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Abstract
We propose a new mechanism for digital identity schemes called

‘blind-regroup’, which, given a credential, allows a querying au-

thority to identify all the existing credentials created by the same

user. Unlike traceability, blind-regroup does not identify the ground

identity of the user. Blind-regroup allows the user to continue creat-

ing credentials, and past blind-regroup queries do not compromise

the anonymity of credentials created in the future. Blind-regroup

is developed in a setting that satisfies authority transparency; that

means that authorities can ultimately be held accountable for abuses

of their power. We prove the correctness of blind-regroup (that is,

it returns all and only all of the existing credentials matching the

given credential); and we prove its security (namely, credentials

not captured by blind-regroup remain unlinkable, and credentials

are unforgeable). Our approach requires highly specialised zero-

knowedge proofs; to demonstrate feasibility we provide SNARK

implementations for these proofs and a performance analysis.

CCS Concepts
• Security and privacy→ Security services; Pseudonymity,
anonymity and untraceability; Privacy-preserving protocols;

Keywords
Security, privacy, unlinkability, accountability, digital identification,

authentication
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1 Introduction
Anonymous credentials. Anonymous credential schemes [5] are

concerned with striking an appropriate balance between privacy

and accountability. For example, in the self-sovereign identity para-

digm (SSI) [21], users are accountable in the sense that they may be
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required to prove an identity attribute prior to accessing an online

service. Such users also enjoy privacy because different presenta-

tions of the same credential are unlinkable. A limitation of SSI is

that it does not provide any ability for a relying party (such as an

online service) to carry out investigations of a user, in the case of

some misbehaviour.

The concept of traceability is a partial solution to this problem

(e.g., [4, 14]). There are various definitions of traceability; in general

schemes that offer this feature include an authority figure (which

may be decentralised) that is empowered to make a query about the

owner of a digital identity or credential. The output of this query

will typically identify the ground identity of the credential owner,

which had previously been registered by some credential issuer.

Traceability in the form described above is useful because it is

a form of accountability that does not require the cooperation of

the user. However, it has several limitations. First, it completely

de-anonymises the user, which may be more than is needed for the

investigation at hand. Second, it does not allow the tracing authority

to find all the other credentials created by the user that is being

investigated. Instead, the authority only learns the ground identity

of the credential being queried. User activity identification - in

which all activity of a user is identified as such - is another concept

that partially addresses this weakness of traceability. However, it

has a serious privacy limitation: once a user has been subject to

activity identification, they are fully identified and may be unable

to present their credentials again in an unlinkable way. Revocation

- that is, preventing a user from acting - may also be too strong a

sanction for some purposes.

Blind-regroup. We introduce a new query that addresses the

limitations of traceability and revocation, called blind-regroup. We

assume a digital identity scheme in which a user is capable of gen-

erating any number of credentials that are, by default, unlinkable

to each other and to the user’s ground identity. A blind-regroup

query takes as input a credential, and produces as output the set of

all credentials made by the same (unknown) user so far. The query

does not reveal the ground identity of the user. Our paper focusses

on blind-regroup, but we intend our technique to be integrated

with other identity schemes that offer other query functionalities,

such as identity schemes using randomisable signatures (e.g., [3],

[18], [12]).

Temporal limitation. Blind-regroup returns the set of credentials

that have been created by the user so far. After a blind-regroup

query, the user can go on to create further credentials. An authority
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that has done a blind-regroup query before those further credentials

were created is not able to link those further credentials to each

other or to the previous credentials, except by making a further

blind-regroup query. Hence, blind-regroup allows authorities to

makemeaningful investigationswithout revealing ground identities

and allows users to recover from an investigation and continue to

enjoy privacy.

Authority transparency. Queries made by an authority should be

accountable to users. Authority transparency means that users are

able to access information about the queries that have been made

(the granularity of that information is a parameter that can be set).

We use the ideas of [19] to achieve authority transparency. More

specifically, the technical capability to make certain decryptions is

decentralised to a set of trustees which are instructed to respond

only when there is a valid request from an authority that is allowed

to make a query. This decentralised model works well with public

ledger systems: each trustee may be instructed to reply only to

requests made on the ledger, so that abuse of authority is necessarily

overt.

Certonyms. In this paper, we use the term certonym (‘certified

pseudonym’). A certonym is a digital identity under the user’s

control, which (when there is probable cause or a legitimate legal

basis) allows certain queries that can trace it to users or link it to

other certonyms of the same user. The purpose of these queries is

to allow enforcement of regulations. Crucially, the queries are only

possible in certain circumstances, and only in a way that satisfies

authority transparency by unavoidably leaving evidence of the

linking. Certonyms enhance pricacy by scope-limiting and making

observable the queries made about users.

This paper focusses on blind-regroup, which is an essential

part of certonymity. The blind-regroup functionality we develop is

‘backward-compatible’ with existing forms of identity in the sense

that certonyms can be cryptographically bound to another identity

in order to augment that identity with blind-regroup capabilities.

1.1 Contributions
(1) We present a protocol that enables users to create multiple

credentials (which we call certonyms), and enables an au-

thority to perform temporally-limited blind-regroup queries,

with authority transparency. Certonyms can enhance pri-

vacy in situations where authorities insist on some form of

regulatability or observability.

(2) We prove the correctness of blind-regroup (that is, it returns

all and only all of the existing credentials matching the given

credential); and we prove its security (namely, credentials

not captured by blind-regroup remain unlinkable, and cre-

dentials are unforgeable).

(3) We provide an initial implementation of all zero-knowledge

proofs required by the protocol and discuss the scheme’s

efficiency and scalability. We use the Groth16 SNARK and

choose elliptic curves that ensure compatibility with popular

blockchains.

2 Preliminaries
2.1 Notation
Let G be a cyclic group of prime order 𝑝 . We write the group

operation multiplicatively and our group will later be instantiated

using an elliptic curve. Let 𝑔 be a generator of G. For any 𝑎 ∈ Z𝑝
and ℎ ∈ G, we write ℎ𝑎 to denote the group operation applied to ℎ

repeatedly 𝑎 times.

Let # : {0, 1}∗ → Z𝑝 be a function that maps arbitrary-length

bit strings to elements of Z𝑝 . The specific instantiation of # will

be given later; as the notation suggests we need this function to

be collision-resistant and will instantiate it with a properly chosen

hash function.

Let 𝜈 : G → G be a function defined by 𝜈 (ℎ) = 𝑔#(ℎ) , where
the function # is applied to ℎ by parsing the group elements into

bits. For a given input ℎ and non-negative integer 𝑖 , we use 𝜈𝑖 (ℎ) to
denote the recursive application of 𝜈 to ℎ for 𝑖 times; in particular

𝜈0 (ℎ) = ℎ and 𝜈2 (ℎ) = 𝜈 (𝜈 (ℎ)).
We will use Z≥0 to indicate the set of non-negative integers.

2.2 Parties to the protocol
• Issuer, an agent that acts as a verifier of ground (or legal) iden-

tities, and provides the means for users to obtain certonyms.

Issuers deduplicate users to ensure that each holder of a legal

identity can onboard only once.

• Users, individuals who obtain from Issuer the ability to create

certonyms. Users may use certonyms to open an account

or to certify that an existing blockchain address under their

control.

• Relying Party (typically a service provider), an online plat-

form that accepts a certonym from Issuer as a valid form of

identity and is authorised to request a query in relation to a

certonym.

• Trustees, parties that jointly participate in a transparent

threshold decryption scheme, which enables an answer to a

query about a certonym. Trustees are not required to exercise

any judgment about the merits of decryption, and can be

prevented from knowing any information about it.

• Ledger, a public append-only store of information which is

not required to be trusted. The ledger stores two things: a list

of all established certonyms; and a Merkle tree containing

information about the linkability requests that have been

made about certonyms.

Each deployment of the system specifies a single ledger and relying

party (multiple relying parties can be supported using standard

techniques beyond the scope of this paper). The system supports

multiple issuers and multiple users but for simplicity we assume

here a single issuer.

2.3 Dynamic threshold decryption
A threshold decryption scheme specifies a public key 𝑇𝑃𝐾 and in-

volves 𝑛 trustees that jointly hold shares {𝑠𝑘𝑖 }𝑖=1,...,𝑛 of a secret key.

Trustees participate in decryption by publishing partial decryptions

that depend on their secret key share and on the ciphertext to be

decrypted. Decryption is successful as long as a threshold 𝑡 ≤ 𝑛 of

them follow the protocol. Trustees decrypt in response to a request
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of an external party that cannot directly participate in decryption.

In our case, this external party is the relying party.

Dynamic threshold schemes were introduced in [10]. In such

schemes, trustees need not participate in any multi-party ceremony

to generate the threshold public key (avoiding many security pit-

falls [9]). Moreover, encryptors can choose the set of decryptors

and the decryption threshold. In certonymic practice, subject to

potential constraints imposed by the relying party, this means users

can select threshold decryption parameters (𝑛, 𝑡). We construct a

dynamic threshold decryption scheme using strong zero-knowledge

machinery:

Local generation of threshold public keys. Encryptors generate
their own threshold public keys and trustee key shares {𝑠𝑘𝑖 }𝑖=1,...,𝑛
for use within a limited scope. In particular, users of the certonymic

protocol generate a new 𝑇𝑃𝐾 for each certonym and use it to pro-

duce each ciphertext contained within the certonym. Each share

𝑠𝑘𝑖 is encrypted individually to a trustee with public key 𝑃𝐾𝑖 . These

encrypted shares, along with a zero-knowledge proof of correct

construction, are then appended to the certonym as auxiliary infor-

mation. Appendix B contains details of the method, and a summary

is provided in Figure 1. We note that ciphertexts in our dynamic

threshold scheme have size linear in 𝑛 due to the individually en-

crypted 𝑠𝑘𝑖 values. Moreover, we use general-purpose SNARKs to

prove correct computation of the 𝑠𝑘𝑖 . Besides the initial work [10]

on dynamic threshold decryption schemes, works [6–8] improve ci-

phertext lengths at the cost of requiring encryptions be made over

a pairing-friendly group, significantly restricting cryptographic

flexibility. Most similar to our approach is that of [15], which uses

NIZKs rather than general purpose SNARKs, improving perfor-

mance, especially for protocols in which this dynamic threshold

proofs are the bottleneck. We leave optimisations of this aspect of

our mechanism to future work.

Encrypted trustee responses. Trustees publish encryptions (with

respect to a public key of the relying party) of their partial decryp-

tions so that only the relying party may derive the plaintext; this is

discussed further in Section 2.4.

2.4 Transparent decryption
Transparent decryption is a type of protocol that cryptographi-

cally ensures the act of decryption is made necessarily overt. As

in a threshold decryption scheme, this involves decentralisation in

which the capability to decrypt is held jointly by a set of trustees.
A transparent scheme requires that trustees will only act in re-

sponse to the publication of a corresponding decryption request

on an append-only ledger. This process ensures that decryptions

are transparent to the people who are able to inspect the ledger.

A decryption cannot have taken place unless the corresponding

request has been published or a sufficient threshold of trustees do

not follow the protocol. The protocol can be altered so as to vary

the level of transparency of decryption requests, for example by

encrypting queries to the trustees, implementing some form of time-

delay, or re-randomising ciphertexts prior to their appearance in a

decryption request. For simplicity, we describe a protocol without

these measures in which requests are fully public.

Trustee key management is important; too many lost keys make

queries impossible and too many leaked keys make accountability

of queries impossible. We assume for now that no threshold-sized

coalition of trustees collude or have had their keys compromised.

In practice, key rotation techniques or proactive secret sharing

may be used to reduce trustee-associated risk. Deployments may

require that certonyms be refreshed from time-to-time, at a cadence

proportional to trustee key churn.

Our system is designed in such a way that a blind-regroup query

with respect to a certonym reduces to a request for decryption of a

single ciphertext within that certonym. Trustees monitor a ledger
for decryption requests, and publish responses to satisfy those

requests. Trustees are trusted to publish if and only if they discover

a new and valid request. The format of a decryption request is

specified in Figure 5. Trustee responses are encrypted with a further

key to limit who can derive the plaintext. Typically this will be a

public key of the relying party, which is the authority that makes

queries.

2.5 The ledger
The ledger serves two distinct purposes in our protocol, and hence

stores two types of things. Firstly, it stores a list of all established

certonyms. Secondly, the ledger maintains a Merkle tree that con-

tains three types of leaves, with labels est, br and fup. A certonym-
leaf is of the form (𝑉 , est), where𝑉 is a hash value. A certonym leaf

is associated with a certonym and is added to the tree by users who

are creating a new certonym. A request-leaf has the form (𝑉 , br) or
(𝑉 , fup), and is associated with a blind regroup query request (ini-

tial or follow-up, respectively). Request leaves are added by either

the Issuer or the Relying Party. The protocols for establishing and

blind-regrouping certonyms rely on these items in the Merkle tree.

A Merkle tree is a binary tree in which data is stored at the leaf

nodes, and the hash𝐻 (𝑑ℓ , 𝑑𝑟 ) is stored at each non-leaf node having
children that store data 𝑑ℓ and 𝑑𝑟 . We assume that participants can

access the ledger, which offers the following functions:

• root(), which returns the hash stored at the root of the ledger.

• add(𝑥 ), which creates a new leaf node and adds it to the right

of all the existing leaf nodes, and stores the data 𝑥 there. The

hashes stored at non-leaf nodes are updated as needed. The

add function reorganises parts of the tree in such a way that

the height of the tree storing 𝑛 data items is bounded by

log
2
(𝑛) + 1.

• proof_of_presence(𝑥, 𝑅), which returns data items stored in

the ledger that are sufficient to prove that 𝑥 was was present

in the ledger when it had the root 𝑅.

• proof_of_extension(𝑅, 𝑆), which returns data items stored

in the ledger that are sufficient to prove that version of the

ledger with root 𝑆 is an add-only extension of its previous

version which had root 𝑅.

These functions are standard; for example, they are functions used

in the ledger logs of certificate transparency [1, 16]. We provide

further information in Appendix E
1
.

1
This appendix is only in the long version of the paper, available on the authors’

websites.
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Overview of threshold decryption scheme:
• ThreshEncPK (𝑛, 𝑡, 𝑙, 𝑀), done by user Alice:

– Input: Public keys of trustees, presented as a vector PK = (𝑃𝐾1, ..., 𝑃𝐾𝑛), the threshold value 𝑡 , and the plaintext

vector𝑀 = (𝑀1, ..., 𝑀𝑙 ), where 𝑛 ≥ 1, 𝑡 ≤ 𝑛 and 𝑙 ≥ 1.

– Method:
∗ Generate 𝑡-out-of-𝑛 threshold decryption keys 𝑠𝑘1, . . . , 𝑠𝑘𝑛 and their public key 𝑇𝑃𝐾 (see Appendix B.1).

∗ Compute the encrypted threshold key vector E: 𝑒1 = Enc𝑃𝐾1
(𝑠𝑘1), . . . , 𝑒𝑛 = Enc𝑃𝐾𝑛 (𝑠𝑘𝑛), and 𝜋𝑒𝑛𝑐 a proof to show

that E and 𝑇𝑃𝐾 are correctly constructed. The proof makes use of randomnesses associated with the encryptions

within E.
∗ Compute the ciphertext vector 𝐶 = (𝐶1, . . . ,𝐶𝑙 ), where 𝐶𝑖 = Enc𝑇𝑃𝐾 (𝑀𝑖 ), using fresh randomnesses for each

encryption.

– Output: (E, 𝑇𝑃𝐾, 𝜋𝑒𝑛𝑐 , 𝐶).
• TrusteeDec𝑆𝐾𝑖 (𝑒𝑖 ,𝐶, 𝑅𝑃𝐾), requested by the relying party and done by Trustee 𝑖 holding key (𝑆𝐾𝑖 , 𝑃𝐾𝑖 ):
– Input: Trustee 𝑖’s secret key 𝑆𝐾𝑖 , encrypted threshold key 𝑒𝑖 which is the 𝑖th element of the vector E, ciphertext 𝐶 ,
and the relying party’s public key 𝑅𝑃𝐾 .

– Method:
∗ Compute 𝑠𝑘𝑖 = Dec𝑆𝐾𝑖 (𝑒𝑖 ).
∗ Compute a share of the plaintext vector𝑚𝑖 = PartDec𝑠𝑘𝑖 (𝐶) (see Appendix B.2 for definition of PartDec).
∗ Compute the encrypted share 𝑐𝑖 = Enc𝑅𝑃𝐾 (𝑚𝑖 ).

– Output: 𝑐𝑖 .
• Combine((𝑐𝑖 )𝑖∈𝐼 ), done by the relying party holding key (𝑅𝑆𝐾, 𝑅𝑃𝐾):
– Input: a threshold number |𝐼 | ≥ 𝑡 of the encrypted shares (𝑐𝑖 )𝑖∈𝐼 .
– Method:
∗ Decrypt each share𝑚𝑖 = Dec𝑅𝑆𝐾 (𝑐𝑖 ) (𝑖 ∈ 𝐼 ).
∗ Combine the shares (𝑚𝑖 )𝑖∈𝐼 to get the decryptedmessage by computing𝑀 = Interpolate((𝑚𝑖 )𝑖∈𝐼 ) (see Appendix B.3
for definition of Interpolate).

– Output: 𝑀 .

Figure 1: Threshold cryptosystem summary. Trustee 𝑖 has public key 𝑃𝐾𝑖 and private key 𝑆𝐾𝑖 . 𝑇𝑃𝐾 is an ephemeral threshold
public key created by Alice to encrypt the messages𝑀 = (𝑚1, . . . ,𝑚𝑙 ); the secret keys 𝑠𝑘𝑖 are sent to the trustees encrypted by
their public keys. The relying party with public key 𝑅𝑃𝐾 can request a decryption; it will receive partial decryptions (encrypted
with 𝑅𝑃𝐾) from a threshold number of trustees, and, after decrypting them with its secret key 𝑅𝑆𝐾 , it can combine them.

3 Certonyms and their protocols
3.1 Certonyms and blind-regroup queries
We propose a model of digital identity which provides users a high

degree of privacy and autonomy by default, while also ensuring

some level of regulatability and accountability. We use the term

‘certonym’ to represent a digital identity within this model. In the

certonymic model, a designated relying party may make certain

queries about the underlying holder of a certonym or about the

relationships between certonyms. Core to certonymity is the idea

that authorities can be held accountable for queries that they make

about certonyms and users. This helps to avoid authority overreach.

In this paper, we focus on how to implement a blind-regroup
query. The input to this query is a certonym. The output is the

set of all certonyms currently controlled by the same person that

controls the input certonym. The query is temporally-limited in

the sense that the user can continue to make new certonyms; by

virtue of being created after the query execution finished, these

certonyms cannot be linked to the set of certonyms that was output

by the query unless a subsequent blind-regroup query is performed.

We emphasise that a certonymic protocol with blind-regroup

will likely be augmented with other queries and the set of queries

will enable proportionate investigations into user behaviour that

reveal approximately the minimum information required to satisfy

the goals of a typical investigation.

We expect each user to generate many certonyms and for there to

be a large universeU of existent certonyms. As mentioned earlier,

a more basic certonymic query is to test whether two certonyms

are controlled by the same user. We note that this functionality is

already sufficient to implement the blind-regroup functionality: the

relying party can perform |U| − 1 such queries to test whether the

input certonym has the same controller as another certonym, for

each other certonym inU. Executing ≈ |U| queries is impractical

except for very small deployments of the certonymic protocol. The

core of this paper is to describe a realisation of blind-regroup that

requires only one query, along with a reasonable amount of post-

processing by the relying party.

3.2 The protocols
Our certonym scheme includes several protocols, which will be

introduced in this section. All those protocols will make use of

global parameters as shown in Table 1.

Protocol Issue: onboard with Issuer. This is a one-time protocol

in which Alice approaches the Issuer with identity documents. The

Issuer verifies that Alice has not previously onboarded and makes
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𝑔 Cryptographic group generator for G
PK Public keys of trustees

𝑀𝐴𝑋𝑞 Maximum number of blind-regroup (BR)

queries w.r.t. a given ground identity

𝑀𝐴𝑋𝑐 Maximum number of certonyms that a user

may create in a given generation (meaning be-

tween blind-regroup queries pertaining to their

ground identity)

Table 1: Table of global protocol parameters

(1) Alice approaches Issuer with her ground identity “AliceID”.

Issuer verifies Alice’s identity documents to confirm that

Alice has not performed Issue previously.

(2) Issuer and Alice jointly contribute randomness in such a

way that only Alice learns the outcome:

(a) Alice privately selects a random nonce 𝑛𝑜𝑛𝑐𝑒𝐴𝑙𝑖𝑐𝑒 .

(b) Alice computes a commitment 𝐶𝑜𝑚 to 𝑛𝑜𝑛𝑐𝑒𝐴𝑙𝑖𝑐𝑒 and

sends this to the Issuer.

(c) Issuer independently selects a random nonce 𝑛𝑜𝑛𝑐𝑒𝐼𝑠𝑠𝑢𝑒𝑟
and sends this to Alice in the clear.

(d) Alice computes ℎ0 = 𝜈 (𝑛𝑜𝑛𝑐𝑒𝐴𝑙𝑖𝑐𝑒 ) · 𝜈 (𝑛𝑜𝑛𝑐𝑒𝐼𝑠𝑠𝑢𝑒𝑟 ).
(3) Alice computes the values ℎ𝑖 = 𝜈 (ℎ𝑖−1) (for

1 ≤ 𝑖 ≤ 𝑀𝐴𝑋𝑞 + 2).
(4) Alice computes the value 𝑉𝑠𝑒𝑡𝑢𝑝 = #(ℎ𝑀𝐴𝑋𝑞+2, 0).
(5) Alice computes a zero-knowledge proof 𝜋𝑖𝑠𝑠𝑢𝑒 , as defined in

Figure 7.

(6) Alice provides𝑉𝑠𝑒𝑡𝑢𝑝 and 𝜋𝑖𝑠𝑠𝑢𝑒 to Issuer, which verifies the

proof.

(7) The Issuer accesses the ledger and performs a blockchain

transaction to add (𝑉𝑠𝑒𝑡𝑢𝑝 , est) as a certonym-leaf and

(𝑉𝑠𝑒𝑡𝑢𝑝 , br) as a request-leaf in the Merkle tree 𝑇 on the

ledger.

At the end of this protocol, Alice stores the following data locally:

({ℎ𝑖 }0≤𝑖≤𝑀𝐴𝑋𝑞+2, 𝑉𝑠𝑒𝑡𝑢𝑝 )

Figure 2: The Issue protocol.

a record of her involvement with the protocol. In practice, she will

use a passport or government issued ID to establish her ground

identity. Alice and Issuer engage in a two party computation, at the

end of which Alice gains the capability to create certonyms. The

full Issue protocol is defined in Figure 2.

Protocol Establish: create a certonym. Alice computes a new

certonym by using the secret values generated from the Issue pro-

tocol and the public information stored on the ledger.

• The certonym can be overtly cryptographically linked to the

Issuer, to enable trust in the integrity of the initial onboarding

process.

• No coalition of parties, absent a sufficient threshold of trustees,

can link Alice’s certonym with Alice’s ground identity.

• No coalition of parties, absent a sufficient threshold of trustees,

can link any two of Alice’s certonyms with each other on

the basis of their owner’s common ground identity.

This protocol is defined in Figure 3. Users monitor for blind-regroup

queries related to any certonym they control and maintain an in-

teger 𝛽 to represent how many such queries have occurred. This

value will be used in the protocol.

Protocol Blind-regroup: Given a certonym, find all other certonyms
associated with the same ground identity. This protocol is run be-

tween a relying party and a set of trustees.

(1) This protocol must not reveal any information about the

ground identity.

(2) The total trustee effort in the protocol must be independent

of the total number of certonyms that have been generated.

(3) Suppose that this protocol has been run, and an equivalence

class of certonyms has been identified, all of which are asso-

ciated with the same (unknown) ground identity. Suppose

further that the user with that ground identity creates a new

certonym. Then that certonym should not be linkable to the

equivalence class until this protocol has been run again.

This protocol is defined in Figure 4. We think of each certonym of a

given user as belonging to a certain generation, where generations

are bookended by blind-regroup queries pertaining to the user. The

generation of a certonym is not detectable by default. A user’s first

certonyms will belong to generation 0. At any later time, a freshly

generated certonym will belong to generation 𝛽 , where 𝛽 is the

number of previous blind-regroup queries that have ever pertained

to the user at that time. At most𝑀𝐴𝑋𝑐 certonyms may be created

by a user in a given generation.

3.3 The construction in a nutshell
The core idea of the construction is that each user creates certonyms

within a given (user-specific) generation and then proceeds to the

next generation exactly when any of their certonyms has been the

subject of a blind-regroup query. An effect of the query is that all

certonyms of the user from the outgoing (and all prior) generations

become linkable from the perspective of the relying party. An effect

of the user moving to the next generation is that newly-created

certonyms cannot be linked to those of earlier generations unless

there is another relevant blind-regroup query.

Users are prevented from skipping generations, because this

would break the blind-regroup functionality. As such, users are

unable to create certonyms from within a given generation unless

they prove that they are not skipping a generation and that the

certonyms in their current generation have been linked by a BR

query . Users produce zero-knowledge proofs of these conditions,

which include proofs of presence of items in the ledger Merkle tree.

The Merkle tree proofs establish that certain certonyms have been

created in the past and that certain BR queries have been executed

in the past. The zero-knowledge proof protects the user from re-

vealing which such past certonyms and queries are relevant to their

new certonym, and also checks that the rules about certonymic

generations are obeyed. We stress that the relying party is not re-

quired to be trusted to provide Alice her ability to create unlinkable

credetials after a BR query: each query must be recorded on the
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ledger, leaving Alice with the information she needs to justify the

creation of her next generation of certonyms.

Within a given generation, users can create multiple certonyms

that are all unlinkable prior to the next blind-regroup query. Ci-

phertext re-randomisation and a hash function mechanism are the

tools used to ensure that certonyms of the same generation for the

same user remain unlinkable by default.

3.3.1 An illustrative construction. In this section we describe a

simplified certonym construction. A downside of this simplified

construction is that the size of the certonym (and the number of

decryptions per query) grows linearly in𝑀𝐴𝑋𝑞 , the total number

of blind-regroup queries that can be made with respect to a given

user. Some of the complexities of the full protocol are motivated by

the goal of reducing the size of the certonym to be independent of

𝑀𝐴𝑋𝑞 .

For our illustrative purposes, a simplified certonym has the fol-

lowing components:

(𝐻0, ..., 𝐻𝑀𝐴𝑋𝑞+1,𝑉 ,𝑊 ,𝑦, 𝜋)

First, we explain the values 𝐻0, ..., 𝐻𝑀𝐴𝑋𝑞+1. The certonym pro-

tocol begins with the generation of a pseudorandom sequence of

values ℎ0, ..., ℎ𝑀𝐴𝑋𝑞+2. No one party can control the values in this

sequence: it is the result of jointly-chosen randomness sourced

from a user Alice and the Issuer. The sequence values are elements

of a cryptographic group and they are linked by the 𝜈 function,

which is a hash-to-group function that is easy to compute but hard

to invert. We define this function in Section 2.1 and give further

details in Section 6.1. For all 0 ≤ 𝑖 ≤ 𝑀𝐴𝑋𝑞 + 1, we have that 𝐻𝑖 is
the encryption of ℎ𝑖 .

The values {ℎ𝑖 }𝑖=1,...,𝑀𝐴𝑋𝑞+1 are in a one-to-one correspondence
with certonym generations. Initially, Alice has been the subject of

no blind-regroup query and her certonyms are of the generation

associated with the value ℎ𝑀𝐴𝑋𝑞+1. The Merkle tree on the ledger

contains leaves, placed there by the Issuer during the Issue protocol,

that allow Alice to prove that she may create certonyms in this

first generation. In effect, those leaves are dummy leaves that use

the value ℎ𝑀𝐴𝑋𝑞+2 to “fool” the system into believing that a prior

BR query justifies Alice’s creation of certonyms in this generation,

even though in the case of the first generation no such BR query has

occurred. The upshot of this is that first-generation certonyms are

indistinguishable from non-first-generation certonyms. Meanwhile,

the absence of any other leaves regarding BR queries relevant to

Alice ensure that she may not yet move beyond the first generation.

As she creates multiple certonyms from this initial generation, Alice

re-randomises the ciphertexts {𝐻𝑖 }𝑖=0,...,𝑀𝐴𝑋𝑞+1 to break linkabil-

ity between certonyms and proves within 𝜋 that the certonym is

constructed correctly. The value𝑉 is the hash of a concatentation of

ℎ𝑀𝐴𝑋𝑞+1 and some other value of sufficiently low entropy: an inte-

ger at most𝑀𝐴𝑋𝑐 .𝑉 is used by the relying party to link certonyms

of the same generation at the time of a blind-regroup query. In

particular, the relying party decrypts ℎ𝑀𝐴𝑋𝑞+1 and brute-forces

the low-entropy value. As such, setting 𝑀𝐴𝑋𝑐 to be large gives

Alice more room to create certonyms in a single generation but

also increases the BR query post-processing effort of the relying

party. The values𝑊 and 𝑦 serve to bind a signing and verification

key pair to the certonym.

Now, if the relying party requests a first blind-regroup query

with respect to this certonym, a new leaf recording this event is

added to the Merkle tree. This allows Alice to move to the next

generation: Alice will use the existence of this new leaf to prove

that a first BR query has occurred with respect to her and that she

is entitled to proceed to the second generation, in which ℎ𝑀𝐴𝑋𝑞
will be used in the computation of 𝑉 . Meanwhile, as a result of the

query, the relying party learns ℎ𝑀𝐴𝑋𝑞+1 and uses this to link all

certonyms Alice created prior to the query.

Later, if the relying party wants to follow-up on Alice and is-

sues another blind-regroup query, the same process repeats: the

relying party will use ℎ𝑀𝐴𝑋𝑞 to link Alice’s certonyms and Al-

ice will then use ℎ𝑀𝐴𝑋𝑞−1 to make new ones. In general, if the

blind-regroup protocol has been executed 𝛽 times, then Alice uses

ℎ𝑀𝐴𝑋𝑞+1−𝛽 in newly created certonyms’ 𝑉 value. After𝑀𝐴𝑋𝑞 BR

queries, certonyms use ℎ1 to create the 𝑉 value. Even though ℎ0 is

never used to form the 𝑉 value of a certonym of any generation,

it is needed in the full version of the scheme, in which certonyms

only contain two encrypted values from the set {𝐻𝑖 }𝑖=0,...,𝑀𝐴𝑋𝑞+1,
so that certonyms in the final generation have the same format as

all other certonyms.

3.4 Efficiency of blind-regroup
Blind-regroup is designed so that all certonyms of a given user,

up to the present moment, can be identified via the act of a single

threshold decryption done by trustees. In exchange for this property,

there is a post-processing step done by the relying party.

The most intensive aspect of this post-processing step is the

computation ofCfrom(ℎ) for some decrypted valueℎ. This involves

computing Vfrom(ℎ) and checking each certonym to see whether

its 𝑉 value is an element of this set.

This computation of Vfrom(ℎ) requires 𝑀𝐴𝑋𝑞-wise recursive
computation of the function 𝜈 as applied to ℎ. For each such recur-

sive step, 𝑀𝐴𝑋𝑐 hashes are computed; the total hashing burden

grows like 𝑂 (𝑀𝐴𝑋𝑞 ·𝑀𝐴𝑋𝑐 ). Even for generous settings of these

parameters, the hash burden is not high for a relying party, which

we presume will have good computational resources.

To check which certonyms have a value in Vfrom(ℎ), the relying
party may employ techniques like a Bloom filter to keep computa-

tional costs manageable.

3.5 Using certonyms
Signing with certonyms. A user may use their certonyms to sign

data. A relying party is a platform that accepts certonyms as an

ideneity form and accepts signatures by certonyms, perhaps de-

pending on the associated Issuer. Users can establish that they

control a certonym by signing a message with it. The message can

be generated by the user, or it could be a challenge sent to the user

by a relying party.

Suppose Alice has a certonym (𝐺, 𝐻, 𝑉 , 𝑊 , 𝑦, 𝜋).

(1) Alice signs the message using her signing key 𝑥 correspond-

ing to the certonym’s verification key 𝑦, producing a signa-

ture (e.g., a Schnorr signature).

(2) Alice sends the signature together with her certonym to the

relying party.
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(1) Alice observes the ledger and counts the number of

blind-regroup (BR) queries made with respect to her

certonyms. Let this nonnegative integer be 𝛽 . If 𝛽 > 𝑀𝐴𝑋𝑞 ,

then Alice aborts.

(2) Alice creates a certonym-specific Schnorr signing and

verification key pair (𝑥,𝑦) where 𝑦 = 𝑔𝑥 .

(3) Alice computes

ThreshEncPK (𝑛, 𝑡, 2, 𝑀 = (ℎ𝑀𝐴𝑋𝑞−𝛽 , ℎ𝑀𝐴𝑋𝑞−𝛽+1)),
resulting in

(E,𝑇𝑃𝐾, 𝜋𝑒𝑛𝑐 ,𝐶 = (𝐻𝑀𝐴𝑋𝑞−𝛽 , 𝐻𝑀𝐴𝑋𝑞−𝛽+1)),
where the randomnesses of encryption are 𝑟𝑀𝐴𝑋𝑞−𝛽 ,
𝑟𝑀𝐴𝑋𝑞−𝛽+1, respectively.

(4) Alice arbitrarily chooses a positive integer 𝜖 ≤ 𝑀𝐴𝑋𝑐 . Alice
computes two values 𝑉 = #(ℎ𝑀𝐴𝑋𝑞−𝛽+1, 𝜖) and
𝑊 = #(ℎ𝑀𝐴𝑋𝑞−𝛽+1, 𝑦).

(5) Alice accesses the ledger and observes the state of its

Merkle tree. Either:

• Alice finds a request-leaf value (#(𝜈 (ℎ𝑀𝐴𝑋𝑞−𝛽+1), 𝜖′), br)
for some 𝜖′, or
• Alice finds a request-leaf value

(#(𝜈 (𝜈 (ℎ𝑀𝐴𝑋𝑞−𝛽+1)), 𝜖′), fup), and a certonym-leaf

value (#(𝜈 (ℎ𝑀𝐴𝑋𝑞−𝛽+1), 𝜖′′), est) for some 𝜖′ and 𝜖′′.
If Alice cannot find the required leaves, she aborts.

(6) Alice then sets 𝑇𝑅 to be the root root() of the ledger’s

Merkle tree and constructs a proof of presence of the leaves

in the Merkle tree with that root.

(7) Alice computes a zero-knowledge proof 𝜋𝑒𝑠𝑡 , as defined in

Figure 9.

(8) The certonym is

C = (𝐻𝑀𝐴𝑋𝑞−𝛽 , 𝐻𝑀𝐴𝑋𝑞−𝛽+1, 𝑉 , 𝑊 , 𝑦, 𝜋𝑒𝑠𝑡 ) .
Note that only Alice knows 𝑥 , which is the signing key

associated with the certonym.

(9) Alice submits the certonym to the ledger, which then

verifies the certonym. If the verification passes, the ledger

stores the entire certonym C on the ledger and adds the

certonym-leaf (𝑉 , est) to the ledger Merkle tree.

Figure 3: The Establish protocol

Certonymization of an existing identity. In some circumstances,

Alice will want to associate her certonym with an established ac-

count on a platform. The account will typically already be associ-

ated with a form of identity that is native to the platform. In this

scenario, the relying party challenge may contain a reference to

the account: this means that the certonym signature will establish

that the owner of the certonym wishes to be associated with the

referenced account. To ensure that the account owner is the same

person as the controller of the certonym, the platform may require

that the user log-in to her account and confirm its association with

the given certonym.

Certonym signature verification. Certonyms can be verified by

the relying party. We note here, and will emphasise in the im-

plementation section, that certonyms can be verified on a smart

contract on sufficiently expressive blockchains, such as those using

the Ethereum Virtual Machine.

When a relying party is presented with a signature 𝜎 and a

certonym C = (𝐺, 𝐻, 𝑉 , 𝑊 , 𝑦, 𝜋):

• It verifies the signature 𝜎 using the public key 𝑦;

• It tests the validity of the certonym by confirming that the

proof 𝜋 is valid, and

• the tree root 𝑇𝑅 used as a part of the public witness of 𝜋 is

extended by the current tree root 𝑟𝑜𝑜𝑡 () of the ledger.

3.6 Extensions and variations
Identity attributes. Encryptions of identity attributes can be in-

cluded within (and cryptographically bound to) a certonym. For

instance, the user’s citizenship status may be checked by the Issuer

and encrypted to another ciphertext in the certonym. These can be

decrypted upon request by relying party or users can issue proofs

of the decrypted value, as in SSI protocols.

Full user decryption, or testing equality of underlying identity.
The scheme can readily be extended to enable a query that extracts

the user identity from a certonym, or the query that determines

whether two certonyms are owned by the same user. This can be

achieved by appending to the certonym the randomised encryption

of an identifier unique to the user, with appropriate cryptographic

binding.

Revocation of certonym creation privilege. As a variant, the rely-
ing party may want to temporarily block a user Alice from creating

more certonyms after a BR query. This requirement could be repre-

sented in the BR query request leaf. As a result, proofs 𝜋𝑒𝑠𝑡 would

prove that the Merkle tree leaves relevant to a newly proposed

certonym are not marked with this requirement. Such an act of

revocation of privileges by the relying party is detectable by anyone

with read access to the ledger and can be publicly reversed by the

relying party at any time.

4 Correctness proofs
Suppose user 𝐴 has created certonyms C1, . . . , C𝑛 , and then a blind-

regroup query is done on C𝑖 (for some 1 ≤ 𝑖 ≤ 𝑛). Suppose the
user goes on to create certonyms C𝑛+1, . . . , C𝑚 . The data that was

returned by the blind-regroup query allows one to link all the

certonyms in C1, . . . , C𝑛 with each other, but none of the certonyms

in C𝑛+1, . . . , C𝑚 with any other certonym. We provide proofs of

‘completeness’ (meaning the blind-regroup query produces no false

negatives) and ‘soundness’ (meaning no false positives of the blind-

regroup query). Additionally, we prove ‘executability’ (meaning

that a user can execute the establish protocol).

4.1 Proof of executability
The Establish protocol lays out the various steps that a user Alice

must take to generate a new certonym. It is immediate that all of

these steps are feasible for Alice to complete, other than Step 5,

in which she must find Merkle tree leaves with certain properties.

Therefore we prove that Alice will always be able to find the leaves
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Input: a certonym C = (𝐺, 𝐻, 𝑉 , 𝑊 , 𝑦, 𝜋).
Output: the set of certonyms created so far that have the same

ground identity as C.
Notation: 𝐴𝑙𝑙 is the set of all existing certonyms, which is

derivable by viewing the ledger.

Vfrom(ℎ) = {#(𝜈𝑖 (ℎ), 𝜖) | 0 ≤ 𝑖 ≤ 𝑀𝐴𝑋𝑞, 1 ≤ 𝜖 ≤ 𝑀𝐴𝑋𝑐 }
Cfrom(ℎ) = {(𝐺,𝐻,𝑉 ,𝑊 ,𝑦, 𝜋) ∈ 𝐴𝑙𝑙 | 𝑉 ∈ Vfrom(ℎ)}

A set 𝑆 is maintained by the relying party (RP). It is initially the

empty set; ℎ ∈ 𝑆 means that ℎ has been uncovered by the RP

during a blind-regroup (BR) query.

if ∃ℎ ∈ 𝑆 such that 𝑉 ∈ Vfrom(ℎ) then
𝑗 ← max𝑗∈Z≥0 {∃ℎ′ ∈ 𝑆 : 𝜈 𝑗 (ℎ′) = ℎ}
Pick ℎ′ arbitrarily from {ℎ′ ∈ 𝑆 : 𝜈 𝑗 (ℎ′) = ℎ}
if ∃(𝑉 ′, est) ∈ MT such that ∃𝜖 : 𝑉 ′ = #(ℎ′, 𝜖) then

Let C′ be the certonym corresponding to (𝑉 ′, est)
Parse C′ as (𝐺 ′, 𝐻 ′, 𝑉 ′, 𝑊 ′, 𝑦′, 𝜋 ′)
Construct 𝜋fup, as defined in Figure 8

Submit request (C′, fup, 𝜋fup, 𝑅𝑃𝐾) to the ledger

View query responses𝑀1, ..., 𝑀𝑛 published by trustees

Compute ℎ′′ = Combine((𝑀1, ..., 𝑀𝑛))
Add ℎ′′ to 𝑆
Return the result Cfrom(ℎ′′)

else
Return the result Cfrom(ℎ′)

end if
else

Submit request (C′, br, 𝑅𝑃𝐾) to the ledger

View query responses𝑀1, ..., 𝑀𝑛 published by trustees

Compute ℎ′ = Combine((𝑀1, ..., 𝑀𝑛))
Add ℎ′ to 𝑆
Return the result Cfrom(ℎ′)

end if

Figure 4: The blind-regroup (BR) protocol, which allows the
relying party to obtain all the certonyms created by the user
that owns a given certonym.

needed to generate a certonym. In Appendix F.3
2
, we will prove

the following claim:

Claim 1. In Step 5 of Figure 3, Alice will never abort as long as
she has read-access to the ledger.

4.2 Proof of completeness
Theorem 1. When a blind-regroup (BR) query is executed with

respect to certonym C = (𝐺,𝐻,𝑉 ,𝑊 ,𝑦, 𝜋), the Issuer will be able to
link together all certonyms created by the same owner as the owner
of C.

The proof is given in Appendix F.4
3
.

2
This appendix is only in the long version of the paper, available on the authors’

websites.

3
This appendix is only in the long version of the paper, available on the authors’

websites.

In blind-regroup, the relying party publishes on the ledger a

decryption request of the form (C, br, 𝑅𝑃𝐾) or (C, fup, 𝜋fup, 𝑅𝑃𝐾),
where C = (𝐺,𝐻,𝑉 ,𝑊 ,𝑦, 𝜋) is a certonym, 𝜋fup is a

zero-knowledge proof, and 𝑅𝑃𝐾 is a public key of the relying party.

In its routine monitoring of the ledger, trustee 𝑖 finds this request

and responds as follows:

(1) Check that C is a valid certonym. If not, then halt.

(2) Parse the public inputs of proof 𝜋 within certonym C to

obtain E, with 𝑖th element given by 𝑒𝑖 .

(3) If the request is (C, br, 𝑅𝑃𝐾):
(a) Check whether (𝑉 , br) is a Merkle tree leaf and add it if it

is not.

(b) Publish to ledger𝑀𝑖 = TrusteeDec𝑆𝐾𝑖 (𝑒𝑖 , 𝐻, 𝑅𝑃𝐾).
(4) If the request is (C, fup, 𝜋fup, 𝑅𝑃𝐾):
(a) Check whether (𝑉 , fup) is a Merkle tree leaf and add it if

it is not.

(b) Check the validity of 𝜋fup.

(c) Publish to ledger𝑀𝑖 = TrusteeDec𝑆𝐾𝑖 (𝑒𝑖 ,𝐺, 𝑅𝑃𝐾).

Figure 5: The decryption API for blind-regroup

4.3 Proof of soundness
We prove that the result of an honestly issued query executed with

respect to a certonym C contains only certonyms made by the same

user as the user that made C. We work in the random oracle model.

Let 𝑅 be the cardinality of the range of the hash function. We prove

our result in the simplest non-trivial case of two users; the bound

can easily be extended to arbitrarily many users.

Theorem 2. Suppose that a BR query targets a certonym owned by
𝑢1. If 𝑢1 ≠ 𝑢2 and users 𝑢1 and 𝑢2 do not collude, then, in the course
of the query, no certonym owned by 𝑢2 will be identified, except with

probability at most 𝑂
(
(𝑀𝐴𝑋𝑐 ·𝑀𝐴𝑋𝑞 )2

𝑅

)
.

The intuition behind the theorem is that ifℎ0,𝑢1 andℎ0,𝑢2 are cho-

sen randomly, then the sets {#(𝜈𝑖 (ℎ0,𝑢1 ), 𝑗) | 0 ≤ 𝑖 ≤ 𝑀𝐴𝑋𝑞, 1 ≤
𝑗 ≤ 𝑀𝐴𝑋𝑐 } and {#(𝜈𝑖 (ℎ0,𝑢2 ), 𝑗) | 0 ≤ 𝑖 ≤ 𝑀𝐴𝑋𝑞, 1 ≤ 𝑗 ≤ 𝑀𝐴𝑋𝑐 }
intersect with negligible probability. A formal proof is given in

Appendix F.5
4
.

5 Security proofs
We now provide security analysis of a certonym that has the form:

(𝐺,𝐻,𝑉 ,𝑊 ,𝑦, 𝜋)

5.1 Oracles
Before discussing anonymity & unlinkability and unforgeability in

the following subsections, we first introduce the oracles used in

the security analysis of these two properties. For each oracle, the

adversaryA acts as a requester and the simulator S as a responder,

so we say that S runs oracles for A to query. Aligned with the

oracles, S maintains a user list𝑈 , which records the transcripts of

running the oracles.

4
This appendix is only in the long version of the paper, available on the authors’

websites.
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• 𝑂𝐶𝑟𝑈 (create user): On input 𝑢 ∉ 𝑈 , A requests that 𝑢 is

created.S creates the user𝑢 by using Issuer’s function, stores

𝑢 along with the user’s keys in𝑈 and marks that 𝑢 is honest.

Note that S does not provide the user’s secret key to the

adversary. In the certonym scheme, a user creates and holds

their key. The adversary is not assumed to access an honest

user’s key, so the 𝑂𝐶𝑟𝑈 oracle follows this reality correctly.

• 𝑂𝐶𝑜𝑈 (corrupt user): On input 𝑢 ∈ 𝑈 , A requests that the

user𝑢 is corrupted. S discloses𝑢’s keys toA and marks that

𝑢 is corrupted.

• 𝑂𝐶𝐶 (create certonym): On input 𝑢 ∈ 𝑈 , A requests that a

certonym for 𝑢 is created. S creates a certonym C, stores it
in 𝑈 and returns it to A. For the same reason as the 𝑂𝐶𝑟𝑈
oracle, S does not provide the secret key associated with the

certonym to the adversary.

• 𝑂𝑆 (sign message): On input certonym C and message𝑚,A
requests that the message is signed by using the certonym

C and its corresponding key. S returns a signature 𝑠 on

the message 𝑚 signed by using the certonym C and the

corresponding key.

• 𝑂𝐵𝑅 (blind-regroup): On input certonym C,A requests that

the blind-regroup protocol for this certonym is run.S returns

the transcript of the blind-regroup protocol to A.

5.2 Anonymity and Unlinkability
The property of certonym anonymity & unlinkability expresses the

two facts:

(1) Anonymity: a user using their certonym is indistinguishable

from any other user using their certonym.

(2) Unlinkability: If a user uses a certonym in one session, and

another certonym in another session, and the certonyms

have not been associated with a blind-regroup query, then

the two sessions are unlinkable.

To express this property more formally, we consider an exper-

iment, Exp𝐴𝑈
𝑐𝑒𝑟𝑡,A , between an adversary A and a simulator S. A

controls Issuer and A’s actions are bounded in polynomial-time.

S maintains a user list𝑈 , which includes each user’s name, keys,

certonyms and their states (honest or corrupted). 𝑈 is empty when

the experiment starts. S runs the following oracles for A to query:

𝑂𝐶𝑟𝑈 (create user), 𝑂𝐶𝑜𝑈 (corrupt user), 𝑂𝐶𝐶 (create certonym),

𝑂𝑆 (sign message) and 𝑂𝐵𝑅 (blind-regroup).

The experiment includes three phases:

Phase 1: A can call all the oracles defined in Subsection 5.1

adaptively.

Challenge phase, which starts at the end of Phase 1:

(1) A chooses two honest users 𝐴 and 𝐵 and sends {𝐴, 𝐵} to S.
(2) S selects a random element 𝑟 from {𝐴, 𝐵}.
(3) S generates a certonym C by calling 𝑂𝐶𝐶 (𝑟 ).
(4) S returns C to A.

Phase 2, which starts at the end of the Challenge phase:

(1) A can continue to use the oracles with arbitrary arguments

as in Phase 1, except that they can’t call 𝑂𝐶𝑜𝑈 with input 𝐴

or 𝐵, or 𝑂𝐵𝑅 with input C.
(2) Particularly, A can call 𝑂𝐶𝐶 (𝐴) or 𝑂𝐶𝐶 (𝐵) multiple times.

(3) A can also call 𝑂𝑆 for 𝐴 or 𝐵, including 𝑂𝑆 (C,𝑚) with a

message𝑚 at A’s choice.

(4) At the end of Phase 2, A outputs a value 𝑟 ′. It wins the
experiment if 𝑟 ′ = 𝑟 .

We denote the fact that the adversary wins the above game by

Exp𝐴𝑈
𝑐𝑒𝑟𝑡,A (𝜆) = 1.

Definition 1. (Anonymity & Unlinkability). Given a security
parameter 𝜆, it is said that a certonym scheme holds the property of
Anonymity & Unlinkability, if for any polynomial-time adversaryA,
the probability of A winning the Anonymity & Unlinkability (AU)
experiment is as follows:

𝑆𝑢𝑐𝑐𝐴𝑈𝑐𝑒𝑟𝑡 (A(𝜆)) = 𝑃𝑟 [Exp𝐴𝑈𝑐𝑒𝑟𝑡,A (𝜆) = 1] ≤ 1/2 + 𝑛𝑒𝑔𝑙 (𝜆).

Definition 2. (Encryption with randomisable ciphertexts). It is
said that an encryption scheme supports randomisable ciphertexts, if
given a ciphertext 𝐶 associated with a plaintext 𝑃 and a key, one can
create another ciphertext 𝐶′, which will be decrypted to the same 𝑃
by using the same key.

Definition 3. (Ciphertext indistinguishability of encryption with
randomisable ciphertexts). This property is defined by using an exper-
iment Exp𝐶𝑖𝑝ℎ𝑒𝑟𝐼𝑛𝑑

𝑇𝑟𝑢𝑠𝑡𝑒𝑒
, which is run between a polynomial-time adver-

saryA and a simulator S.A has access to a target public encryption
key (via creating a user query), so A can make ciphertexts for any
messages under this key. In addition, A can make multiple queries
about ciphertexts of A’s choice to obtain the corresponding plain-
texts. The queries are answered by S. As a challenge, A provides
two ciphertexts, 𝐶0 and 𝐶1, to S. S randomly picks a bit 𝑏 ∈ {0, 1},
randomises 𝐶𝑏 to obtain a randomised version 𝐶′

𝑏
. S returns it to A.

A can then carry on making the queries as before except for the de-
cryption query for𝐶′

𝑏
. At the end,A outputs 𝑏′. If 𝑏′ = 𝑏,A wins the

experiment. It is said that an encryption scheme with randomisable
ciphertexts holds ciphertext indistinguishability, if the probability of
the aforementioned adversary succeeding is not more than a half plus
a negligible value.

Theorem 3. For a suitable security parameter, 𝜆, the certonym
scheme is anonymous and unlinkable if:
• The underlying trustee encryption scheme used to create a
certonym supports randomisable ciphertexts and ciphertext
indistinguishability.
• The proof𝜋 is a Non-Interactive Zero-Knowledge Proof (NIZKP),
which can be simulated. By simulated, we mean there is a simu-
lation oracle to create a simulated 𝜋 without knowing its secret
input. The simulation oracle is accessible by the simulator S.
From a verifier’s point of view, a simulated proof is indistin-
guishable from a real proof computed using its corresponding
secret.
• The hash function used in the Schnorr signature is a random
oracle.

Proof. S performs the Exp𝐴𝑈
𝑐𝑒𝑟𝑡,A experiment withA as defined

before, in which S responds to queries made by A. The hash func-

tion used in the Schnorr signature scheme is through a random

oracle model, which is run by S. S has access to the simulation

oracle of 𝜋 to generate a verifiable zero-knowledge proof. To guar-

antee consistency between answers to various queries, S maintains
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a certonym user list 𝑈 , which includes each user’s name, keys,

certonyms and their states (honest or corrupted), and all queries

and the corresponding answers associated with this user. The list

𝑈 is empty when the experiment starts.

While A has the target of winning the experiment Exp𝐴𝑈
𝑐𝑒𝑟𝑡,A ,

S has the target of breaking the ciphtertext indistinguishability

of the underlying trustee encryption scheme. For this purpose,

during the run of the Exp𝐴𝑈
𝑐𝑒𝑟𝑡,A experiment, S simultaneously runs

Exp𝐶𝑖𝑝ℎ𝑒𝑟𝐼𝑛𝑑
𝑇𝑟𝑢𝑠𝑡𝑒𝑒

experiment with their simulator. In this experiment,

S plays the role of an adversary, who is allowed to ask the queries

for creating a set of honest users (i.e., trustees), and decrypting a

ciphertext. As a challenge, S submits two ciphertexts 𝐶0 and 𝐶1 to

the simulator of Exp𝐶𝑖𝑝ℎ𝑒𝑟𝐼𝑛𝑑
𝑇𝑟𝑢𝑠𝑡𝑒𝑒

and receives a randomised ciphertext

𝐶𝑏 for 𝑏 ∈ {0, 1}. S needs to output 𝑏′ and wins the experiment

Exp𝐶𝑖𝑝ℎ𝑒𝑟𝐼𝑛𝑑
𝑇𝑟𝑢𝑠𝑡𝑒𝑒

if 𝑏′ = 𝑏.
In the Exp𝐴𝑈

𝑐𝑒𝑟𝑡,A experiment, A controls the Issuer but not the

trustees. At the outset of the experiment, S runs Setup to create a

set of trustees. To set up each trustee, S asks a query for creating

an honest user to the simulator of the Exp𝐶𝑖𝑝ℎ𝑒𝑟𝐼𝑛𝑑
𝑇𝑟𝑢𝑠𝑡𝑒𝑒

experiment, S
receives a public key for this trustee and S shares the key with A.

S also runs Setup (or takes A’s input) to create an Issuer, which

has a public and secret key pair. All the values of the public and

secret keys of the Issuer are known to A.

In Phase 1, S handles the oracle queries listed in section 5.1 as

follows.

• 𝑂𝐶𝑟𝑈 (create user): To create an honest certonym user 𝑢,

A sends 𝑂𝐶𝑟𝑈 (𝑢) to S. S checks whether 𝑢 ∈ 𝑈 . If yes,
S rejects this query; otherwise, S runs the 𝐼𝑠𝑠𝑢𝑒 proto-

col with A, in which A plays as an Issuer and S plays

as 𝑢. S uses the trustees’ public keys to generate related

ciphertexts. At the end of the protocol, S obtains and stores

((ℎ𝑖 , 𝐻𝑖 )0≤𝑖≤𝑀𝐴𝑋𝑞+1, 𝜎𝑀𝐴𝑋𝑞 ,𝑉𝑠𝑒𝑡𝑢𝑝 ).S records the transcript

of this oracle run in𝑈 and marks that 𝑢 is honest.

• 𝑂𝐶𝑜𝑈 (corrupt user): To corrupt a certonym user 𝑢,A sends

𝑂𝐶𝑜𝑈 (𝑢) to S. S checks whether 𝑢 ∈ 𝑈 and is marked as

honest. If not, S rejects this query; otherwise, S discloses

𝑢’s secret key 𝑥 together with the Issue protocol output

((ℎ𝑖 , 𝐻𝑖 )0≤𝑖≤𝑀𝐴𝑋𝑞+1, 𝜎𝑀𝐴𝑋𝑞 ,𝑉𝑠𝑒𝑡𝑢𝑝 ) to A and marks that

𝑢 is corrupted.

• 𝑂𝐶𝐶 (create certonym): To obtain a certonym for an honest

user 𝑢, A sends 𝑂𝐶𝐶 (𝑢) to S. S checks whether 𝑢 ∈ 𝑈 and

is marked as honest. If not, S rejects this query; otherwise,

S runs the 𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ protocol with A. At the end of the

protocol, S creates a certonym C = (𝐺,𝐻,𝑉 ,𝑊 ,𝑦, 𝜋), stores
the certonym together with its secret key 𝑥 (where 𝑦 = 𝑔′𝑥 )
in𝑈 and returns the certonym to A.

• 𝑂𝑆 (sign message): To request signing a message𝑚 using the

certonym C and its corresponding key, A sends 𝑂𝑆 (C,𝑚)
to S. S checks whether C ∈ 𝑈 and its corresponding user 𝑢

is marked as honest. If not, S rejects this query; otherwise,

S creates a signature on𝑚 using C and its secret key 𝑥 . S
records this result to𝑈 and returns the signature 𝑠 to A.

• 𝑂𝐵𝑅 (blind-regroup): On input certonym C,A requests that

the blind-regroup protocol for this certonym is run. S asks

the simulator of the Exp𝐶𝑖𝑝ℎ𝑒𝑟𝐼𝑛𝑑
𝑇𝑟𝑢𝑠𝑡𝑒𝑒

experiment for decryp-

tion queries on the relevant ciphertexts in C, and then S
receives a set of plaintexts, which are associated with all the

certonyms created so far that have the same ground identity

as C. S returns the result of the blind-regroup protocol to

A.

A decides the time when Phase 1 is complete and the chal-

lenge phase starts. In the challenge phase,A outputs two certonym

users’ names, say 𝐴 and 𝐵, which have not been corrupted. S gen-

erates two set of ciphertexts 𝐶0 and 𝐶1, where 𝐶0 = (𝐺𝐴, 𝐻𝐴) and
𝐶1 = (𝐺𝐵, 𝐻𝐵). S sends them to the simulator of the Exp𝐶𝑖𝑝ℎ𝑒𝑟𝐼𝑛𝑑

𝑇𝑟𝑢𝑠𝑡𝑒𝑒
experiment, from which S receives a randomised ciphertext 𝐶𝑏 ,

where 𝑏 ∈ {0, 1}. S then generates a certonym C𝑟 based on 𝐶𝑏 .

Clearly, if 𝑏 = 0, 𝑟 = 𝐴 and otherwise 𝑟 = 𝐵. Following the defini-

tion of a certonym,

C𝑟 = (𝐺𝑟 , 𝐻𝑟 ,𝑉𝑟 ,𝑊𝑟 , 𝑦𝑟 , 𝜋𝑟 ) .

𝑉𝑟 and𝑊𝑟 are two hash outputs and S can handle them based on

the random oracle. To do so, S chooses two random values as 𝑉𝑟
and𝑊𝑟 , which are represented as #(𝑎, 𝜖) and #(𝑏,𝑦𝑟 ). S does not

know 𝑎 or 𝑏, but since 𝜋 is simulatable, the consistency of C𝑟 can
be maintained, i.e., from A’s point of view, C𝑟 is indistinguishable
from a real C𝑟 . However, there are two conditions: (i) C𝐴 and C𝐵
should use the same 𝜖 (this is achievable); and (ii) neither (𝑎, 𝜖) nor
(𝑏,𝑦𝑟 ) should be used as an input of querying the hash function #

(if this happens, S will abort). The randomisation of the ciphertext

also updates the public verification key 𝑦𝑟 , which can be retrieved

from 𝐶𝑏 , but S does not know its corresponding secret key 𝑥𝑟 .

The last part of C𝑟 is an NIZKP 𝜋𝑟 . S generates it by calling the

simulation oracle of this proof. This can be achieved since it is

assumed that 𝜋𝑟 is a simulated proof. Finally, S sends C𝑟 to A.

One example of 𝜋𝑟 is a simulation-extractable KZG polynomial

commitment scheme [17], which is an extention of the KZG polyno-

mial commitment scheme [13]. A univariate case (proving a single

polynomial) of simulation-extractable KZG commitments is pre-

sented in Material C of [17] and a general case with multivariate

polynomials is in Section 4 of this paper.

In Phase 2, S and A carry on the query and response process

as in Phase 1. Again, A is not allowed to make any Corrupt query

to either 𝐴 or 𝐵. In addition, A is not allowed to query 𝑂𝐵𝑅 (C𝑟 ).
However,A is allowed to query𝑂𝐶𝐶 (𝐴) or𝑂𝐶𝐶 (𝐵) multiple times,

and as well as to query 𝑂𝑆 (C𝑟 ,𝑚) with a message𝑚 at A’s choice.

We now see how S handles these queries:

• 𝑂𝐶𝐶 (𝐴) (or 𝑂𝐶𝐶 (𝐵)): S responds to this query by follow-

ing the protocol correctly and returns to A with a newly

generated certonym.

• 𝑂𝑆 (C𝑟 ,𝑚) (sign a message on the behalf of the user 𝑟 ): To

request signing a message𝑚 using the certonym C𝑟 , which
is the output of the challenge phase, which is associated with

the user 𝑟 ∈ {𝐴, 𝐵}. S creates a Schnorr signature 𝑠 on𝑚

under the key 𝑦𝑟 . Note that S does not have access to the

corresponding secret signing key 𝑥𝑟 . In this case, S uses the

random oracle model to simulate a valid Schnorr signature 𝑠 .

S records this result to𝑈 and returns the signature 𝑠 to A.

At the end of Phase 2, A outputs 𝑟 ′. If 𝑟 ′ = 𝐴, S outputs 𝑏′ = 0;

otherwise, if 𝑟 ′ = 𝐵, S outputs 𝑏′ = 1. We argue that if A wins
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the experiment Exp𝐴𝑈
𝑐𝑒𝑟𝑡,A , S will win the experiment Exp𝑐𝑖𝑝ℎ𝑒𝑟𝐼𝑛𝑑

𝑇𝑟𝑢𝑠𝑡𝑒𝑒
,

because 𝐶𝑏 is used to create C𝑟 . In order to increase the success

rate, the Exp𝐴𝑈
𝑐𝑒𝑟𝑡,A experiment should be run multiple times and

as well as the Exp𝑐𝑖𝑝ℎ𝑒𝑟𝐼𝑛𝑑
𝑇𝑟𝑢𝑠𝑡𝑒𝑒

experiment runs.

We can see that the first fact (anonymity) is held because if

the probability of A outputting the correct 𝑟 is higher than 1/2 +
𝑛𝑒𝑔𝑙 (𝜆), the probability of S outputting the correct 𝑏′ is also 1/2 +
𝑛𝑒𝑔𝑙 (𝜆). However, this contradicts the assumption that the underly-

ing trustee encryption scheme supports randomisable ciphertexts

and ciphertext indistinguishability.

The second fact (unlinkability) is also held because the Exp𝐴𝑈
𝑐𝑒𝑟𝑡,A

experiment allowsA to query𝑂𝐶𝐶 for any honest users, including

the challenging users 𝐴 and 𝐵. As for any corrupted users, A can

create their certonyms by itself. Moreover, A is allowed to query

𝑂𝑆 for any certonyms, including the challenging certonym C𝑟 . IfA
can link C𝑟 with any of these queries, A must be able to output a

correct 𝑟 every time, which will break the anonymity. As discussed

before, this can only happen with a negligible probability.

Since both the two facts are held, the theorem follows. □

In Appendix C, we demonstrate how the modified KZG scheme

is simulatable.

5.3 Unforgeability
This property guarantees that an adversary cannot create certonyms

or signatures that would be linked to or attributed to a certonym

of a different user who acts honestly.

To formalise this property, similar to the property of anonymity

& unlinkability from section 5.2, we also consider an experiment,

ExpUnforge
cert,A between an adversaryA and a simulatorS.S maintains

a user list𝑈 , which includes each user’s name, keys, certonyms and

their states (honest or corrupted).𝑈 is empty when the experiment

starts. In this experiment,A controls the trustees, so the𝑂𝐵𝑅 (blind-

regroup) oracle is not required.

We consider the experiment with two phases:

Phase 1 The adversary can call the following oracles:𝑂𝐶𝑟𝑈 (create

user), 𝑂𝐶𝑜𝑈 (corrupt user), 𝑂𝐶𝐶 (create certonym), and 𝑂𝑆
(sign message), which are defined in section 5.1.

Phase 2 The adversary outputs some data.

The adversary wins the experiment if

• Case 1: The data is a certonym C such that C is not the

output of 𝑂𝐶𝐶 ; or

• Case 2: The data is a triple (C, 𝑠,𝑚) such that Verif (C, 𝑠,𝑚)
outputs Accept, and C,𝑚 is not the input to 𝑂𝑆 , and for all

users 𝑢, if owner(𝑢, C) then 𝑢 has not been provided as an

input to 𝑂𝐶𝑜𝑈 .

Definition 4. (certonym owner). owner(𝑢, C) holds if 𝑂𝐶𝐶 has
been called with argument 𝑢 and output C.

We denote the fact that the adversary wins the above game by

ExpUnforge
cert,A (𝜆) = 1.

Definition 5. (Unforgeability). Given a security parameter 𝜆, it
is said that a certonym scheme holds the property of unforgeability,
if for any polynomial-time A, the probability of A winning the

unforgeability experiment is as follows

𝑆𝑢𝑐𝑐
Unforge
cert (A(𝜆)) = 𝑃𝑟 [ExpUnforgecert,A (𝜆) = 1] ≤ 𝑛𝑒𝑔𝑙 (𝜆) .

In parallel of running ExpUnforge
cert,A , S is also involved in other two

experiments, denoted by ExpEU-CMA

𝑢 and ExpEU-CMA

𝐼𝑠𝑠𝑢𝑒𝑟
. ExpEU-CMA

𝑢 is

associated with the user’s signatures and ExpEU-CMA

𝐼𝑠𝑠𝑢𝑒𝑟
is associated

with the Issuer’s signatures. In either of these two experiments,

S acts as an adversary, aiming to create a forgery of the user’s

signature or the Issuer’ signature. Now we give a formal definition

of EU-CMA:

Definition 6. (Existential unforgeability under adaptive chosen-
message attacks (EU-CMA)). This property is defined by using an
experiment Exp𝐸𝑈 −𝐶𝑀𝐴

𝑠𝑖𝑔
, which is run between a polynomial-time

adversary A and a simulator S. Suppose that A has access to a
public verification key of a digital signature scheme, they can make
multiple queries to a signing oracle with messages at the adversary’s
choice. The query is answered by S. Then A provides a message
and signature pair (𝑚,𝜎) in which the message was not previously
submitted to the signing oracle. A signature scheme is considered to
be EU-CMA secure if the probability of the aforementioned adversary
succeeding is negligible.

Theorem 4. For a suitable security parameter, 𝜆, the certonym
scheme is unforgeable if:

• Issuer’s signature scheme is EU-CMA secure.
• A certonym’s underlying signature (i.e., a user’s signature) is
EU-CMA secure.
• The function # is a cryptographic hash function and it is con-
sidered as a random oracle.
• The knowledge proof 𝜋 is an Non-Interactive Zero-Knowledge
Proof (NIZKP).

Due to space limitation, the proof of this theorem is given in

Appendix G
5
.

6 Implementation
6.1 Zero-knowledge proofs and encryption
6.1.1 SNARKs. We require a general purpose zero-knowledge prov-

ing system and use SNARKs, in part for their short proof sizes

which is appropriate for publishing to a blockchain ledger. We

use Groth16 [11], instantiated with KZG commitments and im-

plemented with the Gnark software package [2]. We instantiate

Groth16 with BN254 as the proving curve. As an implication, our

SNARK circuits operate on arithmetic over the scalar field of BN254.

6.1.2 ElGamal encryption. We prove statements about encrypted

values. We use ElGamal encryption over an elliptic curve group. We

also make use of hashed ElGamal, as discussed later in this section,

which is useful when the messages to encrypt are not elements of

the elliptic curve group. Proving statements about hashed ElGamal

ciphertexts is more expensive than proving the same statements

about non-hashed ElGamal ciphertexts, so we use the non-hashed

variety when we can.

5
This appendix is only in the long version of the paper, available on the authors’

websites.
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6.1.3 2-chains of elliptic curves. A 2-chain is a pair of elliptic curves
such that the base field of one curve (called the ‘inner’ curve) is the

scalar field of the other (‘outer’) one. In our protocol, when proving

statements about encrypted values, our circuits must operate on

inputs that are ElGamal ciphertexts. These ciphertexts consist of

elliptic curve group elements over some base field. To avoid the

need to emulate arithmetic over one field while working within

another field, it is important to use an elliptic curve with base field

equivalent to the scalar field of the proving curve BN254. In our

case, we use the Baby Jubjub curve, which has been designed for

this purpose: in particular, BN254 and Baby Jubjub form a 2-chain

of curves.

Unfortunately, our use of this 2-chain does not allow us to fully

avoid emulated arithmetic. One of our zero-knowledge proofs 𝜋𝑒𝑛𝑐
requires performing operations over scalar field elements of Baby

Jubjub, the inner curve of the 2-chain. As such, we must simulate

arithmetic in Baby Jubjub’s scalar field while working over circuits

that operate in its base field. This emulation incurs a penalty in

terms of the number of constraints, but is acceptable when the

decryption threshold and the number of trustees are not too large.

6.1.4 Hashed ElGamal. Hashed ElGamal is a variant ElGamal scheme

in which an encryption 𝐸 for message𝑚 is formed as:

𝐸 = (𝑔𝑟 ,𝑚 + #(𝑃𝐾𝑟 )).

An advantage of hashed ElGamal is that the messages need not

be group elements and can be arbitrary bytes. In particular, the

+ can be interpreted as a bitwise operation or as addition over a

scalar field. Our proof 𝜋𝑒𝑛𝑐 involves encryptions of scalar values

rather than group elements and thus applies hashed ElGamal. In

our case, we interpret the addition on the right hand side of the

ciphertext as addition over the scalar field of BN254. (It would suffice

to use addition over the scalar field of Baby Jubjub, considering

that our messages live in the scalar field of Baby Jubjub. However,

performing arithemetic over the larger scalar field of BN254 avoids

further emulated arithmetic.)

6.1.5 Hashing to elliptic curves and the function 𝜈 . Step 3 of the

Issue protocol involves the selection of𝑀𝐴𝑋𝑞 + 3 pseudorandom
elliptic curve group elements. We use group elements, rather than

raw bytes, so that these values can be encrypted using elliptic curve

ElGamal, in which the message space is group elements. Select-

ing pseudorandom elements in this way avoids hashed ElGamal

and emulated arithmetic. The elements must be chosen in such

a way that the next element can be derived from the previous

one but the reverse direction is infeasible to compute. Recall that

we use the function 𝜈 to obtain the next group element from the

previous group element, as 𝜈 (ℎ) = 𝑔#(ℎ) (see Section 2.1). This is

in effect a naive hash-to-curve protocol. Often, this construction

is insecure because the hash function range and the group order

are mismatched, causing a non-uniform output. However, use a

MiMC-based hash function with range size |𝑔| to ensure uniformity.

We omit details related to domain separation and constant time

operations.

6.1.6 Parameters. Global parameters are given in Table 1. We use

for 𝑔 a generator of the Baby Jubjub elliptic curve group. Users of

the system may select how many trustees to encrypt to and a de-

cryption threshold or may be required to make certain such choices.

Table 2 shows how the number of trustees and decryption threshold

affect relevant proving performance. Tables 3, 4, and 5 highlight

performance impact of the critical system parameters𝑀𝐴𝑋𝑞 and

𝑀𝐴𝑋𝑐 . As 𝑀𝐴𝑋𝑞 gets larger, the Issue protocol takes longer and

the proof 𝜋𝑖𝑠𝑠𝑢𝑒 increases in complexity, while the protocol to es-

tablish a certonym and 𝜋𝑒𝑠𝑡 are relatively unaffected. The purpose

of𝑀𝐴𝑋𝑐 is to limit the number of certonyms that Alice can create

per generation (between BR queries), so that BR query execution

remains tractable for the relying party. The SNARK proving times

are relatively constant with respect to this parameters, although

protocol blind-regroup becomes more computationally intensive

for the relying party as𝑀𝐴𝑋𝑐 grows.

6.2 Ledger and smart contracts
We sketch here a smart contract structure for integration of the pro-

tocol with a blockchain. We assume that the blockchain supports

smart contracts capable of verifying Groth16-based SNARKs that

use BN254 as the proving curve; this is the case for Ethereum. A

protocol set-up contract Master may help organise protocol pa-

rameters and participants. It is here that trustees, the relying party,

and the Issuer may publish public keys. The universe of trustees

may also be managed here: some (possibly decentralised) author-

ity must take judgements as to which trustees may participate in

the protocol. This contract may also be used to publish certonyms

or to link them to existing forms of identity. A second contract

Bulletin serves as a ledger, containing decryption requests and

trustee responses. A third contract will maintain a Merkle tree 𝑇 .

6.3 Zero-knowledge proof performance
We have conducted experiments to show the time to compute the

proofs in our paper (𝜋𝑒𝑛𝑐 , 𝜋𝑖𝑠𝑠𝑢𝑒 , 𝜋𝑒𝑠𝑡 and 𝜋𝑓 𝑢𝑝 ), using various

values for the parameters involved. Tables showing the results are

given in Appendix A.

7 Conclusions
Any practical scheme for the management of digital identities must

strike an acceptable balance between providing privacy by default

to users and providing the ability for authorities to make queries

that are crucial to system regulation or the investigation of criminal

activity. Users should be able to see what queries have been made,

and hold the querying authorities accountable. We use the term

certonym for credentials that satisfy these properties that balance

user privacy and investigative queries.

Blind-regroup is a query which, given a credential, allows au-

thorities to discover all the credentials created by the user of that

credential. Blind-regroup is privacy-preserving, because (unlike a

tracing query) it does not reveal the ground identity of the user.

Also, it allows the user to continue creating credentials since cre-

dentials created after a blind-regroup query are not compromised

by the query. Blind-regroup is an essential part of our concept of

certonymity.
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A Zero-knowledge proof performance
All experiments on our zero-knowledge proofs were performed on

a MacBook Pro with an Apple M3 Pro chip, throttled to 4 CPUs and

a 1 GB soft memory limit. See Tables 2, 3, 4, and 5.

B Threshold decryption key setup
We assume that there are 𝑛 trustees, each associated with an index

𝑖 ∈ {1, ..., 𝑛} and a (non-threshold) public key 𝑃𝐾𝑖 along with the

corresponding secret key 𝑆𝐾𝑖 . The vector of these trustee public

keys is denoted PK. In this description, we will assume that an

encryptor (Alice) will use all 𝑛 trustees. In general, there may be

a larger universe of 𝑁 > 𝑛 trustees and Alice has the freedom to

select a subset of 𝑛 from the universe.

We also work wth ElGamal encryption and assume that each

ciphertext𝐶 may be parsed as a pair (𝑐, 𝑐′) of the form (𝑔𝑟 ,𝑚 ·𝑃𝐾𝑟 ).

Circuit Type
Num. of
trustees

Decryption
threshold Constraints

Proving
time (s)

𝜋𝑒𝑛𝑐 ,

proof for

ThreshEnc

3 1 23,084 0.182

3 2 23,938 0.190

3 3 24,574 0.194

9 3 67,402 0.510

9 6 72,899 0.541

9 9 78,397 0.589

30 10 255,781 1.65

30 20 305,719 2.33

30 30 354,408 2.35

90 30 1,007,805 6.02

90 60 1,352,005 10.2

90 90 1,696,205 12.7

Table 2: Performance of 𝜋𝑒𝑛𝑐 circuit

Circuit Type MAX_q Constraints
Proving
time (s)

𝜋𝑖𝑠𝑠𝑢𝑒 ,

proof for

set-up

2 31,414 0.189

8 63,178 0.343

32 190,234 1.11

128 698,458 3.97

512 2,731,354 15.9

Table 3: Performance of 𝜋𝑖𝑠𝑠𝑢𝑒 circuit

Circuit Type MAX_c 𝑇𝑟 depth Constraints
Proving
time (s)

𝜋est,

proof for

certonym creation

100 40 202,749 1.39

1,000,000 40 202,765 1.41

100 60 242,862 1.64

1,000,000 60 242,878 1.69

Table 4: Performance comparison of 𝜋est with varying pa-
rameters. We fix 𝑛 = 9 trustees with decryption threshold
𝑡 = 6. A 𝑇𝑟 depth of 60 roughly corresponds to a scenario in
which every human has created𝑀𝐴𝑋𝑞 ·𝑀𝐴𝑋𝑐 certonyms for
𝑀𝐴𝑋𝑞 = 512 and𝑀𝐴𝑋𝑐 = 1, 000, 000.

Circuit Type MAX_c Constraints
Proving
time (s)

𝜋fup, for

some BR queries

100 3,124 0.0263

1,000,000 3,128 0.0270

Table 5: Performance of 𝜋fup, the proof provided by the rely-
ing party when making a BR query of type fup.

B.1 Threshold key generation
This section explains how Alice creates a public key 𝑇𝑃𝐾 and the

corresponding secret keys 𝑠𝑘1, . . . , 𝑠𝑘𝑛 such that any 𝑡 ≤ 𝑛 of them

can decrypt information that has been encrypted with 𝑇𝑃𝐾 . This

idea follows Shamir’s secret sharing scheme [20].

• Input: Number 𝑛 of trustees, threshold 𝑡 ≤ 𝑛, and trustee

public keys PK = (𝑃𝐾1, . . . , 𝑃𝐾𝑛).
• Method:
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• Public Inputs:
– E = (𝑒1, ..., 𝑒𝑛 )
– 𝑇𝑃𝐾
– PK = (𝑃𝐾1, ..., 𝑃𝐾𝑛 )

• Private Inputs:
– 𝑎0, ..., 𝑎𝑡−1
– 𝑠𝑘1, ..., 𝑠𝑘𝑛

– randomnesses associated with the encryptions within E

Constraints
• 𝑠𝑘𝑖 equals 𝑝 (𝑖 ) , where 𝑝 is the degree 𝑡 − 1 polynomial given by

𝑎0 + 𝑎1 · 𝑥 + ... + 𝑎𝑡−1 · 𝑥𝑡−1
• 𝑒𝑖 is a valid encryption (using generator 𝑔) to public key 𝑃𝐾𝑖 of

𝑠𝑘𝑖 , using the given randomness

• 𝑔𝑎0 = 𝑇𝑃𝐾

Figure 6: Proof 𝜋𝑒𝑛𝑐 of correct setup of threshold public key.
The proof ensures that the public key was formed to respect
the correct decryption threshold. In our implementation,
the 𝑠𝑘𝑖 are elements of the Baby Jubjub scalar field rather
than group elements; as such, the 𝑒𝑖 are hashed ElGamal
ciphertexts. A new circuit must be compiled for each desired
value of 𝑡 .

(1) Generate a random polynomial of degree 𝑡 − 1:

𝑝 (𝑥) = 𝑎0 + 𝑎1 · 𝑥 + ... + 𝑎𝑡−1 · 𝑥𝑡−1

(2) For 𝑖 = 1, ..., 𝑛, compute the evaluations: 𝑠𝑘𝑖 = 𝑝 (𝑖) and cre-
ate encryption 𝑒𝑖 = Enc𝑃𝐾𝑖 (𝑠𝑘𝑖 ) of 𝑠𝑘𝑖 for the 𝑖th trustee.

Let E = (𝑒1 . . . , 𝑒𝑛).
(3) Let 𝑇𝑃𝐾 = 𝑔𝑎0 .

(4) Constructs a zero-knowledge proof 𝜋 that all this has been

done correctly, described in Figure 6.

• Output: (E,𝑇𝑃𝐾, 𝜋)

B.2 Definition of PartDec𝑠𝑘𝑖 (𝐶)
Trustee 𝑖 parses ciphertext 𝐶 as 𝐶 = (𝑐, 𝑐′) = (𝑔𝑟 , 𝑀 · 𝑇𝑃𝐾𝑟 ). To
execute PartDec𝑠𝑘𝑖 (𝐶), the trustee computes𝑚𝑖 = 𝑐

𝑠𝑘𝑖
. Note that

Trustee 𝑖 is given 𝑒𝑖 and computes 𝑠𝑘𝑖 = 𝐷𝑒𝑐𝑆𝐾𝑖 (𝑒𝑖 ).

B.3 Definition of Interpolate((𝑚𝑖)𝑖∈𝐼 )
(1) The relying party computes 𝑑 =

∏
𝑖∈𝐼 𝑚

𝜆0,𝑖
𝑖

where the La-

grange coefficients 𝜆0,𝑖 for reconstructing the constant term

of a polynomial with 𝑡 parties are given by: 𝜆0,𝑖 =
∏
𝑗∈𝐼
𝑗≠𝑖

𝑗
𝑗−𝑖

We note that if each trustee has correctly provided PartDec,
then

𝑑 =
∏
𝑖∈𝐼

𝑐𝑝 (𝑖 ) ·𝜆0,𝑖 = 𝑐
∑
𝑖∈𝐼 𝑝 (𝑖 ) ·𝜆0,𝑖 = 𝑐𝑎0

(2) The relying party finally computes 𝑀 = 𝑐′ · 𝑑−1, which is

the plaintext of 𝐶 .

C Simulation of the modified KZG scheme
We now discuss how the modified KZG scheme is simulatable. We

first recall the KZG scheme [13] and its modification in [17]. Given a

security parameter 𝜆, choose asymmetric bilinear groups (G, ˆG,G𝑇 )
of prime order 𝑝 > 2

𝑙 (𝜆)
, where 𝑙 (𝜆) is a polynomial of 𝜆. Let

𝛼 ∈ Z𝑝 , 𝑔 ∈ G, 𝑔𝑖 = 𝑔𝛼
𝑖 ∈ G for 𝑖 = (1, ..., 𝑑), 𝑔 ∈ ˆG, 𝑔1 = 𝑔𝛼 ∈ ˆG

and 𝑔2 = 𝑔𝛼
2 ∈ ˆG. The public parameter is (𝑔, {𝑔𝑖 }𝑑𝑖=1, 𝑔, 𝑔1, 𝑔2).

Note that the secret parameter 𝛼 is not used later. The target is to

prove a polynomial

𝑓 (𝑥) =
𝑑𝑒𝑔 (𝑓 )∑︁
𝑖=0

𝑓𝑖𝑥
𝑖 ,

where the degree of the polynomial 𝑑𝑒𝑔(𝑓 ) is up to 𝑑 . The coeffi-

cients 𝑓𝑖 are known to the prover but not the verifier.

In the original KZG scheme, a commitment to this polynomial is

𝐶 = 𝑔𝑓 (𝑥 ) =
𝑑𝑒𝑔 (𝑓 )∏
𝑖=0

𝑔
𝑓𝑖
𝑖
.

The commitment can be opened by outputing 𝑓 (𝑥). Given an input

𝑧, a witness of such a commitment is

𝑤𝑧 = 𝑔
𝑓 [𝛼 ]−𝑓 (𝑧)
𝛼−𝑧 .

Note that (𝑥 − 𝑧) must perfectly divide the polynomial 𝑓 (𝑥) − 𝑓 (𝑧).
This witness can be verified by checking the pairing equation

𝑒 (𝐶,𝑔) = 𝑒 (𝑤𝑧 , 𝑔1/𝑔𝑧) · 𝑒 (𝑔,𝑔) 𝑓 (𝑧 ) .

The original KZG paper makes use of a Type I pairing, i.e. G = ˆG.
A randomized version of KZG in Material C of [17] works as

follows. In this modified KZG scheme, a commitment to a polyno-

mial 𝑓 (𝑥) = ∑𝑑𝑒𝑔 (𝑓 )
𝑖=0

𝑓𝑖𝑥
𝑖
is obtained by choosing 𝛾 ←𝑅 Z𝑝 and

computing

𝐶 = 𝑔𝛾 ·
𝑑𝑒𝑔 (𝑓 )+1∏

𝑖=1

𝑔
𝑓𝑖−1
𝑖

.

Let 𝐹 (𝑥) = 𝛾 + 𝑥 · 𝑓 (𝑥),𝐶 ·𝑔−𝛾 is a commitment to a polynomial

𝐹0 (𝑥) = 𝐹 (𝑥) −𝛾 = 𝑥 · 𝑓 (𝑥) for which, given an input 𝑧, 𝐹0 (𝑧) = 𝑧 ·𝑦
and 𝑦 = 𝑓 (𝑧).

Assume that (𝑥 − 𝑧) perfectly divides the polynomial 𝑓 (𝑥) − 𝑦
for 𝑧 ∈ Z𝑝 . Note that this condition is required in KZG as well. We

have

𝑞(𝑥) = 𝐹0 (𝑥) − 𝑦 · 𝑥
𝑥 · (𝑥 − 𝑧) =

𝑑𝑒𝑔 (𝑓 )−1∑︁
𝑖=0

𝑞𝑖 · 𝑥𝑖 ,

and then the witness

𝜋 =

𝑑𝑒𝑔 (𝑓 )−1∏
𝑖=0

𝑔
𝑞𝑖
𝑖

= 𝑔𝑞 (𝛼 ) ∈ G,

which is𝑤𝑧 in the original KZG scheme. The following equation

holds:

𝑒 (𝐶 · 𝑔−𝑦
1
, 𝑔) = 𝑒 (𝑔,𝑔)𝛾 · 𝑒 (𝜋,𝑔2 · 𝑔−𝑧1 ).

Generate a NIZK proof of knowledge of (𝛾, 𝜋). Choose 𝑟𝛾 ←𝑅 Z𝑝 ,
𝑅𝜋 ←𝑅 G and compute

𝑅 = 𝑒 (𝑔,𝑔)𝑟𝛾 · 𝑒 (𝑅𝜋 , 𝑔2 · 𝑔−𝑧1 ).
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• Public Inputs:
– 𝐶𝑜𝑚

– 𝑛𝑜𝑛𝑐𝑒𝐼𝑠𝑠𝑢𝑒𝑟

– 𝑉𝑠𝑒𝑡𝑢𝑝
• Private Inputs:

– 𝑛𝑜𝑛𝑐𝑒𝐴𝑙𝑖𝑐𝑒
– ℎ𝑀𝐴𝑋𝑞+2

Constraints
• 𝐶𝑜𝑚 is a valid commitment for 𝑛𝑜𝑛𝑐𝑒𝐴𝑙𝑖𝑐𝑒
• ℎ𝑀𝐴𝑋𝑞+2 = 𝜈 (. . . 𝜈 (𝜈 (𝑛𝑜𝑛𝑐𝑒𝐴𝑙𝑖𝑐𝑒 ) · 𝜈 (𝑛𝑜𝑛𝑐𝑒𝐼𝑠𝑠𝑢𝑒𝑟 ) ) . . . ) =
𝜈𝑀𝐴𝑋𝑞+2 (𝜈 (𝑛𝑜𝑛𝑐𝑒𝐴𝑙𝑖𝑐𝑒 ) · 𝜈 (𝑛𝑜𝑛𝑐𝑒𝐼𝑠𝑠𝑢𝑒𝑟 ) )
• 𝑉𝑠𝑒𝑡𝑢𝑝 = #(ℎ𝑀𝐴𝑋𝑞+2, 0)

Figure 7: Specification of proof 𝜋𝑖𝑠𝑠𝑢𝑒 . Our implementation
uses a hash commitment.
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• Public Inputs:
– 𝑉 ′

• Private Inputs:
– ℎ′

– 𝜖

Constraints
• 𝜖 is a positive integer at most𝑀𝐴𝑋𝑐

• 𝑉 ′ = #(ℎ′, 𝜖 )

Figure 8: Specification of proof 𝜋fup

Compute a challenge 𝑐 = 𝐻 ( |𝑏 |,𝐶,𝑦, 𝑧, 𝑅), where |𝑏 | is a label, and
𝑠𝛾 = 𝑟𝛾 + 𝑐 · 𝛾 and 𝑆𝜋 = 𝑅𝜋 · 𝜋𝑐 . Return the proof 𝜋̃ = (𝑐, 𝑠𝛾 , 𝑆𝜋 ).
To verify (𝐶,𝑦, 𝑧, 𝜋̃), compute

𝑅 = 𝑒 (𝑔,𝑔)𝑆𝛾 · 𝑒 (𝑆𝜋 , 𝑔2 · 𝑔−𝑧1 ) · 𝑒 (𝐶 · 𝑔
−𝑦
1
, 𝑔)−𝑐 ).

Return 1 if 𝑐 = 𝐻 ( |𝑏 |,𝐶,𝑦, 𝑧, 𝑅) and 0 otherwise.

Note that this modified KZG scheme is simulatable under the

random oracle model. Let’s see how it works. (𝑐, 𝑠𝛾 ) is a Schnorr
signature. Recall 𝜋 = 𝑔𝑞 (𝛼 ) . Let 𝑅𝜋 = 𝑔𝑟𝜋 and 𝑆𝜋 = 𝑔𝑠𝜋 , where

𝑠𝜋 = 𝑟𝜋 + 𝑞(𝛼) · 𝑐 , so (𝑐, 𝑠𝜋 ) is another Schnorr signature. It is well-
known that a Schnorr signature is simulatable under the random

oracle model. To do so, randomly choose 𝑐, 𝑠𝛾 and 𝑆𝜋 and compute

𝑅, then output 𝜋̃ along with 𝐶,𝑦, 𝑧 and |𝑏 |. As the computation of

𝑅 is the same as the verification algorithm, so the output of the

simulation is indistinguishable from the original proof.

D Zero-knowledge proof specifications
We provide details of various zero-knowledge proofs. All global

parameters specified in Table 1 in Section 3.2 serve as public inputs

as needed and are omitted from the following three figures: Figure 6

(proof 𝜋𝑒𝑛𝑐 of correct simulation of threshold public key), Figure 7

(proof 𝜋𝑖𝑠𝑠𝑢𝑒 ), Figure 9 (proof 𝜋est), and Figure 8 (proof 𝜋fup).
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• Public Inputs:
– 𝐻 ′

𝑀𝐴𝑋𝑞−𝛽 , 𝐻
′
𝑀𝐴𝑋𝑞−𝛽+1

– 𝑉
– 𝑇𝑅
– 𝑦

– 𝑊
– public inputs of 𝜋𝑒𝑛𝑐

• Private Inputs:
– bit 𝑏

– ℎ𝑀𝐴𝑋𝑞−𝛽 , ℎ𝑀𝐴𝑋𝑞−𝛽+1, ℎ𝑀𝐴𝑋𝑞−𝛽+2, ℎ𝑀𝐴𝑋𝑞−𝛽+3
– 𝜖 , 𝜖′ , 𝜖′′ , 𝜖′′′

– 𝑟 ′
𝑀𝐴𝑋𝑞−𝛽 , 𝑟

′
𝑀𝐴𝑋𝑞−𝛽+1

– Leaf ℓbr
– Leaf ℓfup
– Leaf ℓest
– proof_of_presence(ℓbr,𝑇𝑅 )

– proof_of_presence(ℓfup,𝑇𝑅 )

– proof_of_presence(ℓest,𝑇𝑅 )

– private inputs of 𝜋𝑒𝑛𝑐

Constraints
• 𝜖 , 𝜖′ , 𝜖′′ , and 𝜖′′′ are positive integers at most𝑀𝐴𝑋𝑐

• 𝐻 ′
𝑀𝐴𝑋𝑞−𝛽 = Enc

𝑟 ′
𝑀𝐴𝑋𝑞−𝛽
𝑇𝑃𝐾

(ℎ𝑀𝐴𝑋𝑞−𝛽 )

• 𝐻 ′
𝑀𝐴𝑋𝑞−𝛽+1 = Enc

𝑟 ′
𝑀𝐴𝑋𝑞−𝛽+1
𝑇𝑃𝐾

(ℎ𝑀𝐴𝑋𝑞−𝛽+1 )
• 𝜈 (ℎ𝑀𝐴𝑋𝑞−𝛽 ) = ℎ𝑀𝐴𝑋𝑞−𝛽+1
• 𝜈 (ℎ𝑀𝐴𝑋𝑞−𝛽+1 ) = ℎ𝑀𝐴𝑋𝑞−𝛽+2
• 𝑉 = #(ℎ𝑀𝐴𝑋𝑞−𝛽+1, 𝜖 )
• 𝑊 = #(ℎ𝑀𝐴𝑋𝑞−𝛽+1, 𝑦)
• The constraints of 𝜋𝑒𝑛𝑐 hold

• 𝑏 is a bit

• 𝑏 = 1 or:

– ℓbr = (#(ℎ𝑀𝐴𝑋𝑞−𝛽+2, 𝜖′ ), br)
– proof_of_presence(ℓbr,𝑇𝑅 ) is valid

• 𝑏 = 0 or:

– 𝜈 (ℎ𝑀𝐴𝑋𝑞−𝛽+2 ) = ℎ𝑀𝐴𝑋𝑞−𝛽+3
– ℓfup = (#(ℎ𝑀𝐴𝑋𝑞−𝛽+3, 𝜖′′ ), fup)
– proof_of_presence(ℓfup,𝑇𝑅 ) is valid

– ℓest = (#(ℎ𝑀𝐴𝑋𝑞−𝛽+2, 𝜖′′′ ), est)
– proof_of_presence(ℓest,𝑇𝑅 ) is valid

Figure 9: Specification of proof 𝜋est. The first public inputs
are (non-hashed) ElGamal encryptions of Baby Jubjub group
elements. To avoid complexities associated with recursive
proofs, we duplicate the proof 𝜋𝑒𝑛𝑐 naively inside 𝜋est. The
first private input is a bit to indicate whether the certonym
is being established on the basis of a prior blind-regroup
query of type br or of type fup; the bit is 1 in the latter case.
Note that when 𝑏 = 0, the user may not have leaves ℓfup
or ℓest but may supply dummy values for them and their
proof of presence without compromising the proof. Similarly
when 𝑏 = 1, the leaf ℓbr and its proof of presence may be
dummy values. Capturing this conditionality within one
circuit, rather than using two seperate circuits, is important
to prevent information leakage about certonyms.
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E The ledger
E.1 Merkle trees
A Merkle tree is a tree in which every node is labelled with the

hash of the labels of its children nodes, and possibly some other

values. Suppose a node has 𝑛 children labelled with hash values

𝑣1, . . . , 𝑣𝑛 , and has data 𝑑 . Then the hash value label of the node

is the hash of 𝑣1, . . . , 𝑣𝑛, 𝑑 . Merkle trees allow efficient proofs that

they contain certain data. To prove that a certain data item 𝑑 is part

of a Merkle tree requires an amount of data proportional to the log

of the number of nodes of the tree. (This contrasts with hash lists,

where the amount is proportional to the number of nodes.)

Example: Figure 10 shows a Merkle tree containing data items

𝑐1, . . . , 𝑐6 stored at the leaf nodes (in this tree, there are no data

items stored at non-leaf nodes). Figure 11 shows a larger Merkle tree

containing data items 𝑐1, . . . , 𝑐32 (again in this case stored only at

leaves). To demonstrate that 𝑐11 is present in the tree, it is sufficient

to provide the additional data 𝑐12, ℎ5, ℎ14, ℎ16, ℎ20, i.e. one data item

per layer of the tree. The recipient of this data can then verify

the correctness of the root hash ℎ21. Proving that one Merkle tree

extends another can also be done in logarithmic space and time,

by providing at most one hash value per layer. For example, to

demonstrate that the tree of Figure 11 is an extension of the one in

Figure 10, it is sufficient to provide the data ℎ4, ℎ17, ℎ20. The hash

value at the root of the tree is called the root hash (or simply the

hash) of the tree.

We give examples of the API calls that we rely on in the paper.

• root() returns 𝑅 = ℎ(ℎ(ℎ(𝑐1, 𝑐2), ℎ(𝑐3, 𝑐4)), ℎ(𝑐5, 𝑐6)) when
the ledger has the value shown in Figure 10, and returns

𝑆 = ℎ21 = ℎ(ℎ19, ℎ20) = . . . when it has the value of Figure

11.

• add(𝑥) creates a new leaf node and adds it to the right of

all the existing leaf nodes, and stores the data 𝑥 there. The

hashes stored at non-leaf nodes are updated as needed. The

add function reorganises parts of the tree as needed. For

example, the sequence add(𝑐7), . . . add(𝑐32) transforms the

ledger in Figure 10 to the one in Figure 11.

• proof_of_presence(𝑐11, 𝑅) returns data items stored in the

ledger that are sufficient to prove that 𝑐11 was stored in

the ledger when it had the root 𝑅. In this case, the list

𝑐12, ℎ5, ℎ14, ℎ16, ℎ20 is returned.

• proof_of_extension(𝑅, 𝑆), returns data items stored in the

ledger that are sufficient to prove that version of the ledger

with root 𝑆 is an add-only extension of its previous version

which had root 𝑅. In this case, the list ℎ4, ℎ17, ℎ20 is returned.

F Proof of correctness
F.1 Notation
We use fup-BR (resp. br-BR) to denote a BR query that is requested

using a tuple with its second entry set to fup (resp. br).
We also extend our previous notation:

• Vfrom𝑗 (ℎ) = {#(𝜈 𝑗 (ℎ), 𝜖) | 1 ≤ 𝜖 ≤ 𝑀𝐴𝑋𝑐 }
• Cfrom𝑗 (ℎ) = {(𝐺,𝐻,𝑉 ,𝑊 ,𝑦, 𝜋) ∈ 𝐴𝑙𝑙 | 𝑉 ∈ Vfrom𝑗 (ℎ)}

Weuse the term the first generation to refer to the set of all certonyms

that a user can create after the Issue protocol has been run but prior

to any BR query.

ℎ(ℎ(ℎ(𝑐1, 𝑐2), ℎ(𝑐3, 𝑐4)), ℎ(𝑐5, 𝑐6))

ℎ(ℎ(𝑐1, 𝑐2), ℎ(𝑐3, 𝑐4))

ℎ(𝑐1, 𝑐2)

𝑐1 𝑐2

ℎ(𝑐3, 𝑐4)

𝑐3 𝑐4

ℎ(𝑐5, 𝑐6)

𝑐5 𝑐6

Figure 10: A Merkle tree containing items 𝑐1, . . . , 𝑐6.

F.2 Intermediate Lemmas
Recall that a user Alice creates a chain of values ℎ0, ..., ℎ𝑀𝐴𝑋𝑞+2
during the Issue protocol. We will refer to these values throughout

the lemmas in this section.

Lemma 1. Any certonym that a user Alice creates must belong to
the set Cfrom0 (ℎ) for some ℎ ∈ {ℎ1, ..., ℎ𝑀𝐴𝑋𝑞+1}.

Proof. By comparing Step 4 of Figure 3 to Step 8 of Figure 2,

it is clear that the first certonym Alice can create must be an ele-

ment of Cfrom0 (ℎ𝑀𝐴𝑋𝑞+1). Any subsequently created certonym

C = (𝐺,𝐻,𝑉 ,𝑊 ,𝑦, 𝜋) must construct the value 𝑉 as #(ℎ′, 𝜖) for
some ℎ′ that Alice knows and that satisfies 𝜈𝑖 (ℎ′) = ℎ𝑀𝐴𝑋𝑞+1 for
some integer 𝑖 ≤ 𝑀𝐴𝑋𝑞 . The only such possibilities for ℎ′ are
ℎ1, ..., ℎ𝑀𝐴𝑋𝑞 . Alice cannot construct the 𝑉 value using ℎ0 because

the construction would require that she know a pre-image of ℎ0;

she cannot know one with non-negligible probability because ℎ0 is

randomly chosen. □

Lemma 2. For any ℎ, if Cfrom0 (ℎ) ≠ ∅ and Cfrom0 (𝜈 (ℎ)) = ∅
then ℎ = ℎ𝑀𝐴𝑋𝑞+1.

Proof. By Lemma 1, we have that ℎ ∈ {ℎ1, ..., ℎ𝑀𝐴𝑋𝑞+1}. Let C
be an element ofCfrom0 (ℎ). In order for C to have been established,

we have by Figure 3, Step 4 that the Merkle tree contains leaves:

• (#(𝜈 (ℎ), 𝜖), br), or
• (#(𝜈2 (ℎ), 𝜖′), fup) and (#(𝜈 (ℎ), 𝜖′′), est)

In the first case, that leaf was either inserted during the Issue pro-

tocol (Step 8) or during a BR query with respect to a certonym

in the set Cfrom0 (𝜈 (ℎ)). The latter case is not possible by the

premise that Cfrom0 (𝜈 (ℎ)) = ∅. As such, the leaf was inserted

during the Issue protocol, and we have by Steps 5 and 8 of Figure 2

that 𝜈 (ℎ) = ℎ𝑀𝐴𝑋𝑞+2, which implies that ℎ = ℎ𝑀𝐴𝑋𝑞+1. □

In the second case, the leaf (#(𝜈 (ℎ), 𝜖′′), est) was either inserted
during the Issue protocol (Step 8) or during a certonym establish-

ment of a certonym in the set Cfrom0 (𝜈 (ℎ)). The latter case is not
possible by the premise that Cfrom0 (𝜈 (ℎ)) = ∅. As such, the leaf
was inserted during the Issue protocol, and we have by Steps 5 and 8

of Figure 2 that 𝜈 (ℎ) = ℎ𝑀𝐴𝑋𝑞+2, which implies that ℎ = ℎ𝑀𝐴𝑋𝑞+1.
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ℎ21

ℎ19

ℎ16

ℎ11

ℎ1

𝑐1 𝑐2

ℎ2

𝑐3 𝑐4

ℎ12

ℎ3

𝑐5 𝑐6

ℎ4

𝑐7 𝑐8

ℎ17

ℎ13

ℎ5

𝑐9 𝑐10

ℎ6

𝑐11 𝑐12

ℎ14

ℎ7

𝑐13 𝑐14

ℎ8

𝑐15 𝑐16

ℎ20

ℎ18

ℎ15

ℎ9

𝑐17 𝑐18

ℎ10

𝑐19 𝑐20

ℎ22

ℎ23

𝑐21 𝑐22

ℎ24

𝑐23 𝑐24

ℎ25

ℎ26

ℎ27

𝑐25 𝑐26

ℎ28

𝑐27 𝑐28

ℎ29

ℎ30

𝑐29 𝑐30

ℎ31

𝑐31 𝑐32

Figure 11: A Merkle tree containing items 𝑐1, . . . , 𝑐32. To demonstrate that 𝑐11 is present in the tree, it is sufficient to provide the
additional data 𝑐12, ℎ5, ℎ14, ℎ16, ℎ20. To demonstrate that this tree is an extension of the one in the previous figure, it is sufficient
to provide the data ℎ4, ℎ17, ℎ20.

F.3 Proof of executability
We prove Claim 1 by induction. The base case is that no queries have

been requested. Alice, to establish a certonymC ∈ Cfrom0 (ℎ𝑀𝐴𝑋𝑞+1)
in the initial generation, can use the leaf (#(ℎ𝑀𝐴𝑋𝑞+2, 0), br), as
inserted into the tree during the Issue protocol, in order to com-

plete Step 5 of the Establishment protocol. Our inductive hypoth-

esis is that after 𝑖 queries, Alice is able to (and does) produce a

certonym C′ ∈ Cfrom0 (ℎ𝑀𝐴𝑋𝑞−𝑖+1). When Alice produces this

certonym, (#(ℎ𝑀𝐴𝑋𝑞−𝑖+1, 𝜖), est) is added as a leaf to the Merkle

tree (for some 𝜖 ≤ 𝑀𝐴𝑋𝑐 ). We now want to consider whether after

the 𝑖 + 1-st query, that Alice will be able to produce a certonym

C′′ ∈ Cfrom0 (ℎ𝑀𝐴𝑋𝑞−𝑖 ).

Case 1. The 𝑖 + 1-st query is of type br. This type of query is

executed with respect to a certonym that the relying party has not

already linked to Alice via any prior BR query. As such, the input

certonym is a member of Cfrom0 (ℎ𝑀𝐴𝑋𝑞−𝑖+1). The query request

Merkle tree leaf will be of the form (𝑉 , br), where 𝑉 is of the form

#(ℎ𝑀𝐴𝑋𝑞−𝑖+1, 𝜖′) for some 𝜖′ ≤ 𝑀𝐴𝑋𝑐 . This leaf’s existence is

sufficient for Alice to create a certonym in Cfrom0 (ℎ𝑀𝐴𝑋𝑞−𝑖 ), as
desired.

Case 2. The 𝑖 + 1-st query is of type fup. This type of query will

find a certonym from Alice of the latest already-linked generation

and the query request leaf will be of the form (𝑉 ′, fup), where
𝑉 ′ is of the form #(ℎ𝑀𝐴𝑋𝑞−𝑖+2, 𝜖′′) for some 𝜖′′ ≤ 𝑀𝐴𝑋𝑐 . This

leaf, combined with the leaf (#(ℎ𝑀𝐴𝑋𝑞−𝑖+1, 𝜖), est) that we already
established resides in the Merkle tree, are sufficient for Alice to

create a certonym in Cfrom0 (ℎ𝑀𝐴𝑋𝑞−𝑖 ), as desired.

F.4 Proof of completeness
We prove Theorem 1.

Proof. We argue three cases separately, which correspond to

the three return statements in Figure 4.

Case 1. First, we assume that the initial if statement is false. In

particular, there does not exist any ℎ∗ ∈ 𝑆 such that𝑉 ∈ Vfrom(ℎ∗).

In this case, a relying party will use the BR query mechanism to

decrypt the plaintext of 𝐻 , which we denote ℎ. The relying party

will then compute Cfrom(ℎ), which is a set containing all of the

user’s certonyms, except (by Lemma 1) possibly those that belong

to Cfrom0 (ℎ′) where 𝜈𝑖 (ℎ′) = ℎ for some 𝑖 ≥ 1. For the sake

of contradiction, we assume that such a certonym C′ has been
established. By Lemma 2 we may assume without loss of generality

that 𝑖 = 1, namely that 𝜈 (ℎ′) = ℎ and by Lemma 1 we may assume

that ℎ′ ≠ ℎ𝑀𝐴𝑋𝑞+1. In order for C′ to have been established, we

have by Figure 3, Step 4 that the Merkle tree contains leaves:

• (#(𝜈 (ℎ′), 𝜖), br), or
• (#(𝜈2 (ℎ′), 𝜖′), fup) and (#(𝜈 (ℎ′), 𝜖′′), est)

We will find that in either scenario we reach a contradiction. In

consideration of the first bullet point, using our assumption that

ℎ′ ≠ ℎ𝑀𝐴𝑋𝑞+1, the existence of Merkle tree leaf (#(𝜈 (ℎ′), 𝜖), br)
implies that a BR query was requested with respect to a certonym

belonging toCfrom0 (𝜈 (ℎ′)) = Cfrom0 (ℎ). We then have thatℎ ∈ 𝑆 ,
by the fourth line of pseudocode in the final else block of Figure 4.

This is a contradiction of the initial assumption of Case 1.

Turning to the second bullet point, the existence of those leaves

implies that a fup-BR querywas requestedwith respect to a certonym

C′′ = (𝐺 ′′, 𝐻 ′′,𝑉 ′′,𝑊 ′′, 𝑦′′, 𝜋 ′′) belonging toCfrom0 (𝜈2 (ℎ′)). The
result of such a query is that the plaintext 𝑔′′ of 𝐺 ′′ will be de-

crypted by the relying party and added to 𝑆 . By the construction of

certonyms, we have that 𝑔′′ = 𝜈 (ℎ′) and we have already justified

the assumption that 𝜈 (ℎ′) = ℎ. As such, we have that ℎ ∈ 𝑆 , a
contradiction of the initial assumption of Case 1.

Case 2. Here we assume that the initial if statement is true

but the second if statement is false. As in Figure 4, we set ℎ′ =
argmax𝑗∈Z≥0 {∃ℎ′ ∈ 𝑆 : 𝜈 𝑗 (ℎ′) = ℎ}. By the condition in the second
if statement, we have that Cfrom0 (ℎ′) = ∅.

The query result will include any certonym of Alice that is an

element of Cfrom(ℎ′). For the sake of contradiction, we assume

that a certonym C′ has been established but is not returned by the

query.
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By Lemma 2 we may assume that C′ ∈ Cfrom0 (ℎ∗), where
𝜈 (ℎ∗) = ℎ′. But thenwe haveC′ ∈ Cfrom0 (ℎ∗) butCfrom0 (𝜈 (ℎ∗)) =
∅, which by the same lemma implies that ℎ∗ = ℎ𝑀𝐴𝑋𝑞+1. But this
is a contradiction because then the certonym C is an element of

Cfrom0 (ℎ𝑀𝐴𝑋𝑞+2), contradicting Lemma 1.

Case 3. We assume that both if statements are true. Define ℎ′

as in Figure 4 and let C′ be an element of Cfrom0 (ℎ′).
The query result will include any certonym of Alice that is an

element of Cfrom(ℎ′′), where ℎ′′ is such that 𝜈 (ℎ′′) = ℎ′. For the
sake of contradiction, we assume that a certonym C∗ has been
established but is not returned by the query.

By Lemma 2 we may assume that C∗ ∈ Cfrom0 (ℎ∗), where
𝜈 (ℎ∗) = ℎ′′. In order for C∗ to have been established, we have by

Figure 3, Step 4 that the Merkle tree contains leaves:

• (#(𝜈 (ℎ∗), 𝜖), br), or
• (#(𝜈2 (ℎ∗), 𝜖′), fup) and (#(𝜈 (ℎ∗), 𝜖′′), est)

We will find that in either scenario we reach a contradiction. In

consideration of the first bullet point, we have that the br-BR query

implies that 𝜈 (ℎ∗) = ℎ′′ ∈ 𝑆 , which contradicts the fact that ℎ′ =
argmax𝑗∈Z≥0 {∃ℎ′ ∈ 𝑆 : 𝜈 𝑗 (ℎ′) = ℎ}. Turning to the second bullet

point, we have that the fup-BR query also implies that ℎ′′ ∈ 𝑆 ,
which yields the same contradiction as before. □

F.5 Proof of soundness
We prove Theorem 2.

• For a user 𝑢, let ℎ0,𝑢 be the value created by the user in Step

2d of Figure 2.

• Let𝑉∩𝑢1,𝑢2 be a boolean random variable indicating that there

exists non-negative integers 𝜖, 𝜖′ ≤ 𝑀𝐴𝑋𝑐 , 𝑖 ≤ 𝑀𝐴𝑋𝑞 ,

and 𝑗 ≤ 2𝑀𝐴𝑋𝑞 such that #(𝜈𝑖 (ℎ0,𝑢1 ), 𝜖) = #(𝜈 𝑗 (ℎ0,𝑢2 ), 𝜖′).
(Here, the randomness underlying 𝑉∩𝑢1,𝑢2 is the randomness

associated with the selection of ℎ0,𝑢1 and ℎ0,𝑢2 .)

We start by restating a folklore birthday problem upper bound:

Lemma 3. (Folklore, presented without proof.) If 𝑛 random values
are chosen from a space of size 𝑅, then the probability that at least
two values are the same is at most 𝑛

2

2𝑅
.

Lemma 4. Suppose a certonym created by user 𝑢1 ≠ 𝑢2 is returned
as part of a BR query execution done in relation to a certonym of user
𝑢2. Then we have that 𝑉∩𝑢1,𝑢2 = 1.

Proof. Let ℎ be the plaintext value decrypted with the help of

trustees during a BR query request done with respect to a certonym

of𝑢2. The relying party will then compute Cfrom(ℎ), which by defi-
nition involves computation of 𝜈𝑘 (ℎ) for 𝑘 = 1, ..., 𝑀𝐴𝑋𝑞 . Consider-

ing that ℎ may be equal to 𝜈ℓ (ℎ0,𝑢2 ) for any value ℓ ∈ {0, ..., 𝑀𝐴𝑋𝑞},
we have that the relying partywill consider a certonymCwith value
𝑉 as belonging to 𝑢2 exactly when 𝑉 is in the set {#(𝜈 𝑗 (ℎ), 𝜖′) |
𝑗 ≤ 2𝑀𝐴𝑋𝑞, 𝜖

′ ≤ 𝑀𝐴𝑋𝑐 }. If a certonym of 𝑢1 with value 𝑉 ′ is in
this set, then by the definition of certonyms, it must be of the form

#(𝜈𝑖 (ℎ0,𝑢1 ), 𝜖) for some 𝑖 ≤ 𝑀𝐴𝑋𝑞 and 𝜖 ≤ 𝑀𝐴𝑋𝑐 . We then have

that #(𝜈𝑖 (ℎ0,𝑢1 ), 𝜖) = #(𝜈 𝑗 (ℎ0,𝑢2 ), 𝜖′), which means that 𝑉∩𝑢1,𝑢2 . □

Lemma 5. If users 𝑢1, 𝑢2 do not collude, then

Pr[𝑉∩𝑢1,𝑢2 = 1] ≤ 𝑂
(
(𝑀𝐴𝑋𝑐 ·𝑀𝐴𝑋𝑞)2

𝑅

)
.

Proof.

Pr[𝑉∩𝑢1,𝑢2 ] (1)

≤ Pr[ℎ0,𝑢1 = ℎ0,𝑢2 ] + Pr[𝑉∩𝑢1,𝑢2 |ℎ0,𝑢1 ≠ ℎ0,𝑢2 ] (2)

≤ 1

𝑅
+ Pr[𝑉∩𝑢1,𝑢2 |ℎ0,𝑢1 ≠ ℎ0,𝑢2 ] (3)

≤ 1

𝑅
+
(2 ·𝑀𝐴𝑋𝑐 · (2𝑀𝐴𝑋𝑞 + 1))2

2𝑅
(4)

= 𝑂

(
(𝑀𝐴𝑋𝑐 ·𝑀𝐴𝑋𝑞)2

𝑅

)
(5)

The first inequality follow from conditioning on whether ℎ0,𝑢1 =

ℎ0,𝑢2 and upper bounding the probabilities Pr[ℎ0,𝑢1 ≠ ℎ0,𝑢2 ] and
Pr[𝑉∩𝑢1,𝑢2 |ℎ0,𝑢1 = ℎ0,𝑢2 ] by 1. The second inequality follows from

the definition of the Issue protocol, in which a uniformly random el-

ement is jointly selected. The third inequality follows from applying

Lemma 3 to the scenario of modelling the hash function (with range

of cardinality 𝑅) as a random oracle, uniformly at random selecting

the elements of the sets {#(𝜈𝑖 (ℎ0,𝑢1 , 𝜖)) : 𝑖 ≤ 𝑀𝐴𝑋𝑞, 𝜖 ≤ 𝑀𝐴𝑋𝑐 }
and {#(𝜈 𝑗 (ℎ0,𝑢2 , 𝜖′)) : 𝑗 ≤ 2𝑀𝐴𝑋𝑞, 𝜖

′ ≤ 𝑀𝐴𝑋𝑐 } to test whether

they have a non-empty intersection, and the observation that the

total number of selected elements is at most 2·𝑀𝐴𝑋𝑐 · (2𝑀𝐴𝑋𝑞). □

The proof of Theorem 2 is now an immediate corollary of Lem-

mas 4 and 5.

G Unforgeability proof
Here is the proof of the unforgeability property defined in Theo-

rem 4.

Proof. Intuitively, to successfully forge a signature on amessage

𝑚 chosen by the adversary using a certonym C = (𝐺,𝐻,𝑉 , 𝜋), there
are the following two cases:

Case 1: The adversary obtains a valid certonym C, which an

Issuer does not create. This indicates thatA has successfully forged

a certonym, which includes Issuer’s signature 𝜎𝐻 proved in 𝜋 and

this is a signature from the relying party on a ciphertext with

the same plaintext as 𝐻 . This will contradict the assumption that

Issuer’s signature scheme is EU-CMA secure.

Case 2: The adversary obtains a triple (C, 𝑠,𝑚) and Verif (C, 𝑠,𝑚)
outputs Accept, indicating that 𝑠 is a valid signature on the message

𝑚 by using the certonym C. However, this signature is not created
through a signing query𝑂𝑆 and the user𝑢 is honest. Thismeans that

A has successfully forged a user’s signature 𝑠 . This will contradict

the assumption that the underlying signature which makes use of

a certonym is EU-CMA secure.

WhileA has the target of winning the experiment ExpUnforge
cert,A , S

has the target of either breaking the EU-CMA property of Issuer’s

Schnorr signature scheme or user 𝑢’s Schnorr signature scheme.

For this purpose, during the run of the ExpUnforge
cert,A experiment, S

simultaneously runs an ExpEU-CMA

𝐼𝑠𝑠𝑢𝑒𝑟
experiment and an ExpEU-CMA

𝑢
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experiment with their simulators. In these two experiments,S plays

the role of an adversary.

In the ExpEU-CMA

𝐼𝑠𝑠𝑢𝑒𝑟
experiment, S is given the target Schnorr

signature public key 𝑝𝑘𝐼 , and in the Exp
Unforge

cert,A experiment,S shares

this key with A as the Issuer’s public key.

Given the above, we now prove that the certonym scheme en-

sures unforgeability because, in either of these two cases, the ad-

versary’s advantage in winning the game is negligible.

All hash functions in the protocol are through a random oracle

model, which is run by S. We demonstrate how S handles the

oracle queries, listed in section 5.1.

• 𝑂𝐶𝑟𝑈 (create user): To create an honest user 𝑢, A sends

𝑂𝐶𝑟𝑈 (𝑢) to S. S checks whether 𝑢 ∈ 𝑈 . If yes, S rejects

this query; otherwise, S runs the 𝐼𝑠𝑠𝑢𝑒 protocol with A,

in which S plays as an Issuer and A plays as 𝑢. To create

a new user 𝑢, S initiates the ExpEU-CMA

𝑢 experiment with

its simulator to obtain a given public key, 𝑦 = 𝑔𝑥 (where

(𝑦, 𝑥) are a public and secret key pair for 𝑢: 𝑦 = 𝑝𝑘𝑢 and

𝑥 = 𝑠𝑘𝑢 ), and S provides 𝑦 to A. Note that neither S nor

A knows the secret key 𝑥 . To get the Issuer’s signature, S
sends a signing query to the simulator of the ExpEU-CMA

𝐼𝑠𝑠𝑢𝑒𝑟
experiment to obtains 𝜎𝑀𝐴𝑋𝑞 . At the end of the protocol,A
obtains ((ℎ𝑖 , 𝐻𝑖 )0≤𝑖≤𝑀𝐴𝑋𝑞+1, 𝜎𝑀𝐴𝑋𝑞 ,𝑉𝑠𝑒𝑡𝑢𝑝 ). S records the

transcript of this oracle run in𝑈 and marks that 𝑢 is honest.

• 𝑂𝐶𝑜𝑈 (corrupt user): To corrupt a user 𝑢, A sends 𝑂𝐶𝑜𝑈 (𝑢)
to S. S checks whether 𝑢 ∈ 𝑈 and is marked as honest. If

not, S rejects this query; otherwise, S sends a corrupting

query on 𝑢 to the simulator of the ExpEU-CMA

𝑢 experiment,

from which S receives the corresponding secret key 𝑥 . S
discloses 𝑢’s secret key 𝑥 toA and marks that 𝑢 is corrupted.

• 𝑂𝐶𝐶 (create certonym): To obtain a certonym for an honest

user 𝑢, A sends 𝑂𝐶𝐶 (𝑢) to S. S checks whether 𝑢 ∈ 𝑈 and

is marked as honest. If not, S rejects this query; otherwise,

S runs the 𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ protocol with A. In the protocol, S
handles (1) 𝑢’s Schnorr signature creation by sending a sign-

ing query to the simulator of the ExpEU-CMA

𝑢 experiment, (2)

the Issuer’s Schnorr signature creation by sending a signing

query to the simulator of the ExpEU-CMA

𝐼𝑠𝑠𝑢𝑒𝑟
experiment, and

(3) random oracles.A acts as a user 𝑢, dealing with the hash

chain and NIZKP 𝜋 , butA does not create the user’s Schnorr

signature. At the end of the protocol, S creates a certonym

C = (𝐺,𝐻,𝑉 , 𝜋), stores it in𝑈 and returns it to A.

• 𝑂𝑆 (sign message): To request signing a message𝑚 using the

certonym C and its corresponding key,A sends𝑂𝑆 (C,𝑚) to
S. S checks whether C ∈ 𝑈 and its corresponding user 𝑢 is

marked as honest. If not, S rejects this query; otherwise, S
sends a signing query to the simulator of the ExpEU-CMA

𝑢 ex-

periment to obtain a Schnorr signature 𝑠 on𝑚 under the key

corresponding to C. S records this result to𝑈 and returns

the signature 𝑠 to A. In this oracle, we do not consider that

the adversary randomises its certonym C, as randomisation

does not affect the analysis result of unforgeability. If A
submits 𝑂𝑆 (C′,𝑚) to S, in which C′ has been randomised,

so C′ ∉ 𝑈 , Issuer verifies C′ and the verification passes,

meaning that C′ is a valid certonym. Issuer then sends the

trustees (which is the adversary) a decryption request; as a

return, S will get the original C.
After an arbitrary number of the above queries, A decides to

complete the first phase (the querying phase) and outputs some

data 𝐷 . As noted, there are two types of 𝐷 which can indicate that

A wins the experiment ExpUnforge
cert,A .

Case 1: 𝐷 involves a valid certonym C = (𝐺,𝐻,𝑉 , 𝜋) but C
is not in 𝑈 (and it is not randomised from any C ∈ U either),

which means that C is not from an output of any 𝑂𝐶𝐶 queries.

When this happens, S can extract the underlying Issuer’s signature,

denoted by 𝜎
𝐻̃

from 𝜋 . This is a signature on a ciphertext, denoted

by 𝐻̃ , with the same plaintext as 𝐻 . This signature is forged by

A. S can then submit a valid forge (𝜎
𝐻̃
, 𝐻̃ ) to the simulator of

the ExpEU-CMA

𝐼𝑠𝑠𝑢𝑒𝑟
experiment to win this experiment. However, this

result will contradict the assumption that Issuer’s signature scheme

is EU-CMA secure, so the probability of this case happening must

be negligible.

Case 2: 𝐷 involves a triple (C, 𝑠,𝑚), in which 𝑠 is a valid Schnorr

signature on 𝑚 and can be verified under the public key that is

associated with C. It is under the following conditions: C ∈ U,

(𝑠,𝑚) ∉ 𝑈 and the corresponding user 𝑢 ∈ 𝑈 and marked as honest.

The signature (𝑠,𝑚) is not created through a signing query𝑂𝑆 and

the user 𝑢 is honest. This means that A has successfully forged a

user’s Schnorr signature 𝑠 on a new message𝑚. S can then submit

a valid forge (𝑠,𝑚) to the simulator of the ExpEU-CMA

𝑢 experiment

to win this experiment. This will contradict the assumption that the

underlying signature which makes use of a certonym is EU-CMA

secure. Therefore, the probability of this case happening must be

negligible. Note that, as we discussed before, randomisation on a

certonym will not affect this part of analysis, since given a ran-

domised certonym C′, S can retrieve the original C by asking the

trustees (in this case, the adversary) to do the decryption. Therefore,

a triple (C′, 𝑠,𝑚) is equivalent to the triple (C, 𝑠,𝑚).
As either of these two cases only happens with a negligible

probability, the theorem follows. □
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