Defaults and Revision in
Structured Theories*

Mark Ryan'

Abstract

Starting from a logic which specifies how to make de-
ductions from a set of sentences (a ‘flat theory’), a way
to generalise this to a partially ordered bag of sentences
(a ‘structured theory’) is given. The partial order is
used to resolve conflicts. If ¢ occurs below v then v 1s
accepted only insofar as it does not conflict with ¢.

We start with a language L, a set of interpretations M
and a satisfaction relation I C M x L. The key idea
is to define, for each structured theory, a pre-order on
interpretations. Models of the structured theory are
defined to be maximal interpretations in the ordering.
They are shown to exist if the logic (L, M, I} is com-
pact.

A revision operator is defined, which takes a struc-
tured theory and a sentence and returns a structured
theory. The consequence relation has the properties of
weak monotonicity, weak cut and weak reflexivity with
respect to this operator, but fails their strong counter-
parts.

1 Introduction

Ordering sentences in a theory presentation may be
used to specify how conflicts between sentences are re-
solved. This idea has applications in artificial intelli-
gence (default reasoning) as well as in software spec-
ification. We show how to find consequences of such
structured theory presentations and how to revise them
with new and potentially conflicting information while
retaining consistency. Most of the paper is devoted to
the question of how to reason with structured theory
presentations.

This paper is entirely about finite sets of sentences,
possibly with structure. Perhaps it would be more cor-
rect to call them “theory presentations”. Structured
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theories should also then be called “structured theory
presentations” | but this is too long-winded. Therefore,
‘theory’ and ‘structured theory’ are used to abbreviate
‘theory presentation’ and ‘structured theory presenta-
tion’.

The paper is arranged as follows. First we give ex-
amples of the intended behaviour of structured theo-
ries (section 2). Then, in section 3, the logical set-
ting is introduced. Section 4 is the main section, and
is about the definitions required to produce the de-
sired behaviour, and their properties. Section 5 shows
how to revise structured theories with new and pos-
sibly conflicting information, and discusses properties
of the revision operator. Next, in section 6, we make
comparisons with other work on defaults and theory
revision. Finally, some applications are outlined in the
last section.

2 Motivating examples

Intuitively, a structured theory is a finite set of sen-
tences equipped with a partial order (but because the
same sentence can occur several times, each in a dif-
ferent place of the ordering, the formal definition is
more complicated (see section 4)). If the sentences are
mutually consistent then it 1s safe to ignore the par-
tial order. The models of such a structured theory are
just the models of the set of sentences. But if the sen-
tences conflict, sentences lower in the ordering are to
be treated as having greater weight or priority. This
does not mean that a sentence high in the ordering
can be ignored, even if it conflicts with sentences be-
low it; some ‘components’ of it may still be needed in
determining the models of the theory. One of the prin-
ciple aims of this paper is to formalise this notion of
component. The following examples illustrate this dis-
cussion, showing the intended behaviour of structured
theories. The reader can check them against his or her
intuitions. All of them work out successfully in the
theory described in this paper. For each example, first
we give the structured theory; then the flat theory to
which 1t is equivalent.



Example 2.1

-p
-p

This theory says: we want —p (remember, the bot-
tom sentences are the most important), and, subject
to that, we want as much of the import of p as possi-
ble. Since p is atomic, we can’t extract anything of it
which does not conflict with —p, so all we can deduce 1s
—p. But note, this analysis is not valid if p is replaced
by an arbitrary ¢, as example 2.2 shows.

Of course, the partial order is important here. If it was

the other way around, the structured theory would be

equivalent to p; if the two sentences were incomparable

in the ordering, nothing interesting could be deduced:
-p

= p p —~p) = T

P
The left-hand equation shows that p dominating —p is
equivalent to p. On the right, we see that if p and
—p are incomparable in the order then we must remain
agnostic about p. The idea is to extract what we can
from a structured theory without allowing contradic-
tions. Notice that this means that a structured theory
in which all the sentences are incomparable 1s not the
same as the flat theory formed from the same sentences.

Example 2.2
PAg
= peog
“pVTy

This is similar to the first example, since —pV-q is
identical to —(pAg) in the underlying logic (classical
propositional logic in this case). We want =(pAq), and
subject to that we want as much of pAq. What we can
have 1s either p or ¢ but not both.

Example 2.3
PAg

—pAg
-p

We want —p, and subject to that, as much of pAg as
possible. pAg does conflict with —p, so we can’t have it
all. But we can have the ¢ component. Of course the
ordering is significant:

I = pAg (-p pANg) = ¢
PAgQ
Example 2.4
rVq
[ = pATq
—q

Here, since pVq and —q are consistent with each other,
we can simply have them both and it doesn’t matter
how they are ordered:

—q
[ = pA-g; (m¢ pVg) = pAg
pVq
Example 2.5
V. p(x)
[ _  Jz.(=p(x)A
- Vy. (2#y—p(y)))
Jx. —p(x)

Of course, the ordering matters. If the two sentences
V. p(x) and Jz. —p(x) are incomparable in the order-
ing, then one can conclude that there is one element
whose claim to the property p is disputed, but that all
other elements have the property p.

(Ve.p(z) Fa.-p(x))
= de.Vy. (z£y—p(y))

Example 2.6
P q

N

—(pAq)

p—"q

There seems no reason to treat this differently from
example 2.2. In general, is it possible to squash trees
into linear orders in this way? The following example
answers this question negatively.

Example 2.7

p “pAg

N



It is not possible to reduce non-linear partial orders to
linear ones by zipping them up with As, since

L

Il
.

r

The intuitions for non-linear partial orders seem to de-
pend on whether the branches share non-logical lan-
guage or not. This is important in specification theory
applications (section 7).

These examples serve as a benchmark for the develop-
ment of the system for dealing with structured theories
given in this paper. The other important criterion to
apply to a system of structured theories 1s that of in-
dependence of the underlying logic. This means that
the system should not change the meanings of the con-
nectives or introduce hacks which interfere with the
mechanism of the underlying logic. Rather, it should
be defined ‘on top’ of it. For example, substitution of
logical equivalents at any point of a structured theory
should not change its meaning, as mentioned in the
discussion of example 2.2.

3 Prerequisites

The definitions we give in section 4 apply to any logic
which is given in terms of language interpretations and
a satisfaction relation, subject to being able to define
the standard notion of positive and negative occur-
rences of non-logical symbols. Such logics include clas-
sical, intuitionistic and modal logics, in their proposi-
tional and predicate forms; Horn clause logic; equa-
tional logic, action logic and a host of others. We
keep to this level of generality (that of concrete institu-
tions—see [3]) for most of this paper as far as the def-
initions and results are concerned. The examples are
mostly from classical propositional and classical pred-
icate logic.

In this section, some standard definitions are given to
which it will be useful to refer later.

Definition 3.1 A language L is (i) a finite set of log-
ical connectives, (ii) a (possibly sorted) collection of
non-logical symbols and (iii) a set of rules for form-
ing L-sentences. L considered as a set is the set of
L-sentences.

Definition 3.2 A interpretation system (M, IF) for a
language L is a set M of interpretations and a relation
(called satisfaction) IF C M x L.

Example 3.3 (Classical propositional logic) L
has (i) the connectives {A,V,—, — = L T}; a set

atoms(L) of propositional atoms; and (iii) the follow-
ing rules for sentence formation: if p € atoms(L) and ¢
and 1 are sentences then T, L, p, =¢, dAY, ¢Vib, d—
and ¢« are all sentences. M consists of assignments
of truth values to propositional atoms; if M € M then
M : atoms(L) — {t,f}. The satisfaction relation is
defined in the standard way:

MIFT

ML

M IFp ifft M(p) =t and p € atoms(L)
M =g iff Mo

MIF oAy iff MIF¢ and M -
MIEgvy iff MIF¢ or M IF o

M- ¢— iff M IF ¢ implies M I+
Mk ¢g—ip iff (M I-¢ iff M IF )

Example 3.4 (Classical predicate logic) L has (i)
each of the connectives of example 3.3 plus {V, 3}; (ii) a
set of predicate symbols, each with an arity n > 0, a set
of function symbols, also each with an arity n > 0, and
a set of variables; and (iii) the following rules for term
formation, formula formation, and sentence formation:

e if x is a variable, f a function symbol with arity

nandty,...,t, are terms then x and f(t1,...,1,)
are terms.
e if t, ... t, are terms, p a predicate symbol with

arity n, and ¢ and @ are formulas and x is a
variable then p(t1,...,t,), T, L, 2¢, ¢AY, ¢V,
¢—1, ¢, Jz. ¢ and V. ¢ are formulas.

e if ¢ is a formula with no free variables (standard
definition) then ¢ is a sentence.

Fach M € M has (a) a domain of individuals Dyy;
(b) for each predicate symbol p with arity n, a subset
M{p] of D%, (which means Dy X ... x Dy, n times);
(¢) for each function symbol f with arity n a function
MTf] from D%, to Dyr; and (d) for each variable # an
element M[[«] of Das.

MT-] is extended to terms by

Mf(ty, .- tn)] = MISICMED, - Mta])

for each function symbol f with arity n.

For each variable z of L, an equivalence relation ~, C
M x M is defined as follows: M ~, N if Dy = Dy
and for each predicate symbol p and function symbol
f, M[p] = N[p] and M[f] = N[f] and for each vari-
able y with the possible exception of 2, M[y] = N[y].
That is to say, M and N are alike in every way except
possibly in how they assign the variable z.



The satisfaction relation is defined as follows: if x 1s of
the form T, L, =¢, ¢AY, ¢V, ¢—, or ¢—1p, then
M I+ x according to example 3.3. Otherwise,

MIFp(ty, ... ty) if
(M1, ..., M[ta]) € M[p]
M I=Vez. ¢ if
N IF ¢ for each N s.t. M ~, N
M IFJz. ¢ if
N IF ¢ for some N st. M ~, N

We now return to standard definitions and a result:
Definition 3.5 A (flat) theory over a language L, or
an L-theory, is a set of L-sentences.

Notice that, as already mentioned, we do not require

theories to be consequence-closed sets of sentences.

Definition 3.6 Let ® be a theory. Then M I+ ® if
M |- ¢ for each ¢ € .

Definition 3.7 ¢ is a consequence of ®, or ® entails
¢, written ® F ¢, if for each M € M, M |F & implies
M IF ¢.

Simple though these definitions are, there are some well
known consequences.

Proposition 3.8 Let L be a language and F the conse-
quence relation defined from an interpretation system

(M, IF). The following properties hold of F:
¢, 0F ¢
O E

P, 0F ¢
P, oFy VEQ

QP UEY

1. Inclusion:

2. Monotonicity:

3. Cut:

As usual, ®, ¥ and &, ¢ abbreviate ® U ¥ and d U {s}
respectively. The horizontal rule means: if the top
sequent holds then so does the bottom one.

The last standard definition to consider is that of pos-
itive and negative occurrences of non-logical symbols
in formulas. The exact definition depends on the con-
nectives and their interpretations.

Example 3.9 Let L, M and I- be classical proposi-
tional logic (example 3.3) with p € atoms(L).
e p occurs positively in p.
o If p occurs positively (negatively) in ¢ then it oc-
curs negatively (positively) in —¢.
o If p occurs positively (negatively) in ¢ or in ¢ then
it occurs positively (negatively) in ¢AY and ¢Vip.

o If p occurs negatively (positively) in ¢ or posi-
tively (negatively) in ¢ then it occurs positively
(negatively) in ¢—1.

e If p occurs at all in ¢ or i then it occurs both
positively and negatively in ¢—.

e p does not occur in either T or L.

Example 3.10 In the case of predicate logic, if p is
a predicate symbol and 1, ...,t, are terms then p oc-
curs positively in p(¢1,...,t,). Each of the clauses for
the propositional connectives above applies. Moreover,
if p occurs positively (negatively) in ¢ then it occurs
positively (negatively) in Yz. ¢ and Jz. ¢.

4 Consequence for Structured theories

The purpose of this section 1s to define satisfaction for
structured theories, so that consequence for structured
theories can be defined by definition 3.7. As before we
assume we are working with a fixed language L and
interpretation system (M, ).

Intuitively, a structured theory is a finite collection of
sentences equipped with a partial order. But to cover
the case that the same sentence occurs several times in
different places in the theory, it is necessary to posit
a ‘carrier set’ on which the order is defined and whose
points are labelled by sentences.

Definition 4.1 A structured theory 7 over a language
L is a tuple (X, <, F') where

1. X is a finite set (the carrier set).
2. < is a partial order on X.

3. Fis a function mapping X to L-sentences.

The letters ® and ¥ were used for “flat” theories (def-
inition 3.5); we shall use ? and A for structured theo-
ries.

The intuitive meaning of the ordering is: if # < y then
the sentence F'(z) has greater priority (or more influ-
ence) than F'(y). This information is used when F(z)
and F'(y) conflict.

We want to define the models of a structured theory,
that is, to extend the satisfaction relation to structured
theories analogously to its extension to flat theories
in definition 3.6. Let 7 = (X, <, F') be a structured
theory over (L, M,IF). If all the sentences of 7 are
mutually consistent, then the models of 7 are just the
models of that set of sentences. The interesting case is
when sentences in 7 are inconsistent with each other
and we have to use the ordering to resolve the conflict.
In this case we cannot hope to satisfy all the sentences



but models of 7 should satisfy as many of them as
possible, taking account of their ordering.

The technique to be adopted is to order interpretations
of L according to 7, so that those higher up the order-
ing are better at satisfying 7. This ordering is written
C'. M CU N means N is at least as good as M at
satisfying 7. Models of 7 are then taken to be the
interpretations which are maximal according to C'.

The remainder of this section is structured as follows.
In subsection 4.1, we establish the need for another
family of orders on M, one for each sentence ¢. The
ordering corresponding to ¢ is written Cg4. Subsec-
tion 4.2 deals with examples and the definition of this
ordering. In subsection 4.3, C! is defined in terms of
Cys. The existence of models of structured theories is
shown in subsection 4.4. Finally, subsection 4.5 sum-
marises the definitions.

4.1 First ideas

As we have said, the task is to define an ordering C' in
terms of a structured theory 7. Models of 7 are then
defined to be the maximal elements of this ordering.
The main question addressed in this paper is how CU
is defined. If 7 were not itself ordered, this task would
be easier. For example, one might say M CI N if
N satisfies all the sentences of 7 that M does. But
7 1s ordered, and our definition must take account of
that. Consider again the interpretations M and N. If
M CU N, but there is a sentence ¢ in ? such that M
satisfies ¢ and N does not, then there must be a more
important sentence v which is satisfied by N but not
by M. Thus we might be tempted to define C as
follows:

Proposal 4.2 M C' N if V2 € X. M |- F(z) and
NI F(x) implies Jy < . M I F(y) and N IF F(y).

To see that this is wrong, consider the structured the-
ory given in example 2.3. In terms of definition 4.1, this
is the structured theory (X, <, F'} in classical proposi-
tional logic with the propositional atoms {p, ¢}, given

by:

e X ={1,2} with1<1,1<2and 2<2

e F(1)==pand F(2) = pNg
Graphically it is represented in figure 1(i). In such
“theory” diagrams, the arrows mean <; an arrow from
F(z)to F(y) means < y. A model of this theory is an
interpretation which satisfies =p and as much of pAq as
it can. Let (M, I-) be the usual interpretation system
for this logic (see example 3.3). An interpretation M of
M 1s specified by whether it satisfies the atoms p and

01

t 00,01
00 T
PAq t
11
11
1 T
-p 10 10

(i) (i) (iii)

Figure 1: A structured theory and candidate interpre-
tation orderings

q. Let us write 10 for the interpretation which satisfies
p but not ¢; 11, 01 and 00 are defined analogously.

Intuitively we expect the interpretation 01 to be the
only model of 7. To see this, notice that it must be
either 00 or 01 since —p is the most important sen-
tence of 7. Of these two 01 is better at satisfying 7
overall because, while neither of them satisfy pAgq, it
at least satisfies half of pAg. Further reasoning along
these lines results in the conclusion that figure 1(ii)
is the correct interpretation ordering for the theory in
question. There, the arrows mean CT.

But since neither of the interpretations 01 and 00 fully
satisfy pAg, and proposal 4.2 just looks at what sen-
tences are satisfied by the various interpretations, the
proposal cannot distinguish between 01 and 00. In fact,
according to the proposal C! is the order given in fig-
ure 1(iii). 01 and 00 are both maximal in this ordering,
so both would be models of 7 according to the proposal.

The problem is that we were not able to take account
of the fact that, while neither 01 nor 00 satisfy pAg, 01
is actually better at it than 00; at least it satisfies ¢,
which is a consequence of pAq. This thought leads us to
the idea that, given a sentence and an interpretation,
there 1s more we can say than whether the interpreta-
tion satisfies the sentence or not. We can compare two
interpretations as to the degree to which they satisfy
the sentence.

This intuition, about degrees of satisfaction, is for-
malised in the following subsection. The idea is to
define an ordering C, on interpretations (for each sen-
tence ¢) and use that to define C'. In subsection 4.3
we return to the question of ordering interpretations to
give models of structured theories.

4.2 Ordering interpretations by a single
sentence

Given a sentence ¢ and an interpretation M, we are
interested in how well M satisfies ¢. If M IF ¢, then



this is the best one could hope for; M satisfies ¢ to the
fullest possible extent. But if M I* ¢, all is not lost. It
may still satisfy some of the consequences of ¢.

Before considering possible definitions for Ty, it is
worth looking at some examples to see how it should
behave. The reader can check that the maximal inter-
pretations for each sentence are precisely the models
of the sentence according to the underlying logic. The
aim of Cy is to order the interpretations which do not
satisfy ¢ according to how nearly they do.

Example 4.3 Consider again classical propositional
logic with the atoms {p,q}. The interpretations are
{00,01,10,11} as before. If ¢ is pAg then C, is as

follows:
11
01 10
00

The point is that even if an interpretation doesn’t sat-
1sfy pAgq, it can do better than —pA—q.

Example 4.4 If ¢ is just p, then Cy is as follows:
10,11

00,01

Either a model satisfies p or it doesn’t. Notice that in
general Cy is a pre-order, i.e. reflexive and transitive,
but not necessarily antisymmetric. For here, 10 and 11
are equivalent as far as satisfying p is concerned, but
they are not equal.

Example 4.5 If ¢ is T or L, then the ordering is just
the one in which everything is equivalent, for no model
is any better at satisfying T (or L) than any other. In
the case of T it is because they all satisfy it. In the
case of L it is because, while none satisfy it, neither is
any model any better than any other.

Example 4.6 The ordering according to —p is simply
that of p turned upside down:

00,01

10,11

But the ordering for =(pAq) (or, equivalently, -pV—q)
bears little resemblance to that for pAg:

00,01, 10

11

It should be clear that the ordering is only concerned
with the interpretations which fail to satisfy the sen-
tence in question.

Example 4.7 This example shows the behaviour in
classical predicate logic. Suppose the language con-
tains the single unary predicate p, and ¢ is Va. p(z).
Then the ordering Cy4 looks roughly like this:

1/1, 2/2, 3/3,
4/4, 00;0/0

N

0/1 19 2/3 3/4 oo;l/co
[ A A
0/2  1/3  2/4 o0;2/

Pt

0/3  1/4 ooj;00/00

T

0/4 1,00/

0; 00/00

‘Roughly’, because there are many bits missing. Nota-
tion: m/n denotes the class of interpretations with n
elements of which m satisfy p. my; my/co denotes that
class with infinitely many elements of which there are
my satisfying p and ms not.

Example 4.8 If ¢ is Ju. p(x):

m/n if m>0
my;ms /oo if my>0

P NN

0/1  0/2 0/3 0;00/00

The intuition to be gained from these examples is the
following. The degree to which an interpretation sat-
isfies a sentence has something to do with the conse-
quences of the sentence which it satisfies. For example,
while 10 does not satisfy pAg it at least satisfies p,
which is a consequence. In example 4.7 the same anal-
ysis applies. 2/3 more nearly satisfies V. p(x) than



1/3, for it satisfies a consequence of Y. p(x) which the
latter fails, namely:

E'l‘ll‘zl‘g. (l‘l;él‘z/\l‘z;él‘g/\l‘gil‘l)
=iy (nFy2Ap(y1)Ap(y2))

which says ‘if there are three elements in the domain
then there are two elements in the domain which satisfy
p’: Thus one might consider the following definition for
Ly

Proposal 4.9 M Cy N, if for each 4,
dEY=(MIF¢ = NI

However, one can immediately see that not all the con-
sequences of ¢ are appropriate to take into account in
the definition of C4. Consider again example 4.3. p,
p—q and ¢ are all consequences of pAg, but none of
each other. Therefore proposal 4.9 gives the following
for Cpag:

11

/TN

01 00 10

This is wrong according to example 4.3. Indeed, it
turns out that under this definition Cy always has a
height of just 2. To be precise, if C4 is defined in this
way and the underlying logic has the property that for
each interpretation there is a sentence which picks it
out uniquely up to isomorphism (classical propositional
logic over a finite language has this property), then
M Cy N implies N I ¢ or M = N. To see this,
suppose M Cg4 N and let xy be the sentence which
characterises M. Since ¢ F ¢Vy and M |- ¢Vy, it
must be that N I ¢Vy,ie. NIFdor N =M.

The problem is that not all the consequences of ¢
should be taken into consideration in deciding whether
M Cpag N. In the case of pAg, only the consequences
in boxes are appropriate.

AN

What distinguishes these consequences of pAg is that
they are monotonic in p and ¢. That is to say, if a
model M satisfies such a consequence 1, then so does
the model N obtained from M by increasing the ‘exten-
sion’ of p or of ¢q. To define this we need to define pos-
itive and negative occurrences. As stated previously,
we assume that these are given by the underlying logic

(examples 3.9 and 3.10).

Definition 4.10 If ¢ is an L-sentence and p a non-
logical symbol in L,

1. ¢ is monotonic in p if 1t is equivalent to a sentence
in which p does not occur negatively.

2. ¢ 18 anti-monotonic in p if it 18 equivalent to a
sentence in which p does not occur positively.

3. ¢t and ¢~ are the sets of symbols in which ¢ is
monotonic and anti-monotonic respectively.

The justification for this terminology is as follows. One
may define the extension of a non-logical symbol p in a
model to be the set of tuples or worlds which satisfy p
in the model. (In the propositional case, if p is true in a
model then its extension is defined to be the singleton
{*}, otherwise it is &.) Extensions are naturally or-
dered by inclusion. Let us write M <P N if M and N
are exactly alike except that N has possibly a greater
p-extension than M. It follows that ¢ is monotonic in
pift (M <P N = (MI-¢ = NI ¢)), i.e increasing
p-extension in a model preserves ¢-satisfaction. Simi-
larly, ¢ is anti-monotonic in p iff (N <? M = (M I+ ¢
= NI+ ¢)).

Thus, the monotonicities of ¢ is a pair (¢, ¢~) of sets
of non-logical symbols such that, if in any model of ¢
the extension of any symbol of the first set is increased,
or the extension of any in the second set 1s decreased,
the resulting interpretation is still a model of ¢.

Example 4.11 Let (L, M) be classical propositional
logic over {p, ¢}.

@ ¢t ¢~
T, L wqt | {p, ¢}
P waqt | g}
q wqt | {p}
pAg, pVg | {p 4} @
p—q {4} {r}
peq (%) 0]

Definition 4.12 A consequence @ of ¢ is a natural
consequence (written ¢ D ) if it preserves the mono-
tonicities of ¢:

g Y if ¢FY, ¢t CyYt and ¢7 Cy”



Example 4.13 The relation E' among the ordinary
consequences of pAq is shown below.

g
Thus: pAq E! p and pAg E! pAg, but pAg ' p—q and
p ' pVq. Moreover, LE! ¢ iff ¢ = Lor ¢ =T.
Natural consequence is something like relevant conse-
quence; it stops us adding irrelevant disjuncts in our
conclusions. In passing, note the following properties
of Ef:
e Exchange; Contraction; Reflexivity.

e Monotonicity: if lang(®) N lang(¢)) = & and & FF
¥ then ®, ¢ E ¢

e Cut: if lang(®) Nlang(¥) = & and &, ¢ E? ¢ and
U ED ¢ then @, U Eb o).

Finally we can define C4. The definition is just like
proposal 4.9, but with E? instead of F.

Definition 4.14 M C, N, if for each ¥,

¢ E = (M- = N IF )

Proposition 4.15 For each L-sentence ¢, Cy is a pre-
order.

Proof Reflexivity is obvious. For transitivity, suppose
L Cy M LCy N, and let ¢ be such that ¢ E 4 and
L I= 4. Then, since L Ty M, M I~ 1. And since
MCy N, NIF. @

We finish this subsection with a few definitions and
results to reassure us that everything is according to
plan:

Definition 4.16
1. Ml:¢ M lfME(z) M’ and M’ z¢ M.
2. ME¢ M’ lfME(z) M'" and M’ E(z) M.
3. M is Cg-maximal if for every N e M, M Z4 N.
4. M is Cy-maximum if for every N e M, N Cy M.

Lemma 4.17 M is Cy-maximum iff (M IF ¢ or ¢ =
1).

Proof (If) If ¢ = L then every interpretation is Cy-
maximum. If M IF ¢ then M IF ¢ whenever ¢ E? .
Therefore, N Ty M for any N.

(Only if) Suppose ¢ # L and M I ¢. We show that
M is not Cg-maximum. Let N |- ¢. We show that
McCy, N. (i) M T4 N, since by first part N is Cy-
maximum. (ii) N s M, since ¢ F* ¢, N I ¢ and
M ¥ ¢. @

Lemma 4.18 If M I ¢ and N IF ¢ then M Ty N.

Proof (i) M C, N since N is Cy-maximum by
lemma 4.17. (ii) N Zg M, for ¢ F' ¢, N I+ ¢ and
M ¢. @

4.3 Ordering interpretations by a struc-
tured theory

Now finally we can define the interpretation ordering
induced by 7. The definition captures the flavour of
proposal 4.2, which is that if a sentence in 7 makes the
‘wrong’ choice of two interpretations then there is a
sentence with greater priority which makes the ‘right’
choice. But now, the choice that the sentence ¢ makes
is determined by C4. First some notation: C, shall
abbreviate Cp(,); similarly for =, and C,.

Definition 4.19 M C" N ifforeach z € X, M , N
implies there exists y < z such that M C, N.

More notation: M CF N iff M TV N and N ' M;
MI"NifENC " M; M 2" Nif N M.

Lemma 4.20 M C' N iff Ve € X. (M Z, N implies
y<ae MCy NandVze <y M=, N).

Proof (If) Immediate. (Only if) Suppose M CI' N
and M Z, N for some z. Let X' ={ye X | M C, N
and y < #}. X' # D since M CV N, and X' is finite
since X 1is finite. Let y be a minimal point in X'.
Then M Cy N, and if z < y then z ¢ X', so M [Z,
N. Either M Z, N or M =, N. Ift M [Z, N then
32" € 2.2/ € X', a contradiction since then z’ < y.
Therefore, M =, N. Q

Proposition 4.21 CT is a pre-order.

Proof Reflexivity is obvious. For transitivity, sup-
pose L TV M CV N, and let L Z, N. We shall show
L Ey N for some y < z.

Suppose L C, M. Either M &, N or M [Z, N. If
M C; N then L C, N, a contradiction. If M I, N,
let y» < x be such that M C,, N and M C, N for



z < y2 (lemma 4.20). If L (Z,, M, then let y < y2 be
such that L ©, M. Then y < xz and L Ty N follows
from L Cy Mand M Cy N. If L T, M, set y = .
Then y < z, and L C, N follows from L T, M and
MCyN.

On the other hand, suppose L Z; M and let 3 < =
be such that L Ty, M and L C, M for all z <
(lemma4.20). Again, consider separately the two cases
MCy,, Nand M Z,, N. If M T, N, set y = y1.
Then y < z, and L C, N follows from L &, M and
MC, N. If M Z,, N then let y < gy be such that
M Cy, N. Then y < %, and L Ty N follows from
LCy Mand MCy N. Q

The definition of - can now be extended to structured
theories analogously to definition 3.6 in the expected
way, as in proposal 4.2.

Definition 4.22 Let 7 be a structured theory over
L, and M an element of M. Then M IF 7 if M is
Cl-maximal.

This gives the interpretation ordering of figure 1(iii) for
the theory of figure 1(i). Moreover, for each example
in examples 2.1 to 2.7, one can show that the models
of the structured theory according to definition 4.22
are exactly those of the flat theory according to defini-
tion 3.6.

Definition 4.22 further overloads I-. (To determine
whether M I A, we have to check whether A is a
sentence, a flat theory or a structured theory and use
definitions 3.2, 3.6 or 4.22 accordingly.) Finally, con-
sequence 1s defined in the standard way:

Definition 4.23 Let 7 be a structured L-theory and
¢ an L-sentence. 7 F ¢ if for each M € M, M I+ 7
implies M |+ ¢.

Now we give some results to continue to get the feel
for the behaviour of structured theories. Naturally we
expect that the minimum sentence (if there is one) is
satisfied by models of the theory:

Definition 4.24 ¢ is minimum in 7 = (X, <, F) if
(X, <) has a minimum point 0 and F'(0) = ¢.

Proposition 4.25 Let 7 = (X, <, F') be a structured
theory and M an element of M such that M I 7. If
¢ is minimum in 7 and ¢ # L then M I+ ¢.

Proof Let 0 be the minimum point in X. F(0) = ¢.
Suppose for a contradiction that M I ¢. Since ¢ # L,
let N IF ¢. By lemma 4.18, M Cy N; in particular,
N Zo M. We show M I ? by showing M CV N. To
show M CU N, suppose x is such that M Z, N. Let
y=0. Then y < z and N Z, M. To show N Z' M,

let 2 =0. N M. If y < 2, then y = 0 since 0 is
minimum. M C, N since M Ty N. Q

4.4 Existence of models of structured the-
oriles

As stated, models of a structured theory ? are CT-
When

is 1t possible to find such maximal interpretations? In

maximal interpretations of the language of 7.

this section we show that, if the underlying logic is
compact, every structured theory has a model.

First, it is worth noting that there are simple cases of
structured theories with no models when compactness
fails.

Example 4.26 Let 7 be the theory

V. p(x)

|

domain is infinite A

[p] is finite

The bottom sentence is satisfied by an interpretation
with an infinite domain of individuals of which only
finitely many satisfy the predicate p. But the top sen-
tence says that all the individuals must satisfy p. This
is a theory in second order predicate logic; it is not
possible to express finiteness of the interpretation of
a predicate or infiniteness of the domain in first order
logic.

There are no models of this theory, because every can-
didate model M can be improved to obtain an interpre-
tation which is closer to being a model, ad nfinitum.
That is to say, for all M € M there is an N € M such
that M U N. To see this, suppose M pretends to be
a model of 7.

e If the domain of individuals of M 1is finite, then
construct NV by adding infinitely many new indi-
viduals which do not satisfy p.

o If M[p] is infinite, then construct N from M
by using the same domain but removing all but
finitely many elements from [[p].

o If M[p] is finite but the domain is infinite, then
N is obtained by adding one more element to [p].

In each of these cases, M CU N.

Now we turn to the proof that if the underlying logic is
compact (which second-order logic is not), then every
structured theory has a model. The proof strategy is to
use Zorn’s lemma to find CF-maximal interpretations.



Let L be a language and (M, IF) its interpretation sys-
tem, and let 7 = (X, <, F') be a structured theory over
L.

Definition 4.27 The logic (L, M, ) is compact if for
all sets of sentences & C L, & has a model if each of
its finite subsets has a model.

Definition 4.28 For each M, N in M, the (M, N)-
frontier, written fr(M, N), is the set of minimal ele-
ments of the set {z € X | M #, N}.

Lemma 4.29 For all M, N € M and x € X, either
M=; Nor3dy<z.yefr(M,N).

Proof {z € X | M #, N} is finite since X is, so it
has minimal elements. @

Lemma 4.30 M C!' N iff fr((M,N) # & and Vz €
fr(M,N). M C, N.

Proof (If) First we show M CU' N. Suppose z € X
with M Z, N. By lemma 4.29, 3y € fr(M, N) with
y < z. By hypothesis, M C, N. Next, we show N )
M. Let # € fr(M,N). Then N £, M, but for each
y<z, M=, N.

(Only if) If fr(M,N) = & then M = N, a con-
tradiction. Let # € fr(M,N). FEither M Z; N or
N Z, M. In the former case, Jy < x with M C, N;
since # € fr(M, N), y must equal z. In the latter case,
N Zy M and if M T, N then M T, N. Therefore, in
both cases M C, N as required. Q

Lemma 4.31 Let A be a non-empty chain in M with
no maximal element (i.e. for every M, N € N, if M #
N then M =V N or N U M; and for each M € N
there is an N € A such that M CU' N). There is a
non-empty set ¥ C X and a non-empty chain £ C N
such that

1. For each « € Y and M,N € £, if M ' N then
M C, N;and

2. For each ¢ € Y and M € [ there exists P € L
such that M ¥ P and M C, P.

Proof Let X' = {z € X | VM € N IM, My € N
(M cl My cl My and z € fI'(Ml,Mz))}.

If X = X’ let £ = AN. Otherwise, for each z € X 1 X’
let M, be such that, for all My, My € N, if M, CT
M, C' M, then = ¢ fr(My, M3). That such an M,
can be found follows immediately from the definition
of X'. Let Mx = max({M; | # € X L X'}); and let
L={MeN|MxCrM}. L+#Osince Mx € L.

Thus, whether X = X’ or not, we have that £ # &.
Also, £ is upwards closed (i.e. for all M, N e N, M €
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£ and M CV N imply N € £). Let My, My € £ with
My # Ms. Then either My T My or My TV M. In
either case, fr(My, Ma) # &. But, fr(My, Ms) C X/,
so X' £ . Let Y be the minimal points of X”.

1. Suppose ¢« € Y, M,N € £, and M U N. If
a € fr(M,N) then M ", N. If a & fr(M,N) and
M Z, N then Jy € fr(M,N).y < a by lemma
4.29, 50 a ¢ Y, a contradiction.

2. Suppose @ € Y and M € L. Since a € X',
E'Ml,Mz.M EF My EF M5 and a € fI'(Ml,Mz).
Since M CU M, CF My, M C, M; C, M>; and
since a € fr(My, Ms), we have M &, My T, Mo.
Let P = Ms. Q

Lemma 4.32 If (L, M,IF) is compact then for each
M € M, there exists N € M such that M CU' N and
N is CM-maximal.

Proof Let M € M. Weshow that {N | M C'' N} has
maximal elements. Let A" be a non-empty chain in that
set. By Zorn’s lemma it suffices to show that every
such chain has an upper bound. If A" has a maximal
element, that element is also an upper bound. Suppose,
then, that A" does not have a maximal element. Let YV
and £ be as given by lemma 4.31. Let Z =Y U {x €
X |Yy € Y.y £ }. We now show that for each z € 7
and M,N € £, M C" N implies M C, N. If z € Y,
this follows from lemma 4.31 part 1. If x € Z LY,
then Yy € Y.y £ x by definition of Z. By lemma 4.29,
Yy <oy e r(M,N) C X',s0Ty e Y.y<y, a
contradiction.

For each M € L let M* be {¢ | M IF ¢ and Jz €
Z.F(x) EY 4}, M* has a model, since it has M as a
model. Also, M CU' N implies M* C N*. For suppose
v € M*. Then M IF 4, and there 1s an # € 7 s.t.
F(x)E% 4. Since M C, N, we have N I 1. Therefore,
e N*.

Let @ = UMeﬁ M*. ® has a model, since every M*
and therefore every finite subset of ® has a model, and
the underlying logic is compact. Let K |- ®. It remains
to show that VM € £. M C' K, ie. that K is an
upper bound. Since £ is a non-empty upwards-closed
subchain of A/, it is sufficient to consider the case M €
L. Let M € L. The fact that M* C & implies that for
eachz € Z, M C,; K. Suppose M £, K. Then z &€ 7.
We require that M C, K for some y < «. Since z ¢ Z,
Jy € Y.y < z. We now show that M C, K for every
y € Y, completing the proof. By lemma 4.31, pick P
such that M U P and M Cy P. It suffices to show
that P C, K. Suppose F(y) F" ¢ and P IF 9. Then
Y€ P* soy € ® so KIFq. Q



As an immediate corollary, we get:

Proposition 4.33 Every structured theory 7 over a
compact logic has a model.

Proof By lemma 4.32, C' has maximal elements.

A consequence of this result is that contradictions can
never be derived from a structured theory, not even
the contradictory one! Indeed, nothing can be derived
from the theory with one sentence which is L. That
i1s because every interpretation is a model of that the-
ory. This may come as a surprise, but really it is quite
rational.

Proposition 4.34 If 7 = ¢ then ¢ # L.

Proof Let M I-7. Since M |- ¢, ¢ £ L. Q

4.5 Summary of definitions

In this subsection we summarise the position so far. We
started with a logic given in terms of a language and
a set of interpretations in the standard way. Struc-
tured theories consist of a poset of points, each one
labelled by a sentence in the language (definition 4.1).
To define the models of structured theories, we first
define, for each sentence ¢ in the language, an order-
ing on the interpretations written Cy (definition 4.14).
M Cg4 N intuitively means that N satisfies ¢ at least
as well as M. To define Cy4, we need the notion of
natural consequence (definition 4.12). Then we define
the ordering C! (definition 4.19). M CU' N intuitively
means that N is as good as M at satisfying 7, taking
account of 7’s own ordering. Finally, models of 7 are
the C'-maximal elements, whose existence is guaran-
teed by lemma 4.32, and consequence is defined in the
standard way (definition 4.23).

5 Revision of Structured theories

Unlike the case for flat theories (see [2] and section 6 of
this paper), revising structured theories with new and
potentially conflicting information is easy. If ¢ is to
be incorporated into 7, the resulting theory is 7 with
a new bottom element labelled by ¢. Proposition 4.25
guarantees that the revision is successful (i.e. that 7

¢ F ¢ unless ¢ = L).
Definition 5.1 Let 7 = (X, <, F) be a structured
theory over L and ¢ an L-sentence. Pick any name a
not in X. The theory 7 * ¢ is (X', <, F') where

1. X' = X U{al,

2. < =< U{(a,») |z € X'}, and

3. F'(2) :{ ?(x)

fx=a
otherwise
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Definition 5.2 Structured theories 7 and A over L
are extensionally equivalent, written 7 = A, if for each
MeM,

MIF? iff MIFA

Example 5.3
P
p T PAg
T =  pAg, but q 2 T
q T —pVyg

“pVg
This 1s quite a coarse relation which does not capture
the “intensions” of 7 and A. 7 = A does not imply
7T x¢p = Ax¢, as the example shows. However, if 7 F ¢
we would not expect that revising 7 by ¢ should change
the set of models:

Proposition 5.4 If 7 F ¢ then 7 =7 * ¢.

Proof Let 7 = (X, <, F) and X' = X U{a}. Suppose
M IF? and M IF ? % ¢, i.e. M =1*? N for some N.
We will show M CU N, contradicting M I- 7. First,
notice that M IF ¢ follows from 7 F ¢ and M IF 7.

1. M CV N. Suppose M [, N for some z € X.
Since M C'™¢ N and x € X/, Jy€ X'.M C, N.
Moreover, y # a because M Ty N implies M I ¢
(lemma 4.17), a contradiction. Therefore, y € X.

2. N ZU' M. Since N ZV*? M, there is # € X’ such
that N Z, M and for all y € X’ with y < =z,
N iZy M. Moreover, x # a since N C4 M (which
follows from M I+ ¢ and lemma 4.17). Therefore,
r € X. Since X C X', it follows that Yy € X.y <
x implies N &, M.

Conversely, suppose M I=? +¢ and M I 7, i.e. M U
N, some N. Suppose (lemma 4.32) that N is maximal
in the set {N | M =V N}, i.e. N I ?. By proposi-
tion 4.25 we have that M I ¢. Therefore M =4 N.
We now show M C'*® N, thus proving M I ? ¢, a
contradiction.

1. M " N. Suppose € X' with M Z, N. Since
MELCy N,z #a, ie,z €X. Pick y <« with
MrCy N. Then y € X',

2. N Z™ M. Since N V' M, 3z € X. N ' M
and Yy € X with y < =, N £, M. Moreover,
z € X', so it suffices to show that Yy € X', y < «
implies N £, M, i.e. that N i M, which follows
from M =4 N. @

We also obtain weak analogues of proposition 3.8:



Proposition 5.5

1. Weak inclusion: if ¢ # L then 7 x ¢ F ¢

TE¢ TEY
2. Weak monotonicity: ————
TxQFE Y
Tx90E 7E
3. Weak cut: $rY i
7 EY

These principles are accepted as being requirements
which a default system should have (see for exam-

ple [6]).

6 Comparison with other work

6.1 Default logic

The idea of ordering interpretations and considering
maximal elements (or minimal elements, depending on
how the ordering is oriented) is the basic idea in cir-
cumscription [8]. There, one reasons with a theory in
predicate logic together with a set of predicates to be
minimised, and considers only the models of the theory
which have minimal extensions of the specified predi-
cates. Y. Shoham [11] first ordered interpretations ac-
cording to more general criteria, and this idea is now
widespread in the literature [6, 7, 12].

Our contribution 1s to extend the idea to structured
theories over an arbitrary logic. Partially ordered the-
ories have been studied before; for example, in [13], a
computational approach is taken for a Prolog-like lan-
guage. This paper provides a more general setting.

6.2 Theory revision

In [2], Géardenfors lists eight postulates which a revi-
sion operator * should have. In that work the revision
operator takes an ordinary (flat) theory closed under
consequence and a sentence. and returns an ordinary
closed theory. The revision operator of definition 5.1
takes a structured theory and a sentence, returning a
structured theory. Therefore direct comparison is not
possible. Instead, we rewrite Gardenfors’ axioms sys-
tematically into a form against which we can check our
approach. The result is that our definitions satisfy all
the axioms except in their treatment of contradictions.
The full results with proofs are described elsewhere [9];
here is a summary.

As well as the % revision operator, in Gardenfors” work
there is a + operator which simply adds the sentence
and closes under consequence. K + ¢ is {¢p | K U
{é} E ¢¥}. K is a consequence-closed theory. The
eight postulates are:

12

K*1 K * ¢ Is a consequence-closed theory

K*2 ¢€K*o

K*¥3 K+éCK+¢

K¥4 K+¢CKxdif-d¢K

K* Kx¢=Liff ¢ =1

K*6 K *¢ = K %1 whenever F ¢—1)

K¥T K+ (300) C (K %6) + 0

K*8 (K #0) 4+ C K+ (¢A0) iff ~) & K # &

Notation: Given a structured theory 7, let ?/ be a
flat theory such that ?/ = ?. Thus, f is an operator
which non-deterministically flattens a theory, keeping
exactly the same models. (The question of whether
there always is an equivalent flat theory is still under
investigation. Proposition 4.33 is a necessary condi-
tion, and examples 2.1 to 2.7 show there usually is.)
Given two sets of sentences ®; and @5 over a logic F,

Gardenfors’ axioms are re-written in the following way:

o K + ¢ is rewritten to 7/ U ¢.
o K % ¢ is rewritten to (7 * ¢)/.

e other occurrences of K are rewritten to 77,

Under this procedure the axioms become:

K*1 7 % ¢ Is a structured theory

K*2 76 F ¢

K*3  (7x¢) <77 U{¢}

K*4 77 U{¢} < (7x¢) if 7 H ¢

K*5 (7#¢) = Liff¢ = L

K*6 746 = 741 if F ¢peth

K*T - (2(on)] < (746)) U {9}

K*8  (75¢) U {0} < (7x(dAg))! if 74 B —p

In the context of structured theories, axioms K*1, K*2,
K*3, K*6 and K*7 all hold true. K*4 is true only if
¢ # L (for recall that ? x L = 7). Similarly, K*8 is
true only if $A £ L. Half of K*5 is true only because
(? * ¢)? is never L.

7 Applications

In the introduction two application areas were men-
tioned, specification theory and Al. Also, two types of
activity have been considered, reasoning with defaults
and theory revision. There 1s space here only for a
very brief look at how reasoning with defaults can be
applied in the areas mentioned, and an even briefer
look at specification revision at the end.

7.1 Defaults

In Al logics which handle defaults are used to allow
consequences to be drawn which are not strictly war-
ranted by the facts at hand. One can consider this to



mean that the sentences expressing the defaults have
a weaker ‘strength’ or ‘priority’ than the known facts.
The well-known example about birds and penguins is
a situation in which several defaults are available with
a known heuristic for priorising them. Therefore it can
be seen as a theory in which sentences have different
strengths.

The main topic in default reasoning is: how should
conflicting defaults be handled? In most frameworks
for default reasoning there is a distinction between ‘fac-
tual” information and ‘default’ information, and little
doubt about what to do when a default conflicts with
a fact. The difficulty arises when a default conflicts
with another default. The example about birds and
penguins may be presented as follows:

Facts: Va(p(z)—b(x)).
Defaults: Va(p(x)——f(z)) and Ya(b(z)—f(2)).

Let @ be this theory. The task is to show:
®,b(t) F f(?) @, p(t') E = f(t)

One can distinguish two approaches in the literature
for solving this problem. The first says: there is no
solution to the problem as it stands; the second default
must be rewritten to something like

Va(b(z)—f(x) unless p(x))

The ‘unless’ connective is to resolve the conflict. The
following formalisms are examples of this approach:
circumscription; Reiter’s default logic; Poole’s default
logic. There are many others. The equivalents of
the ‘unless’ connective are, respectively: abnormality
predicates; the consistency check in default rules; con-
straints.

and

The second approach says: this problem has got a so-
lution in the way it is presented. One must invoke the
specificity heuristic for determining that the first of the
two defaults must take precedence when both are appli-
cable. Examples of this approach include: Veltman’s
update semantics [12]; inheritance networks [5].

Both of these approaches can be taken in structured
theories.

7.1.1 ‘Unless’-like connectives

the various ‘unless’-like
connectives in the literature are there in order to pri-
orise defaults, and hence to resolve conflicts between
them. Structured theories are simply a cleaner way of
doing this.

The claim in this section is:
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b)) b))
} }
Py P ) ,
A ORI
p(x)—b(a) () —b)
b1 n(t)

Elsewhere [9] we show that there are rules for trans-
lating default theories in all the usual formalisms with
‘unless’-like connectives into structured theories.

7.1.2 Inheritance

On the above analysis, the way of representing the
fact that all penguins are (by definition) birds was
Va(p(x)—b(x)). The key idea for this section is: con-
sider the theory of birds and the theory of penguins.
They have the (propositional) axioms f and = f respec-
tively. The theory of penguins inherits the theory of
birds, as penguins are a special case of birds. In terms
of structured theories, this means that the theory of
penguins is obtained by revising the theory of birds
with the new axioms which apply to penguins—in this
case, = f. It therefore looks like

f

-f
from which, of course, we deduce =f (example 2.1).

This idea has great applicability in specification theory.
Consider for example a lift (elevator) system, whose
components consist of doors, buttons, indicator lights
and so on. Here we will focus on just one tiny aspect of
its operation—the events which illuminate and extin-
guish its indicator lights. (See [10] for more details.)
The lift 1s made of several buttons, as well as many
other components. Crudely speaking, all lifts are but-
tons (with loads of extra stuff). This structuring is
used to order the axioms of the lift. Lights are illu-
minated by pressing the buttons; therefore one might
expect the axiom [press;]lit;, which says that after the
ith button is pressed the ith light comes on. (This is an
axiom in modal-action logic; see e.g. [4, 1, 10] for fur-
ther details.) Tt is also true about lifts that the lights
are off whenever the lift is at the relevant floor, even if
the button for that floor has just been pressed. Thus:
fl;—=lit;. These axioms conflict, so which is right?
The answer of course is that both are right; [press;]lit;
is a true default for light/button combinations (they
certainly do this in isolation), but it can be overridden



by axioms with greater strength in the specification.
The structured theory looks like this:

[pres.si]liti :

fl; ——lit;

This shows that [press,]lit; gets overridden by fl;—-lit;
if there is a conflict. The full treatment of this exam-
ple is lengthy and will be given elsewhere. The crucial
point to note here is that the ordering of sentences
in the structured theory comes from the inheritance
hierarchy. The other point to note is that inheritance
hierarchies are generally non-linear and the question of
whether the branches share non-logical language or not
is determined by the mode of interaction of the com-
ponents. Hence the remark about shared languages in
example 2.7.

7.2 Specification revision

Revising old specifications is a typical way of making
new ones, in software engineering and elsewhere. For
example, a Metro car was conceived as a Mini but with
a bigger engine and some other changes; the important
point 1s that most, but not all, of the features of the
Metro are just those of the Mini. Of course the new fea-
tures introduced will in general conflict with what was
there before; if they don’t, then the ‘revision’ is merely
a matter of enrichment. Typically one does not know
what features of the old specification have to be aban-
doned to ensure the consistency of the new one. Revi-
sion in terms of structured theories means placing the
new sentences in the most important position, thereby
weakening the status of previous sentences there. The
formal definition was given in section 5.
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