
Sharing Actions and Attributes in Modal Action Logic�Mark Ryan, Jos�e Fiadeiro and Tom MaibaumDepartment of Computing, Imperial College, London SW7 2BZ, Great Britainmdr@doc.ic.ac.ukAbstractDistributed systems may be speci�ed in Structured Modal Action Logic by decomposingthem into agents which interact by sharing attributes (memory) as well as actions.In the formalism we describe, speci�cation texts denote theories, and theories denotethe set of semantic structures which satisfy them. The semantic structures are Kripkemodels, as is usual for modal logic. The \possible worlds" in a Kripke model are thestates of the agent, and there is a separate relation on the set of states for each actionterm.Agents potentially share actions as well as attributes in a way controlled by localityannotations in the speci�cation texts. These become locality axioms in the logicaltheories the texts denote. These locality axioms provide a re�ned way of circumscribingthe e�ects of actions.Safety and liveness conditions are expressed (implicitly) by deontic axioms, whichimpose obligations and deny permissions on actions. We show that \deontic defaults"exist so that the speci�er need not explicitly grant permissions or avoid obligations insituations where normative behaviour is not an issue.1 IntroductionThe idea of using Modal Action Logic for specifying distributed systems is well-established[3, 4, 5]. Additionally the frame problem can be overcome by specifying structure onspeci�cations|the system is split into agents (or objects, or components) which interact bysharing actions. This is the approach taken by Fiadeiro & Maibaum [1], and �ts well withobject-oriented speci�cation: an object has a private memory and public procedures for itsmanipulation.But often, as we discuss below, it is more natural to share attributes between agents thanto share actions. In this paper we give a logical semantics to a pseudo-language in whichboth attribute and action sharing are allowed. The logic is called Structured Modal ActionLogic (Structured mal).The agent is the unit of structure. An agent is any component of the system beingdescribed which has an independent existence; it may be passive or active. Agents arecomposable. A collection of agents can be viewed as a single agent in a precise way to bedescribed later. The single agent incorporates the behaviours of the individual agents. Asalready stated, agents can interact by sharing attributes or by sharing actions. An attribute�Appeared in Proc. Theoretical Aspects of Computer Software (TACS'91), Sendai, Japan, eds. T. Itoand A. Meyer. Springer Verlag Lecture Notes in Computer Science 526, pages 569{593, 1991.1



is part of the state of the system|a predicate or function which varies not only with itsarguments but also with the state of the agent to which it belongs. In general agents shouldbe as self-contained as possible; the actions of an agent should only update attributes ofthat agent, and vice versa. But clearly some interaction between agents is necessary. Theinteraction is precisely controlled by means of locality axioms. For each agent, the speci�ermust declare which of the actions and attributes are local and which are sharable withother agents. A sharable action is one which can update the attributes of a superagent (onewhich incorporates it) | these attributes may come from other agents which the superagentincorporates. Similarly, a sharable attribute is one which can be updated by the action of asuperagent.Throughout this paper we will make use of the lift-system example. The atomic agentswhich might make up the speci�cation include:� button, with the action `press' and the attribute `lit' (buttons have lights on them)� door, with the actions `open' and `close' and the attribute `posn' (their position).� person, with, among others, the action `press-button'.Of course there are other agents, but we will concentrate on these three for the purpose ofmotivating the two types of interaction which Structured mal adopts. These agents makeup the lift speci�cation:: : : button door person : : :H H H H H H H Hj@ @ @ @R ? ����	 ���������lift-systemWhen the person selects a button and presses it, this is really an in action which boththe person and the button participate. True, the person initiates the action; the buttonparticipates in it in a purely passive way. But since the button moves in and out, and coulddo so independently of the person if incorporated in a speci�cation in a di�erent way, thenatural choice is to specify this interaction by joint participation of actions, that is, actionsharing. We do this by having a press action in both the agents person and button sayperson.press and door.press, and then including the axiom person.press = door.press in thelift-system.Now consider what happens when the lift arrives at a oor and the door opens. The lightof the appropriate button is extinguished. We could specify that both the door and thebutton jointly participate in an action which opens the door and extinguishes the light. Butit makes more sense to say that the door's opening extinguishes the light | the button hasnothing to do with it. The action `open' of the agent door directly updates the attribute`lit' of button. This is attribute sharing.Both these examples are fairly marginal. One could make a case for specifying the �rst oneas an example of attribute sharing and the second one as an example of action sharing. Thespeci�er is free to do this if he or she wishes. In Structured mal, both types of sharing canbe used freely. 2



Each agent speci�cation has a collection of actions and attributes | the collection is knownas its signature. In addition, the speci�cation language also says which actions and attributesare local and which are sharable. If an action is declared as local to an agent, an axiomis generated which states that the action can only update the attributes of that agent.Similarly, a local attribute comes with an axiom which says that it can only be changed byan action belonging to the agent in which it is de�ned. These locality axioms are examinedin Section 5.Locality axioms are not an explicit part of the speci�cation in the way that other axiomsare. They are part of the theory presentations which the speci�cations denote. What wehave is a three tiered system which looks like this:speci�cationtexts (a text in the speci�cation language)#speci�cations (theory presentations connected together by morphisms)#agents (models of the theories)A speci�cation text is a text in the speci�cation language. It speci�es the behaviour ofa collection of interacting agents. This text denotes a family of theory presentations, onepresentation for each agent speci�ed, connected together by morphisms. A model of a theorypresentation is an agent which satis�es the speci�cation.The best way to think of this is to bear in mind that the level of primary interest is themiddle level. That level consists of theories connected by morphisms. The level above,the speci�cation language level, says how this is to work by using high level constructslike inheritance, clientship and parameterisation. At the middle level there may be moreagent speci�cations (theories) than in the speci�cation text, because many of them will beby-products of the high-level constructs used. At the bottom level, models of the theoriescorrespond to agents which meet the speci�cations.The term morphism comes from category theory. Indeed, theory presentations and theirmorphisms form a category in which, following general categorical principles [2], colimitsexplain how to build a complex system from a diagram that expresses how its componentsare interconnected. See [1] for the application of this principle to the speci�cation ofobject-oriented systems. As far as we are concerned here, a morphism is simply a map withcertain properties between theory presentations with which we can specify agent interaction.A precise de�nition comes later. The agent diagram above is an example of a morphismdiagram.2 Agents and morphismsAgents are the units of structure. Each agent is an encapsulation of behaviour | it consistsof a state (the values of its attributes) which is changed as it performs actions. An actionor an attribute may be entirely local to an agent, or it may be shared with other agents. Ifan action is local to an agent X, it can only change the values of the attributes of X. Ofcourse it need not change them all, but it cannot a�ect any others. If an attribute is localto X, it can only be changed by the actions of X. We will call these two types of localityaction locality and attribute locality, respectively.3



The lift example starts with the `atomic' agents button and door. Buttons have lights andilluminate when pressed. They are extinguished by actions which are external to them (theopening of the door). So button looks like this:agent buttonattributess lit : bool;actions` press;axioms[press]lit;endThis is the text which the speci�er writes in the speci�cation language. The ` and sannotations mean local and sharable, respectively. The signature of the theory presentationwhich this denotes consists of the attribute lit and the action press. The theory presentationhas two axioms; one comes from the speci�cation text, and says simply that lit is true afterpress has taken place1. The other is the locality axiom for the local action press, and saysthat press can only a�ect the attributes of the agent button. How this is done will berevealed in section 5. The attribute `lit' is sharable, because it will have to be updated byactions taking place in other agents (namely, the opening of the door).The attribute lit has values of sort boolean. Atomic formulas are equalities of values in asort, often of the form `attribute = value'. If the sort concerned is boolean, we glibly letattribute values stand as formulas in the obvious way. Thus `[press]lit' is an abbreviation for`[press](lit = true)'.Doors also have one attribute, their position, and two actions, open and close.agent doorattributes` posn : (op, cl);actionss open;` close;axioms[open](posn = op)[close](posn = cl)endThe attribute `posn' has the enumerated sort (op, cl). Everything is local except the actionopen, which has to be sharable to be able to extinguish the lights.Inside each lift there is a panel of lift buttons. For an n-oor system, the agent lift-buttonsis made of n copies of button. At the speci�cation language level, its speci�cation lookslike this:agent lift-buttonsincludes button via 1;includes button via 2;...includes button via n;end1In fact, the light only comes on if the lift is at a oor other than the one being requested. Anelegant way of handling this fact by means of defaults is described in [6].4



The clause `includes button via 1' means that at the theory presentation level there is amorphism, named 1, from button to lift-buttons. The morphism maps the action symbolpress in button to the action symbol 1.press in lift-buttons. The clause `includes subagentvia morphism-name' implicitly declares all signature symbols and axioms of subagent inthe agent being speci�ed, but renaming the signature symbols by pre�xing them by themorphism name. At the theory presentation level, the theory which lift-buttons denoteshas n sharable attributes 1.lit, 2.lit, : : : , n.lit and n local actions 1.press, : : : , n.press, one`lit' attribute and one `press' action for each button.We need to describe one more agent before we can describe a lift: it is the `agent'lift-position.agent lift-positionattributes` oor : 1..nactions` up;` down;axioms(oor = f) ^ (f < n)! [up](oor = f + 1)(oor = f) ^ (f > 1)! [down](oor = f � 1)per(up) ! oor < nper(down) ! oor > 1endThe axioms containing the formulas per(up) and per(down) are deontic axioms; they expressthe fact that the lift is only permitted to move up or down when the oor variable is withinthe right bounds. There are also deontic axioms which express obligations. These deonticaxioms are described in section 3.The reader may be surprised that lift-position deserves the status of an agent, but thereis an advantage of having it as a separate agent rather than just including its attributesand actions in the speci�cation of lift, which is that the local actions up and down arethen constrained to being able to update the value of oor only. Remember that an actionlocal to an agent gets a locality axiom in the theory presentation which says that it canonly a�ect the attributes of that agent. The smaller the agent, the more powerful thelocality axiom. Indeed, a principle of this approach, the \structuring principle", is that allstructuring should be done by judicious choice of agents, and hence of locality constraints.The speci�er need never get involved in including explicit locality axioms in speci�cations;they should all be implied by making actions and attributes local or sharable.The lift itself consists of the agents lift-buttons, door and lift-position:agent liftincludes door via door;includes lift-buttonslocalising 1.lit,: : : ,n.lit ;includes lift-position;axioms(oor = 1)! [open]:1:lit;...(oor = n)! [open]:n:lit;per(up) _ per(down) ! door.posn=cl;end 5



The localising clause makes the attributes i:lit local in the agent lift. (Without this clause,they would retain the sharable status with which they were de�ned in the agent button.)This has the e�ect of adding a locality axiom in lift, in the way described later.The theory presentation denoted by this speci�cation text has all the signature elements andthe axioms of its constituents. Since no renaming of the actions and attributes is necessary,the morphisms are labelled `id' (for identity). lift also has an additional axiom, which wehave referred to previously: (oor = f) ! [open]:f:lit. It says that when the door opens,the light corresponding to the oor at which the door has opened switches o�. Here is themorphism diagram at the theory presentation level:button button : : : button@ @ @ @ @ @R1 ? 2 ������	 ndoor lift-buttons lift-positionH H H H H H H H H H Hjid ? id ������������ idlift3 Language and logicIn this section we describe the language and the logic used in the theory presentations,which are denoted by agent descriptions in the speci�cation language.We have mentioned that we have two types of locality, action locality and attribute locality.To be able to give the locality axioms that go with these two kinds, our language must besu�ciently rich to compare actions and to compare attributes. Comparing actions does notrepresent a problem because they will just be terms of the sort action. But by comparingattributes we mean comparing the actual attributes, not their values. Therefore we mustdistinguish between references and values | a distinction well known in programminglanguages. When we write A = B we mean that attributes A and B have the same value.But &A = &B means A and B are actually the same attribute | they refer to the same\cell". & is the reference or `address-of' operator. To de-reference attribute names we usethe � operator. Thus �&A is the value of &A, otherwise written A.As we said, the speci�er does not have to use these operators; they will only be neededfor locality axioms, which, by the structuring principle mentioned above, the speci�er willnever have to provide explicitly. The locality axioms will be implicit in the speci�cationtexts. Nevertheless, the locality axioms are explicit in the theory presentations which thespeci�cations denote, so we need to have the logical language to describe them.3.1 SignaturesWe said that a signature is the extralogical language in the theory presentation, i.e. theattribute and action symbols. It also consists of the sort symbols used and the usual6



functions. For example, in the agent button we used the sort boolean, and might have usedthe usual functions `and', `or' etc. which come with it.A signature is:� A family of sort symbols S with function symbols� The special sorts action and, for each sort symbol s 2 S, refs. Terms of sort refs arenames of (pointers to) values of sort s, and will be de-referenced by �.� An S�-indexed family of action symbols (action terms are of sort action)� An S� � S-indexed family of attribute symbols (attribute terms formed from theattribute symbol A : s1 � : : :� sn � s are of sort s).Notice that actions and attributes can be parameterised by terms of sorts of the signature.(In the lift example, there happened not to be any parameterised actions or attributes.)At the theory presentation level we do not distinguish between local and sharable actions andattributes. At this level that information is carried by the locality axioms. The annotationsl and s appear at the speci�cation language level, and the `speci�cation compiler' generatesthe locality axioms from them.3.2 Language of theory presentationsThis section describes the language of the theory presentations. As we have said, thelanguage used by the speci�er to write axioms is only a subset of this: the speci�er doesnot need to make explicit use of the operators & and *, in view of what we have called thestructuring principle.We will describe the language for a signature with sorts S. In addition to the symbols ofthe signature, we have for each sort s in S enumerably many variables x, y,: : : of the sorts and �,: : : of the sort refs, and enumerably many variables x; y : : : : action.� Terms are formed using{ variables of the sorts{ function symbols of the sorts S with appropriately sorted term parameters;constant symbols of the sorts are simply zero-arity function symbols.{ attribute symbols, again with appropriately sorted term parameters. Zero-arityattribute symbols vary only with the state of the agent.The values of functions are invariant across states, whereas attributes change fromstate to state.{ action symbols, again with zero or more appropriately sorted term parameters.{ for each attribute term A : s, there is a term &A : refs (its \reference"). Noticethat A is an attribute term, not an attribute symbol; in other words itsparameters are instantiated by appropriately sorted terms. This means that anattribute symbol has a di�erent reference for each set of (semantically distinct)actual parameters.{ for each term � : refs there is a term �� : s (its \contents").7



� atomic formulas are equalities of terms (t1 = t2), and deontic formulas (per(a) andobl(a) for action terms a). As we have said, if t is a term of sort boolean, we willsometimes abbreviate the atomic formula t = true by t.� formulas are made from smaller formulas with the usual connectives and the modal-actionoperators; if � and  are formulas and a is an action term, then � ^ , �_  , �!  ,:�, and [a]� are formulas.3.3 InterpretationHaving described the language in which agents are described at a logical level, it is nowtime to see what models there are of such descriptions. Remember that an agent descriptionis a pair consisting of a signature and a theory presentation (a �nite set of axioms). Such apair comes from an agent described by a speci�cation text. At the logical level, all agentdescriptions are simply hsignature,presentationi pairs.The semantic structures are Kripke models, as usual for modal logic. See [3] for details ofKripke frames for multi-modal logics. In the semantics that follows, for each agent thereis a Kripke frame. Agent composition corresponds to taking the product of Kripke frames,modulo shared actions and attributes. The \possible worlds" in a frame are the states of theagent, and there is a separate relation on the set of states for each action term. The statesinterpret non-modal formulas locally (i.e. without reference to other states) by evaluatingthe terms in the sets which interpret the sorts, for atomic propositions, and by the usualtruth-table de�nitions for the non-modal connectives.An interpretation structure for a signature with sorts S consists of:� for each sort s in S, a non-empty domain of individuals Ds; and for each functionsymbol f : s1 � : : : sn ! s, a function [[f ]] : Ds1 � : : :�Dsn ! Ds� a set of states W , and a designated initial state w0 2 W� a set act � W!W , which will be used to interpret action terms (terms of sortaction).� for each sort s, a set refs � W!Ds. These will be used to interpret reference terms(terms of sort refs).� for each action symbol a : s1� : : :� sn ! action, a function [[a]] : Ds1 � : : :�Dsn ! act,as before� for each attribute symbol A : s1 � : : :� sn ! s, a function [[A]] : Ds1 � : : :�Dsn ! refs� a pair of sets P and O. Both are subsets of act�W . They are used to interpret thedeontic formulas.An interpretation structure is therefore a set of states and a means of interpreting actionterms as functions between states and a way of evaluating state-dependent formulas withinstates.To interpret the quanti�ers we start by assigning each variable of the language to anindividual of the appropriate sort. This is an awkward technicality, and the reader may liketo ignore all references to assignments in the passage below the following de�nition.An assignment A is a map from variables to individuals in the carrier set of the variable'ssort. 8



� x : s is assigned to A(x) 2 Ds� � : refs is assigned to A(�) 2 refs� x : action is assigned to A(x) 2 actWe now show how to evaluate formulas in states, relative to an assignment A. First wehave to evaluate terms, as follows.1. Variables: if x is a variable of sort s then its interpretation in the state w, written[[x]]Aw, is A(x) in Ds. Similarly, if � : refs then [[�]]Aw = A(�) and if x : action then[[x]]Aw = A(x).2. Attributes: if A(t1; : : : ; tn) is an attribute term of sort s, then its interpretation in statew, written [[A(t1; : : : ; tn)]]Aw , is [[A]]([[t1]]Aw ; : : : ; [[tn]]Aw)(w). That is to say, to interpretA(t1; : : : ; tn) : s in w, apply [[A]] to the interpretations of t1; : : : ; tn in w, yieldinga function from W ! Ds. This function is the reference (address) of the attributeconcerned, which is then applied to w to yield the required result.3. Actions: if a(t1; : : : ; tn) : action then [[a(t1; : : : ; tn)]]Aw = [[a]]([[t1]]Aw ; : : : ; [[tn]]Aw) 2 act4. References: [[&A(t1; : : : ; tn)]]Aw = [[A]]([[t1]]Aw ; : : : ; [[tn]]Aw)5. Values: [[��]]Aw = [[�]]Aw(w). The interpretation of reference terms is covered by case 4and this case. There are no constants or functions of sort refs | the only terms ofsort refs are terms like &A(t1; : : : ; tn) and variables.Formulas are true or false in a state. We will write [[�]]A for the set of states in which� is true. First we deal with the atomic formulas, which are equalities between terms andpermissions and obligations of actions.� The atomic formula t1 = t2 is true in a state w if t1 and t2 have the sameinterpretations in w. Formally, w 2 [[t1 = t2]]A i� [[t1]]Aw = [[t2]]Aw .� The atomic formula per(a) is true in w if h[[a]]Aw; wi is in P . That is to say, P is justa set specifying what actions are permitted in what states.� Similarly, w 2 obl(a) if h[[a]]Aw ; wi is in O. O is a set specifying what actions are obligedin what states.In the discussion above, a is an action term (a term of type action), that is, an actionsymbol (some a) together with term parameters. Notice that permission or obligation toperform an action a depends on its parameters (so an agent may have permission to performthe action with some parameters and not with others).Now for the interpretation of the connectives.� w 2 [[� ^  ]]A i� w 2 [[�]]A and w 2 [[ ]]A.� w 2 [[� _  ]]A i� w 2 [[�]]A or w 2 [[ ]]A.� w 2 [[�!  ]]A i� w 62 [[�]]A or w 2 [[ ]]A.� w 2 [[:�]]A i� w 62 [[�]]A. 9



� w 2 [[[a]�]]A i� [[a]]Aw(w) 2 [[�]]A. That is to say, to evaluate whether [a]� is true in w,�rst evaluate the action a in w. The result is a function in act. Then apply thisfunction to w, yielding another state [[a]]Aw(w). The answer is then given by whether �is true in this new state.� w 2 [[8x: �]]A if w 2 [[�]]A0 for all assignments A0 which di�er from A at most by theassignment of x.� w 2 [[9x: �]]A if w 2 [[�]]A0 for at least one assignment A0 which di�ers from A at mostby the assignment of x.The treatment of quanti�ers we have given in the last two clauses above is standard. Recallthat for all formulas �, [[�]]A is evaluated relative to an assignment A. We will sometimesignore this complication and just write [[�]], which we justify by the following: If � has nofree variables then [[�]]A is independent of the assignment A.3.4 LogicWe are now in a position to give the consequence relation which de�nes our logic. Let� be the theory presentation corresponding to an agent speci�cation X. To compute theconsequences of the speci�cation, we �rst look at the agents which satisfy it. These aremodels of �. Formally, an interpretation structure [[�]] together with an assignment A is amodel of a sentence � if for every state w of the interpretation structure, w 2 [[�]]A. Amodel of a set of sentences � is a hstructure,assignmenti pair which is a model of each ofthe sentences of �.A model of � thus corresponds to an agent which satis�es the speci�cation X. It has acollection of states and undergoes actions which transform it from state to state. Butthis does not fully reect the information contained in �, because only some actions arepermitted in a state, and others may be obliged. We need to look at sequences of actions,life-cycles, to reect this.Given a model [[�]], a life-cycle is a sequence of state-transitions he1; e2; : : :i where each ei isin act. This is any sequence of actions that the agent can go through. Such a sequence isnormative if it respects the deontic part of the speci�cation, i.e. if each action which takesplace is permitted, and if every obligation incurred is discharged. For permissions, this justmeans that for each n the pair hen; wni must be in P , where wn is the state arrived at justbefore the transition en, that is, wn = en�1(en�2(: : : e1(w0) : : :)).One could treat obligations in mal the other way around: whenever he; wni is in O andwn is en�1(en�2(: : : e1(w0) : : :)) for some n, then e must be en. However, in Structuredmal it was decided that obligations should be weaker than the `immediate' obligationsmentioned above. Instead of requiring immediate ful�llment, they require eventual ful�llment.That is, when an agent incurs an obligation it must carry out the action at some pointin the future, not necessarily immediately. This is characterised in terms of life-cycles asfollows: he1; e2; : : :i is normative with respect to obligations if for all ei in the cycle, ifwi = ei(ei�1(: : : e1(w0) : : :)) and he; wii 2 O for some e, then e = ej for some j > i.Now to de�ne consequences of the speci�cation of X. A is a consequence of X if it istrue in all states that an agent satisfying X could get into. Let [[�]] be a model of thetheory presentation � denoted by X. Let he1; e2; : : :i be a normative life-cycle of [[�]]. A is aconsequence if it is true in all states ei(ei�1(: : : e1(w0) : : :)).10



A life cycle in which an agent incurs an obligation to perform the action a, and though itnever does perform a it performs another action which, in the particular state in which itis performed, is equivalent to a in the sense of achieving the same transformation of thatstate, is not normative. One might think that because our de�nition of normativity looksonly at denotations and not at terms, this would count as normative, but brief reectionshould be enough to convince the reader that this is in general not so.3.5 Deontic axiomsSince reasoning from a speci�cation � involves consideration only of normative life-cycles(ones in which actions performed are permitted and obligations incurred are discharged),permissions default to `on' and obligations to `o�'. This means that the speci�er never hasto assert permissions { the logic only takes into consideration models in which actions whichoccur are permitted. Similarly, the speci�er never needs to deny obligations. The e�ectof this is that permissions should be denied in a speci�cation, and obligations should beasserted. Typically, deontic axioms will look likeper(a) ! conditioncondition ! obl(a)More precisely: there should be positive occurrences of obligations and negative occurrencesof permissions in deontic axioms.We say `should', but the speci�er is not barred from writing per(a)  condition or per(a) $condition. There are however disadvantages in doing so. The problem is that agents whichinherit the agent for which we are writing deontic axioms may need to put more constraintson permissions (i.e. deny permission in further circumstances) and constraining permissionto match a single condition will contradict this. There are examples of this in section 6.If permissions are written in the recommended way, they are easy to `add-up'. Adding upper(a) ! cond1, per(a) ! cond2, and per(a) ! cond3 yields per(a) ! cond1 ^ cond2 ^cond3. It should be obvious that the same remarks apply to obligations, except that furtheraxioms add obligations instead of removing permissions. Axioms add up similarly: cond1 !obl(a) and cond2 ! obl(a) make cond1 _ cond2 ! obl(a).The reader may object that having only negative occurrences of permissions makes itimpossible to prove permissions. As this stands this is true, but it must be true given theway permissions are de�ned. We cannot assert permissions because we can not know thatthey are not going to be denied in agents which inherit the agent in question. But once wehave completed the speci�cation we can logically `close' the deontic axiom, asserting per(a)$ cond1 ^ cond2 ^ cond3: : : . Then permissions can be proved.Again, the same remarks apply to obligations with the obvious changes: here we should say:having only positive occurrences of obligations makes it impossible to use them in proofs,until we logically close the conjunction of the axioms in the way described.4 StructureIn Sections 1 and 2 we motivated the idea that agents can be composed in a variety of ways.In this section we will look at this in more detail. The primitive relation between agents isthat of morphism. If there is a morphism from X to Y, X is identical in behaviour withsome sub-agent of Y. The morphism is a map between signatures which shows us how torename the signature elements to demonstrate the sub-agent relation.11



A morphism is a map between agent speci�cations X and Y taking� each sort in X to a sort in Y (the special sorts action and refs are preserved)� each action symbol in X to an action symbol in Y� each attribute symbol in X to an attribute symbol in Ysuch that the translation under the mapping of each theorem of X is a theorem of Y.Of course the map must respect the sorts of the action and attribute symbols in thelanguage. A symbol in X is mapped on to a symbol in Y whose sort is the sort which ismapped on to by the sort of X.The following diagrams show examples of morphisms in the lift speci�cation. oor isconstructed as an aggregation of two buttons (see page 4), an `up' button and a `down'button. Each button is mapped to oor, with morphisms called `up' and `down'. Asalready indicated, we use the dot notation in naming the attributes and actions of oor.For example, the attribute `lit' is mapped by the morphism `up' to the attribute `up.lit'.The next morphism is an example of re�nement. We have decided that there should beonly one light on each oor, which will represent the state of both buttons. When the userpresses either of the buttons, the light illuminates and the user is not able to see whichof the buttons was pressed. The morphism collapses the distinction between `up.lit' and`down.lit'. First we show how the agents are de�ned, and then the morphisms.agent oorincludes button via up;includes button via down;end agent oor0attributess lit : bool;includes oor via id whereup.lit is litdown.lit is lit;endThis example also shows the exibility of the speci�cation language. Given that we havespeci�ed button as on page 4, these speci�cations are really just abbreviations for thefollowing more verbose ones:agent oorattributess up.lit : bool;s down.lit : bool;actions` up.press;` down.press;axioms[up.press]up.lit;[down.press]down.lit;end agent oor0attributess lit : bool;actions` up.press;` down.press;axioms[up.press]lit;[down.press]lit;endAt the theory presentation level, the connections are as follows.12



button button@ @ @ @ @ @Rup ������	 downoor? idoor04.1 Inheritance and clientshipAgents can exist in a variety of relationships one to another. Two important relationshipsused in object-oriented design are inheritance and clientship. If Y inherits X, all the actionsand attributes of X are also attributes of Y, but Y may have more besides. For example,consider the abstract agents vehicle and car. Car inherits all the actions and attributes ofvehicle, but has more of its own besides. Now consider the agent engine. We might betempted to say that vehicle inherits all its actions and attributes. This will certainly betrue for actions like start or attributes like running. But we may want to say that someattributes or actions, like the attribute ooded , are attributes or actions which apply to theengine alone. It does not make sense to say that the vehicle is ooded | or at least, itis not the same as saying that the engine is ooded. Vehicle inherits only some of theactions and attributes of engine. This is clientship.These object-oriented relationships, and many others, are captured by the sub-agent relation.X is a sub-agent of Y if there is a morphism from the speci�cation of X to that of Y.Roughly speaking, this means that all the actions and attributes of X are (under appropriaterenaming) actions and attributes of Y. We will now describe how three object-orientedconstructs are captured by morphisms.� Inheritance is captured by a single morphism. If Y inherits X then there is a morphismfrom the speci�cation of X to that of Y.� Aggregation is captured by two morphisms. If X+Y is the aggregation of X and Y,then there are morphisms from X to X +Y and from Y to X +Y. The aggregationmay involve identifying some actions and attributes between X and Y, in which casewe can form an abstraction Z of X+Y.� Clientship is also captured by two morphisms. If X is a client of Y, that is to sayit inherits selectively from Y, then we construct morphisms as follows. Let Z be thepart of Y which is inherited by X. Then we have a morphism from Z to X and onefrom Z to Y.
13



X?Yinheritance X Y@ @ @ @ @ @R 	� � � � � �X+ Yaggregation Z	� � � � � � @ @ @ @ @ @RY Xclientship5 Locality AxiomsWe said in the introduction that the key bene�t of structure was the ability to imposea notion of locality by which we can control the e�ects of actions. Without locality thestructuring we have introduced would be wasted | all reasoning would have to take placein the biggest agent. But the `biggest agent' that button is a part of is the lift-system,or perhaps the whole building or even the street that we are specifying. We would like toconclude properties of button or door without reference to these big systems.ExamplesHere are examples where attributes and actions should be local to the agents in which theyare de�ned:1. Only the actions in the agent door (i.e. `open' and `close') can a�ect the attribute`posn'. This is locality for attributes:Only the actions of X can a�ect the attributes of X2. The actions in agent button (i.e. `press') can only a�ect the attribute `lit'. This islocality for actions:The actions of X can only a�ect the attributes of XNon-examplesThere are instances where locality fails, showing why some actions and attributes must besharable to allow the interaction between agents we want. For example, the axiom (oor= 1)! [open]:1:lit in the agent lift, which says the light at the current oor is extinguishedby the door opening, violates both types of locality. The action `open' has to a�ect theattribute `lit' which is declared outside the agent in which `open' is declared; and theattribute `lit' is changed by an action (open) declared outside the agent in which it isdeclared.We need to have locality for some actions and attributes and not for others. In thespeci�cation language we have a mechanism for stating which action and attribute symbolsare local and which are not. At the theory presentation level, this means that someattributes and some actions have a locality axiom. But as we are about to see, within anagent community there are degrees of sharability.14



Locality axiomsRemember that the speci�cations of agents indicate whether the actions and attributes arelocal or sharable. For example, the attribute `lit' is sharable in button, because as wehave remarked it will be updated by the action `open' in door. But the action `press' inbutton is local. And `lit' (or `i.lit' as it is then known) in lift is local, because it willnot be updated by any actions introduced in ever-bigger agents. Similarly, `open' in door issharable (it has to update i.lit), and it remains sharable in lift because it will have morework to do in lift-system. (It will have to extinguish the oor lights.)Local attribute or action symbols have a locality axiom in the theory presentation denotedby the agent speci�cation.For example, `posn' is a local attribute. The locality axiom is8a : action; 8v : (op,cl) (a = open _ a = close _ (posn = v ! [a](posn = v))):It means that no action other than `open' and `close' can a�ect the value of `posn'; foreither an action is `open' or `close', or the value of posn is unchanged by the action.`Press' is a local action symbol in button: its locality axiom is8� : refbool(� = &lit _ ((�� = v)! [press](�� = v))which means: no attribute other than the attribute `lit' can be a�ected by the action `press'.General formWe will now show the general form of locality axioms. Unfortunately they look rather uglyin this form, but the purpose of this section is to show that for any action or attributesymbol in an agent we can construct a locality axiom.Suppose A is an attribute symbol local to an agent with action symbols a1; : : : ; an. Thelocality axiom should say that every action which occurs is either an instance of one ofthese actions or leaves A unchanged.8a : action n_i=1(9xi: (a = ai(xi))) _ 8y; v: (A(y) = v)! [a](A(y) = v))The axiom says: either a is one of the actions of the agent with appropriate parameters, orit leaves the value of the attribute (with any parameters) unchanged. We have used xi tomean a vector of variables. The number and sort of these variables is determined by thesort of the action symbol for each value of i. Similarly, y is a vector of variables whosesorts match the parameters of A.Action locality: Now suppose the action symbol a is local to an agent with the followingattribute symbols:As11 ; As12 ; : : : ; As1ns1 ; As21 ; As22 ; : : : ; As2ns2 ; : : :For each sort s, we suppose that there are ns attribute symbols with values of the sort s.Then for each sort s and each reference term � of sort refs, either � is the reference of oneof the parameterised attribute symbols with values of sort s, or a (with any parameters)leaves the value of � unchanged. 15



The schematic form of the locality axiom is thus:ŝ2S(8� : refs ns_i=19xi: � = &Asi (xi)) _ 8y; v : s: ((�� = v)! [a(y)](�� = v))These axioms are complicated, but it is worth repeating that the speci�er does not have towrite them down or ever use the operators � and &. Locality axioms are generated by thespeci�cation `compiler' on the basis of the locality declarations the speci�er makes.To understand their e�ect, the crucial point about locality axioms is that (like all axioms)they are inherited by agents via morphisms. But the scope of the quanti�ers 8� : ref and8a : action increases as we move to bigger and bigger agents. Notice that the naturalrequirement that morphisms cannot map local symbols to sharable ones is enforced by thefact that the locality axioms are inherited under morphisms.6 Auto-teller examplesThe following example, of an autoteller system in a bank, shows some of the ideas inthis paper in action. An autoteller (cash-dispenser) allows bank customers to withdrawmoney from their accounts by inserting a plastic card and typing a personal identi�cationnumber at the keypad. The machine compares the identi�cation number with the numbermagnetically coded on the card. It asks the customer the amount of cash required (byputting an appropriate message on its VDU screen) and, after checking one of the bank'sdatabases, dispenses the cash. It records the transaction on an internal recorder, and printsthe transaction on a chit which it gives to the customer. It has an internal hopper in whichit can retain the card if the customer consistently types the wrong identi�cation number.From the English-language speci�cation we identify the following components:keypad screen card-reader@ @ @ @ @ @R ? ������	printer user-interface recorder cash-disp cash-dispH H H H H H H H H H Hj@ @ @ @ @ @R ? ������	 1 ������������ 2tellerThe user-interface is made up from the keypad, the screen, and the card-reader. In turnthe teller is made up from the printer, the user-interface, the recorder and (say) twocash-dispensers containing notes of di�erent denominations. A teller-system consists of (say)m tellers and n databases. 16



teller : : : teller database : : : database@ @ @ @ @ @R1 ? m ������	 1 ������������ nteller-systemBut here we will deal with just the following fragment of these diagrams:keypad screen card-reader@ @ @ @ @ @R ? ������	user-interface cash-disp cash-disp@ @ @ @ @ @R ? 1 ������	 2tellerWe are now in a position to axiomatise the agents.agent keypadattributess waiting : bool` last-no : natactionss enter-no(n : nat)s cancelaxioms1. waiting ! [enter-no(n)](last-no = n ^ :waiting)2. per(enter-no(n)) ! waitingendA keypad has two attributes which de�ne its state, waiting and last-no. Waiting speci�eswhether the agent is in a state of accepting a numerical input on its keypad. Last-nocontains the last number typed. The agent keypad also has two actions, enter-no(n) (theuser enters the number n), and cancel (the user elects to abort the transaction { we imaginethat the cancel button is part of the keypad). Notice that the keypad does not, andshould not, distinguish between the various types of numbers entered (identi�cation numbers,amounts etc).The keypad's �rst axiom states that last-no is updated by the action enter-no(n) if theagent is in the waiting state, and also that it then ceases to be in the waiting state. Whathappens if the agent is not in the waiting state is not de�ned, although the second axiomstates that an occurrence of the action enter-no(n) would then be non-normative.17



The keypad has a complex interface with the other components, as can be seen by the factthat both actions and one attribute are shared. The attribute waiting is shared becauseit will be updated by actions in the user-interface. Similarly, enter-no(n) and cancel aresharable because they have to update attributes there too.Now for the card-reader:agent card-readerattributes` has-card : bool` card : (r, u)` card-no : natactionss accept-r(n : nat)` accept-u` return` keepaxioms1. has-card ! obl(return) _ obl(keep);2. [accept-r(n)](card-no = n ^ has-card ^ card = r);3. [accept-u](has-card ^ card = u);4. [return]:has-card;5. [keep]:has-card;6. per(return) _ per(keep) ! has-card ;7. per(accept-r(n)) _ per(accept-u) ! :has-card;endThe card-reader has three local attributes which respectively indicate: whether there is acard inside it; whether the card inside (if any) is readable or unreadable; and the personalidenti�cation number coded on the magnetic strip of the card. Notice that (r, u) is anenumerated sort. The card-reader can accept a readable card with number n (accept-r(n)),or accept an unreadable card (perhaps one which is damaged or wrongly inserted) (accept-u).It can then return or keep the card. Of these actions, only accept-r(n) need be sharable; ithas to update attributes of the user-interface.The axioms say the following:1. If the reader has a card, it has an obligation to keep the card or to return it. That is,a life-cycle is non-normative if it has a state in which has-card is true but which isnot eventually followed by a return action or a keep action.2 and 3. After accepting a readable card, the appropriate attributes are updated.4 and 5. After keeping (transferring to internal hopper) or returning a card there is nolonger a card.6. The agent may keep or return a card only if it has one: : :7. : : :and accept one only if it does not have one.The last of the agents which make up the user-interface is the screen. It has just onesharable attribute, the message which it displays. Clearly it has to be sharable; if it waslocal, it would never get updated as there are no actions in that agent.18



agent screenattributess message : stringendNow we are in a position to tie these components together in the user-interface.agent user-interfaceattributes` entering-id;` entering-amt;actions` request-amt;includes keypadincludes card-readerincludes screenaxioms1. :(entering-id ^ entering-amt);2. entering-id ! (message=`Enter id' ^ 9n obl(enter-no(n)) _ obl(cancel));3. entering-amt ! (message=`Enter amount' ^ 9n obl(enter-no(n)) _ obl(cancel));4. [accept-r(n)](entering-id ^ waiting);5. last-no=card-no ^ entering-id ^ :waiting ! obl(request-amt);6. [request-amt](entering-amt ^ waiting);7. [cancel]obl(return)endThe user-interface includes all the actions and attributes and axioms of its constituents. Italso has the attributes entering-id and entering-amt and the action request-amt, all of whichare local. The purpose of these is to guide it through the sequence of events to do withverifying the card and dispensing the cash. The axioms mean:1. The machine is never at once processing the identi�er and the amount.2. While expecting the customer identi�er, the screen displays the appropriate message anda number must be entered on the keypad.The clause 9n obl(enter-no(n)) means that there is an obligation to enter a number,but not any speci�c number. In other words, the user ful�lls this obligation by typingan arbitrary number. The reader may consider how one could specify an obligation toenter some speci�c number.3. Similarly when expecting an amount.4. After accepting a readable card the machine enters the expecting-identi�er state andactivates the keypad5 and 6. If the machine is processing the identi�er and the customer has typed a numberwhich was found to be correct, the machine enters the processing-amount state.7. If the cancel button is pressed the machine must return the card.The cash dispenser dispenses cash if it has enough left:19



agent cash-dispattributes` qty-left : nat;actions` dispense(q : nat);axiomsx = qty-left ^ x > q ! [dispense(q)](qty-left = x� q);per(disp(q)) ! q > qty-leftendThe auto-teller itself is left with the rather boring task of deciding how much of eachdenomination is to be dispensed. Note that the dispensers are obliged to dispense if (andpermitted only if) the right conditions are met. Recall the form of deontic axioms describedin section 3.5.agent tellerincludes user-interfaceincludes cash-disp via 1includes cash-disp via 2axiomsentering-amt ^ :waiting ^n1 = last-no div denom1 ^ n2 = (last-no mod denom1) div denom2 !obl(1.dispense(n1)) ^ obl(2.dispense(n2));per(1.dispense(n1)) _ per(2.dispense(n2)) !entering-amt ^ :waiting ^n1 = last-no div denom1 ^ n2 = (last-no mod denom1) div denom2;endOne perhaps counter-intuitive feature of the logic which this example brings out is therelative weakness of the locality axioms compared with the frame rule. For example, wecannot deduce from the axioms of the card-reader that the return action does not a�ect thecard-no attribute. That is because they are in the same agent and there is no locality axiomto that e�ect. The important points here are that (i) it does not matter { we do not needthe assumption that return does not a�ect card-no; and (ii), that an implementation whichchose to reset card-no after returning the card to some null value would be a perfectly goodimplementation, even a likely one.The structuring principle says that whenever we need to make such constraints we must doso by structuring the agents in a way which gives rise to the right locality axioms.AcknowledgmentsThis work is one of the results of the SERC Forest Project at Imperial College, London.Mark Ryan is funded by that project. Jos�e Fiadeiro is on leave from Departamento deMatematica, Instituto Superior Tecnico, Lisboa, Portugal, as a grantee of the Commission ofthe European Communities.References[1] J. Fiadeiro and T. Maibaum. Describing, structuring and implementing objects. InProc. REX Workshop on Foundations of Object-Oriented Languages. Springer-Verlag, inprint. 20



[2] J. Goguen. A categorial manifesto. Technical Report PRG-72, Programming ResearchGroup, University of Oxford, March 1989.[3] R. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes, 1987.[4] S. Khosla and T. S. E. Maibaum. The perscription and description of state based systems.In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Temporal Logic in Speci�cation.1989. Lecture Notes in Computer Science 398.[5] T. S. E. Maibaum. A logic for the formal requirements speci�cation of real-time embeddedsystems. Technical report, Imperial College, London, 1987. Deliverable R3 for FOREST(Alvey).[6] Mark Ryan. Defaults and revision in structured theories. In Logic in Computer Science(LICS), July 1991.

21


