p ^ q ^ :r. The presentationis thus equivalent to (:p^:q^ r)_ (p^ q^:r), whichis elementarily equivalent to (p$ q) ^ (p$:r).Example 2.48x: p(x)9x::p(x)6 � 9x: (:p(x)^ 8y: (x6=y ! p(y)))The more important sentence (the bottom one) saysthat there is at least one individual which has not gotthe property p. But, subject to satisfying that, wewant to satisfy as much of the upper sentence as pos-sible; it says that all individuals have the property p.We conclude therefore, that precisely one individualfails p; all the others satisfy it. This is stated by thetheory on the right.The examples illustrate the intended behaviour of or-dered presentations. Our aim in the next section is tode�ne their semantics formally. We do so in a logicallyclean way, so that our de�nitions do not interfere withthe mechanism of the underlying logic.

2.2 The semantics of ordered theorypresentationsWe will de�ne the models of ordered theory presenta-tions. Since the sentences of an OTP are in generalinconsistent, we cannot expect its models to satisfy allthe sentences. Instead, they should satisfy the lowerones, and then as much of the higher ones as possi-ble. To achieve this we de�ne for each OTP an or-dering of the interpretations of the language. Thisordering ranks interpretations according to how wellthey satisfy the sentences of the OTP; and this rank-ing respects the ordering of the sentences in the OTP.Then models of the OTP are taken to be the maxi-mal interpretations. This strategy of ordering mod-els is well-known in the default reasoning literature[Bes88, McC80, Sho88]First, it is necessary to have a more formal notationfor OTPs than the graphs of the last section. We haveseen that an ordered theory presentation is a collec-tion of sentences equipped with a partial order. Butto cover the case that the same sentence occurs sev-eral times in di�erent places in the presentation, it isnecessary to posit a `carrier set' on which the order isde�ned and whose points are labelled by sentences.De�nition 2.5 An ordered theory presentation � isa tuple hX;6; F i where X is a �nite set (the carrierset), 6 is a partial order on X, and F is a functionmapping X to sentences.The intuitive meaning of the ordering is: if x < y thenthe sentence F (x) has greater priority (or more in
u-ence) than F (y). This information is used when F (x)and F (y) con
ict. We will assume that we are work-ing with a �xed language L over propositional logicor predicate logic with equality1, with interpretationsM and a satisfaction relation 
 � M � L betweeninterpretations of the language and sentences.As already stated, to de�ne the models of an orderedtheory presentations � we de�ne an ordering v� oninterpretations in M which measures how well an in-terpretation satis�es �. M v� N shall mean that Nis as good (or better) than M at satisfying �. Modelsof � are then taken to be maximal interpretations inthis ordering2. The de�nition of the ordering relies onorderings v�, one for each sentence � of the language.1In fact, the de�nitions and results presented here workwith other logics, including modal and intuitionistic logics.But in this paper we restrict ourselves to classical logic.2The technique of ordering interpretations which isused in in this paper is well-established in the litera-ture. It originates in McCarthy's �rst circumscription pa-per [McC80], and has been generalised in various ways[Sho88, Bes88, KLM90, Vel91, etc.]. In all of those pa-pers, the ordering works in the opposite way to the one wehave used for OTPs, that is, M < N means M is betterthan N ; and therefore, one is interested in minimal models.The reader may wonder why we chose to 
y in the face of3



The relation v� grades interpretations according tohow well they satisfy �. To de�ne v�, it is necessaryto de�ne a notion which we call `natural entailment',written j=� . This de�nition in turn relies on the notionof the monotonicities of a sentence. We start there-fore with the de�nition of monotonicities. Then weproceed to the de�nition of j=� , then v�, then v�.The positive monotonicities of a sentence are the pred-icates whose extension can be increased in any modelof the sentence. The negative monotonicities are thepredicates which can be decreased in the model. Wede�ne this formally as follows:De�nition 2.6 1. In predicate logic, the extensionof a predicate symbol p in a model is the set oftuples of which p is true in the model. In proposi-tional logic, the extension of a proposition p in amodel is a singleton f�g if p is true in the model;if p is false, it is ?.2. Extensions are naturally ordered by inclusion. Wede�ne M 6p N if M and N are exactly alikeexcept that the p-extension of M is included inthat of N .3. If � 6= ? then � is monotonic in p (writtenp 2 �+) if M 6p N and M 
 � imply N 
 �.Similarly � is anti-monotonic in p (p 2 ��) ifN 6p M andM 
 � imply N 
 �. The case that� = ? is handled separately, for technical reasonswhich will become clear; we de�ne ?+ = ?� = ?.That is to say, p 2 �+(�) if increasing (decreasing) theextension of p in any model of � results in anothermodel of �.Example 2.7 Let (L;M) be classical propositionallogic over fp; qg. For several examples of �, the setsthis well-established convention, in choosing to order inter-pretations in the opposite sense and therefore to seek v�-maximal interpretations. There are two reasons. The �rstis that the fact that other workers order models in the op-posite way is for the historic reason that in circumscriptionone wants to minimise abnormality predicates; this reasondoes not apply in the more abstract setting of OTPs. Onthe contrary, it is more intuitive to move upwards in anordering when one is moving to better and better models.The second reason is that one typically looks at ascendingchains and maximal elements in domain theory and infor-mation systems theory, where we see links with our work.Cf. proposition 2.19.

�+ and �� are shown in the following table.� �+ ��> fp; qg fp; qgp fp; qg fqgq fp; qg fpgp ^ q; p _ q fp; qg ?p! q fqg fpgp$ q ? ?? ? ?Example 2.8 Let (L;M) be classical predicate logicover p (unary) and q (binary).� �+ ��8x: p(x) fp; qg fqg9x: p(x) fp; qg fqg8x: 9y: q(x; y) fp; qg fpg8x: (p(x)! 9y: q(x; y)) fqg fpg8x: 8y: (q(x; y)! q(y; z)) fpg fpgIn classical logic we may characterise �� more syntac-tically, by means of positive and negative occurrences.Recall that p occurs positively in � if it occurs in �within the scope of an even number of negation opera-tors, after the operators! and$ have been unpackedin terms of their standard de�nitions. Similarly, if insuch circumstances it appears in the scope of an oddnumber of negation signs then it occurs negatively.Proposition 2.9 p 2 �+(�) i� � can be written withonly positive (negative) occurrences of p.Notice that the de�nition is semantic in the sense thatit is not sensitive to the way � is written. That is,writing � =jj=  if � j=  and  j= �, we have that� =jj=  implies �� =  �.Having de�ned monotonicities, we turn to the de�ni-tion of natural entailment. Let � and  be sentencesof L.De�nition 2.10 � naturally entails  , written � j=� , if � j=  , and �+ �  +, and �� �  �.Natural entailment is a sub-relation of ordinary entail-ment; in addition to ordinary entailment we requirethat the monotonicities of the premise be preservedby the conclusion.Remark 2.11 1. j=� is a re
exive and transitive re-lation.2. We have that p^q j=� p and p^q j=� p_q, but p^q 6j=�p$ q and p 6j=� p _ q. Moreover, ? j=� � for all �.(That was the reason for requiring ?� = ?.) Thefull picture for natural and ordinary entailmentfor propositional logic with the predicates p; q isgiven in �gure 2.4



>������������ @@@@HHHHHHHHp_:q p_q :p_:q :p_q���� AAAAQQQQQQ������ QQQQQQaaaaaaaaaa!!!!!!!!!!���� QQQQQQ!!!!!!!!!!���� AAAAp :q p$q p$:q q :pAAAAQQQQQQ���� aaaaaaaaaa���� QQQQQQ!!!!!!!!!! QQQQQQ!!!!!!!!!! AAAA����������p^:q p^q :p^:q :p^qHHHHHHHH@@@@ ������������?>��������##########������������ SSSSSSSS@@@@ccccccccccHHHHHHHHp_:q p_q :p_:q :p_qQQQQQQQQQQQQ ����!!!!!!!!!!p :q p$q p$:q q :pAAAAQQQQQQ���� aaaaaaaaaaCCCCCCCC ��������!!!!!!!!!! AAAA����������p^:q p^q :p^:q :p^qHHHHHHHH@@@@ ������������?Figure 2: The ordinary and natural consequence rela-tions over fp; qg3. Also, 8x: p(x) j=�  implies  can be written withno negative occurrences of p and no occurrencesof any other predicate.Natural entailment is something like `relevant entail-ment'; it stops us adding irrelevant disjuncts in ourconclusions. The simplicity of the de�nition and thefact that it is based on satisfaction by models ensuresthat there is nothing untoward going on. In particu-lar, if � and  are classically equivalent then they arenaturally equivalent; indeed� =jj=  i� � �=jj�=  :Our interest in natural entailment is in order toachieve the de�nition of v�, to which we now turn.As stated, M v� N means that N is as good at satis-fying � asM is. It is not just that N satis�es � andMdoes not; perhaps neither satisfy �, but N more nearlydoes. For example, let M be a propositional interpre-tation which assigns false to both p and q; and let N

assign true and false to p and q respectively. ThenM vp^q N , while N 6vp^q M . Neither satisfy p ^ q,but at least N satis�es p; M doesn't satisfy either ofp and q.This example shows that one has to look at whichconsequences of � are satis�ed by M and N . How-ever, de�ning M v� N to mean that N satis�es allthe consequences of � whichM does gives us preciselythe bipartite ordering rejected in the preceding para-graph. This is because � has too many irrelevant con-sequences; we should just look at the natural ones.De�nition 2.12 M satis�es � no worse than N , writ-ten M v� N , if for each  such that � j=�  , M 
  implies N 
  .Examples will be given shortly. It is easy to verify thatProposition 2.13 1. v� is a pre-order, that is tosay, it is re
exive and transitive.2. If � 6= ?, the maximal elements of v� (which arein fact maximum) are just the models of �.3. If � =jj=  then v� = v .We have de�ned, for each sentence �, an ordering oninterpretations v� which measures the extent to whichinterpretations satisfy �. IfM satis�es � to the fullestextent (that is, if it simply satis�es it) then M is v�-maximum. If M does not fully satisfy � then it maysatisfy it to a greater, lesser, equal or incomparableextent than some N which perhaps also fails fully tosatisfy �. We now de�ne v� in terms of v� as follows.De�nition 2.14 M v� N if for each x 2 X,M 6vF (x)N implies there exists y 6 x such that M @F (y) N .One can read this as saying: N is as good asM overall[M v� N ] if whenever it appears not to be so at a pointx [M 6vx N ] then there is a more important point y[y 6 x] where N is doing better than M [M @y N ].Informally, the de�nition says: if things appear to gowrong at a particular x, then they go well at some yin a more important position than x.Remark 2.15 The de�nition of v� is more perspicu-ous if � is linear. Let � be the third OTP of �gure 1.Then v� is the lexicographic combination of the v�is,i.e.M v� N i� M @�1 Nor (M v�1 N andM @�2 N )or (M v�1;�2 N andM @�3 N )or : : : or(M v�1:::�n�1 N andM @�n N ):Proposition 2.16 v� is also a pre-order.Finally, we de�ne the models of �. They are simplythe interpretations which are rated maximally by v�.5



De�nition 2.17 M 
 � if M is v�-maximal.These de�nitions represent the guts of the system wepropose. Before turning to examples, we present someresults.Proposition 2.18 If � and  are mutually consistentthen I@@ ����6 6 � I@@ ���� ^  6Proposition 2.19 Let � be an OTP and M 2 M.There exists N 2 M such that M v� N and N isv�-maximal.Proposition 2.20 If � j= � then � 6= ?.The last of these says that no contradictions may beconcluded from any OTP. This may seem surprising,but is really quite rational!The proofs of these propositions may be found in[Rya92a]. They rely on the compactness of the un-derlying logic (which in this paper we have assumed isclassical propositional or predicate logic).We now turn to some examples, applying the de�ni-tions given so far.Example 2.21 The working for example 2.3 is givenin �gure 3. For each sentence � in the OTP, the order-ing v� is shown. Then these are combined in the man-ner of remark 2.15 to yield the �nal model ordering,whose maximal elements are 001 and 110. The formulawith precisely these models is (p$ q) ^ (p$:r).In �gure 3, we show the ordering on interpretations bymeans of similar diagrams to the ordering of sentencesin OTPs. It is hoped that this is not confusing. Ifsuch a diagram has sentences at its nodes, it is anOTP. If it has interpretations at its nodes, it is thediagram corresponding to an ordering v� or v� forsome sentence � or OTP �.Further examples of v� and v� for propositional andpredicate logic are given in [Rya92a].3 Representing defaults in OTPsWewill concentrate on two classic examples, one aboutinheritance and one about temporal reasoning. To thereader acquainted with default systems they will bevery familiar. Although hackneyed, they are excellentexamples for showing the key di�erences between for-malisms.

Inheritance example. We will consider the well-known example concerning birds and penguins andwhether they can 
y. The class of penguins is a sub-class of the class of birds. But the property of be-ing able to 
y, which holds of birds by default, is notinherited by penguins. In the usual formulation ofthis example, we have the factual premise `Penguinsare birds', together with the defaults `Birds can 
y'and `Penguins cannot 
y'. Using predicates to repre-sent the obvious classes, we have 8x: �p(x) ! b(x)�,8x: �b(x)! f(x)�, and 8x: �p(x)! :f(x)�.We want the following results:1. If Fred is stated to be a bird (whether he is also apenguin or not is not stated), we want to concludethat he can 
y.2. But if it is stated that he is a penguin, we wantto conclude that he cannot 
y.The reason this example is interesting is that there aretwo defaults which compete in certain circumstances.It is easy to get result 1 correctly, but it is in the case ofresult 2 that the defaults con
ict. Our intuition thatthe second of the two defaults should have priorityand block the application of the �rst is based on thespeci�city principle, which states that defaults about aspeci�c class of objects take priority over defaults abouta more general class. We use this principle to orderthe sentences, obtaining for case 1:8x: �b(x)! f(x)�8x: �p(x)! :f(x)�68x: �p(x)! b(x)�^ b(Fred)6This OTP proves f(Fred) as required. The OTP forcase 2 of the example has p(Fred) instead of b(Fred),and proves :f(Fred).This shows the fundamental di�erence between thetwo approaches to default representation discussed inthe Introduction. We have here a set of sentenceswhich we wish to represent, but like much of whatis taken to be common knowledge, they con
ict witheach other. To handle this, we regard some as beingweaker than others. The stronger sentences may par-tially override the weaker ones. These are the basicprinciples of this second way of representing defaults.Multiple inheritance The framework of orderedtheory presentation is much better suited to inheri-tance examples than the above analysis indicates. In-stead of expressing the fact that penguins are birds bythe formula 8x: (p(x)! b(x)), we construct a speci�-cation for birds, and then construct a speci�cation forpenguins by stating that they inherit the properties ofbirds.6
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110���010 1006 001I@@ ���00061116��� I@@101 011Figure 3: The working for example 2.21Our speci�cation for birds isf ^ emeaning that they f ly and lay eggs. Now we con-struct the speci�cation of penguins by inheriting theproperties of birds and overriding as necessary:f ^ e:f6The ordering for the OTP comes straight from theinheritance ordering.Although our examples of OTPs in this paper havebeen linear, the de�nitions allow the sentence orderingto be partial. (Examples of partially ordered theorypresentations are given in [Rya92a].) In that way wecan handle multiple inheritance. For example, a ren-dering of the familiar inheritance situation for Nixonis given in the �rst of the following diagrams (in whichthe arrows mean `is-a'), while the second shows thecorresponding OTP, in which we have propositions ex-pressing the properties biped, paci�st, believer in God,supporter of Bush, and being named N ixon.person��� I@@quaker republicanI@@ ���nixon b��� I@@p ^G :p ^BI@@ ���N

Temporal example. We will describe our solutionto the Yale Shooting problem. We assume familiaritywith the description of the problem and with the well-known pitfalls in representing the facts and defaultsin a way which yields the correct prediction [HM86,Kau86, Sho88, Bak91, Sha92].At the basis of the problem there are two competingdefaults, one expressing the persistence of the loaded-ness of the gun and the other the persistence of theman's aliveness. The essence of a large class of solu-tions focusses on the idea, due to Y. Shoham [Sho88],that defaults relating to earlier states of the systemshould take priority over defaults relating to laterstates. Thus, we may stipulate a principle for per-sistence defaults3, analogous to the speci�city princi-ple for inheritance defaults. The chronology principlestates that: defaults about an earlier state take priorityover defaults about a later state.We can use this principle directly in the context ofordered theory presentations. To illustrate this, weshall dramatically simplify the problem by coding itin propositional logic with three states, which we rep-resent by indices on the propositions4.3It is important to note that this principle is appro-priate only when using defaults to predict the outcome ofaction sequences, i.e. for `prediction problems'. It is notappropriate for other examples of uses of persistence de-faults, such as `explanation problems' where it is desiredto account for a known outcome, in which this principlemanifestly gets the wrong answer. An example of this isH. Kautz' `stolen car problem' [Kau86].4This is not the coding of the example given in Re-iter's logic by Hanks and McDermott in the usual paper.7



Let the three states be represented by the set f1; 2; 3g,in which 1 is the result of the loading action, 2 is theresult of waiting and 3 results from the shoot action.Let `i and ai mean respectively that the gun is loadedand the man is alive in state i. We have the facts`1 a1 `2 ! :a3and we have the defaultsai ! ai+1 `i ! `i+1 (i 2 f1; 2g)Notice that we have not represented the fact that beingloaded in a state is an exception to the persistenceof alive in the state which follows a shoot action|aswas done in the original coding of [HM86]. We do notneed to do this, because that fact is represented by thechronology principle, which says that the persistence ofearlier 
uents shall have priority over the persistenceof later ones. We use this to arrive at the orderedtheory presentation: a2 ! a3(`1 ! `2) ^(a1 ! a2)6`1 ^ a1 ^(`2 ! :a3)6This OTP proves :a3 as required.We do not intend to conclude from this analysis thatthe logic of ordered theory presentations is superiorto all the other default systems because it obtains thecorrect answer to the Yale Shooting Problem. Sucha conclusion would be na��ve for many reasons. Forexample, our solution is a crude application of thechronology principle, but, as H. Kautz' stolen car ex-ample shows [Kau86], this is not appropriate for all ex-amples of reasoning about actions. We have illustratedthat the theory of OTP given in this paper does cor-rectly implement prioritisation of defaults in a naturalway which allows for clear knowledge representation.We also hope that we have shown that the representa-tion of defaults, and interacting defaults in particular,is clearer in the theory of OTPs than in many of itsrivals.We have simpli�ed rather dramatically by using a propo-sitional language and making explicit the identities of thestates. This simpli�cation is justi�ed since the same prob-lem occurs in this simpler setting as occurred in Hanksand McDermott's, but the simpler setting is rather easierto understand. However, it is true that the simpler settingmay not do justice to some of the subtler solutions to theproblem which have appeared in the literature. As theseare not the main interest of this paper, I feel this is not asigni�cant loss.

4 Relation with other default systems4.1 CircumscriptionPRELIMINARY REPORTThe aim of this topic, which has not yet been achieved,is to provide theorems which show how to translatebetween OTPs and circumscriptive theories. In thissection we give the story so far by means of results,examples and conjectures.We assume familiarity with the ideas of circum-scription [McC80, Lif85], prioritised circumscription[Lif87], and also with propositional circumscription.Circumscribing a proposition in a theory means try-ing to make it false, just as circumscribing a predicatemeans trying to make its extension as small as possi-ble. It is easy to show that the circumscription of aset of propositions (allowing another set to vary) in apropositional theory is again a propositional theory.We also adopt the following notation:� Circp;z(�) is the circumscription of p in �, allowingz to vary and keeping everything else constant. pand z may be tuples of propositions or predicates.� Circzp(�) is also the circumscription of p in �, butkeeping z �xed and allowing everything else tovary.It turns out that OTPs translate into circumscriptivetheories in which everything is allowed to vary, so wewill often be interested in the special case Circ?p (�),which we abbreviate to Circp(�).From circumscription to OTPs. The simplestcase is Circp(�) where p is a single proposition or pred-icate. The corresponding OTPs are respectively:p�6 8x::p(x)�6This follows from the facts that:� If p is a proposition, M v:p N i� N 
 p impliesM 
 p.� If p is a predicate, M v8x::p(x) N i� M;N areisomorphic structures in terms of the functions ofthe language and (modulo that isomorphism) thep-extension of N is included in that of M .The parallel circumscription of several propositions orpredicates Circp1 :::pn (�) is respectively:p1 : : : :pnI@@@@ ������ 8x::p1(x) : : : 8x::pn(x)I@@@@ ������8



and the prioritised circumscription Circp1>:::>pn (�) be-comes :pn:p1���6���6 8x::pn(x)8x::p1(x)��6���6since, as implied by [Lif87, eq. 9], in the context of thegiven priorities we havep @ p0 i� p1 @ p01or (p1 v p01 and p2 @ p02)or (p1;2 v p01;2 and p3 @ p03)or : : : or(p1:::n�1 v p01:::n�1 and pn @ p0n):Compare remark 2.15. Here, p2 < p1 means that p1 iscircumscribed with a greater priority than p2, whilep v p0 (p @ p0) means that the extension of p is(strictly) included in that of p0.A corollary of this analysis is the obvious de�nition of`partially prioritised circumscription', in which predi-cates are circumscribed with priorities speci�ed by apartial order.De�nition 4.1 Let < be a partial order on the tuplep of predicates p1; : : : ; pn. Then p v p0 if for each iwith pi v p0i there exists j with pi 6 pj such thatpj @ p0j.Compare de�nition 2.14.From OTPs to Circumscription. The situationin this direction is rather more complicated. We willconsider only the simplest case of8x:�(x) 6It will not be hard to generalise. Let � be thisOTP. The basic idea is to split �(x) into `components'�1(x) ^ : : :^ �n(x) and consider the circumscriptionCircab1:::abn ( ^ î (:�i(x)! abi(x)))But what constraints should there be on the way �is split into components? As a minimum one wouldexpect to require conjunctive normal form, but this isnot good enough, as we now show.Example 4.2 Suppose � = p ^ q. There are severalnormal forms, two such being p^q itself and p^(:p_q).We have� � Circab1;ab2( ^ (p! ab1) ^ (q ! ab2))

whatever  may be, but we also have that� 6� Circab1;ab2( ^ (p! ab1) ^ (:p _ q! ab2)):For example, set  = :p. Then � � :p ^ q, but theright-hand side is simply :p.The example shows that we probably also require thatthe split of � must not contain unnecessary occur-rences of propositions or predicates of the `wrong' po-larity. It is a consequence of Lyndon's Theorem [CK90]that:Proposition 4.3 For any formula� there is an equiv-alent formula �0 such that every predicate occurringpositively (negatively) in �0 occurs positively (nega-tively) in every formula equivalent to �.In other words, we can �nd for every � an equivalent�0 with no eliminable occurrences of predicates. Weconjecture that this is the normal form we seek.4.2 Formal properties of OTPsThe study of default systems has been transformedby a new concern, namely the formal properties ofthe generated consequence relation. The �rst defaultsystems introduced in the 1980 special issue of Ar-ti�cial Intelligence [AIJ80] did not even have well-de�ned consequence relations. Gabbay and Clark[Gab91, CG88] �rst observed that, instead of focussingon the negative properties of such consequence rela-tions, that is, their non-monotonicity, one should in-stead ask what positive properties they have. Theygave the name `cautious monotonicity' to the property� j� � � j�  �; � j�  :This property, which is weaker than full monotonicity,has become widely accepted as a desirable property fordefault systems.The story of the properties of default conse-quence relations has been pursued in the work ofKraus/Lehmann/Magidor [KLM90, Leh89] and alsoby Makinson [Mak88, Mak92]. Makinson's [Mak92]is, in my opinion, the most authoritative and system-atic study to date. He describes and motivates a set ofconditions on a default consequence relation and anal-yses existing systems according to whether they havethe conditions. In this section we outline his principalconditions and check the theory of OTPs of this paperagainst them.In Makinson's work, the expression � j�  should beread as:  follows from � in the context of an under-stood set of defaults. It is unfortunate (and detractsslightly from Makinson's systematic study) that thesedefaults are nowhere made explicit. Consequently, thebehaviour of the consequence relation under variations9



of the defaults|and for that matter, questions of de-fault representation|are not examined at all in hiswork.Makinson's conditions also refer to classical conse-quence, written j�. � j�  is to be read as  followsfrom � without using the defaults. The understoodset of defaults can be thought of as augmenting clas-sical consequence to default consequence. Therefore,the �rst property we may expect isSupraclassicality: � j�  � j�  :It says that anything which can be derived without thedefaults can also be derived with them.The next three conditions are together called `cumu-lativity'. The �rst is simplyInclusion: if  2 � then � j�  .The next two are weak forms of the standard Tarskiconditions of cut and monotonicity:Cautious monotonicity:� j� �; for all � 2 	 � j�  �;	 j�  Weak cut: � j� �; for all � 2 	 �;	 j�  � j�  For the justi�cation of these principles in intuitiveterms, we cannot do better than quote Makinson.\Cut may be seen as expressing a determination notto allow the length, intricacy or manner of a derivationof a conclusion to reduce the freedom with which it isused in further inference. There is no `diminution ofusability' with respect to distance from origins. Onceinferred, a proposition may be called upon in conjunc-tion with the original information, unless genuinelynew (i.e. uninferable) information is also added. Cau-tious monotonicity, on the other hand, may be seenas expressing a certain irreversibility in the drawing ofconclusions. Once inferred, a proposition may be re-tained irrespective of what other inferred propositionsare added to the stock of usable information. We neednever go back unless, once more, genuinely new infor-mation is brought in" [Mak92].The next condition we will consider isDistributivity: If � and 	 are j�-closed sets of sen-tences (that is, � j� � implies � 2 �, and similarlyfor 	) then � j� � 	 j� �� \	 j� � :

Makinson considers other conditions, but these are theprincipal ones.We have already noted that Makinson's conditionsmake no reference to the set of defaults which are im-plicit in the relation j�. On the other hand, one of theattractive features of the framework of Ordered The-ory Presentations as a default system is that there isno di�erence between defaults on one hand and `surefacts' or facts on the other, except the priority theyare given in the ordering. We view this as a desirablefeature since we believe that, philosophically, the so-called sure facts and the defaults have the same prove-nance. They should all form part of the theory fromwhich we make deductions. A sentence does not havethe status of a default in isolation, but only in relationto other sentences; to be precise, it is a default relativeto those sentences which can override it.Nevertheless, we can go quite some way in examiningMakinson's conditions in the context of ordered theorypresentations over classical logic. In order to emulatevariation of the facts with a �xed set of defaults, wecan consider the consequences of the following orderedpresentation with � �xed and � varying:(�)�6This is the OTP � with � appended at the bottom,which we will write as � �� until the end of this sec-tion. We can think of this OTP as a way of represent-ing that which in other default formalisms might becalled `the theory � with defaults �'. Notice that �is itself an OTP; that is, we are still allowing defaultswith di�erent priorities. Using this idea we can de�nea consequence relation j� which embodies the defaults,as in Makinson's work. The obvious thing to do is tolet � j�  mean � � � j=  . However, we know fromproposition 2.20 that ? does not have its classical be-haviour in the context of OTPs. We can get improvedresults by setting:De�nition 4.4 � j�  if V� = ? or � �� j=  .That is to say, if � is contradictory then it entails ev-erything; otherwise, it entails just what the illustratedOTP entails.Recall that the technique of model ordering whichoriginates in McCarthy's �rst circumscription paper[McC80] has been generalised in various ways [Sho88,Bes88, KLM90, Vel91, etc.]. It is further generalisedby Makinson in [Mak92], where he proves that prefer-ential model structures which satisfy a condition whichhe calls `stopperedness' generate inference relationswhich satisfy each of the conditions on inference re-lations de�ned above. We therefore need simply showthat the relation j� of de�nition 4.4 is such a relationto prove that10



Proposition 4.5 j� satis�es supraclassicality, inclu-sion, cumulativity, and distributivity.This is indeed the case, the condition of stopperednessfollowing from our proposition 2.19. As before, thefull proofs are spelled out in [Rya92a]. We thus haveshown that OTPs over classical logic can yield a de-fault inference relation in the sense of Makinson, withgood formal properties.5 Belief RevisionOrdered theory presentations have signi�cant applica-tion in belief revision, whose basic question is: howshould new information be incorporated into a beliefstate to result in a belief state which contains the newinformation and as much of the original belief state asis consistent? The best-known work on this subjectis called the AGM theory (after its originators, C. Al-chourr�on, P. G�ardenfors and D. Makinson) [G�ar88].A full account of the AGM theory and the belief re-vision functions obtained from ordered theory presen-tations is given in [Rya92b] and [Rya92a]. We sum-marise our main �ndings below, but the interestedreader should consult the more expansive references.The AGM theory represents belief states asdeductively-closed sets of sentences. Let K be sucha belief state and � a sentence. The revision of K by� is written K��. The AGM theory sets out eight pos-tulates which a belief revision function � must satisfy,known as K1{K8. (These may be found in any of thestandard references; we repeat them in a generalisedform below.)We argue, however, that the eight axioms are neithersound not complete with respect to intuitively rationalbelief revision. Of course such a statement is necessar-ily imprecise, because `intuitively rational' belief revi-sion is not amenable to mathematical description. Theargument to show lack of soundness is to give `coun-terexamples' to K4 and K8, which are given later inthe paper. My argument against completeness is thefollowing proposition, which shows that K1{8 admitrevision functions which fail to preserve any of theoriginal belief state in many cases.Proposition 5.1 The revision functionK � � = �CnfK [ �g if :� 62 KCnf�g otherwisesatis�es axioms K1{8.In addition to this undesirable property of the AGMsystem, there is the further fact of that system that onecannot perform revision more than once. Repeated oriterated revision is not constrained by the axioms, andnone of the models proposed for the AGM axioms (like

revision by selection functions and epistemic entrench-ment [G�ar88]) de�ne it5.Before considering how belief revision works in the con-text of OTPs, we have to generalise the AGM axioms.As things stand, they rely on a particular representa-tion of belief states (namely, deductively closed setsof sentences). Therefore, direct comparison with the-ories of belief revision which use other representationsof belief states is impossible. To overcome this we canwe rewrite the axioms in a more general way, whichassumes only the following:1. A set of belief states, together with a subset of`contradictory' belief states.2. A function � (revision) which takes a belief stateand a sentence to a belief state;3. A function j � j (extension) which takes a beliefstate and returns the set of sentences true in it.Here are the axioms rewritten in this way. Wewill write K for a typical `abstract' belief state.K1 K � � is a belief state;K2 � 2 jK � �j;K3 jK � �j � jKj+ �;K4 If :� 62 jKj then jKj+ � � jK � �j;K5 K � � is contradictory implies � = ?;K6 If j= �$ then jK � �j = jK �  j;K7 jK � (� ^  )j � jK � �j+  ;K8 If : 62 jK � �j then jK � �j+  � jK � (� ^  )j.We now turn to the belief revision theory o�ered bythe OTP framework. We de�nebelief states = ordered theory presentations [f?g.As belief revision gives rise only to linear OTPs wecan write them with a more succinct notation. TheOTP of example 2.2 will be written [p; q;:p_:q].Revision on these belief states is de�ned as follows:� � � = ( ? if � = ?[�] if � 6= ? and � = ?� appended with � otherwiseThe general case, therefore, is that we simply appendthe revising sentence. In other words, belief states are(usually) just revision histories.5For the expert reader, we remark that there are pro-posals to allow repeated revision using EE orderings, eitherby keeping a single EE ordering for all belief states or as-suming the existence of a function which, for every beliefstate, gives an EE ordering [Rot, Sch91]. But as neitherthe single ordering nor this function is itself revised in thecourse of belief revisions, it is easy to �nd examples whichare in contradiction with intuitions about iterated beliefchange [Han91].11



We argue that this function performs intuitively cor-rect belief revision. As well as allowing repeated re-vision, it has the `persistence' requirement mentionedabove. However, this belief revision function, whilesatisfying K1, K2, K3, K5, K6 and K7, fails to satisfyK4 and K8. The counterexample to these two is givenby example 2.3 and �gure 3 of this paper, by settingK = [p ^ q ^ r;:p _ :q _ :r] and � = (p$ q) _ :rfor K4; and K = [p ^ q ^ r], � = :p _ :q _ :r and = (p$q)_:r for K4. An explanation in both tech-nical and intuitive terms of this counterexample maybe found in the references already cited.AcknowledgementsI am very grateful to Murray Shanahan for usefuldiscussions, particularly concerning the relationshipswith Circumscription.References[AIJ80] Arti�cial Intelligence. Special Issue on Non-Monotonic Logic, volume 13, 1980.[Bak91] A. B. Baker. Nonmonotonic reasoning in theframework of situation calculus. Arti�cial Intelligence,49:5{23, 1991.[Bes88] P. Besnard. The preferential-models approachto non-monotonic logics. In P. Smets, A. Mamdani,D. Dubois, and H. Prade, editors, Non-standard Logicsfor Automated Reasoning. Academic Press, 1988.[Bib85] W. Bibel. Methods of automated reasoning. InJ. Bibel, editor, Fundamentals in Arti�cial Intelligence.Lecture Notes in Computer Science 232, Springer Verlag,1985.[Bre89] G. Brewka. Preferred subtheories: An extendedlogical framework for default reasoning. In Proc. Inter-national Joint Conf. on Arti�cial Intelligence (IJCAI),pages 1043{1048. Morgan Kaufmann, 1989.[CG88] M. R. B. Clarke and D. M. Gabbay. An intuitionis-tic basis for non-monotonic logic. In P. Smets, A. Mam-dani, D. Dubois, and H. Prade, editors, Non-standardLogics for Automated Reasoning. Academic Press, 1988.[CK90] C. C. Chang and H. K. Keisler. Model Theory.North-Holland, third edition, 1990.[Gab91] D. M. Gabbay. Theoretical foundations for non-monotonic reasoning. part 2: Structured non-monotonictheories. In Proc. Third Scandanavian Conference onArti�cial Intelligence (SCAI'91), 1991.[G�ar88] P. G�ardenfors. Knowledge in Flux: Modelling theDynamics of Epistemic States. MIT Press, 1988.[Han91] S. O. Hansson. Belief Base Dynamics. PhD thesis,Department of Philosophy, Uppsala University, 1991.[HM86] S. Hanks and D. McDermott. Default reason-ing, non-monotonic logics and the frame problem. InProc. Fifth National Conference on Arti�cial Intelli-gence (AAAI), pages 328{333, 1986.[Kau86] H. Kautz. The logic of persistence. In Proc. FifthNational Conference on Arti�cial Intelligence, pages401{405, 1986.

[KLM90] S. Kraus, D. Lehmann, and M. Magidor. Non-monotonic reasoning, preferential models and cumula-tive logics. Arti�cial Intelligence, 44:167{207, 1990.[Leh89] D. Lehmann. What does a conditional knowledgebase entail? In Proc. First International Conference onPrinciples of Knowledge Representation and Reasoning(KR'89). Morgan Kaufmann, 1989.[Lif85] V. Lifschitz. Computing circumscription. In NinthInternational Joint Conference on Arti�cial Intelligence,pages 121{127, 1985.[Lif87] V. Lifschitz. Pointwise circumscription. In M. L.Ginsberg, editor, Readings in Non-monotonic Logic.Morgan Kaufmann, 1987.[Mak88] D. Makinson. General theory of cumulative infer-ence. In M. Reinfrank, J. de Kleer, and M. L. Ginsberg,editors, Non-monotonic Reasoning. Lecture Notes in Ar-ti�cial Intelligence 346, Springer-Verlag, 1988.[Mak92] D. Makinson. General patterns in non-monotonicreasoning. In D. Gabbay, C. Hogger, and J. Robinson,editors, Handbook of Logic in Arti�cial Intelligence. Ox-ford University Press, 1992.[McC80] J. McCarthy. Circumscription|a form of non-monotonic reasoning. Arti�cial Intelligence, 13:27{39,1980.[Poo88] D. Poole. A logical framework for default reason-ing. Arti�cial Intelligence, 36:27{47, 1988.[Rot] H. Rott. Preferential belief change using generalisedepistemic entrenchment. Konstanzer Berichte zur Logikund Wissenschaftstheorie 15.[Rya91] M. D. Ryan. Defaults and revision in structuredtheories. In Proc. Sixth IEEE Symposium on Logic inComputer Science (LICS), pages 362{373, 1991.[Rya92a] M. Ryan. Ordered Presentations of Theories:Default Reasoning and Belief Revision. PhD thesis, De-partment of Computing, Imperial College, 1992. Copiesavailable from author.[Rya92b] M. D. Ryan. Belief revision and ordered theorypresentations. In P. Dekker and M. Stokhof, editors,Proc. Eighth Amsterdam Colloquium on Logic, 1992.[Sch91] K. Schlechta. Some results on theory revision. InA. Fuhrmann and M. Morreau, editors, The Logic ofTheory Change. Lecture Notes in Arti�cial Intelligence465, Springer Verlag, 1991.[Sha92] M. Shanahan. A circumscriptive calculus ofevents. Technical report, Imperial College Departmentof Computing, 1992.[Sho88] Y. Shoham. Reasoning about Change: Time andCausation from the Standpoint of Arti�cial Intelligence.MIT Press, 1988.[Vel91] F. Veltman. Defaults in update semantics. Techni-cal Report LP-91-02, Institute for Language, Logic andInformation, Amsterdam, 1991.12


