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Abstract

Distributed systems may be specified in Structured Modal Action Logic by decomposing
them into agents which interact by sharing attributes (memory) as well as actions.

In the formalism we describe, specification texts denote theories, and theories denote
the set of semantic structures which satisfy them. The semantic structures are Kripke
models, as is usual for modal logic. The “possible worlds” in a Kripke model are the
states of the agent, and there is a separate relation on the set of states for each action
term.

Agents potentially share actions as well as attributes in a way controlled by locality
annotations in the specification texts. These become locality axioms in the logical
theories the texts denote. These locality axioms provide a refined way of circumscribing
the effects of actions.

Safety and liveness conditions are expressed (implicitly) by deontic axioms, which
impose obligations and deny permissions on actions. We show that “deontic defaults”
exist so that the specifier need not explicitly grant permissions or avoid obligations in
situations where normative behaviour is not an issue.

1 Introduction

The idea of using Modal Action Logic for specifying distributed systems is well-established
[3, 4, 5]. Additionally the frame problem can be overcome by specifying structure on
specifications—the system is split into agents (or objects, or components) which interact by
sharing actions. This is the approach taken by Fiadeiro & Maibaum [1], and fits well with
object-oriented specification: an object has a private memory and public procedures for its
manipulation.

But often, as we discuss below, it is more natural to share atiributes between agents than
to share actions. In this paper we give a logical semantics to a pseudo-language in which
both attribute and action sharing are allowed. The logic is called Structured Modal Action
Logic (Structured MAL).

The agent is the unit of structure. An agent is any component of the system being
described which has an independent existence; it may be passive or active. Agents are
composable. A collection of agents can be viewed as a single agent in a precise way to be
described later. The single agent incorporates the behaviours of the individual agents. As
already stated, agents can interact by sharing attributes or by sharing actions. An atiribute
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is part of the state of the system—a predicate or function which varies not only with its
arguments but also with the state of the agent to which it belongs. In general agents should
be as self-contained as possible; the actions of an agent should only update attributes of
that agent, and vice versa. But clearly some interaction between agents i1s necessary. The
interaction 1s precisely controlled by means of locality azioms. For each agent, the specifier
must declare which of the actions and attributes are local and which are sharable with
other agents. A sharable action is one which can update the attributes of a superagent (one
which incorporates it) — these attributes may come from other agents which the superagent
incorporates. Similarly, a sharable attribute is one which can be updated by the action of a
superagent.

Throughout this paper we will make use of the lift-system example. The atomic agents
which might make up the specification include:

e button, with the action ‘press’ and the attribute ‘lit’ (buttons have lights on them)
e door, with the actions ‘open’ and ‘close’ and the attribute ‘posn’ (their position).

e person, with, among others, the action ‘press-button’.

Of course there are other agents, but we will concentrate on these three for the purpose of
motivating the two types of interaction which Structured MAL adopts. These agents make
up the lift specification:

button door person

lift-system

When the person selects a button and presses it, this is really an in action which both
the person and the button participate. True, the person initiates the action; the button
participates in it in a purely passive way. But since the button moves in and out, and could
do so independently of the person if incorporated in a specification in a different way, the
natural choice is to specify this interaction by joint participation of actions, that is, action
sharing. We do this by having a press action in both the agents person and button say
person.press and door.press, and then including the axiom person.press = door.press in the
lift-system.

Now consider what happens when the lift arrives at a floor and the door opens. The light
of the appropriate button is extinguished. We could specify that both the door and the
button jointly participate in an action which opens the door and extinguishes the light. But
it makes more sense to say that the door’s opening extinguishes the light — the button has
nothing to do with it. The action ‘open’ of the agent door directly updates the attribute
‘lit” of button. This is attribute sharing.

Both these examples are fairly marginal. One could make a case for specifying the first one
as an example of attribute sharing and the second one as an example of action sharing. The
specifier is free to do this if he or she wishes. In Structured MAL, both types of sharing can
be used freely.



Each agent specification has a collection of actions and attributes — the collection is known
as 1ts signature. In addition, the specification language also says which actions and attributes
are local and which are sharable. If an action is declared as local to an agent, an axiom
is generated which states that the action can only update the attributes of that agent.
Similarly, a local attribute comes with an axiom which says that it can only be changed by
an action belonging to the agent in which it is defined. These locality azioms are examined
in Section 5.

Locality axioms are not an explicit part of the specification in the way that other axioms
are. They are part of the theory presentations which the specifications denote. What we
have is a three tiered system which looks like this:

specification . . .
texts (a text in the specification language)
|
specifications (theory presentations connected together by morphisms)
|
agents (models of the theories)

A specification text i1s a text in the specification language. It specifies the behaviour of
a collection of interacting agents. This text denotes a family of theory presentations, one
presentation for each agent specified, connected together by morphisms. A model of a theory
presentation i1s an agent which satisfies the specification.

The best way to think of this is to bear in mind that the level of primary interest is the
middle level. That level consists of theories connected by morphisms. The level above,
the specification language level, says how this is to work by using high level constructs
like inheritance, clientship and parameterisation. At the middle level there may be more
agent specifications (theories) than in the specification text, because many of them will be
by-products of the high-level constructs used. At the bottom level, models of the theories
correspond to agents which meet the specifications.

The term morphism comes from category theory. Indeed, theory presentations and their
morphisms form a category in which, following general categorical principles [2], colimits
explain how to build a complex system from a diagram that expresses how its components
are interconnected. See [1] for the application of this principle to the specification of
object-oriented systems. As far as we are concerned here, a morphism is simply a map with
certain properties between theory presentations with which we can specify agent interaction.
A precise definition comes later. The agent diagram above is an example of a morphism
diagram.

2 Agents and morphisms

Agents are the units of structure. Each agent is an encapsulation of behaviour — it consists
of a state (the values of its attributes) which is changed as it performs actions. An action
or an attribute may be entirely local to an agent, or it may be shared with other agents. If
an action is local to an agent X, it can only change the values of the attributes of X. Of
course it need not change them all, but it cannot affect any others. If an attribute is local
to X, it can only be changed by the actions of X. We will call these two types of locality
action locality and atiribute locality, respectively.



The lift example starts with the ‘atomic’ agents button and door. Buttons have lights and
illuminate when pressed. They are extinguished by actions which are external to them (the
opening of the door). So button looks like this:

agent button
attributes

s lit : bool;
actions

£ press;
axioms

[press]lit;
end

This is the text which the specifier writes in the specification language. The £ and s
annotations mean local and sharable, respectively. The signature of the theory presentation
which this denotes consists of the attribute lit and the action press. The theory presentation
has two axioms; one comes from the specification text, and says simply that lit is true after
press has taken place!. The other is the locality axiom for the local action press, and says
that press can only affect the attributes of the agent button. How this is done will be
revealed in section 5. The attribute ‘lit” 1s sharable, because it will have to be updated by
actions taking place in other agents (namely, the opening of the door).

The attribute lit has values of sort boolean. Atomic formulas are equalities of values in a
sort, often of the form ‘attribute = value’. If the sort concerned is boolean, we glibly let
attribute values stand as formulas in the obvious way. Thus ‘[press]lit’ is an abbreviation for
‘[press](lit = true)’.

Doors also have one attribute, their position, and two actions, open and close.

agent door
attributes

£ posn : (op, cl);
actions

s open;

£ close;
axioms

[open](posn = op)

[close](posn = cl)
end

The attribute ‘posn’ has the enumerated sort (op, cl). Everything is local except the action
open, which has to be sharable to be able to extinguish the lights.

Inside each lift there is a panel of lift buttons. For an n-floor system, the agent lift-buttons
is made of n copies of button. At the specification language level, its specification looks

like this:

agent lift-buttons
includes button via 1;
includes button via 2;

includes button via n;
end

1In fact, the light only comes on if the lift is at a floor other than the one being requested. An
elegant way of handling this fact by means of defaults is described in [6].



The clause ‘includes button via 1’ means that at the theory presentation level there is a
morphism, named 1, from button to lift-buttons. The morphism maps the action symbol
press in button to the action symbol 1.press in lift-buttons. The clause ‘includes subagent
via morphism-name’ implicitly declares all signature symbols and axioms of subagent in
the agent being specified, but renaming the signature symbols by prefixing them by the
morphism name. At the theory presentation level, the theory which lift-buttons denotes
has n sharable attributes 1.1it, 2.1it, ..., n.lit and n local actions 1.press, ..., n.press, one
‘lit” attribute and one ‘press’ action for each button.

We need to describe one more agent before we can describe a lift: it is the ‘agent’
lift-position.

agent lift-position
attributes
£ floor : 1.n
actions
¢ up;
£ down;
axioms
(floor = f) A(f < n) — [up](floor = f+ 1)
(floor = f) A(f > 1) — [down](floor = f — 1)
per(up) — floor < n
per(down) — floor > 1
end

The axioms containing the formulas per(up) and per(down) are deontic axioms; they express
the fact that the lift is only permitted to move up or down when the floor variable 1s within
the right bounds. There are also deontic axioms which express obligations. These deontic
axioms are described in section 3.

The reader may be surprised that lift-position deserves the status of an agent, but there
is an advantage of having it as a separate agent rather than just including its attributes
and actions in the specification of lift, which is that the local actions up and down are
then constrained to being able to update the value of floor only. Remember that an action
local to an agent gets a locality axiom in the theory presentation which says that it can
only affect the attributes of that agent. The smaller the agent, the more powerful the
locality axiom. Indeed, a principle of this approach, the “structuring principle”, is that all
structuring should be done by judicious choice of agents, and hence of locality constraints.
The specifier need never get involved in including explicit locality axioms in specifications;
they should all be implied by making actions and attributes local or sharable.

The lift itself consists of the agents lift-buttons, door and lift-position:

agent lift
includes door via door;
includes lift-buttons
localising 1.lit,... n.lit ;
includes lift-position;
axioms
(floor = 1) — [open]—1.lit;

(floor = n) — [open]—n.lit;
per(up) V per(down) — door.posn=cl;
end



The localising clause makes the attributes i.lit local in the agent lift. (Without this clause,
they would retain the sharable status with which they were defined in the agent button.)
This has the effect of adding a locality axiom in lift, in the way described later.

The theory presentation denoted by this specification text has all the signature elements and
the axioms of its constituents. Since no renaming of the actions and attributes is necessary,
the morphisms are labelled ‘id” (for identity). lift also has an additional axiom, which we
have referred to previously: (floor = f) — [open]—flit. Tt says that when the door opens,
the light corresponding to the floor at which the door has opened switches off. Here is the
morphism diagram at the theory presentation level:

button button ... button
A\
A\
2
1 M)
A\
) &
door lift-buttons lift-position
id
id id
lift

3 Language and logic

In this section we describe the language and the logic used in the theory presentations,
which are denoted by agent descriptions in the specification language.

We have mentioned that we have two types of locality, action locality and attribute locality.
To be able to give the locality axioms that go with these two kinds, our language must be
sufficiently rich to compare actions and to compare attributes. Comparing actions does not
represent a problem because they will just be terms of the sort action. But by comparing
attributes we mean comparing the actual attributes, not their values. Therefore we must
distinguish between references and values — a distinction well known in programming
languages. When we write A = B we mean that attributes A and B have the same value.
But &A = &B means A and B are actually the same attribute — they refer to the same
“cell”. & is the reference or ‘address-of’ operator. To de-reference attribute names we use
the x operator. Thus x& A is the value of &A, otherwise written A.

As we said, the specifier does not have to use these operators; they will only be needed
for locality axioms, which, by the structuring principle mentioned above, the specifier will
never have to provide explicitly. The locality axioms will be implicit in the specification
texts. Nevertheless, the locality axioms are explicit in the theory presentations which the
specifications denote, so we need to have the logical language to describe them.

3.1 Signatures

We said that a signature is the extralogical language in the theory presentation, i.e. the
attribute and action symbols. It also consists of the sort symbols used and the usual



functions. For example, in the agent button we used the sort boolean, and might have used
the usual functions ‘and’, ‘or’ efc. which come with it.

A signature is:

e A family of sort symbols S with function symbols

e The special sorts action and, for each sort symbol s € S, ref;. Terms of sort ref; are
names of (pointers to) values of sort s, and will be de-referenced by *.

e An S*-indexed family of action symbols (action terms are of sort action)

e An S* x S-indexed family of attribute symbols (attribute terms formed from the
attribute symbol A :s; X ... X s, X s are of sort s).

Notice that actions and attributes can be parameterised by terms of sorts of the signature.
(In the lift example, there happened not to be any parameterised actions or attributes.)

At the theory presentation level we do not distinguish between local and sharable actions and
attributes. At this level that information is carried by the locality axioms. The annotations
! and s appear at the specification language level, and the ‘specification compiler’ generates
the locality axioms from them.

3.2 Language of theory presentations

This section describes the language of the theory presentations. As we have said, the
language used by the specifier to write axioms is only a subset of this: the specifier does
not need to make explicit use of the operators & and *, in view of what we have called the
structuring principle.

We will describe the language for a signature with sorts S. In addition to the symbols of
the signature, we have for each sort s in S enumerably many variables z, y,... of the sort
s and «,... of the sort ref,, and enumerably many variables z,y...: action.

e Terms are formed using

variables of the sorts

— function symbols of the sorts S with appropriately sorted term parameters;
constant symbols of the sorts are simply zero-arity function symbols.

— attribute symbols, again with appropriately sorted term parameters. Zero-arity
attribute symbols vary only with the state of the agent.
The values of functions are invariant across states, whereas attributes change from
state to state.

— action symbols, again with zero or more appropriately sorted term parameters.

— for each attribute term A :s, there is a term &A :ref; (its “reference”). Notice
that A 1s an attribute term, not an attribute symbol; in other words its
parameters are instantiated by appropriately sorted terms. This means that an
attribute symbol has a different reference for each set of (semantically distinct)
actual parameters.

— for each term « :ref; there is a term =*a :s (its “contents”).



e atomic formulas are equalities of terms (f; = t3), and deontic formulas (per(a) and
obl(a) for action terms a). As we have said, if ¢ is a term of sort boolean, we will
sometimes abbreviate the atomic formula ¢t = true by t.

e formulas are made from smaller formulas with the usual connectives and the modal-action
operators; if ¢ and ¢ are formulas and a is an action term, then ¢ Ay, ¢V, ¢ — 1,
—¢, and [a]¢ are formulas.

3.3 Interpretation

Having described the language in which agents are described at a logical level, it is now
time to see what models there are of such descriptions. Remember that an agent description
is a pair consisting of a signature and a theory presentation (a finite set of axioms). Such a
pair comes from an agent described by a specification text. At the logical level, all agent
descriptions are simply (signature,presentation) pairs.

The semantic structures are Kripke models, as usual for modal logic. See [3] for details of
Kripke frames for multi-modal logics. In the semantics that follows, for each agent there
is a Kripke frame. Agent composition corresponds to taking the product of Kripke frames,
modulo shared actions and attributes. The “possible worlds” in a frame are the states of the
agent, and there is a separate relation on the set of states for each action term. The states
interpret non-modal formulas locally (i.e. without reference to other states) by evaluating
the terms in the sets which interpret the sorts, for atomic propositions, and by the usual
truth-table definitions for the non-modal connectives.

An interpretation structure for a signature with sorts S consists of:

e for each sort s in S, a non-empty domain of individuals D;; and for each function
symbol f:s; X ...s, — s, a function [f]: Ds, x ...x D5 — Dj

o a set of states W, and a designated initial state wg € W

e a set AcT C W—W, which will be used to interpret action terms (terms of sort
action).

e for each sort s, a set REF; C W —D;. These will be used to interpret reference terms
(terms of sort refy).

e for each action symbol a : 51 X ... x s, — action, a function [a] : Ds, X ...x Dy — ACT,
as before

e for each attribute symbol A :s; x...x s, — s, a function [A]: Ds, X ...x Ds — REF;

e a pair of sets P and O. Both are subsets of AcT x W. They are used to interpret the
deontic formulas.

An interpretation structure is therefore a set of states and a means of interpreting action
terms as functions between states and a way of evaluating state-dependent formulas within
states.

To interpret the quantifiers we start by assigning each variable of the language to an
individual of the appropriate sort. This is an awkward technicality, and the reader may like
to ignore all references to assignments in the passage below the following definition.

An assignment A is a map from variables to individuals in the carrier set of the variable’s
sort.



z:s is assigned to A(z) € Dj
o :ref; is assigned to A(a) € REF;

z :action is assigned to A(z) € AcT

We now show how to evaluate formulas in states, relative to an assignment 4. First we

have

to evaluate terms, as follows.

. Variables: if x is a variable of sort s then its interpretation in the state w, written

[z]24, is A(x) in D,. Similarly, if « :ref; then [a]# = A(a) and if z:action then
[2]z = A(2).

Attributes: if A(t1,...,%,) is an attribute term of sort s, then its interpretation in state
w, written [A(ty, ..., t)]3, is [AI([t]2, ... [ta]2)(w). That is to say, to interpret
Alty,...,tn) o s in w, apply [A] to the interpretations of ¢;,...,%, in w, yielding
a function from W — D;. This function is the reference (address) of the attribute

concerned, which is then applied to w to yield the required result.
Actions: if a(ty,...,t,) : action then [a(ty, ..., t,)]2 = [al([t]2, ..., [ta]d) € acT
References: [&A(ty, ..., t)]2 = [ANTE]Z, .. ., [tal)

Values: [*a] = [a]2(w). The interpretation of reference terms is covered by case 4
and this case. There are no constants or functions of sort ref; — the only terms of
sort ref; are terms like &A(t1,...,t,) and variables.

Formulas are true or false in a state. We will write [¢]* for the set of states in which
¢ 1is true. First we deal with the atomic formulas, which are equalities between terms and
permissions and obligations of actions.

The atomic formula ¢; = t5 1s true in a state w 1if ¢t; and ¢ have the same
interpretations in w. Formally, w € [t; = to]* iff [t1]4 = [t=]2.

The atomic formula per(a) is true in w if ([a]#,w) is in P. That is to say, P is just
a set specifying what actions are permitted in what states.

Similarly, w € obl(a) if ([a]*,w) is in O. O is a set specifying what actions are obliged
in what states.

In the discussion above, a is an action term (a term of type actiom), that is, an action
symbol (some a) together with term parameters. Notice that permission or obligation to
perform an action a depends on its parameters (so an agent may have permission to perform
the action with some parameters and not with others).

Now for the interpretation of the connectives.

w € [¢ AY]A iff w e [¢]4 and w e [¥]A.
we o VYt iff we [¢]4 or we [y
w € [¢ — ¢4 iff w i [¢]4 or we [¥]4
w € [~¢]4 iff w ¢ [o]4.



o wc [[a]o]* iff [a]A(w) € [¢]*. That is to say, to evaluate whether [a]¢ is true in w,
first evaluate the action a in w. The result is a function in AcT. Then apply this
function to w, yielding another state [a]lz(w). The answer is then given by whether ¢
is true in this new state.

o we [Vo. ¢]* if we [¢]* for all assignments A’ which differ from A at most by the
assignment of z.

o we [Fr. ¢]A if we [¢]A for at least one assignment A’ which differs from A at most
by the assignment of =z.

The treatment of quantifiers we have given in the last two clauses above is standard. Recall
that for all formulas ¢, [¢]* is evaluated relative to an assignment A. We will sometimes
ignore this complication and just write [¢], which we justify by the following: If ¢ has no
free variables then [¢]# is independent of the assignment A.

3.4 Logic

We are now in a position to give the consequence relation which defines our logic. Let
I' be the theory presentation corresponding to an agent specification X. To compute the
consequences of the specification, we first look at the agents which satisfy it. These are
models of T'. Formally, an interpretation structure [-] together with an assignment A is a
model of a sentence ¢ if for every state w of the interpretation structure, w € [¢]4. A
model of a set of sentences T' is a (structure,assignment) pair which is a model of each of
the sentences of I'.

A model of T' thus corresponds to an agent which satisfies the specification X. It has a
collection of states and undergoes actions which transform it from state to state. But
this does not fully reflect the information contained in I', because only some actions are
permitted in a state, and others may be obliged. We need to look at sequences of actions,
life-cycles, to reflect this.

Given a model [-], a life-cycle is a sequence of state-transitions {ej,es,...) where each e; is
in AcT. This i1s any sequence of actions that the agent can go through. Such a sequence is
normative 1f 1t respects the deontic part of the specification, ¢.e. if each action which takes
place is permitted, and if every obligation incurred is discharged. For permissions, this just
means that for each n the pair {e,,w,) must be in P, where w, is the state arrived at just
before the transition e,, that is, w, = ep_1(en—a(...e1(wp)...)).

One could treat obligations in MAL the other way around: whenever {e,w,) is in O and
wy 18 ep_1(ep—2(...e1(wp)...)) for some n, then e must be e,. However, in Structured
MAL it was decided that obligations should be weaker than the ‘“immediate’ obligations
mentioned above. Instead of requiring immediate fulfillment, they require eventual fulfillment.
That is, when an agent incurs an obligation it must carry out the action at some point
in the future, not necessarily immediately. This is characterised in terms of life-cycles as
follows: (e1,es,...) is normative with respect to obligations if for all e; in the cycle, if
w; = ej(e;_1(...e1(wp)...)) and (e, w;) € O for some e, then e =e; for some j > i.

Now to define consequences of the specification of X. A is a consequence of X if it 1s
true in all states that an agent satisfying X could get into. Let [-] be a model of the
theory presentation T' denoted by X. Let (e1,es,...) be a normative life-cycle of [-]. A is a
consequence if it is true in all states e;(e;—1(...e1(wo)...)).

10



A life cycle in which an agent incurs an obligation to perform the action a, and though it
never does perform a it performs another action which, in the particular state in which it
is performed, is equivalent to a in the sense of achieving the same transformation of that
state, is not normative. One might think that because our definition of normativity looks
only at denotations and not at terms, this would count as normative, but brief reflection
should be enough to convince the reader that this is in general not so.

3.5 Deontic axioms

Since reasoning from a specification I' involves consideration only of normative life-cycles
(ones in which actions performed are permitted and obligations incurred are discharged),
permissions default to ‘on’ and obligations to ‘off’. This means that the specifier never has
to assert permissions — the logic only takes into consideration models in which actions which
occur are permitted. Similarly, the specifier never needs to deny obligations. The effect
of this i1s that permissions should be denied in a specification, and obligations should be
asserted. Typically, deontic axioms will look like

per(a) — condition
condition — obl(a)

More precisely: there should be positive occurrences of obligations and negative occurrences
of permissions in deontic axioms.

We say ‘should’, but the specifier is not barred from writing per(a) < condition or per(a) —
condition. There are however disadvantages in doing so. The problem is that agents which
inherit the agent for which we are writing deontic axioms may need to put more constraints
on permissions (i.e. deny permission in further circumstances) and constraining permission
to match a single condition will contradict this. There are examples of this in section 6.
If permissions are written in the recommended way, they are easy to ‘add-up’. Adding up
per(a) — cond;, per(a) — conds, and per(a) — conds yields per(a) — cond; A condy A
conds. It should be obvious that the same remarks apply to obligations, except that further
axioms add obligations instead of removing permissions. Axioms add up similarly: cond; —
obl(a) and conds — obl(a) make cond; V conds — obl(a).

The reader may object that having only negative occurrences of permissions makes it
impossible to prove permissions. As this stands this is true, but it must be true given the
way permissions are defined. We cannot assert permissions because we can not know that
they are not going to be denied in agents which inherit the agent in question. But once we
have completed the specification we can logically ‘close’ the deontic axiom, asserting per(a)
— cond; A condy A conds.... Then permissions can be proved.

Again, the same remarks apply to obligations with the obvious changes: here we should say:
having only positive occurrences of obligations makes it impossible to wuse them in proofs,
until we logically close the conjunction of the axioms in the way described.

4 Structure

In Sections 1 and 2 we motivated the idea that agents can be composed in a variety of ways.
In this section we will look at this in more detail. The primitive relation between agents is
that of morphism. If there is a morphism from X to Y, X is identical in behaviour with
some sub-agent of Y. The morphism is a map between signatures which shows us how to
rename the signature elements to demonstrate the sub-agent relation.

11



A morphism is a map between agent specifications X and Y taking

e cach sort in X to a sort in Y (the special sorts action and ref; are preserved)
e cach action symbol in X to an action symbol in Y

e cach attribute symbol in X to an attribute symbol in Y

such that the translation under the mapping of each theorem of X is a theorem of Y.

Of course the map must respect the sorts of the action and attribute symbols in the
language. A symbol in X is mapped on to a symbol in Y whose sort is the sort which is
mapped on to by the sort of X.

The following diagrams show examples of morphisms in the lift specification. floor is
constructed as an aggregation of two buttons (see page 4), an ‘up’ button and a ‘down’
button. Each button is mapped to floor, with morphisms called ‘up’ and ‘down’. As
already indicated, we use the dot notation in naming the attributes and actions of floor.
For example, the attribute ‘lit’ is mapped by the morphism ‘up’ to the attribute ‘up.lit’.
The next morphism is an example of refinement. We have decided that there should be
only one light on each floor, which will represent the state of both buttons. When the user
presses either of the buttons, the light illuminates and the user is not able to see which
of the buttons was pressed. The morphism collapses the distinction between ‘up.lit’ and
‘down.lit’. First we show how the agents are defined, and then the morphisms.

agent floor agent floor’
includes button via up;

includes button via down; attributes

end s lit : bool;

includes floor via id where
up.lit is lit
down lit 1s lit;

end

This example also shows the flexibility of the specification language. Given that we have
specified button as on page 4, these specifications are really just abbreviations for the
following more verbose ones:

agent floor
attributes

s up.lit : bool,
s down.lit : bool;

actions
£ up.press;
£ down.press;
axioms
[up.press|up.lit;

[down.press]down lit;

end

agent floor’

attributes

s lit : bool;
actions

£ up.press;

£ down.press;
axioms

[up.press]lit;
[down.press]lit;
end

At the theory presentation level, the connections are as follows.



button button

floor’

4.1 Inheritance and clientship

Agents can exist in a variety of relationships one to another. Two important relationships
used in object-oriented design are inheritance and clientship. If Y inherits X, all the actions
and attributes of X are also attributes of Y, but Y may have more besides. For example,
consider the abstract agents vehicle and car. Car inherits all the actions and attributes of
vehicle, but has more of its own besides. Now consider the agent engine. We might be
tempted to say that wvehicle inherits all its actions and attributes. This will certainly be
true for actions like start or attributes like running. But we may want to say that some
attributes or actions, like the attribute flooded, are attributes or actions which apply to the
engine alone. It does not make sense to say that the vehicle is flooded — or at least, it
is not the same as saying that the engine is flooded. Vehicle inherits only some of the
actions and attributes of engine. This is clientship.

These object-oriented relationships, and many others, are captured by the sub-agent relation.
X 1s a sub-agent of Y if there is a morphism from the specification of X to that of Y.
Roughly speaking, this means that all the actions and attributes of X are (under appropriate
renaming) actions and attributes of Y. We will now describe how three object-oriented
constructs are captured by morphisms.

e Inheritance 1s captured by a single morphism. If Y inherits X then there is a morphism
from the specification of X to that of Y.

e Aggregation 1s captured by two morphisms. If X 4+ Y is the aggregation of X and Y,
then there are morphisms from X to X+ 7Y and from Y to X+ 7Y. The aggregation
may involve identifying some actions and attributes between X and Y, in which case
we can form an abstraction Z of X +Y.

e Clientship is also captured by two morphisms. If X is a client of Y, that is to say
it inherits selectively from Y, then we construct morphisms as follows. Let Z be the
part of Y which 1s inherited by X. Then we have a morphism from Z to X and one
from Z to Y.
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» »
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inheritance aggregation clientship

5 Locality Axioms

We said in the introduction that the key benefit of structure was the ability to impose
a notion of locality by which we can control the effects of actions. Without locality the
structuring we have introduced would be wasted — all reasoning would have to take place
in the biggest agent. But the ‘biggest agent’ that button is a part of is the lift-system,
or perhaps the whole building or even the street that we are specifying. We would like to
conclude properties of button or door without reference to these big systems.

Examples

Here are examples where attributes and actions should be local to the agents in which they
are defined:

1. Only the actions in the agent door (i.e. ‘open’ and ‘close’) can affect the attribute
‘posn’. This is locality for attributes:

Only the actions of X can affect the attributes of X

2. The actions in agent button (i.e. ‘press’) can only affect the attribute ‘lit’. This is
locality for actions:

The actions of X can only affect the attributes of X

Non-examples

There are instances where locality fails, showing why some actions and attributes must be
sharable to allow the interaction between agents we want. For example, the axiom (floor
= 1) — [open]—1.lit in the agent lift, which says the light at the current floor is extinguished
by the door opening, violates both types of locality. The action ‘open’ has to affect the
attribute ‘lit’ which 1s declared outside the agent in which ‘open’ is declared; and the
attribute ‘lit” is changed by an action (open) declared outside the agent in which it is
declared.

We need to have locality for some actions and attributes and not for others. In the
specification language we have a mechanism for stating which action and attribute symbols
are local and which are not. At the theory presentation level, this means that some
attributes and some actions have a locality axiom. But as we are about to see, within an
agent community there are degrees of sharability.

14



Locality axioms

Remember that the specifications of agents indicate whether the actions and attributes are
local or sharable. For example, the attribute ‘lit’ is sharable in button, because as we
have remarked it will be updated by the action ‘open’ in door. But the action ‘press’ in
button is local. And ‘lit’ (or ‘¢.lit’ as it is then known) in lift is local, because it will
not be updated by any actions introduced in ever-bigger agents. Similarly, ‘open’ in door is
sharable (it has to update ¢.lit), and it remains sharable in lift because it will have more
work to do in lift-system. (It will have to extinguish the floor lights.)

Local attribute or action symbols have a locality axiom in the theory presentation denoted
by the agent specification.

For example, ‘posn’ is a local attribute. The locality axiom is
Va : action, Vv : (op,cl) (a = open V a = close V (posn = v — [a](posn = v))).

It means that no action other than ‘open’ and ‘close’ can affect the value of ‘posn’; for
either an action is ‘open’ or ‘close’; or the value of posn is unchanged by the action.

‘Press’ is a local action symbol in button: its locality axiom 1is
Va :refy (o = &lit V ((xa = v) — [press](xa = v))

which means: no attribute other than the attribute ‘lit’ can be affected by the action ‘press’.

General form

We will now show the general form of locality axioms. Unfortunately they look rather ugly
in this form, but the purpose of this section is to show that for any action or attribute
symbol in an agent we can construct a locality axiom.

Suppose A is an attribute symbol local to an agent with action symbols ay,...,a,. The
locality axiom should say that every action which occurs is either an instance of one of
these actions or leaves A unchanged.

Va : action \/(Elﬁ (a=ai(2))) V Yy,v. (Aly) =v) — [a](A(y) =v))

i=1

The axiom says: either a is one of the actions of the agent with appropriate parameters, or
it leaves the value of the attribute (with any parameters) unchanged. We have used z; to
mean a vector of variables. The number and sort of these variables is determined by the
sort of the action symbol for each value of . Similarly, y is a vector of variables whose
sorts match the parameters of A. B

Action locality: Now suppose the action symbol a is local to an agent with the following
attribute symbols:
Ail,Agl,...,Afﬁﬁ,A?,A;Q,...,Afﬁs2,...
For each sort s, we suppose that there are n, attribute symbols with values of the sort s.
Then for each sort s and each reference term « of sort ref, either « is the reference of one

of the parameterised attribute symbols with values of sort s, or a (with any parameters)
leaves the value of « unchanged.
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The schematic form of the locality axiom is thus:

/\ (Ve : ref; \7 Jri. o= &Aj(xi)) V Yy, v s ((xa=v) = [a(y)](xa = v))

SES i=1

These axioms are complicated, but it i1s worth repeating that the specifier does not have to
write them down or ever use the operators * and &. Locality axioms are generated by the
specification ‘compiler’ on the basis of the locality declarations the specifier makes.

To understand their effect, the crucial point about locality axioms is that (like all axioms)
they are inherited by agents via morphisms. But the scope of the quantifiers Vo : ref and
Ya : action increases as we move to bigger and bigger agents. Notice that the natural
requirement that morphisms cannot map local symbols to sharable ones is enforced by the
fact that the locality axioms are inherited under morphisms.

6 Auto-teller examples

The following example, of an autoteller system in a bank, shows some of the ideas in
this paper in action. An autoteller (cash-dispenser) allows bank customers to withdraw
money from their accounts by inserting a plastic card and typing a personal identification
number at the keypad. The machine compares the identification number with the number
magnetically coded on the card. It asks the customer the amount of cash required (by
putting an appropriate message on its VDU screen) and, after checking one of the bank’s
databases, dispenses the cash. It records the transaction on an internal recorder, and prints
the transaction on a chit which it gives to the customer. It has an internal hopper in which
it can retain the card if the customer consistently types the wrong identification number.

From the English-language specification we identify the following components:

keypad screen card-reader
A
A
A
A
¥

printer user-interface recorder cash-disp cash-disp

\\ v

¥

teller

The user-interface is made up from the keypad, the screen, and the card-reader. In turn
the teller is made up from the printer, the user-interface, the recorder and (say) two
cash-dispensers containing notes of different denominations. A teller-system consists of (say)
m tellers and n databases.
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teller o teller database o database

¥
teller-system

But here we will deal with just the following fragment of these diagrams:

keypad screen card-reader
A
A
A
A
%
user-interface cash-disp cash-disp
A
A
1 v
A
¥
teller
We are now in a position to axiomatise the agents.
agent keypad
attributes
s waiting : bool
£ last-no : nat
actions
s enter-no(n : mnat)
s cancel
axioms
1. waiting — [enter-no(n)](last-no = n A —waiting)
2. per(enter-no(n)) — waiting
end

A keypad has two attributes which define its state, waiting and last-no. Waiting specifies
whether the agent is in a state of accepting a numerical input on its keypad. Last-no
contains the last number typed. The agent keypad also has two actions, enter-no(n) (the
user enters the number n), and cancel (the user elects to abort the transaction — we imagine
that the cancel button is part of the keypad). Notice that the keypad does not, and
should not, distinguish between the various types of numbers entered (identification numbers,
amounts etc).

The keypad’s first axiom states that last-no is updated by the action enter-no(n) if the
agent is in the waiting state, and also that it then ceases to be in the waiting state. What
happens if the agent is not in the waiting state is not defined, although the second axiom
states that an occurrence of the action enter-no(n) would then be non-normative.
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The keypad has a complex interface with the other components, as can be seen by the fact
that both actions and one attribute are shared. The attribute waiting is shared because
it will be updated by actions in the user-interface. Similarly, enter-no(n) and cancel are
sharable because they have to update attributes there too.

Now for the card-reader:

agent card-reader
attributes
£ has-card : bool
£ card : (r, u)
{  card-no : nat
actions
s accept-r(n : nat)
£ accept-u

¢ return
£ keep
axioms

1. has-card — obl(return) V obl(keep);

2. [accept-r(n)](card-no = n A has-card A card = r);

3. [accept-u](has-card A card = u);

4. [return]—has-card;

5. [keep]—has-card;

6. per(return) V per(keep) — has-card ;

7. per(accept-r(n)) V per(accept-u) — —has-card;
end

The card-reader has three local attributes which respectively indicate: whether there is a
card inside it; whether the card inside (if any) is readable or unreadable; and the personal
identification number coded on the magnetic strip of the card. Notice that (r, u) is an
enumerated sort. The card-reader can accept a readable card with number n (accept-r(n)),
or accept an unreadable card (perhaps one which is damaged or wrongly inserted) (accept-u).
It can then return or keep the card. Of these actions, only accept-r(n) need be sharable; it
has to update attributes of the user-interface.

The axioms say the following:
1. If the reader has a card, it has an obligation to keep the card or to return it. That is,

a life-cycle is non-normative if it has a state in which has-card is true but which 1s
not eventually followed by a return action or a keep action.

2 and 3. After accepting a readable card, the appropriate attributes are updated.

4 and 5. After keeping (transferring to internal hopper) or returning a card there is no
longer a card.

6. The agent may keep or return a card only if it has one...
7. ...and accept one only if it does not have one.
The last of the agents which make up the user-interface is the screen. It has just one

sharable attribute, the message which it displays. Clearly it has to be sharable; if it was
local, it would never get updated as there are no actions in that agent.
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agent screen
attributes

s message : string
end

Now we are in a position to tie these components together in the user-interface.

agent user-interface
attributes
£ entering-id;
£ entering-amt;
actions
£ request-amt;
includes keypad
includes card-reader
includes screen
axioms
1. —(entering-id A entering-amt);
entering-id — (message=‘Enter id’ A In obl(enter-no(n)) Vv obl(cancel));
entering-amt — (message=‘Enter amount” A In obl(enter-no(n)) Vv obl(cancel));
[accept-r(n)](entering-id A waiting);
last-no=card-no A entering-id A —waiting — obl(request-amt);
[request-amt](entering-amt A waiting);
[cancel]obl(return)

-1 O O = W N

end

The user-interface includes all the actions and attributes and axioms of its constituents. It
also has the attributes entering-id and entering-amt and the action request-amt, all of which
are local. The purpose of these is to guide it through the sequence of events to do with
verifying the card and dispensing the cash. The axioms mean:

1. The machine is never at once processing the identifier and the amount.

2. While expecting the customer identifier, the screen displays the appropriate message and
a number must be entered on the keypad.

The clause 3n obl(enter-no(n)) means that there is an obligation to enter ¢ number,
but not any specific number. In other words, the user fulfills this obligation by typing
an arbitrary number. The reader may consider how one could specify an obligation to
enter some specific number.

3. Similarly when expecting an amount.

4. After accepting a readable card the machine enters the expecting-identifier state and
activates the keypad

5 and 6. If the machine is processing the identifier and the customer has typed a number
which was found to be correct, the machine enters the processing-amount state.

7. If the cancel button is pressed the machine must return the card.

The cash dispenser dispenses cash if it has enough left:
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agent cash-disp
attributes
£ qty-left : nat;
actions
£ dispense(q : nat);
axioms
r = qty-left A« > ¢ — [dispense(q)](qty-left = = — ¢);
per(disp(¢)) — ¢ > qty-left
end

The auto-teller itself is left with the rather boring task of deciding how much of each
denomination is to be dispensed. Note that the dispensers are obliged to dispense if (and
permitted only if) the right conditions are met. Recall the form of deontic axioms described
in section 3.5.

agent teller

includes user-interface
includes cash-disp via 1
includes cash-disp via 2
axioms

entering-amt A —waiting A
ny = last-no div denom; A ns = (last-no mod denom;) div denoms; —

obl(1.dispense(n1)) A obl(2.dispense(ns));
per(1l.dispense(ny)) V per(2.dispense(nz)) —
entering-amt A —waiting A
ny = last-no div denom; A ns = (last-no mod denom;) div denoms;
end

One perhaps counter-intuitive feature of the logic which this example brings out is the
relative weakness of the locality axioms compared with the frame rule. For example, we
cannot deduce from the axioms of the card-reader that the return action does not affect the
card-no attribute. That is because they are in the same agent and there is no locality axiom
to that effect. The important points here are that (i) it does not matter — we do not need
the assumption that return does not affect card-no; and (ii), that an implementation which
chose to reset card-no after returning the card to some null value would be a perfectly good
implementation, even a likely one.

The structuring principle says that whenever we need to make such constraints we must do
so by structuring the agents in a way which gives rise to the right locality axioms.
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