
Belief revision andordered theory presentations�Mark RyanyAbstractThe standard theory of belief revision|known as the AGM theory after its authors, C. Al-chourr�on, P. G�ardenfors and D. Makinson [3]|su�ers from at least two disadvantages. One isthat it represents belief states as in�nite objects, namely deductively closed sets of sentences.Another is that existing belief revision models make too strong assumptions about what in-formation is available to guide revisions. A consequence of this is that repeated revisions areimpossible.In this paper, we show how to use ordered theory presentations to represent belief states1.Ordered theory presentations are theory presentations equipped with a partial order. In thispaper we are only concerned with a special case, in which the sets are �nite and the order istotal, or linear. We de�ne a revision operator, which is shown to satisfy some, but not all, ofthe AGM postulates. No information other than that encoded in the OTP is needed to e�ectthe revision; this makes repeated revision easy.1 IntroductionThe central question in belief revision is the following: given a belief state and a sentence, howshould one obtain a new belief state in which the sentence is true, but which preserves as much ofthe old belief state as possible? In other words, one wants a function� : belief states � sentences ! belief statessuch that1. � is true in � � �; that is, the revision has been e�ective; and2. given this constraint, ��� contains `as much' of � as is consistent; that is, old beliefs persistthrough revisions if they can.The case of interest, of course, is that in which :� is true in �, so that the revision is more thanjust re�nement, or the addition of compatible information. We also hope that3. � � � does not contain any extraneous information which was present in neither � nor �.In the above requirements, some things are easy to formulate and some are not. We assume thatany satisfactory representation of belief states comes with a function j � j which takes a belief stateand returns the set of sentences true in it. j�j is called the extension of �. But formalising the `asmuch' requirement and the requirement of no extraneous information (numbers 2 and 3) is not soeasy, and is the subject of this paper.�To appear in the proceedings of the Eighth Amsterdam Colloquium, 1991yDept. of Computing, Imperial College, 180 Queens Gate, London SW7 2BZ, Great Britain. Phone: +44 71 5895111 ext. 5074. Email: mdr@doc.ic.ac.uk.1Ordered theory presentations have already been described in a previous paper [12]. In that paper, they werecalled `structured theories', but since they are in fact a way of using an ordering on a set of sentences to present atheory, their name has been changed to ordered theory presentations, or ordered presentations, or even OTPs, forshort. Familiarity with [12] is not required in order to understand this paper.1



Belief revision has obvious applications in arti�cial intelligence (eg. robotics), computer science(eg. deductive databases), the philosophy of science, social theory and so on. It also has applica-tions beyond the idea of revising `beliefs'. For example, in speci�cation theory and in AI, there isthe well-known frame problem to do with the semantics of actions. Given (the representation of)a state of a system and the post-condition of an action performed in the state, what is the statewhich results from performing the action? The same requirements on the revision function applyhere too: the post-condition should be true in the resulting state, which (given this constraint)should preserve as much of the original state as possible.We begin the next section by describing the standard theory of belief revision, known as theAGM theory. The AGM theory su�ers from several disadvantages. One is that it represents beliefstates as in�nite objects, namely deductively closed sets of sentences. Another is that existingbelief revision models make too strong assumptions about what information is available to guiderevisions. A consequence of this is that repeated revisions are impossible.We propose representing belief states by linear ordered theory presentations instead of bytheories. De�nitions and examples will be given. The result is a �nite representation of beliefstates. The revision operator is shown to satisfy some, but not all, of the AGM postulates. Thecounterexamples for the AGM postulates which fail are motivated. The important point is thatno information other than that encoded in the OTP is needed to e�ect the revision; this makesrepeated revision easy.The paper is organised as follows. The AGM theory is described in the next section. Section 3describes the properties which a theory of belief revision should have. The notion of ordered theorypresentations (OTPs) is introcuced in section 4, which is the main section. Sections 5 and 6 discussthe properties of the revision operator on OTPs; and further examples are given in section 7.2 The AGM theoryThe standard theory of belief revision|known as the AGM theory after its authors, C. Alchourr�on,P. G�ardenfors and D. Makinson [3]|models belief states as deductively-closed sets of sentences.More recent developments of the AGM theory are described in S. O. Hansson's thesis [4]. Itdescribes a small set of postulates which any belief revision operator should satisfy (see below).If K is a belief state and � a formula, then K � � is a belief state, the result of revising K with�. As already noted, the case of interest is when :� 2 K, that is, when the revising sentenceconicts with the current belief state. We suppose we are utilising classical logic with the usualconnectives, and the usual entailment relation j=.Notation 11. Let � be a set of sentences. Cn(�) = f� j � j= �g.2. L is the set of all sentences in the language.3. K + � = Cn(K [ f�g).The AGM postulates are the following:K1 K � � is a deductively-closed theory;K2 � 2 K � �;K3 K � � � K + �;K4 If :� 62 K then K + � � K � �;K5 K � � = L implies � = ?;K6 If j= �$  then K � � = K �  ;K7 K � (� ^  ) � K � �+  ;K8 If : 62 K � � then K � �+  � K � (� ^  ).2



K1 says that K � � should be a belief state. K2 says that the revision should be successful,i.e. the resulting theory should at least contain �. The third axiom says that K � � should haveno more than what we would get by just adding � set-theoretically and closing under entailment.Of course, if � is inconsistent with K then adding it in that way would yield the whole of L (thetheory with every sentence in it). K4 asserts that if � is consistent with K then we get preciselythe result of adding it set-theoretically. We should point out that this is one of the (two) axiomswith which we take issue in x6. K5 says that the revision yields the contradictory theory L only if� is inconsistent. This is not just that � is inconsistent with K, but is inconsistent on its own. Theconverse, that revising with an inconsistent sentence yields the inconsistent theory, is guaranteedby K2. K6 says simply that revising with logical equivalents yields the same theory.K7 and K8 are more complicated, approximating what happens with repeated revisions. Theyare analogues of K3 and K4.Note that K7 and K8 do not contain expressions like K �� � , and therefore do not constrainrepeated revision in any explicit way. The only constraints on repeated revision are those inheritedfrom the more general case of revision which K1{8 describe.We submit that the AGM axioms to be neither sound nor complete with respect to intuitivelyrational belief revision. Of course such a statement is necessarily imprecise, because `intuitivelyrational' belief revision is not amenable to mathematical description. The argument to showlack of soundness consists of `counterexamples' to K4 and K8 later in the paper. (Again thescare quotes show that these are not counterexamples to any fully spelled-out conjecture.) Theargument against completeness is the following proposition, which shows that K1{8 admit revisionfunctions which have no element of the `persistence' requirement (number 2 above).Proposition 2 The revision functionK � � = �K + � if :� 62 KCnf�g otherwisesatis�es axioms K1{8.Proof K1{4 and K6 are immediate.K5 Suppose K � � = L. By K3, K + � = L, so :� 2 K. Therefore, K � � = Cnf�g, so � = ?.K7 Suppose :(�^ ) 2 K. Then K�(�^ ) = Cn(�^ ). If :� 2 K then (K��)+ = Cn(�^ );otherwise it is (K + �) +  , which contains Cn(� ^  ).Otherwise :(�^ ) 62 K, and so :� 62 K. K�(�^ ) = K+(�^ ) = (K+�)+ = (K��)+ .K8 Suppose : 62 K � �. Suppose also that :� 62 K. Then K � � = K + �. Therefore,K ��+ = K+�+ . Also, since : 62 K �� and K �� = K+�, we have that : 62 K+�and therefore :(�^ ) 62 K. Therefore, K � (�^ ) = K +(�^ ) = K +�+ , as required.Now suppose :� 2 K. Then :(�^ ) 2 K, soK��+ = K+�+ = K+(�^ ) = K�(�^ ).}Of course there are more interesting functions satisfying the axioms. The following two are themost important in the AGM literature: partial meet revision; and revision by epistemic entrench-ment.2.1 Selection functionsSuppose K is a belief state and � is a sentence other than ?. LetKj� = the �-maximal elements of fK 0 � K j :� 62 Kg;3



that is, the set of maximal subsets of K which are consistent with �. Kj� may be pronounced `Kwithout �'. The operation of partial meet revision assumes a selection function SK which selectssome of these subsets. Then revision is de�ned byK � � = �Cn�TSK (Kj�; �) [ �� if � 6= ?;L otherwise.That is to say, if � 6= ? it is the intersection of those �-consistent maximal subsets chosen bySK with � added set-theoretically. If � = ? it is simply L, the inconsistent theory (the set of allsentences).It should be clear that this is unsatisfactory, since the whole problem of how to make a revisionhas just been packaged up in the existence of a selection function, and has not been solved at all.Obviously, the selection function must depend on K. Therefore, we need not bother with theinformation K alone provides us, since everything we need might just as well be given by thismagical S! The drawback of coding everything in S is that repeated revisions are then impossible.There is a limiting case of partial meet revision, in which SK(Kj�; �) is always a singleton. Thiscase is known as maxichoice contraction. There is another limiting case in which SK(Kj�; �) =TKj�, the intersection of all the candidate theories, which is known as full meet revision. The�rst of these is unsatisfactory for the same reason as the general case, namely that the selectionfunction remains to be de�ned. (It has other, worse, problems too, detailed in G�ardenfors' book.)The second limiting case does not have this problem, and is worth spelling out in full, since itfully speci�es how to carry out a revision without the need for extra information. According to it,K � � = �Cn�TKj� [ �� if � 6= ?;L otherwise.It is straightforward to check that this de�nition satis�es the postulates K1-K8. But there areproblems. Consider, for example, how to revise Cn(fp; qg) with :p _ :q. Intuitively, there are atleast three plausible answers: Cn(fpg), Cn(fqg) and Cn(fp$:qg). Full meet contraction gives usthe last of these, because no information is available to chose whether to give up p or to give up q.But, in practice there may be criteria for choosing to give up one rather than the other. This iswhat leads to consideration of selection functions, since they could encode the extra informationrequired. But then, as already remarked, repeated revision is impossible. The moral we draw fromthis situation is di�erent. It is that deductively closed theories are inadequate as representationsof belief states. We return to this point later, after considering the other main way of providingthe information necessary to guide revisions, namely epistemic entrenchment orderings.2.2 Epistemic entrenchmentRevision by epistemic entrenchment is e�ected as follows. First we require an epistemic entrench-ment ordering on the current belief state. This is a linear pre-order on the sentences in the state,which represents the degree to which they are believed. Those less entrenched according the or-dering are dispensed with more readily in the case of a revision which conicts with the currentstate. An epistemic entrenchment ordering for a belief state K must satisfy the following axioms:E1 If � 6K  and  6K � then � 6K � (transitivity);E2 If � j=  then � 6K  (dominance);E3 Either � 6K � ^  or  6K � ^  (conjunctiveness);E4 If K is consistent then � 6K  for all  i� � 62 K (minimality);E5 If � 6K  for all �, then j=  (maximality).As in the case of the K postulates, these axioms are intended to encode rationality constraints onwhat an epistemic entrenchment ordering might be. For example, E2 says that it is always betterto give up logically weaker sentences during the course of a revision; therefore, these should be4



less entrenched. E3 says that giving up a conjunction is at least as hard as giving up either of theconjuncts. Taken together, axioms E1{E3 imply that 6K is a linear order, that is, either � 6K  or  6K � (or both). E4 says that a sentence is minimally entrenched in K i� it is not in K. E5says that just the tautologies are maximally entrenched.Given a belief state K, an epistemic entrenchment ordering 6K on K, and a sentence �, therevision of K by � is given byK � � = �Cn�f 2 K j :� <K :�_  g [ f�g� if � 6= ?;L otherwise.(< is the usual strict counterpart of 6, de�ned by: � <  if � 6  and  66 �.)Full motivation for the K and EE axioms, as well as for the de�nition of � in terms of 6K , canbe found in G�ardenfors' book [3].We now summarise the main weaknesses we have described of the AGM theory. Belief statesare represented as deductively closed theories. This means that they are (in general) impossible towrite down fully, or to store on a computer. Moreover, as noted, they are incapable of representingthe necessary information required to chose between alternative revisions. Therefore, extra infor-mation in the form of a selection function or an EE ordering is required. This information is notdeemed part of the belief state, and is lost during the revision, making further revision impossible.It is worth pointing out that this means that the real intention of axiom K1 is not satis�ed bythese revision functions. Its intention is that after a revision we should end up with an objectof the same type as the one with which we started. Obviously, both partial meet revision andrevision by epistemic entrenchment fail this requirement. In those cases we start o� with a pair,respectively of type hK;SKi and hK;6Ki, and end up with something of type K.There are some proposals for modifying the AGM theory to solve some of these problems. Forexample, some work has been done on theory base revision to address the problem of the in�nitenature of deductively closed sets of sentences. In that work, belief states are represented as �nitesets of sentences (theory bases or theory presentations) [1, 5, 9]. But each of these authors assumethe existence of something like a selection function or an EE ordering, so are subject to objectionson those grounds. There are proposals of non-deterministic revision [6], which alleviate the needfor a selection function, but they rely on in�nite belief state representations.There are proposals to allow repeated revision using EE orderings, either by keeping a singleEE ordering for all belief states or assuming the existence of a function which, for every beliefstate, gives an EE ordering [10, 13]. But as neither the single ordering nor this function is itselfrevised in the course of belief revisions, it is easy to �nd examples which are in contradiction withintuitions about iterated belief change [4].Another modi�cation of the AGM theory which allows EE orderings to be revised is given byH. Rott [11]. He de�nes revision of EE orderings as follows. 6K�� � if �!  6K �! �:However, as he points out, this fails to capture much of the intuition of repeated revision becauseany further revision of K � � always includes �.3 Criteria for belief revisionIn this section we enumerate what we claim are the criteria by which to judge a theory of beliefrevision.1. Finite representation of belief states.2. Persistence.3. Iteration: what you put in is what you get out.4. The \intentions" behind the K axioms of AGM.5



The criterion of �nite representation means that all belief states can be explicitly written downor represented on a computer. The advantages of this should be easy to see; one in particular isthat one can give examples of belief revision in action! (See section 7.)Persistence means that as much of the former belief state should survive a revision as possible.We rule out revisions like the one of proposition 2.The iteration criterion says that you should get out of a revision an object of the same typeas you put in. As mentioned, this is violated by AGM, since you put in either an EE ordering, ora theory coupled with a selection function; but, all you get out is a theory. We call this iterationsince, if it obtains, it guarantees that revisions may be repeated. Its absence is a serious problemin AGM.The last criterion, concerning the K axioms of AGM, is deliberately expressed in a vague way.Obviously, if belief states are not represented as deductively closed sets of sentences then it isimpossible to test them literally. Also, as we have noted, they do not specify what should happenunder repeated revision, in terms of expressions of the form K ��� . This is presumably becausethe AGM models do not support repeated revision. Moreover, for reasons which we will discussin section 6, we dispute two of the AGM axioms. In view of these reasons, we can only say thatsomething like the intention of the AGM axioms is desirable.The AGM axioms K1{8 rely on a particular representation of belief states (namely, deductivelyclosed sets of sentences). Therefore, direct comparison with theories of belief revision which useother representations of belief states is impossible. To overcome this we can we rewrite the axiomsin a more general way, which assumes only the following:1. A set of belief states, together with a subset of `contradictory' belief states.2. A function � (revision) which takes a belief state and a sentence to a belief state;3. A function j � j (extension) which takes a belief state and returns the set of sentences true init.Here are the axioms rewritten in this way. We will write K for a typical `abstract' belief state.K1 K � � is a belief state;K2 � 2 jK � �j;K3 jK � �j � jKj+ �;K4 If :� 62 jKj then jKj+ � � jK � �j;K5 K � � is contradictory implies � = ?;K6 If j= �$  then jK � �j = jK �  j;K7 jK � (� ^ )j � jK � �j+  ;K8 If : 62 jK � �j then jK � �j+  � jK � (� ^  )j.4 Ordered theory presentationsHere we present a system for belief revision which satis�es each of the criteria described above.Belief states are represented by ordered theory presentations, which were introduced in [12]. Thereader unfamiliar with that paper is at no disadvantage, but should ignore the remainder of thissubsection, skipping to section 4.1 below. The following explanations will be of use to readersfamiliar with [12].In that paper, a `structured theory' was de�ned to be a �nite, partially ordered set of pointseach of which is labelled by a sentence in the language. We have since changed the name ofthese objects to `ordered theory presentations', because what they really are is a way of using anordering on a set of sentences to present a theory. Thus, they are theory presentations2 equippedwith a partial order.2Theory presentations are sometimes also called theory bases.6



Here, we are interested only in the linear case, that is to say, in the case that the order is total.Thus, we can simplify the de�nition, letting linear ordered theory presentations be simply �nitesequences (or lists) of formulas.4.1 IntuitionsA (linear) ordered theory presentation is a �nite list of formulas; � = [�1; �2; : : :�n]. Here, n issaid to be the length of �. The extension of � is the deductively-closed theory which � presents;that is, it is the set of sentences entailed by �, after taking account of the various conicts in �.This is de�ned precisely later on, but the intuition is the following: � presents the theory which�rst of all has �n, and then has as much of �n�1 as possible while retaining consistency, and then: : : up to �1. Put another way, we start with �1. Then we `force in' �2, overriding as necessary.Then : : : and so on until �n.The following are examples of belief states.1: [p^ q] 2: [p; q] 3: [p^ q;:p]Their lengths are 1, 2 and 2 respectively. OTPs 1 and 2 above both have the extension Cn(fp ^ qg).But in 2, p is less entrenched than q, and will disappear if a revision which demands that one ofp and q goes. Thus, we stipulate:Sentences later in the sequence are more entrenched than those earlier.Belief state 3 has the extension Cn(f:p ^ qg). This is because :p, which is more entrenched thanp ^ q, overrides the p component of p ^ q. But the q component is not overridden. Thus,Sentences later in the sequence have the e�ect of overriding those earlier, in the caseof conict.It should be noted that we have not yet given a de�nition of extension; this comes in section 4.2.The principles above are to motivate the right intuitions.It should now come as no surprise to �nd thatRevision of OTPs is e�ected by appending the revising sentence to the end of thesequence.Thus, the three belief states mentioned above can be revised by :p_ :q, yielding10: [p^ q;:p_ :q] 20: [p; q;:p_ :q] 30: [p^ q;:p;:p_:q]:The extension of presentation 10 is Cn(fp$:qg), which was the outcome of the correspondingexample for full meet revision described above. But presentation 20 has as extension Cn(fqg).Since 1 and 2 had the same extension and 10 and 20 do not, it should be clear that there is moreto an OTP than its extension.Ordered theory presentation 30 has the extension Cn(f:p ^ qg), which is the same as it hadbefore the revision. This is because the revising sentence was consistent with the belief state itrevised.It remains to show how to formalise the computation of extension for ordered theory presenta-tions, which is the task of the next section. First, let us observe some important facts about OTPrevision.1. OTPs have memory. If � is an OTP, then the extension of � � p � q � :(p ^ q) includesq^:p. This is because the theory was more recently revised with q than with p, so q is moreentrenched. Older information is discarded more readily than newer.2. But, information is never wantonly discarded.3. The more you revise an ordered presentation, the more complicated (= longer) it gets. Thatis because ordered presentations are nothing more than revision histories.7



4.2 ExtensionIn classical logic, a theory presentation denotes a set of models, containing those which satisfy eachof the sentences3 . Two presentations are equivalent if they denote the same sets. In this section wewill de�ne models of ordered presentations, extending the notion of equivalence to OTPs. Thus,the extension of a ordered presentation is the theory of the set of models it denotes. It turns outthat1. Every OTP has a non-trivial extension, and2. In the case of classical propositional logic at least, the set of models of any OTP is denotedby a �nite theory presentation.De�nition 3 An ordered theory presentation of length n is a �nite list of formulas of length n.Notation: � = [�1; �2; : : : ; �n].As stated, our aim is to de�ne the models of such ordered theory presentations. We will assumethat we are working with a �xed propositional language L, and that  is the satisfaction relationbetween interpretations (assignments of truth values to propositional symbols) and sentences of thelanguage. L is ambiguously the language and the set of sentences of the language. Everything hereis easily re-worked for predicate logic, or indeed for any logic de�ned in terms of interpretationsand satisfaction. (See [12] for details; occasionally we will add parenthesised notes to this e�ect.)Let M be the set of interpretations of L, and let  be the satisfaction relation betweeninterpretations and sentences of the language:  �M� L.To de�ne the models of an ordered theory presentation � we need to de�ne an ordering v�on interpretations in M which measures how well an interpretation satis�es �. This relies onorderings v�, one for each sentence � of the language. To de�ne v�, it is necessary to de�ne anotion which we call `natural entailment', written j=� . This de�nition in turn relies on the notionof the monotonicities of a sentence. Lest the reader be daunted by these nestings of de�nitions,we repeat the list here. We de�ne, in order,1. Monotonicities of a sentence �, written h�+; ��i.2. Natural entailment, a relation j=� between sentences, being a sub-relation of ordinary entail-ment j=.3. For each sentence �, a reexive and transitive order v� on the interpretations of the languageM; as will be seen, this order grades interpretations according to how nearly they satisfy �.4. For each ordered presentation �, a reexive and transitive order v� onM; this order gradesinterpretations according to how well they satisfy �.5. The models of �, being a set [[�]] �M.For the de�nition of the monotonicities of �, we need the following notation. If M is aninterpretation of L and p is a propositional symbol in L, thenM [p7!t] is an interpretation identicalwith M except possibly that it assigns true to p. (If M already assigns true to p then M [p7!t] issimplyM .) M [p7!f ] is de�ned analogously.De�nition 4 Let � be a sentence other than ? and p any propositional symbol.1. � is monotonic in p if M  � implies that M [p7!t]  �.2. � is anti-monotonic in p if M  � implies that M [p7!f ]  �.3. �+ and �� are the sets of symbols in which � is monotonic and anti-monotonic respectively.3Of course, the same goes for many non-classical logics too, including intuitionistic logic, modal logics, temporallogics etc. Readers familiar with [12] will recall that ordered theory presentations are de�ned over any logic de�nedin terms of models and satisfaction. 8



The case that � = ? is handled separately; we de�ne ?+ = ?� = �.Thus, � is monotonic in p if \increasing" the truth value of p in a model of � preserves satisfac-tion of �. Similarly, � is anti-monotonic in p if descreasing the truth value so preserves satisfaction.(In the case that L is a predicate language, one must de�ne the extension of a predicate symbolP in a model to be the set of tuples which satisfy P in the model. � is (anti-)monotonic in thepredicate symbol P if increasing (decreasing) the extension of P in a model of � also results in amodel of �.)Example 5 Suppose L has just the propositional symbols p and q.� �+ ��> fp; qg fp; qgp fp; qg fqgq fp; qg fpgp ^ q; p _ q fp; qg �p! q fqg fpgp$ q � �? � �Having de�ned monotonicities, we turn to point 2 of the �ve-point plan mentioned above, i.e.the de�nition of natural entailment. Let � and  be sentences of L.De�nition 6 � naturally entails  , written � j=�  , if1. � j=  , and2. �+ �  + and �� �  �Natural entailment is a sub-relation of ordinary entailment; in addition to ordinary entailmentwe require that the monotonicities of the premise be preserved by the conclusion.Proposition 7 j=� is reexive and transitive4. }Example 8 The relations j= and j=� on the set of sentences formed from the language containingthe propositions fp; qg are shown in �gure 1 for comparison. Thus: p ^ q j=� p and p ^ q j=� p _ q,but p ^ q 6j=� p$ q and p 6j=� p _ q. Moreover, ? j=� � for all �.The de�nition of natural entailment is perhaps not very satisfying, because (one might ask),what is so special about preserving monotonicities? One way to answer this is purely pragmatic:as we will see, it is essential for the next de�nition, which does have a satisfying feel. But �rst, wejustify the term natural entailment by showing examples of how much more natural this entailmentreally is.Natural entailment is something like relevant entailment; it stops us adding irrelevant disjunctsin our conclusions. (This is not the same notion of relevance as Anderson/Belnap, for there oneis interested in stopping irrelevant conjuncts in the premisses.) The following entailments, whichare ordinarily valid, are not naturally valid:p j= p _ qp j= p _ :q p j= q! p:p j= p! q p ^ q j= p$ qRegarding the �rst pair, the premise p tells us nothing about q, and therefore it is suspect tointroduce q or :q as a disjunct. The second pair are the standard inelegancies of material impli-cation, which everyone will be glad to see the back of. Finally, we dislike p ^ q j= p$ q because4the proofs of this proposition and others in this section which are given without proofs may be found in [12].9
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the right-hand side suggests that p and q are in some way bound together, whereas the left-handside only says that they are both true.On the other hand, the simplicity of the de�nition and the fact that it is based on satisfactionby models ensures that there is nothing untoward going on. In particular, if � and  are classicallyequivalent then they are naturally equivalent; indeed(� j=  and  j= �) i� (� j=�  and  j=� �)I really do think there is something wonderful about natural entailment, even though I onlystumbled upon it as a means of achieving the following de�nition of v�. More in another paper!How, then, to de�ne v�? As stated, M v� N means that N is as good at satisfying � asM is. It is not just that N satis�es � and M does not; perhaps neither satisfy �, but N morenearly does. For example, let M be a propositional interpretation which assigns false to both pand q; and let N assign true and false to p and q respectively. ThenM vp^q N , while N 6vp^q M .Neither satisfy p ^ q, but at least N satis�es p; M doesn't satisfy either of p and q.This example shows that one has to look at which consequences of � are satis�ed by M andN . However, de�ning M v� N to mean that N satis�es all the consequences of � which M doesgives us precisely the bipartite ordering rejected in the preceding paragraph. This is because �has too many irrelevant consequences; we should just look at the natural ones.De�nition 9 M v� N , if for each  ,� j=�  ) (M   ) N   )We can show that v� has precisely the mathematical behaviour we want.Proposition 10 1. v� is a pre-order, that is to say, it is reexive and transitive.2. If � 6= ?, the maximal elements of v� (which are in fact maximum) are just the models of�.3. The orderings v? and v> are the indiscrete ordering; that is, v? = v> =M�M. }The proofs of these assertions, together with many examples of v� for various sentences �, canbe found in [12].We have de�ned, for each sentence �, an ordering on interpretations v� which measures theextent to which interpretations satisfy �. IfM satis�es � to the fullest extent (that is, if it simplysatis�es it) then M is v�-maximum. If M does not fully satisfy � then it may satisfy it to agreater, lesser, equal or incomporable extent than some N which perhaps also fails fully to satisfy�. As stated, examples of this ordering on models for various sentences � can be found in [12].We continue with the �ve-point plan at the beginning of this section. We de�ne v� by inductionon �. If � is the empty list [ ], then M v� N for all M;N . Otherwise, if � is [�1; : : : ; �n] thenM v� N if either M @�1 N , or M v�1 N and also M v�0 N , where �0 is [�2; : : : ; �n]. In otherwords, to determine whether N is as good at satisfying � asM is, one looks at the most importantsentence. If N is strictly better thanM as far as that sentence is as concerned, then N is certainlyas good overall. Otherwise, it is at least necessary for N to be as good on that sentence, and thequestion of whether it as good overall defers to the remaining sentences which are treated in asimilar way. We summarise:De�nition 111. M v[ ] N always; and2. M v��� N if M @� N or (M v� N and M v� N ).Remark 12 M @��� N if M @� N or (M v� N and M @� N ).11



� � � is � with � appended. Finally, it is easy to de�ne the models of �. They are simply theinterpretations which are rated maximally by v�.De�nition 13 M  � if M is v�-maximal.Naturally we expect that the highest priority sentence is satis�ed by models of the theory:Proposition 14 Let � = [�1; �2; : : : ; �n] be an OTP and let M  �. If �n 6= ? then M  �n. }De�nition 15 Let � be an ordered theory presentation.1. The extension of �, written j�j, is the theory of the set of models of �:j�j = f� j M  � impliesM  �g2. The consequences of � are the sentences in its extension:� j= � if � 2 j�j:4.3 Summary of de�nitionsIn this section we summarise the position so far. We assume we are working in classical logic.Ordered theory presentations consist of �nite lists of sentences in the language (def. 3). To de�nethe models of an ordered theory presentation, we �rst de�ne the monotonicities h�+; ��i of eachsentence � (def. 4). This is a pair of sets of atomic sentences. Then we de�ne the relationof natural entailment between sentences (def. 6). We claim, in passing, that this has intuitiveproperties which ordinary entailment fails, but our main purpose is to use it to de�ne the degreeof satisfaction between an interpretation and a sentence. We do this by ordering interpretationsaccording to how well they satisfy a particular sentence �, in de�nition 9. These ordering are usedto de�ne an ordering for the whole OTP which measures how well interpretations do at satisfyingit. Finally, its models are the interpretations maximal in this ordering. The extension of an OTPand its consequences are then straightforward to de�ne (def. 15).5 Properties of OTPsProposition 16 Every ordered presentation has a model.Proof This is a complicated proof, using Zorn's lemma to �nd maximal elements in the orderv�. For details, see [12]. }A consequence of this result is that contradictions can never be derived from an orderedpresentation, not even one with the contradictory sentence in it!Proposition 17 If � j= � then � 6= ?.Proof Let M  �. Since M  �, � 6= ?. }De�nition 18 Let � and � be OTPs.1. � and � are statically equivalent, written � � �, if they have the same extension:� � � if j�j = j�j:2. � and � are dynamically equivalent, if, for all �, � � � � � � �.Dymamic equivalence implies static equivalence, but the converse is not so as the followingexample shows. 12



Example 19 [p; q] � [p ^ q], since both have the models f11g in the obvious notation. But[p; q;:p_ :q] 6� [p^ q;:p_ :q], since the model sets are respectively f01g and f01; 10g.However, if � j= � we would not expect that revising � by � should change the set of models.Proposition 20 If � j= � then � � � � �. }We also obtain weak analogues of the usual structural properties:Proposition 21 1. Weak inclusion: if � 6= ? then � � � j= �2. Weak monotonicity: � j= � � j=  � � � j=  3. Weak cut: � � � j=  � j= �� j=  These principles are accepted as being requirements which a system for belief revision or fordefaults should have (see for example [2, 7, 8]).6 Belief revision: the AGM postulatesAs stated, we intend to use these ordered theory presentations as representations of belief statesin order to model belief revision. The obvious way to do this is to letbelief states = ordered theory presentationsand de�ne � � � to be � with � appended; of course we have been implicitely assuming thisde�nition so far in the paper. Note that under this arrangement there are no contradictorytheories (proposition 17).In this setting, we can investigate the truth or falsity of the abstract K axioms given in section 3.We obtain the following.K1 � � � is a belief state.This is true. If � is an OTP then so is � � �.K2 � 2 j� � �j.This is false. For example, ? 62 j[ ] � ?j; for, as one can check, j[ ] � ?j = Cn(�). However,K2 is true if � 6= ?, by proposition 14.K3 j� � �j � j�j+ �.True. We need to show that M  � and M  � imply M  � � �. Suppose not, i.e.suppose M @��� N for some N . By lemma 12, either M @� N , which contradicts M  �(proposition 10) or M @� N , which contradicts M  � (de�nition 13).K4 If :� 62 j�j then j�j+ � � j� � �jThis is false. Let �1 = p^q^r, �2 = :p_:q_:r and �3 = (p$q)_:r. The counterexampleis obtained by setting: � = [�1; �2] and � = �3. To see this, we should �rst examine theorderings for each of �1, �2 and �3. They are shown in the top half of �gure 2. Applyingde�nition 11, the orderings v� and v��� (i.e. v[�1 ;�2] and v[�1 ;�2;�3] respectively) are asshown in the bottom half of the �gure. We can check the following:{ :�3 62 j[�1; �2]j, that is to say, there is a modelM such thatM is v[�1 ;�2]-maximal andM 6 :�3. Such an M is 110. Thus, the antecedent of K4 holds.13



1116� �� I@ @011 101 1106 6� ��I@ @ � ��I@ @001 010 1006I@ @ � ��000 000; 001; 010; 011100; 101; 1106111 000; 001; 010100; 110; 111� �� I@ @011 101011 101 1106 6� ��I@ @ � ��I@ @001 010 1006I@ @ � ��0006111 1106� ��010 100 0016I@ @ � ��0006111� �� I@ @101 011Figure 2: The counterexample to K4 (see text){ But the consequent is false. For if j�j+� � j���j then M  ��� impliesM  j�j+�,i.e. M  � and M  �. But by inspecting the diagrams we can �nd M such thatM  � � � but M 6 �, namelyM = 001.K5 � � � is contradictory implies � = ?.This is vacuously true since there are no contradictory belief states.K6 If j= �$ then j� � �j = j� �  j.True. Suppose j= �$  . It is su�cient to prove v� = v . Suppose M v� N , and  j=� �andM  �. By reexivity, � j=�  , so by transitivity � j=� �. Therefore, N  �, soM v N .The converse is proved similarly.K7 j� � (� ^ )j � j� � �j+  .True. We need to show that if M  � � � and M   then M  � � (� ^  ). If � = ? then� � � � � � (� ^  ), and we are done. So suppose � 6= ?, and M  � � � and M   , butM @��(�^ ) N for some N . Since M  � � � and � 6= ?, we have M  � by proposition 14.Therefore, M  � ^  . By lemma 12, either M @�^ N , which contradicts M  � ^  ,or M @� N . But this also leads to a contradiction, for then, since M v� N , we obtainM @��� N by lemma 12, contradicting M  � � �.K8 If : 62 j� � �j then j� � �j+  � j� � (� ^  )jFalse. The counterexample given for K4 holds here too. Set � = [p^ q ^ r], � = :p_:q_:rand  = (p$ q) _ :r.On this way of using OTPs as belief states, we have shown that K1, K3, K5, K6 and K7 arevalid; that K2 is valid under the proviso that � 6= ?; and that K4 and K8 are not valid.It is worth pointing out that the lack of contradictory belief states and the partial failure ofK2 are easily solved, by adding a new belief state to represent the contradictory belief state andmodifying the de�nition of revision. Thus,belief states = ordered theory presentations [f?g.14



Revision on these belief states is de�ned as follows:� �� � = 8<: ? if � = ?[�] if � 6= ? and � =?� � � otherwiseThis emulates what the AGM axioms intend for ?, in that1. There is a unique contradictory belief state.2. Revising any state with the contradictory sentence results in the contradictory state (K2).3. The contradictory state can only be obtained in this way (K5), so in particular4. Revising the contradictory state with a non-contradictory sentence will not result in thecontradictory state.For the psychological plausibility of these stipulations, or otherwise, see [3]. Especially the �rstone is debatable! Our point is simply that if we take this de�nition of � �� � on board, we obtainthat K1, K2, K3, K5, K6, and K7 are satis�ed, and K5 is satis�ed in a more satisfying manner.K4 and K8 are still false for the same reasons.6.1 The AGM axioms K4 and K8K4 and K8 are serious violations of the AGM axioms, and there is no easy way of making themsatis�ed in the framework of OTPs. One must face the question: are they desirable axioms forbelief revision? We believe the answer is no.Consider the diagrams given in �gure 2. As far as our counterexample is concerned, thequestion of the validity of K4 hinges on whether 001 @�1 110 or not. If this was so, then we wouldalso have 001 @[�1 ;�2;�3] 110 and [�1; �2; �3] would have only the model 110. Therefore, K4 (andK8) would hold.Should 001 @p^q^r 110 be the case? At �rst sight it seems clear that 110 is better at satisfyingp ^ q ^ r than 001 is, for 110 satis�es two of the atomic propositions while 001 satis�es only one.But this kind of cardinality argument is awed. Why is it better to satisfy p ^ q rather than r?Perhaps r itself expresses a conjunction of facts. Are two oranges better than one apple?The AGM book does not provide any argument in favour of K4 and K8. Consider the followingstory. I am expecting a friend called John to arrive. He can come by car, bike, or train. I amdoubtful about whether he will arrive or not, however, because I believe that his car and bike areboth at the repairers; and also, the trains are not working today (for a change). Let:p mean that his car is unavailable for useq his bike is unavailabler the trains are unavailableInitially I believe p ^ q ^ r:Now suppose John actually arrives. I have no reason to doubt that he came by one of the usualmeans of transport (for example, he didn't ask me for money for a taxi). Therefore I revise mybeliefs by :p_ :q _ :r:In the course of conversation it turns out that the repairer phoned him this morning to say thatboth his car and his bike were available for collection. I reason as follows. If the trains are still notworking, he may have asked Richard for a lift to the repairer. His bike �ts in the back of Richard'scar, so then they could have collected both items. But, Richard may have been unavailable orunwilling. Either way, he will have collected both items or neither, so I revise with:r ! (p$ q)15



If the trains are working (:r) I cannot draw the conclusion p$q, since he may have gone by trainto pick up either the car or the bike, or neither, or he may still have asked Richard and got both.The question now is: have I got enough information to conclude which means of transportwere available for John to use?We believe the answer is no. Suppose r, that is, the trains are still not working. I have alreadyreasoned that this implies p$q, and since John is actually here (so :p_:q_:r), it must be that:p^:q. Therefore, :p^:q^ r. On the other hand, suppose :r, i.e. that the trains are working.This tells me nothing about p and q. But since I started with the belief that p ^ q and John'sarrival (by train, presumably) is consistent with these, I retain them. Therefore, p ^ q ^ :r. So Iconclude (:p ^:q ^ r) _ (p ^ q ^ :r), or, equivalently, (p$ q) ^ (p$:r).We have argued that it is not rational to conclude :r in this case. We have also noted thatthe theory of belief revision outlined in this paper does not conclude :r. Indeed, we have arguedthat it concludes precisely what it is rational to conclude. It should be pointed out in fairness tothe AGM theory that it does not insist on :r either. To see this, consider what happens if therevision function speci�ed in proposition 2 is applied to the revision history in question. We getCnfp; q; rg � (:p _ :q _ :r) � (r! (p$ q))= Cnf:p_ :q _ :rg � (r! (p$ q))= Cnf(p ^ q) _ :rg:r is not derivable from this theory.What we have shown is that if we augment the system of OTPs for belief revision so as to obtainK4 and K8, then we would have a system which concluded :r in this case, which is undesirable.7 ExamplesHere we list some facts about linear OTPs, together with some references to examples in theliterature to which the facts seem relevant.j[p]j = Cn(fpg)j[p; q]j = Cn(fp; qg)j[p; q;:q]j = Cn(fp;:qg)j[p; q;:p]j = Cn(f:p; qg)j[p^ q;:p]j = Cn(f:p; qg)j[p ^ q;:p_ :q]j = Cn(fp$:qg)j[p; q;:p_ :q]j = Cn(f:p; qg)j[p_ q;:q]j = Cn(fp;:qg)We also have that s! p 2 j[s; s! p; s! q;:q;:p]j(cf. Hansson [4, page 7:12]), and, for example,p$ q 2 j[p; q]j; but p$ q 62 j[p; q;:p]jp$ q 2 j[p; p$ q]j and p$ q 2 j[p; p$ q;:p]j(cf. [4, page 4:3]).References[1] A. Fuhrmann. Theory contraction through base contraction. Journal of Philosophical Logic,20:175{203, 1991.[2] D. M. Gabbay and M. R. B. Clarke. An intuitionistic basis for non-monotonic logic. InP. Smets, A. Mamdani, D. Dubois, and H. Prade, editors, Non-standard Logics for AutomatedReasoning. Academic Press, 1988. 16
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