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Abstract

The standard theory of belief revision—known as the AGM theory after its authors, C. Al-
chourrdn, P. Gardenfors and D. Makinson [3]—suffers from at least two disadvantages. One is
that it represents belief states as infinite objects, namely deductively closed sets of sentences.
Another is that existing belief revision models make too strong assumptions about what in-
formation is available to guide revisions. A consequence of this is that repeated revisions are
impossible.

In this paper, we show how to use ordered theory presentations to represent belief states!.
Ordered theory presentations are theory presentations equipped with a partial order. In this
paper we are only concerned with a special case, in which the sets are finite and the order is
total, or linear. We define a revision operator, which is shown to satisfy some, but not all, of
the AGM postulates. No information other than that encoded in the OTP is needed to effect
the revision; this makes repeated revision easy.

1 Introduction

The central question in belief revision is the following: given a belief state and a sentence, how
should one obtain a new belief state in which the sentence is #rue, but which preserves as much of
the old belief state as possible? In other words, one wants a function

* : belief states x sentences — belief states
such that
1. ¢ is true in 7 * ¢; that 1s, the revision has been cffective; and

2. given this constraint, 7 * ¢ contains ‘as much’ of 7 as 1s consistent; that is, old beliefs persist
through revisions if they can.

The case of interest, of course, is that in which —¢ is true in 7, so that the revision is more than
just refinement, or the addition of compatible information. We also hope that

3. 7 % ¢ does not contain any extraneous information which was present in neither 7 nor ¢.

In the above requirements, some things are easy to formulate and some are not. We assume that
any satisfactory representation of belief states comes with a function |- | which takes a belief state
and returns the set of sentences true in it. |7] is called the extension of 7. But formalising the ‘as
much’ requirement and the requirement of no extraneous information (numbers 2 and 3) is not so
easy, and is the subject of this paper.
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Belief revision has obvious applications in artificial intelligence (eg. robotics), computer science
(eg. deductive databases), the philosophy of science, social theory and so on. It also has applica-
tions beyond the idea of revising ‘beliefs’. For example, in specification theory and in Al there is
the well-known frame problem to do with the semantics of actions. Given (the representation of)
a state of a system and the post-condition of an action performed in the state, what is the state
which results from performing the action? The same requirements on the revision function apply
here too: the post-condition should be true in the resulting state, which (given this constraint)
should preserve as much of the original state as possible.

We begin the next section by describing the standard theory of belief revision, known as the
AGM theory. The AGM theory suffers from several disadvantages. One is that it represents belief
states as infinite objects, namely deductively closed sets of sentences. Another is that existing
belief revision models make {00 strong assumptions about what information is available to guide
revisions. A consequence of this is that repeated revisions are impossible.

We propose representing belief states by linear ordered theory presentations instead of by
theories. Definitions and examples will be given. The result is a finite representation of belief
states. The revision operator is shown to satisfy some, but not all, of the AGM postulates. The
counterexamples for the AGM postulates which fail are motivated. The important point is that
no information other than that encoded in the OTP is needed to effect the revision; this makes
repeated revision easy.

The paper is organised as follows. The AGM theory is described in the next section. Section 3
describes the properties which a theory of belief revision should have. The notion of ordered theory
presentations (OTPs) is introcuced in section 4, which is the main section. Sections 5 and 6 discuss
the properties of the revision operator on OTPs; and further examples are given in section 7.

2 The AGM theory

The standard theory of belief revision—known as the AGM theory after its authors, C. Alchourrén,
P. Gardenfors and D. Makinson [3]—models belief states as deductively-closed sets of sentences.
More recent developments of the AGM theory are described in S. O. Hansson’s thesis [4]. Tt
describes a small set of postulates which any belief revision operator should satisfy (see below).
If K is a belief state and ¢ a formula, then K % ¢ is a belief state, the result of revising K with
¢. As already noted, the case of interest is when —¢ € K, that is, when the revising sentence
conflicts with the current belief state. We suppose we are utilising classical logic with the usual
connectives, and the usual entailment relation |=.

Notation 1
1. Let ® be a set of sentences. Cn(®) ={¢ | ® E ¢}.
2. L 1s the set of all sentences in the language.
3. K4+ ¢=Cn(KU{¢}).
The AGM postulates are the following:

K1 K x¢ is a deductively-closed theory;

K2 ¢ € K *¢;

K3 Kx*x¢C K+ ¢;

K4 1If -¢ ¢ K then K 4+ ¢ C K * ¢;

K5 K x¢ =L implies¢ = L;

K6 If ¢ <t then Kx¢ = K * ¢

K7 Kx(pAy)CK+*¢+

K8 If ¢ & K¢ then Kx¢g+ ¢ C K *x(¢dA).



K1 says that K * ¢ should be a belief state. K2 says that the revision should be successful,
i.e. the resulting theory should at least contain ¢. The third axiom says that K % ¢ should have
no more than what we would get by just adding ¢ set-theoretically and closing under entailment.
Of course, if ¢ is inconsistent with K then adding it in that way would yield the whole of L (the
theory with every sentence in it). K4 asserts that if ¢ is consistent with K then we get precisely
the result of adding it set-theoretically. We should point out that this is one of the (two) axioms
with which we take issue in §6. Kb says that the revision yields the contradictory theory L only if
¢ is inconsistent. This is not just that ¢ is inconsistent with K, but is inconsistent on its own. The
converse, that revising with an inconsistent sentence yields the inconsistent theory, is guaranteed
by K2. K6 says simply that revising with logical equivalents yields the same theory.

K7 and K8 are more complicated, approximating what happens with repeated revisions. They
are analogues of K3 and K4.

Note that K7 and K8 do not contain expressions like K * ¢ * 1), and therefore do not constrain
repeated revision in any explicit way. The only constraints on repeated revision are those inherited
from the more general case of revision which K1-8 describe.

We submit that the AGM axioms to be neither sound nor complete with respect to intuitively
rational belief revision. Of course such a statement is necessarily imprecise, because ‘intuitively
rational’ belief revision is not amenable to mathematical description. The argument to show
lack of soundness consists of ‘counterexamples’ to K4 and K8 later in the paper. (Again the
scare quotes show that these are not counterexamples to any fully spelled-out conjecture.) The
argument against completeness is the following proposition, which shows that K1-8 admit revision
functions which have no element of the ‘persistence’ requirement (number 2 above).

Proposition 2 The revision function

o (K+¢ if-6¢gK
Kx¢= { Cn{¢} otherwise

satisfies axioms K1-8.

Proof Kl1-4 and K6 are immediate.
K5 Suppose K x¢ = L. By K3, K + ¢ = L, so =¢ € K. Therefore, K x ¢ = Cn{¢}, so ¢ = L.

K7 Suppose =(¢Ay) € K. Then K*(¢A)) = Cn(dpAy). If =¢ € K then (K*¢)+1 = Cn(dAY);
otherwise it is (K + ¢) + v, which contains Cn(¢ A ¥).
Otherwise ~(¢AY) ¢ K, andso m¢ & K. Kx(¢A)) = K+(pAY) = (K+¢)+¢ = (K*¢)+¢.
K8 Suppose =t € K * ¢. Suppose also that ¢ ¢ K. Then K x ¢ = K + ¢. Therefore,

Kx¢p+¢ = K+¢+¢. Also,since 70 & K *¢ and K x¢p = K + ¢, we have that = ¢ K +¢
and therefore (¢ A ) ¢ K. Therefore, K* (¢ Ap) = K+ (¢ Avp) = K + ¢+ ¢, as required.

Now suppose =¢ € K. Then ~(¢A¢)) € K, 80 Kx¢p+9p = K+¢+1 = K+(¢AY) = K*(dAY).
&

Of course there are more interesting functions satisfying the axioms. The following two are the
most important in the AGM literature: partial meet revision; and revision by epistemic entrench-
ment.

2.1 Selection functions

Suppose K is a belief state and ¢ is a sentence other than L. Let

K

¢ = the C-maximal elements of {K' C K

_'¢ ¢ [{}a



that is, the set of maximal subsets of K which are consistent with ¢. K|4; may be pronounced ‘K
without ¢’. The operation of partial meet revision assumes a selection function Sx which selects
some of these subsets. Then revision is defined by

- fC(NSk(K|g9) U @) ifo# L
Kx¢= I

otherwise.

That is to say, if ¢ # L it is the intersection of those ¢-consistent maximal subsets chosen by
Sk with ¢ added set-theoretically. If ¢ = L it is simply L, the inconsistent theory (the set of all
sentences).

It should be clear that this is unsatisfactory, since the whole problem of how to make a revision
has just been packaged up in the existence of a selection function, and has not been solved at all.
Obviously, the selection function must depend on K. Therefore, we need not bother with the
information K alone provides us, since everything we need might just as well be given by this
magical S! The drawback of coding everything in S is that repeated revisions are then impossible.

There is a limiting case of partial meet revision, in which Sk (K |4, ¢) is always a singleton. This
case is known as maxichoice contraction. There is another limiting case in which Sk (K|, ¢) =
() K4, the intersection of all the candidate theories, which is known as full meet revision. The
first of these i1s unsatisfactory for the same reason as the general case, namely that the selection
function remains to be defined. (It has other, worse, problems too, detailed in Gardenfors’ book.)
The second limiting case does not have this problem, and is worth spelling out in full, since it
fully specifies how to carry out a revision without the need for extra information. According to it,

K*qf):{%”(ﬂfw Ud) ifé# L

otherwise.

It is straightforward to check that this definition satisfies the postulates K1-K8. But there are
problems. Consider, for example, how to revise Cn({p, ¢}) with —p V —¢. Intuitively, there are at
least three plausible answers: Cn({p}), Cn({¢}) and Cn({p < —¢}). Full meet contraction gives us
the last of these, because no information is available to chose whether to give up p or to give up gq.
But, in practice there may be criteria for choosing to give up one rather than the other. This is
what leads to consideration of selection functions, since they could encode the extra information
required. But then, as already remarked, repeated revision is impossible. The moral we draw from
this situation is different. It 1s that deductively closed theories are inadequate as representations
of belief states. We return to this point later, after considering the other main way of providing
the information necessary to guide revisions, namely epistemic entrenchment orderings.

2.2 Epistemic entrenchment

Revision by epistemic entrenchment is effected as follows. First we require an epistemic entrench-
ment ordering on the current belief state. This is a linear pre-order on the sentences in the state,
which represents the degree to which they are believed. Those less entrenched according the or-
dering are dispensed with more readily in the case of a revision which conflicts with the current
state. An epistemic entrenchment ordering for a belief state K must satisfy the following axioms:

E1l TIf¢ <k ¢ and ¥ <g x then ¢ <x x (transitivity);
E2 If ¢ = ¢ then ¢ <k ¢ (dominance);
E3 Either ¢ <x ¢ A9 or ¢ <g ¢ A (conjunctiveness);
E4 If K is consistent then ¢ <x ¢ for all ¢ iff ¢ € K (minimality);
E5 TIf ¢ <k ¢ for all ¢, then |= ¢ (mazimality).
As in the case of the K postulates, these axioms are intended to encode rationality constraints on

what an epistemic entrenchment ordering might be. For example, E2 says that it is always better
to give up logically weaker sentences during the course of a revision; therefore, these should be



less entrenched. E3 says that giving up a conjunction is at least as hard as giving up either of the
conjuncts. Taken together, axioms E1-E3 imply that <x is a linear order, that is, either ¢ <x ¢
or ¥ <x ¢ (or both). E4 says that a sentence is minimally entrenched in K iff it is not in K. Eb
says that just the tautologies are maximally entrenched.

Given a belief state K, an epistemic entrenchment ordering <x on K, and a sentence ¢, the
revision of K by ¢ is given by

K*QSI{E”(W)EIH ¢ <k ~¢VUIU{s}) if¢#£ L;

otherwise.

(< is the usual strict counterpart of <, defined by: ¢ < ¢ if ¢ < ¢ and ¢ £ ¢.)

Full motivation for the K and EE axioms, as well as for the definition of % in terms of <, can
be found in Gardenfors’ book [3].

We now summarise the main weaknesses we have described of the AGM theory. Belief states
are represented as deductively closed theories. This means that they are (in general) impossible to
write down fully, or to store on a computer. Moreover, as noted, they are incapable of representing
the necessary information required to chose between alternative revisions. Therefore, extra infor-
mation in the form of a selection function or an EE ordering is required. This information is not
deemed part of the belief state, and is lost during the revision, making further revision impossible.
It is worth pointing out that this means that the real nitention of axiom K1 is not satisfied by
these revision functions. Its intention is that after a revision we should end up with an object
of the same type as the one with which we started. Obviously, both partial meet revision and
revision by epistemic entrenchment fail this requirement. In those cases we start off with a pair,
respectively of type (K, Sk) and (K, <k), and end up with something of type K.

There are some proposals for modifying the AGM theory to solve some of these problems. For
example, some work has been done on theory base revision to address the problem of the infinite
nature of deductively closed sets of sentences. In that work, belief states are represented as finite
sets of sentences (theory bases or theory presentations) [1, 5, 9]. But each of these authors assume
the existence of something like a selection function or an EE ordering, so are subject to objections
on those grounds. There are proposals of non-deterministic revision [6], which alleviate the need
for a selection function, but they rely on infinite belief state representations.

There are proposals to allow repeated revision using EE orderings, either by keeping a single
EE ordering for all belief states or assuming the existence of a function which, for every belief
state, gives an EE ordering [10, 13]. But as neither the single ordering nor this function is itself
revised in the course of belief revisions, it is easy to find examples which are in contradiction with
intuitions about iterated belief change [4].

Another modification of the AGM theory which allows EE orderings to be revised is given by
H. Rott [11]. He defines revision of EE orderings as follows.

Y <icwp X — 0 < ¢ — x.

However, as he points out, this fails to capture much of the intuition of repeated revision because
any further revision of K * ¢ always includes ¢.

3 Criteria for belief revision

In this section we enumerate what we claim are the criteria by which to judge a theory of belief
revision.

1. Finite representation of belief states.
2. Persistence.
3. ITteration: what you put in is what you get out.

4. The “intentions” behind the K axioms of AGM.



The criterion of finite representation means that all belief states can be explicitly written down
or represented on a computer. The advantages of this should be easy to see; one in particular is
that one can give examples of belief revision in action! (See section 7.)

Persistence means that as much of the former belief state should survive a revision as possible.
We rule out revisions like the one of proposition 2.

The iteration criterion says that you should get out of a revision an object of the same type
as you put in. As mentioned, this is violated by AGM, since you put in either an EE ordering, or
a theory coupled with a selection function; but, all you get out is a theory. We call this iteration
since, if it obtains, it guarantees that revisions may be repeated. Its absence is a serious problem
in AGM.

The last criterion, concerning the K axioms of AGM, is deliberately expressed in a vague way.
Obviously, if belief states are not represented as deductively closed sets of sentences then it is
impossible to test them literally. Also, as we have noted, they do not specify what should happen
under repeated revision, in terms of expressions of the form K * ¢ x 1. This is presumably because
the AGM models do not support repeated revision. Moreover, for reasons which we will discuss
in section 6, we dispute two of the AGM axioms. In view of these reasons, we can only say that
something like the intention of the AGM axioms is desirable.

The AGM axioms K1-8 rely on a particular representation of belief states (namely, deductively
closed sets of sentences). Therefore, direct comparison with theories of belief revision which use
other representations of belief states 1s impossible. To overcome this we can we rewrite the axioms
in a more general way, which assumes only the following:

1. A set of belief states, together with a subset of ‘contradictory’ belief states.
2. A function # (revision) which takes a belief state and a sentence to a belief state;

3. A function |- | (extension) which takes a belief state and returns the set of sentences true in
it.

Here are the axioms rewritten in this way. We will write & for a typical ‘abstract’ belief state.

K1 K x ¢ is a belief state;

K2 ¢ e|Kx9l;

K3 [Kxo| C K|+ ¢

K4 If ~¢ ¢ |K| then |[K|+ ¢ C |K * ¢|;

Kb K x ¢ is contradictory implies ¢ = L;

K6 If = ¢ < 4 then |[K*¢| = |K *v|;

K7 K * (6 AY)| C K|+

K8 1If =) & |K * ¢| then [K * o]+ v C|K * (¢ A ).

4 Ordered theory presentations

Here we present a system for belief revision which satisfies each of the criteria described above.
Belief states are represented by ordered theory presentalions, which were introduced in [12]. The
reader unfamiliar with that paper is at no disadvantage, but should ignore the remainder of this
subsection, skipping to section 4.1 below. The following explanations will be of use to readers
familiar with [12].

In that paper, a ‘structured theory’ was defined to be a finite, partially ordered set of points
each of which is labelled by a sentence in the language. We have since changed the name of
these objects to ‘ordered theory presentations’, because what they really are is a way of using an
ordering on a set of sentences to present a theory. Thus, they are theory presentations? equipped
with a partial order.

2Theory presentations are sometimes also called theory bases.



Here, we are interested only in the linear case, that is to say, in the case that the order is total.
Thus, we can simplify the definition, letting linear ordered theory presentations be simply finite
sequences (or lists) of formulas.

4.1 Intuitions

A (linear) ordered theory presentation is a finite list of formulas; 7 = [¢1, ¢a,...¢n]. Here, n is
said to be the length of 7. The extension of 7 is the deductively-closed theory which 7 presents;
that is, it is the set of sentences entailed by 7, after taking account of the various conflicts in 7.
This is defined precisely later on, but the intuition is the following: 7 presents the theory which
first of all has ¢,,, and then has as much of ¢,,_; as possible while retaining consistency, and then

. up to ¢1. Put another way, we start with ¢,. Then we ‘force in’ ¢3, overriding as necessary.
Then ... and so on until ¢,.

The following are examples of belief states.

L. [png] 2. [p4] 3. pAgq, 1]

Their lengths are 1, 2 and 2 respectively. OTPs 1 and 2 above both have the extension Cn({p A ¢}).
But in 2, p is less entrenched than ¢, and will disappear if a revision which demands that one of
p and g goes. Thus, we stipulate:

Sentences later in the sequence are more entrenched than those earlier.

Belief state 3 has the extension Cn({—p A ¢}). This is because —p, which is more entrenched than
p A g, overrides the p component of p A ¢. But the ¢ component is not overridden. Thus,

Sentences later in the sequence have the effect of overriding those earlier, in the case
of conflict.

It should be noted that we have not yet given a definition of extension; this comes in section 4.2.
The principles above are to motivate the right intuitions.
It should now come as no surprise to find that

Revision of OTPs is effected by appending the revising sentence to the end of the
sequence.

Thus, the three belief states mentioned above can be revised by —pV —¢, yielding
U [pAg-pV-q] 2. [pg,mpv-gl 3. [pAg,—p,opV gl

The extension of presentation 1’ is Cn({p < —¢}), which was the outcome of the corresponding
example for full meet revision described above. But presentation 2’ has as extension Cn({q}).
Since 1 and 2 had the same extension and 1’ and 2’ do not, it should be clear that there is more
to an OTP than its extension.

Ordered theory presentation 3’ has the extension Cn({-p A ¢}), which is the same as it had
before the revision. This is because the revising sentence was consistent with the belief state it
revised.

It remains to show how to formalise the computation of extension for ordered theory presenta-
tions, which is the task of the next section. First, let us observe some important facts about OTP
revision.

1. OTPs have memory. If 7 is an OTP, then the extension of ? % p * ¢ * =(p A ¢q) includes
g A—p. This is because the theory was more recently revised with ¢ than with p, so ¢ is more
entrenched. Older information 1s discarded more readily than newer.

2. But, information is never wantonly discarded.

3. The more you revise an ordered presentation, the more complicated (= longer) it gets. That
is because ordered presentations are nothing more than revision histories.



4.2 Extension

In classical logic, a theory presentation denotes a set of models, containing those which satisfy each
of the sentences®. Two presentations are equivalent if they denote the same sets. In this section we
will define models of ordered presentations, extending the notion of equivalence to OTPs. Thus,
the extension of a ordered presentation is the theory of the set of models it denotes. It turns out
that

1. Every OTP has a non-trivial extension, and

2. In the case of classical propositional logic at least, the set of models of any OTP is denoted
by a finite theory presentation.

Definition 3 An ordered theory presentation of length n is a finite list of formulas of length n.
Notation: 7 = [¢1, @2, ..., dn].

As stated, our aim is to define the models of such ordered theory presentations. We will assume
that we are working with a fixed propositional language L, and that IF 1s the satisfaction relation
between interpretations (assignments of truth values to propositional symbols) and sentences of the
language. L is ambiguously the language and the set of sentences of the language. Everything here
is easily re-worked for predicate logic, or indeed for any logic defined in terms of interpretations
and satisfaction. (See [12] for details; occasionally we will add parenthesised notes to this effect.)

Let M be the set of interpretations of L, and let |- be the satisfaction relation between
interpretations and sentences of the language: IF C M x L.

To define the models of an ordered theory presentation 7 we need to define an ordering CV
on interpretations in M which measures how well an interpretation satisfies 7. This relies on
orderings Ty, one for each sentence ¢ of the language. To define Ty, it is necessary to define a
notion which we call ‘natural entailment’, written [=. This definition in turn relies on the notion
of the monotonicities of a sentence. Lest the reader be daunted by these nestings of definitions,
we repeat the list here. We define, in order,

1. Monotonicities of a sentence ¢, written (¢*,¢7).

2. Natural entailment, a relation = between sentences; being a sub-relation of ordinary entail-
ment |=.

3. For each sentence ¢, a reflexive and transitive order C, on the interpretations of the language
M; as will be seen, this order grades interpretations according to how nearly they satisfy ¢.

4. For each ordered presentation 7, a reflexive and transitive order C on M; this order grades
interpretations according to how well they satisfy 7.

5. The models of 7, being a set [7] C M.

For the definition of the monotonicities of ¢, we need the following notation. If M is an
interpretation of L and p is a propositional symbol in L, then MP~ is an interpretation identical
with M except possibly that it assigns true to p. (If M already assigns true to p then M=t g
simply M .) M=11 is defined analogously.

Definition 4 Let ¢ be a sentence other than L and p any propositional symbol.
1. ¢ is monotonic in p if M |- ¢ implies that M= | ¢.
2. ¢ is anti-monotonic in p if M |- ¢ implies that MP—71 [ 4.

3. ¢t and ¢~ are the sets of symbols in which ¢ is monotonic and anti-monotonic respectively.

30f course, the same goes for many non-classical logics too, including intuitionistic logic, modal logics, temporal
logics etc. Readers familiar with [12] will recall that ordered theory presentations are defined over any logic defined
in terms of models and satisfaction.



The case that ¢ = L is handled separately; we define Lt = 1L~ = @.

Thus, ¢ is monotonic in p if “increasing” the truth value of p in a model of ¢ preserves satisfac-
tion of ¢. Similarly, ¢ 1s anti-monotonic in p if descreasing the truth value so preserves satisfaction.
(In the case that L is a predicate language, one must define the extension of a predicate symbol
P in a model to be the set of tuples which satisfy P in the model. ¢ is (anti-)monotonic in the
predicate symbol P if increasing (decreasing) the extension of P in a model of ¢ also results in a

model of ¢.)
Example 5 Suppose L has just the propositional symbols p and q.
¢ ot o

T wqt | {p, ¢}
P wqt | g}
q wqt | {p}

pAg, pVq| {p,q} 0

p—yq {4} {r}
pq 0] 0
1 (0] (0]

Having defined monotonicities, we turn to point 2 of the five-point plan mentioned above, i.e.
the definition of natural entailment. Let ¢ and 1 be sentences of L.

Definition 6 ¢ naturally entails ¢, written ¢ = ¢, if

1. ¢ E 4, and
2. ¢T Cyt and ¢~ C 9

Natural entailment is a sub-relation of ordinary entailment; in addition to ordinary entailment
we require that the monotonicities of the premise be preserved by the conclusion.

Proposition 7 [= is reflexive and transitive?. &

Example 8 The relations |= and = on the set of sentences formed from the language containing
the propositions {p, ¢} are shown in figure 1 for comparison. Thus: pA ¢ Epand pAqE pVy,
but pAgq = p«qand p [ pVq. Moreover, L = ¢ for all ¢.

The definition of natural entailment is perhaps not very satisfying, because (one might ask),
what is so special about preserving monotonicities? One way to answer this is purely pragmatic:
as we will see, 1t is essential for the next definition, which does have a satisfying feel. But first, we
justify the term natural entailment by showing examples of how much more natural this entailment
really 1s.

Natural entailment is something like relevant entailment; it stops us adding irrelevant disjuncts
in our conclusions. (This is not the same notion of relevance as Anderson/Belnap, for there one
is interested in stopping irrelevant conjuncts in the premisses.) The following entailments, which
are ordinarily valid, are not naturally valid:

p E pVg p E q—p

A —
p E pV—q » E p—yq pAG P

Regarding the first pair, the premise p tells us nothing about ¢, and therefore it 1s suspect to
introduce ¢ or —=¢ as a digjunct. The second pair are the standard inelegancies of material impli-
cation, which everyone will be glad to see the back of. Finally, we dislike p A ¢ = p <+ ¢ because

4the proofs of this proposition and others in this section which are given without proofs may be found in [12].



pV g —pV g pVyag

P —q pq p g q —p
PATq PAY —pA g pAg
1
T
pV g pVyq p Vv —pVyg
P —q pq p g q —p
\ /
pA—q DA —pA g pAYg

q\\ /
L
Figure 1: The ordinary and natural entailment relations over {p, ¢}
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the right-hand side suggests that p and ¢ are in some way bound together, whereas the left-hand
side only says that they are both true.

On the other hand, the simplicity of the definition and the fact that it is based on satisfaction
by models ensures that there is nothing untoward going on. In particular, if ¢ and v are classically
equivalent then they are naturally equivalent; indeed

(¢ v and ¢ |= ) iff (¢ = ¢ and ¢ = ¢)

I really do think there is something wonderful about natural entailment, even though I only
stumbled upon it as a means of achieving the following definition of C,4. More in another paper!

How, then, to define C47 As stated, M C; N means that N is as good at satisfying ¢ as
M is. It is not just that N satisfies ¢ and M does not; perhaps neither satisfy ¢, but N more
nearly does. For example, let M be a propositional interpretation which assigns false to both p
and ¢; and let IV assign true and false to p and ¢ respectively. Then M Cya, N, while N Zyay M.
Neither satisfy p A g, but at least N satisfies p; M doesn’t satisfy either of p and q.

This example shows that one has to look at which consequences of ¢ are satisfied by M and
N. However, defining M T4 N to mean that IV satisfies all the consequences of ¢ which M does
gives us precisely the bipartite ordering rejected in the preceding paragraph. This is because ¢
has too many irrelevant consequences; we should just look at the natural ones.

Definition 9 M Cy4 N, if for each 1,

dEYv=(MIFy¢ = NIFy)
We can show that Ty has precisely the mathematical behaviour we want.

Proposition 10 1. C4 is a pre-order, that is to say, it is reflexive and transitive.

2. If ¢ # L, the maximal elements of C, (which are in fact maximum) are just the models of

@.
3. The orderings C_ and C+ are the indiscrete ordering; that is, T_ = Ct = M x M. &

The proofs of these assertions, together with many examples of C, for various sentences ¢, can
be found in [12].

We have defined, for each sentence ¢, an ordering on interpretations Ty which measures the
extent to which interpretations satisfy ¢. If M satisfies ¢ to the fullest extent (that is, if it simply
satisfles it) then M is Cy-maximum. If M does not fully satisfy ¢ then it may satisfy it to a
greater, lesser, equal or incomporable extent than some N which perhaps also fails fully to satisfy
¢. As stated, examples of this ordering on models for various sentences ¢ can be found in [12].

We continue with the five-point plan at the beginning of this section. We define C! by induction
on 7. If 7 is the empty list [], then M CU N for all M, N. Otherwise, if ? is [¢1, ..., é,] then
M CY N if either M Ty, N, or M Cy4, N and also M CI' N, where 77 is [¢2,...,dn]. In other
words, to determine whether NV is as good at satisfying 7 as M is, one looks at the most important
sentence. If N is strictly better than M as far as that sentence is as concerned, then N is certainly
as good overall. Otherwise, it is at least necessary for N to be as good on that sentence, and the
question of whether it as good overall defers to the remaining sentences which are treated in a
similar way. We summarise:

Definition 11
1. M Cl N always; and
2. MCY™ Nif M Cy N or (M Cy N and M CU N).

Remark 12 M Cc™¢ N if M Cy N or (M C4 N and M U N).
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7 *x ¢ 1s 7 with ¢ appended. Finally, it is easy to define the models of 7. They are simply the
interpretations which are rated maximally by CT.

Definition 13 M IF 7 if M is C'-maximal.
Naturally we expect that the highest priority sentence is satisfied by models of the theory:
Proposition 14 Let 7 = [¢1, ¢2,...,¢,] be an OTP and let M I+ 7. If ¢,, # L then M IF ¢,,. &

Definition 15 Let 7 be an ordered theory presentation.

1. The extension of 7, written |7, is the theory of the set of models of 7:

7| ={¢| MIF? implies M I+ ¢}

2. The consequences of 7 are the sentences in its extension:
TEoifdE|?.

4.3 Summary of definitions

In this section we summarise the position so far. We assume we are working in classical logic.
Ordered theory presentations consist of finite lists of sentences in the language (def. 3). To define
the models of an ordered theory presentation, we first define the monotonicities (¢1,¢~) of each
sentence ¢ (def. 4). This is a pair of sets of atomic sentences. Then we define the relation
of natural entailment between sentences (def. 6). We claim, in passing, that this has intuitive
properties which ordinary entailment fails, but our main purpose is to use it to define the degree
of satisfaction between an interpretation and a sentence. We do this by ordering interpretations
according to how well they satisfy a particular sentence ¢, in definition 9. These ordering are used
to define an ordering for the whole OTP which measures how well interpretations do at satisfying
it. Finally, its models are the interpretations maximal in this ordering. The extension of an OTP
and its consequences are then straightforward to define (def. 15).

5 Properties of OTPs

Proposition 16 Every ordered presentation has a model.

Proof This is a complicated proof, using Zorn’s lemma to find maximal elements in the order
C'. For details, see [12]. &

A consequence of this result is that contradictions can never be derived from an ordered
presentation, not even one with the contradictory sentence in it!

Proposition 17 If 7 = ¢ then ¢ £ L.
Proof Let M IF 7. Since M IF 6, ¢ # L. &

Definition 18 Let 7 and A be OTPs.

1. 7 and A are statically equivalent, written 7 = A, if they have the same extension:

? = Aif 7] = |A].

2. 7 and A are dynamically equivalent, if, for all ¢, 7 * ¢ = A * ¢.

Dymamic equivalence implies static equivalence, but the converse is not so as the following
example shows.

12



Example 19 [p,q] = [p A q], since both have the models {11} in the obvious notation. But
[p,q,—pV —ql Z [pAq,—pV —q], since the model sets are respectively {01} and {01, 10}.

However, if 7 |= ¢ we would not expect that revising 7 by ¢ should change the set of models.
Proposition 20 If 7 |= ¢ then 7 =7 x ¢. &
We also obtain weak analogues of the usual structural properties:
Proposition 21 1. Weak inclusion: if ¢ # L then 7 x ¢ = ¢
"E¢ TEY
Tro v
Troby 7kE6
TEv

These principles are accepted as being requirements which a system for belief revision or for
defaults should have (see for example [2, 7, 8]).

2. Weak monotonicity:

3. Weak cut:

6 Belief revision: the AGM postulates

As stated, we intend to use these ordered theory presentations as representations of belief states
in order to model belief revision. The obvious way to do this is to let

belief states = ordered theory presentations

and define 7 % ¢ to be 7 with ¢ appended; of course we have been implicitely assuming this
definition so far in the paper. Note that under this arrangement there are no contradictory
theories (proposition 17).

In this setting, we can investigate the truth or falsity of the abstract K axioms given in section 3.
We obtain the following.

K1 7 * ¢ is a belief state.
This is true. If 7 is an OTP then so is 7 * ¢.

K2 ¢ €|? ¢

This is false. For example, L & |[]* L|; for, as one can check, |[]* L| = Cn(@). However,
K2 is true if ¢ # L, by proposition 14.

K3 17 6| C 7]+ 0.

True. We need to show that M IF 7 and M |F ¢ imply M IF 7 x ¢. Suppose not, i.e.
suppose M =% N for some N. By lemma 12, either M Cg¢ N, which contradicts M IF ¢
(proposition 10) or M =Y N, which contradicts M I ? (definition 13).

K4 If —=¢ & |7]| then |?| 4+ ¢ C |? * |

This is false. Let ¢1 = pAgAr, ¢po = pV—gV—r and ¢3 = (p—q)V-r. The counterexample
is obtained by setting: 7 = [¢1, ¢#2] and ¢ = ¢3. To see this, we should first examine the
orderings for each of ¢1, ¢ and ¢3. They are shown in the top half of figure 2. Applying
definition 11, the orderings C' and C'*® (i.e. Clé1.92] and o 92.96] respectively) are as
shown in the bottom half of the figure. We can check the following:

— =3 € |[61, ¢2]|, that is to say, there is a model M such that M is Cl?-¢2l-maximal and
M |} =¢s3. Such an M is 110. Thus, the antecedent of K4 holds.
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K5

K6

K7

K8

111

01\/;0;\10 000,001,010, 011 000,001,010
T‘><Q %T 100,101,110 100,110,111
00 1 00 T / \
T 111 01 01
\0/
110

011 101 110 !
ogx%xgo 01<§(j/001

11 ‘/' ‘\@
10 1

Figure 2: The counterexample to K4 (see text)

— But the consequent is false. For if |7|4+ ¢ C |? *¢| then M IF ? x ¢ implies M I |7 |+ &,
ir.e. M IF 7 and M IF ¢. But by inspecting the diagrams we can find M such that
MIF7 %¢ but M If 7, namely M = 001.

7 % ¢ 1s contradictory implies ¢ = L.

This is vacuously true since there are no contradictory belief states.

If £ ¢ <t then |7 x ¢| = |7 x4
True. Suppose | ¢ < 4. It is sufficient to prove Ty = Cy. Suppose M Ty N, and ¢ = x
and M |- y. By reflexivity, ¢ = 9, so by transitivity ¢ = y. Therefore, N IF x,s0 M Ty N.
The converse 1s proved similarly.

7% (@A) C |7+ 0]+ ¥

True. We need to show that if M IF7? x¢ and M I+ then M IF 7 % (¢ A¢p). If ¢ = L then
?x¢ =7 * (¢ Ay), and we are done. So suppose ¢ # L, and M IF ? x ¢ and M IF ¢, but
M cP=(¢7M) N for some N. Since M IF ? % ¢ and ¢ #+ 1, we have M I+ ¢ by proposition 14.
Therefore, M IF ¢ A3p. By lemma 12, either M CTgay N, which contradicts M IF ¢ A o,
or M U N. But this also leads to a contradiction, for then, since M Cy N, we obtain
M c™? N by lemma 12, contradicting M I ?  ¢.

If —p & |7 * @[ then [? + ¢ +1) C |7 + (¢ A¥)]
False. The counterexample given for K4 holds here too. Set 7 = [pAgAr], ¢ = —pV—gV-r
and ¢ = (p—gq) VvV r.

On this way of using OTPs as belief states, we have shown that K1, £3, K5, K6 and K7 are
valid; that X2 is valid under the proviso that ¢ # L; and that K4 and K8 are not valid.

It is worth pointing out that the lack of contradictory belief states and the partial failure of
K2 are easily solved, by adding a new belief state to represent the contradictory belief state and
modifying the definition of revision. Thus,

belief states = ordered theory presentations U{_L}.
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Revision on these belief states is defined as follows:

L ife=1
?7%6=4{ [4) ifé¢#Land? =L

7 % ¢ otherwise
This emulates what the AGM axioms intend for L, in that
1. There is a unique contradictory belief state.
2. Revising any state with the contradictory sentence results in the contradictory state (K2).
3. The contradictory state can only be obtained in this way (IX5), so in particular

4. Revising the contradictory state with a non-contradictory sentence will not result in the
contradictory state.

For the psychological plausibility of these stipulations, or otherwise, see [3]. Especially the first
one is debatable! Our point is simply that if we take this definition of 7 % ¢ on board, we obtain
that K1, K2, K3, K5, K6, and K7 are satisfied, and Kb is satisfied in a more satisfying manner.
K4 and K8 are still false for the same reasons.

6.1 The AGM axioms K4 and K8

K4 and K8 are serious violations of the AGM axioms, and there i1s no easy way of making them
satisfied in the framework of OTPs. One must face the question: are they desirable axioms for
belief revision? We believe the answer is no.

Consider the diagrams given in figure 2. As far as our counterexample is concerned, the
question of the validity of K4 hinges on whether 001 C4, 110 or not. If this was so, then we would
also have 001 Cl#1:92:#31 110 and [¢1, ¢, #3] would have only the model 110. Therefore, K4 (and
K8) would hold.

Should 001 Cpagar 110 be the case? At first sight it seems clear that 110 is better at satisfying
pA g Arthan 001 is, for 110 satisfies two of the atomic propositions while 001 satisfies only one.
But this kind of cardinality argument is flawed. Why is it better to satisfy p A ¢ rather than »7
Perhaps r itself expresses a conjunction of facts. Are two oranges better than one apple?

The AGM book does not provide any argument in favour of X4 and K8. Consider the following
story. I am expecting a friend called John to arrive. He can come by car, bike, or train. I am
doubtful about whether he will arrive or not, however, because I believe that his car and bike are
both at the repairers; and also, the trains are not working today (for a change). Let:

p mean that his car is unavailable for use
g his bike is unavailable

r the trains are unavailable

Initially I believe
pAgAT.

Now suppose John actually arrives. I have no reason to doubt that he came by one of the usual

means of transport (for example, he didn’t ask me for money for a taxi). Therefore T revise my
beliefs by
—pV g Voor.

In the course of conversation it turns out that the repairer phoned him this morning to say that
both his car and his bike were available for collection. I reason as follows. If the trains are still not
working, he may have asked Richard for a lift to the repairer. His bike fits in the back of Richard’s
car, so then they could have collected both items. But, Richard may have been unavailable or
unwilling. Either way, he will have collected both items or neither, so I revise with:

r—(pq)
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If the trains are working (—r) I cannot draw the conclusion p < ¢, since he may have gone by train
to pick up either the car or the bike, or neither, or he may still have asked Richard and got both.

The question now is: have I got enough information to conclude which means of transport
were available for John to use?

We believe the answer is no. Suppose r, that is, the trains are still not working. I have already
reasoned that this implies p < ¢, and since John is actually here (so =pV =gV —r), it must be that
=p A —q. Therefore, =p A =g A r. On the other hand, suppose —r, 1.e. that the trains are working.
This tells me nothing about p and ¢q. But since I started with the belief that p A ¢ and John’s
arrival (by train, presumably) is consistent with these, I retain them. Therefore, p A ¢ A —r. So I
conclude (mp A=g A7)V (p A g A-r), or, equivalently, (p — ¢) A (p — —r).

We have argued that it is not rational to conclude —r in this case. We have also noted that
the theory of belief revision outlined in this paper does not conclude —r. Indeed, we have argued
that it concludes precisely what it is rational to conclude. It should be pointed out in fairness to
the AGM theory that it does not insist on —r either. To see this, consider what happens if the
revision function specified in proposition 2 is applied to the revision history in question. We get

Cn{p,q,r}*(mpV gV -r)«(r— (p—q))
=Cn{-pVoqV-rtx(r—(p—4q))
=Cn{(pAg)V-r}

=7 is not derivable from this theory.
What we have shown is that if we augment the system of OTPs for belief revision so as to obtain
K4 and K8, then we would have a system which concluded —r in this case, which is undesirable.

7 Examples

Here we list some facts about linear OTPs, together with some references to examples in the
literature to which the facts seem relevant.

Ikl = Cn({p})
Ilp, gl = Cn({p,q})

|[paQa_'Q]| = Cn({p, _'q})

Ilp, ¢, —pll = Cn({-p,q})
llpAg,—pll = Cn({-p,q})

IlpAg,—pV =gl = Cn({p=—q})

Ilp,q,—~pV =4l = Cn({-p,q})
PV e, ~qll = Cn({p,~q})

We also have that
s —p€|ls,s—p,s—q,7qpl

(cf. Hansson [4, page 7:12]), and, for example,

p—q€llpql, but p—q¢|lp q -pl
p—=q€llpp—ql and pe=q€llp,p—q pll

(cf. [4, page 4:3]).
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