, . PDF Download
e DIGITAL -)
o.) ACM . pswdtione acmopen };\3 3733802.3764056.pdf
L1eRARy (@ EREam pen : 04 February 2026
Check for . :
updates Total Citations: 1

Total Downloads: 162

s Latest updates: https://dl.acm.org/doi/10.1145/3733802.3764056
Published: 13 October 2025

RESEARCH-ARTICLE
Temporally-limited blind-regroup of anonymous credentials

Citation in BibTeX format

CCS '25: ACM SIGSAC Conference on
Computer and Communications Security

LIQUN CHEN, University of Surrey, Guildford, Surrey, U.K. October 13- 17, 2025
CHIN HEI HO Telpei, Tawan
MARK RYAN, University of Birmingham, Birmingham, West Midlands, U.K. ;%gf:éence Sponsors:

CHRISTOPHER WILLIAMSON

Open Access Support provided by:
University of Birmingham

University of Surrey

WPES '25: Proceedings of the 24th Workshop on Privacy in the Electronic Society (October 2025)
https://doi.org/10.1145/3733802.3764056
ISBN: 9798400718984

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3733802.3764056
https://dl.acm.org/doi/10.1145/3733802.3764056
https://dl.acm.org/doi/10.1145/contrib-99659482833
https://dl.acm.org/doi/10.1145/institution-60021097
https://dl.acm.org/doi/10.1145/contrib-99661760465
https://dl.acm.org/doi/10.1145/contrib-99661759738
https://dl.acm.org/doi/10.1145/institution-60019702
https://dl.acm.org/doi/10.1145/contrib-99661759781
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60019702
https://dl.acm.org/doi/10.1145/institution-60021097
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3733802.3764056&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/ccs
https://dl.acm.org/conference/ccs
https://dl.acm.org/sig/sigsac
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3733802.3764056&domain=pdf&date_stamp=2025-11-18

Temporally-limited blind-regroup of anonymous credentials

Liqun Chen
University of Surrey
Guildford, United Kingdom
liqun.chen@surrey.ac.uk

Mark Ryan

University of Birmingham
Birmingham, United Kingdom
m.d.ryan@bham.ac.uk

Abstract

We propose a new mechanism for digital identity schemes called
‘blind-regroup’, which, given a credential, allows a querying au-
thority to identify all the existing credentials created by the same
user. Unlike traceability, blind-regroup does not identify the ground
identity of the user. Blind-regroup allows the user to continue creat-
ing credentials, and past blind-regroup queries do not compromise
the anonymity of credentials created in the future. Blind-regroup
is developed in a setting that satisfies authority transparency; that
means that authorities can ultimately be held accountable for abuses
of their power. We prove the correctness of blind-regroup (that is,
it returns all and only all of the existing credentials matching the
given credential); and we prove its security (namely, credentials
not captured by blind-regroup remain unlinkable, and credentials
are unforgeable). Our approach requires highly specialised zero-
knowedge proofs; to demonstrate feasibility we provide SNARK
implementations for these proofs and a performance analysis.

CCS Concepts

« Security and privacy — Security services; Pseudonymity,
anonymity and untraceability; Privacy-preserving protocols;

Keywords

Security, privacy, unlinkability, accountability, digital identification,
authentication

ACM Reference Format:

Liqun Chen, Chin Hei Ho, Mark Ryan, and Christopher Williamson. 2025.
Temporally-limited blind-regroup of anonymous credentials. In Proceedings
of the 2025 Workshop on Privacy in the Electronic Society (WPES °25), October
13-17, 2025, Taipei, Taiwan. ACM, New York, NY, USA, 19 pages. https:
//doi.org/10.1145/3733802.3764056

1 Introduction

Anonymous credentials. Anonymous credential schemes [5] are
concerned with striking an appropriate balance between privacy
and accountability. For example, in the self-sovereign identity para-
digm (SSI) [21], users are accountable in the sense that they may be

This work is licensed under a Creative Commons Attribution 4.0 International License.
WPES °25, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1898-4/25/10

https://doi.org/10.1145/3733802.3764056

75

Chin Hei Ho
SW7 Group
London, United Kingdom
eric.chinheiho@sw7group.com

Christopher Williamson
SW7 Group
Hong Kong, Hong Kong
christopher.williamson@sw7group.com

required to prove an identity attribute prior to accessing an online
service. Such users also enjoy privacy because different presenta-
tions of the same credential are unlinkable. A limitation of SSI is
that it does not provide any ability for a relying party (such as an
online service) to carry out investigations of a user, in the case of
some misbehaviour.

The concept of traceability is a partial solution to this problem
(e.g., [4, 14]). There are various definitions of traceability; in general
schemes that offer this feature include an authority figure (which
may be decentralised) that is empowered to make a query about the
owner of a digital identity or credential. The output of this query
will typically identify the ground identity of the credential owner,
which had previously been registered by some credential issuer.

Traceability in the form described above is useful because it is
a form of accountability that does not require the cooperation of
the user. However, it has several limitations. First, it completely
de-anonymises the user, which may be more than is needed for the
investigation at hand. Second, it does not allow the tracing authority
to find all the other credentials created by the user that is being
investigated. Instead, the authority only learns the ground identity
of the credential being queried. User activity identification - in
which all activity of a user is identified as such - is another concept
that partially addresses this weakness of traceability. However, it
has a serious privacy limitation: once a user has been subject to
activity identification, they are fully identified and may be unable
to present their credentials again in an unlinkable way. Revocation
- that is, preventing a user from acting - may also be too strong a
sanction for some purposes.

Blind-regroup. We introduce a new query that addresses the
limitations of traceability and revocation, called blind-regroup. We
assume a digital identity scheme in which a user is capable of gen-
erating any number of credentials that are, by default, unlinkable
to each other and to the user’s ground identity. A blind-regroup
query takes as input a credential, and produces as output the set of
all credentials made by the same (unknown) user so far. The query
does not reveal the ground identity of the user. Our paper focusses
on blind-regroup, but we intend our technique to be integrated
with other identity schemes that offer other query functionalities,
such as identity schemes using randomisable signatures (e.g., [3],

[18], [12]).

Temporal limitation. Blind-regroup returns the set of credentials
that have been created by the user so far. After a blind-regroup
query, the user can go on to create further credentials. An authority

https://orcid.org/0000-0003-2680-4907
https://orcid.org/0009-0002-5424-9744
https://orcid.org/0000-0002-1632-497X
https://orcid.org/0009-0008-0762-1375
https://doi.org/10.1145/3733802.3764056
https://doi.org/10.1145/3733802.3764056
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3733802.3764056

WPES 25, October 13-17, 2025, Taipei, Taiwan

that has done a blind-regroup query before those further credentials
were created is not able to link those further credentials to each
other or to the previous credentials, except by making a further
blind-regroup query. Hence, blind-regroup allows authorities to
make meaningful investigations without revealing ground identities
and allows users to recover from an investigation and continue to
enjoy privacy.

Authority transparency. Queries made by an authority should be
accountable to users. Authority transparency means that users are
able to access information about the queries that have been made
(the granularity of that information is a parameter that can be set).
We use the ideas of [19] to achieve authority transparency. More
specifically, the technical capability to make certain decryptions is
decentralised to a set of trustees which are instructed to respond
only when there is a valid request from an authority that is allowed
to make a query. This decentralised model works well with public
ledger systems: each trustee may be instructed to reply only to
requests made on the ledger, so that abuse of authority is necessarily
overt.

Certonyms. In this paper, we use the term certonym (‘certified
pseudonym’). A certonym is a digital identity under the user’s
control, which (when there is probable cause or a legitimate legal
basis) allows certain queries that can trace it to users or link it to
other certonyms of the same user. The purpose of these queries is
to allow enforcement of regulations. Crucially, the queries are only
possible in certain circumstances, and only in a way that satisfies
authority transparency by unavoidably leaving evidence of the
linking. Certonyms enhance pricacy by scope-limiting and making
observable the queries made about users.

This paper focusses on blind-regroup, which is an essential
part of certonymity. The blind-regroup functionality we develop is
‘backward-compatible’ with existing forms of identity in the sense
that certonyms can be cryptographically bound to another identity
in order to augment that identity with blind-regroup capabilities.

1.1 Contributions

(1) We present a protocol that enables users to create multiple
credentials (which we call certonyms), and enables an au-
thority to perform temporally-limited blind-regroup queries,
with authority transparency. Certonyms can enhance pri-
vacy in situations where authorities insist on some form of
regulatability or observability.

(2) We prove the correctness of blind-regroup (that is, it returns
all and only all of the existing credentials matching the given
credential); and we prove its security (namely, credentials
not captured by blind-regroup remain unlinkable, and cre-
dentials are unforgeable).

(3) We provide an initial implementation of all zero-knowledge
proofs required by the protocol and discuss the scheme’s
efficiency and scalability. We use the Groth16 SNARK and
choose elliptic curves that ensure compatibility with popular
blockchains.

76

Chen, Ho, Ryan, Williamson

2 Preliminaries

2.1 Notation

Let G be a cyclic group of prime order p. We write the group
operation multiplicatively and our group will later be instantiated
using an elliptic curve. Let g be a generator of G. For any a € Z,
and h € G, we write A to denote the group operation applied to h
repeatedly a times.

Let # : {0,1}" — Z,, be a function that maps arbitrary-length
bit strings to elements of Z,,. The specific instantiation of # will
be given later; as the notation suggests we need this function to
be collision-resistant and will instantiate it with a properly chosen
hash function.

Let v : G — G be a function defined by v(h) = g#(h), where
the function # is applied to h by parsing the group elements into
bits. For a given input h and non-negative integer i, we use v!(h) to
denote the recursive application of v to h for i times; in particular
vO(h) = hand v2(h) = v(v(h)).

We will use Z to indicate the set of non-negative integers.

2.2 Parties to the protocol

e Issuer, an agent that acts as a verifier of ground (or legal) iden-
tities, and provides the means for users to obtain certonyms.
Issuers deduplicate users to ensure that each holder of a legal
identity can onboard only once.

e Users, individuals who obtain from Issuer the ability to create
certonyms. Users may use certonyms to open an account
or to certify that an existing blockchain address under their
control.

e Relying Party (typically a service provider), an online plat-
form that accepts a certonym from Issuer as a valid form of
identity and is authorised to request a query in relation to a
certonym.

o Trustees, parties that jointly participate in a transparent
threshold decryption scheme, which enables an answer to a
query about a certonym. Trustees are not required to exercise
any judgment about the merits of decryption, and can be
prevented from knowing any information about it.

e Ledger, a public append-only store of information which is
not required to be trusted. The ledger stores two things: a list
of all established certonyms; and a Merkle tree containing
information about the linkability requests that have been
made about certonyms.

Each deployment of the system specifies a single ledger and relying
party (multiple relying parties can be supported using standard
techniques beyond the scope of this paper). The system supports
multiple issuers and multiple users but for simplicity we assume
here a single issuer.

2.3 Dynamic threshold decryption

A threshold decryption scheme specifies a public key TPK and in-
volves n trustees that jointly hold shares {sk;};=1, ., of a secret key.
Trustees participate in decryption by publishing partial decryptions
that depend on their secret key share and on the ciphertext to be
decrypted. Decryption is successful as long as a threshold t < n of
them follow the protocol. Trustees decrypt in response to a request

Temporally-limited blind-regroup of anonymous credentials

of an external party that cannot directly participate in decryption.
In our case, this external party is the relying party.

Dynamic threshold schemes were introduced in [10]. In such
schemes, trustees need not participate in any multi-party ceremony
to generate the threshold public key (avoiding many security pit-
falls [9]). Moreover, encryptors can choose the set of decryptors
and the decryption threshold. In certonymic practice, subject to
potential constraints imposed by the relying party, this means users
can select threshold decryption parameters (n, t). We construct a
dynamic threshold decryption scheme using strong zero-knowledge
machinery:

Local generation of threshold public keys. Encryptors generate
their own threshold public keys and trustee key shares {sk;}i=1,.. n
for use within a limited scope. In particular, users of the certonymic
protocol generate a new TPK for each certonym and use it to pro-
duce each ciphertext contained within the certonym. Each share
sk; is encrypted individually to a trustee with public key PK;. These
encrypted shares, along with a zero-knowledge proof of correct
construction, are then appended to the certonym as auxiliary infor-
mation. Appendix B contains details of the method, and a summary
is provided in Figure 1. We note that ciphertexts in our dynamic
threshold scheme have size linear in n due to the individually en-
crypted sk; values. Moreover, we use general-purpose SNARKSs to
prove correct computation of the sk;. Besides the initial work [10]
on dynamic threshold decryption schemes, works [6-8] improve ci-
phertext lengths at the cost of requiring encryptions be made over
a pairing-friendly group, significantly restricting cryptographic
flexibility. Most similar to our approach is that of [15], which uses
NIZKs rather than general purpose SNARKSs, improving perfor-
mance, especially for protocols in which this dynamic threshold
proofs are the bottleneck. We leave optimisations of this aspect of
our mechanism to future work.

Encrypted trustee responses. Trustees publish encryptions (with
respect to a public key of the relying party) of their partial decryp-
tions so that only the relying party may derive the plaintext; this is
discussed further in Section 2.4.

2.4 Transparent decryption

Transparent decryption is a type of protocol that cryptographi-
cally ensures the act of decryption is made necessarily overt. As
in a threshold decryption scheme, this involves decentralisation in
which the capability to decrypt is held jointly by a set of trustees.
A transparent scheme requires that trustees will only act in re-
sponse to the publication of a corresponding decryption request
on an append-only ledger. This process ensures that decryptions
are transparent to the people who are able to inspect the ledger.
A decryption cannot have taken place unless the corresponding
request has been published or a sufficient threshold of trustees do
not follow the protocol. The protocol can be altered so as to vary
the level of transparency of decryption requests, for example by
encrypting queries to the trustees, implementing some form of time-
delay, or re-randomising ciphertexts prior to their appearance in a
decryption request. For simplicity, we describe a protocol without
these measures in which requests are fully public.

77

WPES 25, October 13-17, 2025, Taipei, Taiwan

Trustee key management is important; too many lost keys make
queries impossible and too many leaked keys make accountability
of queries impossible. We assume for now that no threshold-sized
coalition of trustees collude or have had their keys compromised.
In practice, key rotation techniques or proactive secret sharing
may be used to reduce trustee-associated risk. Deployments may
require that certonyms be refreshed from time-to-time, at a cadence
proportional to trustee key churn.

Our system is designed in such a way that a blind-regroup query
with respect to a certonym reduces to a request for decryption of a
single ciphertext within that certonym. Trustees monitor a ledger
for decryption requests, and publish responses to satisfy those
requests. Trustees are trusted to publish if and only if they discover
a new and valid request. The format of a decryption request is
specified in Figure 5. Trustee responses are encrypted with a further
key to limit who can derive the plaintext. Typically this will be a
public key of the relying party, which is the authority that makes
queries.

2.5 The ledger

The ledger serves two distinct purposes in our protocol, and hence
stores two types of things. Firstly, it stores a list of all established
certonyms. Secondly, the ledger maintains a Merkle tree that con-
tains three types of leaves, with labels est, br and fup. A certonym-
leaf is of the form (V, est), where V is a hash value. A certonym leaf
is associated with a certonym and is added to the tree by users who
are creating a new certonym. A request-leaf has the form (V, br) or
(V, fup), and is associated with a blind regroup query request (ini-
tial or follow-up, respectively). Request leaves are added by either
the Issuer or the Relying Party. The protocols for establishing and
blind-regrouping certonyms rely on these items in the Merkle tree.

A Merkle tree is a binary tree in which data is stored at the leaf
nodes, and the hash H(dp, d;) is stored at each non-leaf node having
children that store data dy and d,. We assume that participants can
access the ledger, which offers the following functions:

e root(), which returns the hash stored at the root of the ledger.

o add(x), which creates a new leaf node and adds it to the right
of all the existing leaf nodes, and stores the data x there. The
hashes stored at non-leaf nodes are updated as needed. The
add function reorganises parts of the tree in such a way that
the height of the tree storing n data items is bounded by
log,(n) + 1.

o proof_of_presence(x, R), which returns data items stored in
the ledger that are sufficient to prove that x was was present
in the ledger when it had the root R.

o proof_of_extension(R, S), which returns data items stored
in the ledger that are sufficient to prove that version of the
ledger with root S is an add-only extension of its previous
version which had root R.

These functions are standard; for example, they are functions used
in the ledger logs of certificate transparency [1, 16]. We provide
further information in Appendix E'.

!This appendix is only in the long version of the paper, available on the authors’
websites.

WPES 25, October 13-17, 2025, Taipei, Taiwan

Chen, Ho, Ryan, Williamson

Overview of threshold decryption scheme:
o THRESHENCpK(n, t,1, M), done by user Alice:

— Method:

within E.
% Compute the ciphertext vector C = (Cy,..
encryption.
— Output: (E, TPK, menc, C).

and the relying party’s public key RPK.
- Method:

* Compute sk; = Decs;, (e;).

% Compute the encrypted share ¢; = Encgpg (m;).
- Output: c;.

— Method:
% Decrypt each share m; = Decgsg (¢c;) (i € I).

for definition of Interpolate).
- Output: M.

— Input: Public keys of trustees, presented as a vector PK = (PKj, ..., PKp,), the threshold value ¢, and the plaintext
vector M = (My, ..., M), wheren > 1,t <nand!l > 1.

* Generate t-out-of-n threshold decryption keys sk, ..
* Compute the encrypted threshold key vector E: e; = Encpg, (sk1),...,en = Encpk, (skn), and mepc a proof to show

that E and TPK are correctly constructed. The proof makes use of randomnesses associated with the encryptions

.,C}), where C; = Encrpg (M;), using fresh randomnesses for each

¢ TRUSTEEDECsK; (ei, C, RPK), requested by the relying party and done by Trustee i holding key (SKj, PK;):
- Input: Trustee i’s secret key SKj, encrypted threshold key e; which is the ith element of the vector E, ciphertext C,

* Compute a share of the plaintext vector m; = PartDecg, (C) (see Appendix B.2 for definition of PartDec).

o CoMBINE((c;i)ies), done by the relying party holding key (RSK, RPK):
— Input: a threshold number |I| > t of the encrypted shares (c;);e;-

% Combine the shares (m;);ey to get the decrypted message by computing M = Interpolate((m;);er) (see Appendix B.3

., skp, and their public key TPK (see Appendix B.1).

Figure 1: Threshold cryptosystem summary. Trustee i has public key PK; and private key SK;. TPK is an ephemeral threshold
public key created by Alice to encrypt the messages M = (my, ..
their public keys. The relying party with public key RPK can request a decryption; it will receive partial decryptions (encrypted
with RPK) from a threshold number of trustees, and, after decrypting them with its secret key RSK, it can combine them.

3 Certonyms and their protocols

3.1 Certonyms and blind-regroup queries

We propose a model of digital identity which provides users a high
degree of privacy and autonomy by default, while also ensuring
some level of regulatability and accountability. We use the term
‘certonym’ to represent a digital identity within this model. In the
certonymic model, a designated relying party may make certain
queries about the underlying holder of a certonym or about the
relationships between certonyms. Core to certonymity is the idea
that authorities can be held accountable for queries that they make
about certonyms and users. This helps to avoid authority overreach.

In this paper, we focus on how to implement a blind-regroup
query. The input to this query is a certonym. The output is the
set of all certonyms currently controlled by the same person that
controls the input certonym. The query is temporally-limited in
the sense that the user can continue to make new certonyms; by
virtue of being created after the query execution finished, these
certonyms cannot be linked to the set of certonyms that was output
by the query unless a subsequent blind-regroup query is performed.

We emphasise that a certonymic protocol with blind-regroup
will likely be augmented with other queries and the set of queries
will enable proportionate investigations into user behaviour that

78

,m;); the secret keys sk; are sent to the trustees encrypted by

reveal approximately the minimum information required to satisfy
the goals of a typical investigation.

We expect each user to generate many certonyms and for there to
be a large universe U of existent certonyms. As mentioned earlier,
a more basic certonymic query is to test whether two certonyms
are controlled by the same user. We note that this functionality is
already sufficient to implement the blind-regroup functionality: the
relying party can perform |U| — 1 such queries to test whether the
input certonym has the same controller as another certonym, for
each other certonym in U. Executing ~ |U| queries is impractical
except for very small deployments of the certonymic protocol. The
core of this paper is to describe a realisation of blind-regroup that
requires only one query, along with a reasonable amount of post-
processing by the relying party.

3.2 The protocols

Our certonym scheme includes several protocols, which will be
introduced in this section. All those protocols will make use of
global parameters as shown in Table 1.

Protocol Issue: onboard with Issuer. This is a one-time protocol
in which Alice approaches the Issuer with identity documents. The
Issuer verifies that Alice has not previously onboarded and makes

Temporally-limited blind-regroup of anonymous credentials

g Cryptographic group generator for G

PK Public keys of trustees
MAX; Maximum number of blind-regroup (BR)
queries w.r.t. a given ground identity
MAX, Maximum number of certonyms that a user

may create in a given generation (meaning be-
tween blind-regroup queries pertaining to their
ground identity)

Table 1: Table of global protocol parameters

Issuer verifies Alice’s identity documents to confirm that
Alice has not performed Issue previously.
(2) Issuer and Alice jointly contribute randomness in such a
way that only Alice learns the outcome:
(a) Alice privately selects a random nonce nonce4j;ce-
(b) Alice computes a commitment Com to nonce4j;., and
sends this to the Issuer.
(c) Issuer independently selects a random nonce nonceysgyer
and sends this to Alice in the clear.
(d) Alice computes hy = v(nonceyjice) - v(noncerssyer)-

(3) Alice computes the values h; = v(hj—1) (for
1<i< MAXg+2).

(4) Alice computes the value Vsezyp = #(hMAXq+2, 0).

(5) Alice computes a zero-knowledge proof 7;ssye, as defined in
Figure 7.

(6) Alice provides Vsetyp and missye to Issuer, which verifies the
proof.

(7) The Issuer accesses the ledger and performs a blockchain
transaction to add (Vserup, est) as a certonym-leaf and
(Vsetup, br) as a request-leaf in the Merkle tree T on the
ledger.

At the end of this protocol, Alice stores the following data locally:

({hito<ismaxg+2: Vsetup)

(1) Alice approaches Issuer with her ground identity “AliceID”.

Figure 2: The Issue protocol.

a record of her involvement with the protocol. In practice, she will
use a passport or government issued ID to establish her ground
identity. Alice and Issuer engage in a two party computation, at the
end of which Alice gains the capability to create certonyms. The
full Issue protocol is defined in Figure 2.

Protocol Establish: create a certonym. Alice computes a new
certonym by using the secret values generated from the Issue pro-
tocol and the public information stored on the ledger.

o The certonym can be overtly cryptographically linked to the
Issuer, to enable trust in the integrity of the initial onboarding
process.

e No coalition of parties, absent a sufficient threshold of trustees,
can link Alice’s certonym with Alice’s ground identity.

79

WPES 25, October 13-17, 2025, Taipei, Taiwan

o No coalition of parties, absent a sufficient threshold of trustees,
can link any two of Alice’s certonyms with each other on
the basis of their owner’s common ground identity.

This protocol is defined in Figure 3. Users monitor for blind-regroup
queries related to any certonym they control and maintain an in-
teger f§ to represent how many such queries have occurred. This
value will be used in the protocol.

Protocol Blind-regroup: Given a certonym, find all other certonyms
associated with the same ground identity. This protocol is run be-
tween a relying party and a set of trustees.

(1) This protocol must not reveal any information about the
ground identity.

(2) The total trustee effort in the protocol must be independent
of the total number of certonyms that have been generated.

(3) Suppose that this protocol has been run, and an equivalence
class of certonyms has been identified, all of which are asso-
ciated with the same (unknown) ground identity. Suppose
further that the user with that ground identity creates a new
certonym. Then that certonym should not be linkable to the
equivalence class until this protocol has been run again.

This protocol is defined in Figure 4. We think of each certonym of a
given user as belonging to a certain generation, where generations
are bookended by blind-regroup queries pertaining to the user. The
generation of a certonym is not detectable by default. A user’s first
certonyms will belong to generation 0. At any later time, a freshly
generated certonym will belong to generation f, where f is the
number of previous blind-regroup queries that have ever pertained
to the user at that time. At most MAX, certonyms may be created
by a user in a given generation.

3.3 The construction in a nutshell

The core idea of the construction is that each user creates certonyms
within a given (user-specific) generation and then proceeds to the
next generation exactly when any of their certonyms has been the
subject of a blind-regroup query. An effect of the query is that all
certonyms of the user from the outgoing (and all prior) generations
become linkable from the perspective of the relying party. An effect
of the user moving to the next generation is that newly-created
certonyms cannot be linked to those of earlier generations unless
there is another relevant blind-regroup query.

Users are prevented from skipping generations, because this
would break the blind-regroup functionality. As such, users are
unable to create certonyms from within a given generation unless
they prove that they are not skipping a generation and that the
certonyms in their current generation have been linked by a BR
query . Users produce zero-knowledge proofs of these conditions,
which include proofs of presence of items in the ledger Merkle tree.
The Merkle tree proofs establish that certain certonyms have been
created in the past and that certain BR queries have been executed
in the past. The zero-knowledge proof protects the user from re-
vealing which such past certonyms and queries are relevant to their
new certonym, and also checks that the rules about certonymic
generations are obeyed. We stress that the relying party is not re-
quired to be trusted to provide Alice her ability to create unlinkable
credetials after a BR query: each query must be recorded on the

WPES 25, October 13-17, 2025, Taipei, Taiwan

ledger, leaving Alice with the information she needs to justify the
creation of her next generation of certonyms.

Within a given generation, users can create multiple certonyms
that are all unlinkable prior to the next blind-regroup query. Ci-
phertext re-randomisation and a hash function mechanism are the
tools used to ensure that certonyms of the same generation for the
same user remain unlinkable by default.

3.3.1 An illustrative construction. In this section we describe a
simplified certonym construction. A downside of this simplified
construction is that the size of the certonym (and the number of
decryptions per query) grows linearly in MAXy, the total number
of blind-regroup queries that can be made with respect to a given
user. Some of the complexities of the full protocol are motivated by
the goal of reducing the size of the certonym to be independent of
MAX,.

For our illustrative purposes, a simplified certonym has the fol-
lowing components:

(Ho, .-, HMax +1, V. W, 4, 7)

First, we explain the values Hy, ..., HMAXq+1~ The certonym pro-
tocol begins with the generation of a pseudorandom sequence of
values hy, ..., hyg AX+2- No one party can control the values in this
sequence: it is the result of jointly-chosen randomness sourced
from a user Alice and the Issuer. The sequence values are elements
of a cryptographic group and they are linked by the v function,
which is a hash-to-group function that is easy to compute but hard
to invert. We define this function in Section 2.1 and give further
details in Section 6.1. For all 0 < i < MAXy + 1, we have that H; is
the encryption of h;.

The values {h;} i=1,..,MAX,+1 are in a one-to-one correspondence
with certonym generations. Initially, Alice has been the subject of
no blind-regroup query and her certonyms are of the generation
associated with the value hyy AX g+ The Merkle tree on the ledger
contains leaves, placed there by the Issuer during the Issue protocol,
that allow Alice to prove that she may create certonyms in this
first generation. In effect, those leaves are dummy leaves that use
the value hyrax, +2 to “fool” the system into believing that a prior
BR query justifies Alice’s creation of certonyms in this generation,
even though in the case of the first generation no such BR query has
occurred. The upshot of this is that first-generation certonyms are
indistinguishable from non-first-generation certonyms. Meanwhile,
the absence of any other leaves regarding BR queries relevant to
Alice ensure that she may not yet move beyond the first generation.
As she creates multiple certonyms from this initial generation, Alice
ity between certonyms and proves within 7 that the certonym is
constructed correctly. The value V is the hash of a concatentation of
hm AXg+ and some other value of sufficiently low entropy: an inte-
ger at most MAX,. V is used by the relying party to link certonyms
of the same generation at the time of a blind-regroup query. In
particular, the relying party decrypts hpax,+1 and brute-forces
the low-entropy value. As such, setting MAX, to be large gives
Alice more room to create certonyms in a single generation but
also increases the BR query post-processing effort of the relying
party. The values W and y serve to bind a signing and verification
key pair to the certonym.

80

Chen, Ho, Ryan, Williamson

Now, if the relying party requests a first blind-regroup query
with respect to this certonym, a new leaf recording this event is
added to the Merkle tree. This allows Alice to move to the next
generation: Alice will use the existence of this new leaf to prove
that a first BR query has occurred with respect to her and that she
is entitled to proceed to the second generation, in which hyax,
will be used in the computation of V. Meanwhile, as a result of the
query, the relying party learns hyax, +1 and uses this to link all
certonyms Alice created prior to the query.

Later, if the relying party wants to follow-up on Alice and is-
sues another blind-regroup query, the same process repeats: the
relying party will use hypax, to link Alice’s certonyms and Al-
ice will then use hMAXq—l to make new ones. In general, if the
blind-regroup protocol has been executed f times, then Alice uses
hy AXg+1-p in newly created certonyms’ V value. After MAX4 BR
queries, certonyms use hj to create the V value. Even though hy is
never used to form the V value of a certonym of any generation,
it is needed in the full version of the scheme, in which certonyms
only contain two encrypted values from the set {H;};=_._m. AXg+1s
so that certonyms in the final generation have the same format as
all other certonyms.

3.4 Efficiency of blind-regroup

Blind-regroup is designed so that all certonyms of a given user,
up to the present moment, can be identified via the act of a single
threshold decryption done by trustees. In exchange for this property,
there is a post-processing step done by the relying party.

The most intensive aspect of this post-processing step is the
computation of Cfrom(h) for some decrypted value h. This involves
computing Vfrom(h) and checking each certonym to see whether
its V value is an element of this set.

This computation of Vfrom(h) requires MAXy-wise recursive
computation of the function v as applied to k. For each such recur-
sive step, MAX, hashes are computed; the total hashing burden
grows like O(MAX, - MAX,). Even for generous settings of these
parameters, the hash burden is not high for a relying party, which
we presume will have good computational resources.

To check which certonyms have a value in Vfrom(h), the relying
party may employ techniques like a Bloom filter to keep computa-
tional costs manageable.

3.5 Using certonyms

Signing with certonyms. A user may use their certonyms to sign
data. A relying party is a platform that accepts certonyms as an
ideneity form and accepts signatures by certonyms, perhaps de-
pending on the associated Issuer. Users can establish that they
control a certonym by signing a message with it. The message can
be generated by the user, or it could be a challenge sent to the user
by a relying party.

Suppose Alice has a certonym (G, H, V, W, y,).

(1) Alice signs the message using her signing key x correspond-
ing to the certonym’s verification key y, producing a signa-
ture (e.g., a Schnorr signature).

(2) Alice sends the signature together with her certonym to the

relying party.

Temporally-limited blind-regroup of anonymous credentials

(1) Alice observes the ledger and counts the number of
blind-regroup (BR) queries made with respect to her
certonyms. Let this nonnegative integer be . If § > MAX,,
then Alice aborts.

(2) Alice creates a certonym-specific Schnorr signing and
verification key pair (x,y) where y = g*.

(3) Alice computes
TureEsHENCpk(n, t,2, M = (hMAXq_/;, hMAXq—ﬂ+1))>
resulting in

(E TPK, 7renc, C = (HMAXq—ﬂ» HMAXq—ﬁH))a
where the randomnesses of encryption are ry; AXy—-p>
TMAX, - f+15 respectively.

(4) Alice arbitrarily chooses a positive integer ¢ < MAX,. Alice
computes two values V = #(hMAXq—ﬁH, €) and
W = #(hpax,-pr1:Y)-

(5) Alice accesses the ledger and observes the state of its
Merkle tree. Either:

o Alice finds a request-leaf value (#(v(hMAXq —p+1)s €’),br)
for some €’, or

o Alice finds a request-leaf value
(#(v(v(hMAXq_5+1)), €’),fup), and a certonym-leaf
value (#(v(hyrax, - p+1): €’), est) for some €’ and €”’.

If Alice cannot find the required leaves, she aborts.

(6) Alice then sets Tg to be the root root() of the ledger’s
Merkle tree and constructs a proof of presence of the leaves
in the Merkle tree with that root.

(7) Alice computes a zero-knowledge proof 7, as defined in
Figure 9.

(8) The certonym is

C = (Huax,-p» Huax,-p+1> Vo W, Yo Test).
Note that only Alice knows x, which is the signing key
associated with the certonym.

(9) Alice submits the certonym to the ledger, which then
verifies the certonym. If the verification passes, the ledger
stores the entire certonym C on the ledger and adds the
certonym-leaf (V, est) to the ledger Merkle tree.

Figure 3: The Establish protocol

Certonymization of an existing identity. In some circumstances,
Alice will want to associate her certonym with an established ac-
count on a platform. The account will typically already be associ-
ated with a form of identity that is native to the platform. In this
scenario, the relying party challenge may contain a reference to
the account: this means that the certonym signature will establish
that the owner of the certonym wishes to be associated with the
referenced account. To ensure that the account owner is the same
person as the controller of the certonym, the platform may require
that the user log-in to her account and confirm its association with
the given certonym.

Certonym signature verification. Certonyms can be verified by
the relying party. We note here, and will emphasise in the im-
plementation section, that certonyms can be verified on a smart

81

WPES 25, October 13-17, 2025, Taipei, Taiwan

contract on sufficiently expressive blockchains, such as those using
the Ethereum Virtual Machine.

When a relying party is presented with a signature ¢ and a
certonym C = (G, H, V, W, y, n):

o It verifies the signature o using the public key y;

o It tests the validity of the certonym by confirming that the
proof r is valid, and

o the tree root Ty used as a part of the public witness of r is
extended by the current tree root root() of the ledger.

3.6 Extensions and variations

Identity attributes. Encryptions of identity attributes can be in-
cluded within (and cryptographically bound to) a certonym. For
instance, the user’s citizenship status may be checked by the Issuer
and encrypted to another ciphertext in the certonym. These can be
decrypted upon request by relying party or users can issue proofs
of the decrypted value, as in SSI protocols.

Full user decryption, or testing equality of underlying identity.
The scheme can readily be extended to enable a query that extracts
the user identity from a certonym, or the query that determines
whether two certonyms are owned by the same user. This can be
achieved by appending to the certonym the randomised encryption
of an identifier unique to the user, with appropriate cryptographic
binding.

Revocation of certonym creation privilege. As a variant, the rely-
ing party may want to temporarily block a user Alice from creating
more certonyms after a BR query. This requirement could be repre-
sented in the BR query request leaf. As a result, proofs .s; would
prove that the Merkle tree leaves relevant to a newly proposed
certonym are not marked with this requirement. Such an act of
revocation of privileges by the relying party is detectable by anyone
with read access to the ledger and can be publicly reversed by the
relying party at any time.

4 Correctness proofs

Suppose user A has created certonyms Cj, . . ., Cp, and then a blind-
regroup query is done on C; (for some 1 < i < n). Suppose the
user goes on to create certonyms Cpy41, . . ., Cp. The data that was
returned by the blind-regroup query allows one to link all the
certonyms in Cy, . . ., C, with each other, but none of the certonyms
in Cnp+1, - - ., Cm with any other certonym. We provide proofs of
‘completeness’ (meaning the blind-regroup query produces no false
negatives) and ‘soundness’ (meaning no false positives of the blind-
regroup query). Additionally, we prove ‘executability’ (meaning
that a user can execute the establish protocol).

4.1 Proof of executability

The Establish protocol lays out the various steps that a user Alice
must take to generate a new certonym. It is immediate that all of
these steps are feasible for Alice to complete, other than Step 5,
in which she must find Merkle tree leaves with certain properties.
Therefore we prove that Alice will always be able to find the leaves

WPES 25, October 13-17, 2025, Taipei, Taiwan

Chen, Ho, Ryan, Williamson

Input: a certonym C = (G, H, V, W, y, 7).

Output: the set of certonyms created so far that have the same
ground identity as C.

Notation: All is the set of all existing certonyms, which is
derivable by viewing the ledger.

Vfrom(h) = {#(v(h),€) | 0 < i < MAXg, 1< e < MAX,}
Cfrom(h) = {(G,H,V,W,y,n) € All | V € Vfrom(h)}

A set S is maintained by the relying party (RP). It is initially the
empty set; h € S means that h has been uncovered by the RP
during a blind-regroup (BR) query.

if 3h € S such that V € Vfrom(h) then
j e maxjez, (3N €8S: vi(K') = h}
Pick h’ arbitrarily from {h’ € S : v/ (K') = h}
if 3(V’, est) € MT such that Je : V' = #(h’,€) then
Let C’ be the certonym corresponding to (V’, est)
Parse C’ as (G’, H', V', W/, ¢/, «")
Construct 7, as defined in Figure 8
Submit request (C’, fup, Tfups RPK) to the ledger
View query responses My, ..., My, published by trustees
Compute b’ = ComBINE((My, ..., Mp,))
Addh” to S
Return the result Cfrom(h’")
else
Return the result Cfrom(h’)
end if
else
Submit request (C’, br, RPK) to the ledger
View query responses My, ..., My, published by trustees
Compute h’ = CoMBINE((Mj, ..., Mp,))
Addh toS
Return the result Cfrom(h’)
end if

Figure 4: The blind-regroup (BR) protocol, which allows the
relying party to obtain all the certonyms created by the user
that owns a given certonym.

needed to generate a certonym. In Appendix F.32, we will prove
the following claim:

CrLamm 1. In Step 5 of Figure 3, Alice will never abort as long as
she has read-access to the ledger.

4.2 Proof of completeness

THEOREM 1. When a blind-regroup (BR) query is executed with
respect to certonym C = (G, H,V,W,y, r), the Issuer will be able to
link together all certonyms created by the same owner as the owner

of C.
The proof is given in Appendix F.4.

2This appendix is only in the long version of the paper, available on the authors’
websites.
3This appendix is only in the long version of the paper, available on the authors’
websites.

82

In blind-regroup, the relying party publishes on the ledger a
decryption request of the form (C, br, RPK) or (C, fup, Tfups RPK),
where C = (G,H,V,W,y, n) is a certonym, Tfyp is 2
zero-knowledge proof, and RPK is a public key of the relying party.
In its routine monitoring of the ledger, trustee i finds this request
and responds as follows:
(1) Check that C is a valid certonym. If not, then halt.
(2) Parse the public inputs of proof 7 within certonym C to
obtain E, with ith element given by e;.
(3) If the request is (C, br, RPK):
(a) Check whether (V, br) is a Merkle tree leaf and add it if it
is not.
(b) Publish to ledger M; = TRUSTEEDECsK; (ei, H, RPK).
(4) If the request is (C, fup, 7fyp, RPK):
(a) Check whether (V, fup) is a Merkle tree leaf and add it if
it is not.
(b) Check the validity of fyp.
(c) Publish to ledger M; = TRUSTEEDECsK; (ei, G, RPK).

Figure 5: The decryption API for blind-regroup

4.3 Proof of soundness

We prove that the result of an honestly issued query executed with
respect to a certonym C contains only certonyms made by the same
user as the user that made C. We work in the random oracle model.
Let R be the cardinality of the range of the hash function. We prove
our result in the simplest non-trivial case of two users; the bound
can easily be extended to arbitrarily many users.

THEOREM 2. Suppose that a BR query targets a certonym owned by
u1. Ifu; # up and users u; and uy do not collude, then, in the course
of the query, no certonym owned by uz will be identified, except with

e (MAX.-MAX4)*
probability at most O (Tq)

The intuition behind the theorem is that if g, and hg, are cho-
sen randomly, then the sets {#(v'(hoy,),j) | 0 < i < MAX4, 1<
Jj < MAXc} and {#(v'(how,). j) | 0 < i < MAXq, 1< j < MAX}
intersect with negligible probability. A formal proof is given in
Appendix F.5%.

5 Security proofs

We now provide security analysis of a certonym that has the form:

(G, H,V,W,y,)

5.1 Oracles

Before discussing anonymity & unlinkability and unforgeability in
the following subsections, we first introduce the oracles used in
the security analysis of these two properties. For each oracle, the
adversary A acts as a requester and the simulator S as a responder,
so we say that S runs oracles for A to query. Aligned with the
oracles, S maintains a user list U, which records the transcripts of
running the oracles.

4This appendix is only in the long version of the paper, available on the authors’
websites.

Temporally-limited blind-regroup of anonymous credentials

® Oc,y (create user): On input u ¢ U, A requests that u is
created. S creates the user u by using Issuer’s function, stores
u along with the user’s keys in U and marks that u is honest.
Note that S does not provide the user’s secret key to the
adversary. In the certonym scheme, a user creates and holds
their key. The adversary is not assumed to access an honest
user’s key, so the O¢,y oracle follows this reality correctly.

® Ocoy (corrupt user): On input u € U, A requests that the
user u is corrupted. S discloses u’s keys to A and marks that
u is corrupted.

e Occ (create certonym): On input u € U, A requests that a
certonym for u is created. S creates a certonym C, stores it
in U and returns it to A. For the same reason as the O¢c, ¢y
oracle, S does not provide the secret key associated with the
certonym to the adversary.

e Og (sign message): On input certonym C and message m, A
requests that the message is signed by using the certonym
C and its corresponding key. S returns a signature s on
the message m signed by using the certonym C and the
corresponding key.

e Ogg (blind-regroup): On input certonym C, A requests that
the blind-regroup protocol for this certonym is run. S returns
the transcript of the blind-regroup protocol to A.

5.2

The property of certonym anonymity & unlinkability expresses the
two facts:

Anonymity and Unlinkability

(1) Anonymity: a user using their certonym is indistinguishable
from any other user using their certonym.

(2) Unlinkability: If a user uses a certonym in one session, and
another certonym in another session, and the certonyms
have not been associated with a blind-regroup query, then
the two sessions are unlinkable.

To express this property more formally, we consider an exper-
iment, Exp?gt’ A
controls Issuer and A’s actions are bounded in polynomial-time.
S maintains a user list U, which includes each user’s name, keys,
certonyms and their states (honest or corrupted). U is empty when
the experiment starts. S runs the following oracles for A to query:
Ocru (create user), Ocoy (corrupt user), Occ (create certonym),
Ogs (sign message) and Opg (blind-regroup).

The experiment includes three phases:

Phase 1: A can call all the oracles defined in Subsection 5.1
adaptively.

Challenge phase, which starts at the end of Phase 1:

between an adversary A and a simulator S. A

(1) A chooses two honest users A and B and sends {A, B} to S.
(2) S selects a random element r from {A, B}.

(3) S generates a certonym C by calling Occ (7).

(4) S returns C to A.

Phase 2, which starts at the end of the Challenge phase:

(1) A can continue to use the oracles with arbitrary arguments
as in Phase 1, except that they can’t call Oc,py with input A
or B, or Ogg with input C.

(2) Particularly, A can call Occ(A) or Occ(B) multiple times.

83

WPES 25, October 13-17, 2025, Taipei, Taiwan

(3) A can also call Og for A or B, including Os(C, m) with a
message m at A’s choice.

(4) At the end of Phase 2, A outputs a value r’. It wins the
experiment if r’ = r.

We denote the fact that the adversary wins the above game by

AU —
Expcert,ﬂ(a) =1

DEFINITION 1. (Anonymity & Unlinkability). Given a security
parameter A, it is said that a certonym scheme holds the property of
Anonymity & Unlinkability, if for any polynomial-time adversary A,
the probability of A winning the Anonymity & Unlinkability (AU)
experiment is as follows:

SuccAV (A(A)) = Pr(ExpiV

cert, A (1) =1] £1/2 +negl(2).

DEFINITION 2. (Encryption with randomisable ciphertexts). It is
said that an encryption scheme supports randomisable ciphertexts, if
given a ciphertext C associated with a plaintext P and a key, one can
create another ciphertext C’, which will be decrypted to the same P
by using the same key.

DEFINITION 3. (Ciphertext indistinguishability of encryption with

randomisable ciphertexts). This property is defined by using an exper-

CipherInd L. . .
sz €r°ne which is run between a polynomial-time adver-
rustee

sary A and a simulator S. A has access to a target public encryption
key (via creating a user query), so A can make ciphertexts for any
messages under this key. In addition, A can make multiple queries
about ciphertexts of A’s choice to obtain the corresponding plain-
texts. The queries are answered by S. As a challenge, A provides
two ciphertexts, Cy and C1, to S. S randomly picks a bit b € {0,1},
randomises Cy, to obtain a randomised version C}. S returns it to A.
A can then carry on making the queries as before except for the de-
cryption query for C,. At the end, A outputs b’. Ifb” = b, A wins the
experiment. It is said that an encryption scheme with randomisable
ciphertexts holds ciphertext indistinguishability, if the probability of
the aforementioned adversary succeeding is not more than a half plus
a negligible value.

iment Exp

THEOREM 3. For a suitable security parameter, A, the certonym
scheme is anonymous and unlinkable if:

o The underlying trustee encryption scheme used to create a
certonym supports randomisable ciphertexts and ciphertext
indistinguishability.

o The proofr is a Non-Interactive Zero-Knowledge Proof (NIZKP),
which can be simulated. By simulated, we mean there is a simu-
lation oracle to create a simulated 7t without knowing its secret
input. The simulation oracle is accessible by the simulator S.
From a verifier’s point of view, a simulated proof is indistin-
guishable from a real proof computed using its corresponding
secret.

o The hash function used in the Schnorr signature is a random
oracle.

AU

cert, A
before, in which S responds to queries made by A. The hash func-

tion used in the Schnorr signature scheme is through a random
oracle model, which is run by S. S has access to the simulation
oracle of 7 to generate a verifiable zero-knowledge proof. To guar-
antee consistency between answers to various queries, S maintains

Proor. S performs the Exp experiment with (A as defined

WPES 25, October 13-17, 2025, Taipei, Taiwan

a certonym user list U, which includes each user’s name, keys,
certonyms and their states (honest or corrupted), and all queries
and the corresponding answers associated with this user. The list
U is empty when the experiment starts.

While A has the target of winning the experiment Exp2U

cert, A’
S has the target of breaking the ciphtertext indistinguishability

of the underlying trustee encryption scheme. For this purpose,
during the run of the Exp’;‘g ; 7 €xperiment, S simultaneously runs

CipherInd
Ex Tlp €M@ experiment with their simulator. In this experiment,
rustee

S plays the role of an adversary, who is allowed to ask the queries
for creating a set of honest users (i.e., trustees), and decrypting a

ciphertext. As a challenge, S submits two ciphertexts Cp and C; to

the simulator of Exp%‘z }sl:ind and receives a randomised ciphertext

Cyp, for b € {0,1}. S needs to output b’ and wins the experiment
E ?lpherlnd ifb = b.
rustee
In the Exp’;“gt 7 experiment, A controls the Issuer but not the
trustees. At the outset of the experiment, S runs Setup to create a

set of trustees. To set up each trustee, S asks a query for creating

. CipherInd .
an honest user to the simulator of the ExpT;‘Z Sferen experiment, S

receives a public key for this trustee and S shares the key with A.
S also runs Setup (or takes A’s input) to create an Issuer, which
has a public and secret key pair. All the values of the public and
secret keys of the Issuer are known to A.

In Phase 1, S handles the oracle queries listed in section 5.1 as
follows.

® Oc,u (create user): To create an honest certonym user u,
A sends Oc,y(u) to S. S checks whether u € U. If yes,
S rejects this query; otherwise, S runs the Issue proto-
col with A, in which A plays as an Issuer and S plays
as u. S uses the trustees’ public keys to generate related
ciphertexts. At the end of the protocol, S obtains and stores
((hi, Hi)osisMAXqH, OMAX,» Vsetup)- S records the transcript
of this oracle run in U and marks that u is honest.

e Ocoy (corrupt user): To corrupt a certonym user u, A sends
Ocou (1) to 8. S checks whether u € U and is marked as
honest. If not, S rejects this query; otherwise, S discloses
u’s secret key x together with the Issue protocol output
((hi, Hi)o<i<MAX,+1: OMAX,» Vsetup) to A and marks that
u is corrupted.

e Occ (create certonym): To obtain a certonym for an honest
user u, A sends Occ(u) to S. S checks whether u € U and
is marked as honest. If not, S rejects this query; otherwise,
S runs the Establish protocol with A. At the end of the
protocol, S creates a certonym C = (G, H,V, W, y,), stores
the certonym together with its secret key x (where y = g’¥)
in U and returns the certonym to A.

o Os (sign message): To request signing a message m using the
certonym C and its corresponding key, A sends Os(C, m)
to S. S checks whether C € U and its corresponding user u
is marked as honest. If not, S rejects this query; otherwise,
S creates a signature on m using C and its secret key x. S
records this result to U and returns the signature s to A.

e Ogg (blind-regroup): On input certonym C, A requests that
the blind-regroup protocol for this certonym is run. S asks

84

Chen, Ho, Ryan, Williamson

the simulator of the Exp%ﬁ }Sz::ind experiment for decryp-

tion queries on the relevant ciphertexts in C, and then S
receives a set of plaintexts, which are associated with all the
certonyms created so far that have the same ground identity
as C. S returns the result of the blind-regroup protocol to
A.

A decides the time when Phase 1 is complete and the chal-
lenge phase starts. In the challenge phase, A outputs two certonym
users’ names, say A and B, which have not been corrupted. S gen-
erates two set of ciphertexts Cp and C1, where Cy = (G4, Hy) and

C1 = (G, Hp). S sends them to the simulator of the Exp%ﬁ}slfgnd
experiment, from which S receives a randomised ciphertext Cp,
where b € {0,1}. S then generates a certonym C, based on Cp.
Clearly, if b = 0, r = A and otherwise r = B. Following the defini-

tion of a certonym,
Cr = (Gr, H, Vi, Wy, yp, 7).

V; and W, are two hash outputs and S can handle them based on
the random oracle. To do so, S chooses two random values as V;
and W;, which are represented as #(a, €) and #(b, y,). S does not
know a or b, but since 7 is simulatable, the consistency of C, can
be maintained, i.e., from A’s point of view, C, is indistinguishable
from a real C,. However, there are two conditions: (i) C4 and Cg
should use the same e (this is achievable); and (ii) neither (a, €) nor
(b, yr) should be used as an input of querying the hash function #
(if this happens, S will abort). The randomisation of the ciphertext
also updates the public verification key y,, which can be retrieved
from Cp, but S does not know its corresponding secret key x;.
The last part of C, is an NIZKP 7. S generates it by calling the
simulation oracle of this proof. This can be achieved since it is
assumed that 7, is a simulated proof. Finally, S sends C; to A.

One example of 7, is a simulation-extractable KZG polynomial
commitment scheme [17], which is an extention of the KZG polyno-
mial commitment scheme [13]. A univariate case (proving a single
polynomial) of simulation-extractable KZG commitments is pre-
sented in Material C of [17] and a general case with multivariate
polynomials is in Section 4 of this paper.

In Phase 2, S and A carry on the query and response process
as in Phase 1. Again, A is not allowed to make any Corrupt query
to either A or B. In addition, A is not allowed to query Oggr(Cy).
However, A is allowed to query Occ(A) or Occ(B) multiple times,
and as well as to query Os(Cr, m) with a message m at A’s choice.
We now see how S handles these queries:

e Occ(A) (or Occ(B)): S responds to this query by follow-
ing the protocol correctly and returns to A with a newly
generated certonym.

e Os5(Cr, m) (sign a message on the behalf of the user r): To
request signing a message m using the certonym C,, which
is the output of the challenge phase, which is associated with
the user r € {A, B}. S creates a Schnorr signature s on m
under the key y,. Note that S does not have access to the
corresponding secret signing key x;. In this case, S uses the
random oracle model to simulate a valid Schnorr signature s.
S records this result to U and returns the signature s to A.

At the end of Phase 2, A outputs r’. If ¥’ = A, S outputs b’ = 0;
otherwise, if r’ = B, S outputs b’ = 1. We argue that if A wins

Temporally-limited blind-regroup of anonymous credentials

AU cipherInd
cert, A’ Trustee °
because Cy, is used to create Cy. In order to increase the success
rate, the ExpAY_ _ experiment should be run multiple times and
cert,&’(.
as well as the Exp;lp herInd experiment runs.
rustee X

We can see that the first fact (anonymity) is held because if
the probability of A outputting the correct r is higher than 1/2 +
negl(2), the probability of S outputting the correct b is also 1/2 +
negl(1). However, this contradicts the assumption that the underly-
ing trustee encryption scheme supports randomisable ciphertexts
and ciphertext indistinguishability.

The second fact (unlinkability) is also held because the Exp

the experiment Exp S will win the experiment Exp

AU
cert, A
experiment allows A to query Occ for any honest users, including

the challenging users A and B. As for any corrupted users, A can
create their certonyms by itself. Moreover, A is allowed to query
Ogs for any certonyms, including the challenging certonym C,. If A
can link C, with any of these queries, A must be able to output a
correct r every time, which will break the anonymity. As discussed
before, this can only happen with a negligible probability.

Since both the two facts are held, the theorem follows.]

In Appendix C, we demonstrate how the modified KZG scheme
is simulatable.

5.3 Unforgeability

This property guarantees that an adversary cannot create certonyms
or signatures that would be linked to or attributed to a certonym
of a different user who acts honestly.

To formalise this property, similar to the property of anonymity

& unlinkability from section 5.2, we also consider an experiment,
E Unforge
chert,.?l
a user list U, which includes each user’s name, keys, certonyms and

their states (honest or corrupted). U is empty when the experiment
starts. In this experiment, A controls the trustees, so the Opg (blind-
regroup) oracle is not required.

We consider the experiment with two phases:

between an adversary A and a simulator S. S maintains

Phase 1 The adversary can call the following oracles: O¢c,y (create
user), Ocou (corrupt user), Occ (create certonym), and Og
(sign message), which are defined in section 5.1.

Phase 2 The adversary outputs some data.

The adversary wins the experiment if

e Case 1: The data is a certonym C such that C is not the
output of O¢c; or

e Case 2: The data is a triple (C, s, m) such that Verif(C, s, m)
outputs Accept, and C, m is not the input to Og, and for all
users u, if owner(u, C) then u has not been provided as an
input to Ocou.

DEFINITION 4. (certonym owner). owner(u, C) holds if Occ has
been called with argument u and output C.

We denote the fact that the adversary wins the above game by
Unforge _
EXPeert. 7 1) =1
DEFINITION 5. (Unforgeability). Given a security parameter A, it
is said that a certonym scheme holds the property of unforgeability,
if for any polynomial-time A, the probability of A winning the

85

WPES 25, October 13-17, 2025, Taipei, Taiwan

unforgeability experiment is as follows

SuccUnforge(ﬂ(l)) = Pr[Eprnforge(/l) =1] < negl(A).

cert cert, A

Unforge

cert, A ’
EU-CMA
u

S is also involved in other two
and Exp];sli;lcel\r/[A. ExpEU'CMA is
associated with the user’s signatures and Exp];g;g;/m is associated
with the Issuer’s signatures. In either of these two experiments,
S acts as an adversary, aiming to create a forgery of the user’s
signature or the Issuer’ signature. Now we give a formal definition
of EU-CMA:

In parallel of running Exp

experiments, denoted by Exp

DEFINITION 6. (Existential unforgeability under adaptive chosen-
message attacks (EU-CMA)). This property is defined by using an
experiment Expfl.lgj_CMA, which is run between a polynomial-time
adversary A and a simulator S. Suppose that A has access to a
public verification key of a digital signature scheme, they can make
multiple queries to a signing oracle with messages at the adversary’s
choice. The query is answered by S. Then A provides a message
and signature pair (m, o) in which the message was not previously
submitted to the signing oracle. A signature scheme is considered to
be EU-CMA secure if the probability of the aforementioned adversary
succeeding is negligible.

THEOREM 4. For a suitable security parameter, A, the certonym
scheme is unforgeable if:

Issuer’s signature scheme is EU-CMA secure.

A certonym’s underlying signature (i.e., a user’s signature) is
EU-CMA secure.

The function # is a cryptographic hash function and it is con-
sidered as a random oracle.

The knowledge proof 7 is an Non-Interactive Zero-Knowledge
Proof (NIZKP).

Due to space limitation, the proof of this theorem is given in
Appendix G.

6 Implementation

6.1 Zero-knowledge proofs and encryption

6.1.1 SNARKs. We require a general purpose zero-knowledge prov-
ing system and use SNARKS, in part for their short proof sizes
which is appropriate for publishing to a blockchain ledger. We
use Groth16 [11], instantiated with KZG commitments and im-
plemented with the Gnark software package [2]. We instantiate
Groth16 with BN254 as the proving curve. As an implication, our
SNARK circuits operate on arithmetic over the scalar field of BN254.

6.1.2 ElGamal encryption. We prove statements about encrypted
values. We use ElGamal encryption over an elliptic curve group. We
also make use of hashed ElGamal, as discussed later in this section,
which is useful when the messages to encrypt are not elements of
the elliptic curve group. Proving statements about hashed ElGamal
ciphertexts is more expensive than proving the same statements
about non-hashed ElGamal ciphertexts, so we use the non-hashed
variety when we can.

5This appendix is only in the long version of the paper, available on the authors’
websites.

WPES 25, October 13-17, 2025, Taipei, Taiwan

6.1.3 2-chains of elliptic curves. A 2-chain is a pair of elliptic curves
such that the base field of one curve (called the ‘inner’ curve) is the
scalar field of the other (‘outer’) one. In our protocol, when proving
statements about encrypted values, our circuits must operate on
inputs that are ElGamal ciphertexts. These ciphertexts consist of
elliptic curve group elements over some base field. To avoid the
need to emulate arithmetic over one field while working within
another field, it is important to use an elliptic curve with base field
equivalent to the scalar field of the proving curve BN254. In our
case, we use the Baby Jubjub curve, which has been designed for
this purpose: in particular, BN254 and Baby Jubjub form a 2-chain
of curves.

Unfortunately, our use of this 2-chain does not allow us to fully
avoid emulated arithmetic. One of our zero-knowledge proofs 7ep¢
requires performing operations over scalar field elements of Baby
Jubjub, the inner curve of the 2-chain. As such, we must simulate
arithmetic in Baby Jubjub’s scalar field while working over circuits
that operate in its base field. This emulation incurs a penalty in
terms of the number of constraints, but is acceptable when the
decryption threshold and the number of trustees are not too large.

6.1.4 Hashed ElGamal. Hashed ElGamal is a variant ElGamal scheme
in which an encryption E for message m is formed as:

E=(g",m+#(PK")).

An advantage of hashed ElGamal is that the messages need not
be group elements and can be arbitrary bytes. In particular, the
+ can be interpreted as a bitwise operation or as addition over a
scalar field. Our proof 7.p. involves encryptions of scalar values
rather than group elements and thus applies hashed ElGamal. In
our case, we interpret the addition on the right hand side of the
ciphertext as addition over the scalar field of BN254. (It would suffice
to use addition over the scalar field of Baby Jubjub, considering
that our messages live in the scalar field of Baby Jubjub. However,
performing arithemetic over the larger scalar field of BN254 avoids
further emulated arithmetic.)

6.1.5 Hashing to elliptic curves and the function v. Step 3 of the
Issue protocol involves the selection of MAX, + 3 pseudorandom
elliptic curve group elements. We use group elements, rather than
raw bytes, so that these values can be encrypted using elliptic curve
ElGamal, in which the message space is group elements. Select-
ing pseudorandom elements in this way avoids hashed ElGamal
and emulated arithmetic. The elements must be chosen in such
a way that the next element can be derived from the previous
one but the reverse direction is infeasible to compute. Recall that
we use the function v to obtain the next group element from the
previous group element, as v(h) = g#(h) (see Section 2.1). This is
in effect a naive hash-to-curve protocol. Often, this construction
is insecure because the hash function range and the group order
are mismatched, causing a non-uniform output. However, use a
MiMC-based hash function with range size |g| to ensure uniformity.
We omit details related to domain separation and constant time
operations.

6.1.6 Parameters. Global parameters are given in Table 1. We use
for g a generator of the Baby Jubjub elliptic curve group. Users of

86

Chen, Ho, Ryan, Williamson

the system may select how many trustees to encrypt to and a de-
cryption threshold or may be required to make certain such choices.
Table 2 shows how the number of trustees and decryption threshold
affect relevant proving performance. Tables 3, 4, and 5 highlight
performance impact of the critical system parameters MAXq4 and
MAX,. As MAXq gets larger, the Issue protocol takes longer and
the proof 755y increases in complexity, while the protocol to es-
tablish a certonym and 7. are relatively unaffected. The purpose
of MAX, is to limit the number of certonyms that Alice can create
per generation (between BR queries), so that BR query execution
remains tractable for the relying party. The SNARK proving times
are relatively constant with respect to this parameters, although
protocol blind-regroup becomes more computationally intensive
for the relying party as MAX, grows.

6.2 Ledger and smart contracts

We sketch here a smart contract structure for integration of the pro-
tocol with a blockchain. We assume that the blockchain supports
smart contracts capable of verifying Groth16-based SNARKs that
use BN254 as the proving curve; this is the case for Ethereum. A
protocol set-up contract MASTER may help organise protocol pa-
rameters and participants. It is here that trustees, the relying party,
and the Issuer may publish public keys. The universe of trustees
may also be managed here: some (possibly decentralised) author-
ity must take judgements as to which trustees may participate in
the protocol. This contract may also be used to publish certonyms
or to link them to existing forms of identity. A second contract
BULLETIN serves as a ledger, containing decryption requests and
trustee responses. A third contract will maintain a Merkle tree T.

6.3 Zero-knowledge proof performance

We have conducted experiments to show the time to compute the
proofs in our paper (Tenc, Tissues Test and nfup), using various
values for the parameters involved. Tables showing the results are
given in Appendix A.

7 Conclusions

Any practical scheme for the management of digital identities must
strike an acceptable balance between providing privacy by default
to users and providing the ability for authorities to make queries
that are crucial to system regulation or the investigation of criminal
activity. Users should be able to see what queries have been made,
and hold the querying authorities accountable. We use the term
certonym for credentials that satisfy these properties that balance
user privacy and investigative queries.

Blind-regroup is a query which, given a credential, allows au-
thorities to discover all the credentials created by the user of that
credential. Blind-regroup is privacy-preserving, because (unlike a
tracing query) it does not reveal the ground identity of the user.
Also, it allows the user to continue creating credentials since cre-
dentials created after a blind-regroup query are not compromised
by the query. Blind-regroup is an essential part of our concept of
certonymity.

References

[1] [n.d.]. Certificate transparency. www.certificate-transparency.org.

www.certificate-transparency.org

Temporally-limited blind-regroup of anonymous credentials

[2] Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas, and Arya Tabaie.
2024. Consensys/gnark: v0.11.0. doi:10.5281/zenodo.5819104

[3] Jan Camenisch and Anna Lysyanskaya. 2004. Signature schemes and anonymous
credentials from bilinear maps. In CRYPTO. 56-72.

[4] Jan Camenisch, Ueli Maurer, and Markus Stadler. 1997. Digital payment systems
with passive anonymity-revoking trustees. Journal of Computer Security 5, 1
(1997), 69-89.

[5] David Chaum. 1983. Blind Signature System.. In Crypto, Vol. 83. Springer, 153.

[6] Vanesa Daza, Javier Herranz, Paz Morillo, and Carla Rafols. 2007. CCA2-secure
threshold broadcast encryption with shorter ciphertexts. In International Confer-
ence on Provable Security. Springer, 35-50.

[7] Cécile Delerablée and David Pointcheval. 2008. Dynamic threshold public-key
encryption. In Annual International Cryptology Conference. Springer, 317-334.

[8] Sanjam Garg, Dimitris Kolonelos, Guru-Vamsi Policharla, and Mingyuan Wang.
2024. Threshold encryption with silent setup. In Annual International Cryptology
Conference. Springer, 352-386.

[9] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure

distributed key generation for discrete-log based cryptosystems. Journal of

Cryptology 20 (2007), 51-83.

Hossein Ghodosi, Josef Pieprzyk, and Rei Safavi-Naini. 1996. Dynamic threshold

cryptosystems. In Proceedings of PRAGOCRYPT, Vol. 96. Citeseer, 370-379.

Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In

Advances in Cryptology-EUROCRYPT 2016: 35th Annual International Conference

on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May

8-12, 2016, Proceedings, Part II 35. Springer, 305-326.

Au Man Ho, Susilo Willy, and Mu Yi. 2006. Constant-size dynamic k-TAA. In

Security and Cryptography for Networks, SCN. 111-125.

Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-size

commitments to polynomials and their applications. In Advances in Cryptology-

ASIACRYPT 2010: 16th International Conference on the Theory and Application of

Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings

16. Springer, 177-194.

Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. 2004. Traceable signatures. In

International Conference on the Theory and Applications of Cryptographic Tech-

niques. Springer, 571-589.

Joon Sik Kim, Kwangsu Lee, Jong Hwan Park, and Hyoseung Kim. 2024. Dynamic

Threshold Key Encapsulation with a Transparent Setup. Cryptology ePrint Archive

(2024).

B. Laurie, A. Langley, and E. Kasper. 2013. Certificate Transparency. RFC 6962

(Experimental).

Benoit Libert. 2024. Simulation-Extractable KZG Polynomial Commitments

and Applications to HyperPlonk. In IACR International Conference on Public-Key

Cryptography. Springer, 68-98.

David Pointcheval and Olivier Sanders. 2016. Short randomizable signatures. In

CT-RSA. 111-126.

Mark D Ryan. 2017. Making decryption accountable. In Security Protocols XXV:

25th International Workshop, Cambridge, UK, March 20-22, 2017, Revised Selected

Papers 25. Springer, 93-98.

Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612-613.

W3C. 2018. Decentralized identifiers (DIDs) v0.11:data model and syntaxes for

decentralized identifiers. https://w3c-ccg.github.io/did-spec/.

[10

[11]

[12]

[13

[14

[15]

[16]

[17]

(18

[19]

[20]
[21]

A Zero-knowledge proof performance

All experiments on our zero-knowledge proofs were performed on
a MacBook Pro with an Apple M3 Pro chip, throttled to 4 CPUs and
a 1 GB soft memory limit. See Tables 2, 3, 4, and 5.

B Threshold decryption key setup

We assume that there are n trustees, each associated with an index
i € {1,...,n} and a (non-threshold) public key PK; along with the
corresponding secret key SK;. The vector of these trustee public
keys is denoted PK. In this description, we will assume that an
encryptor (Alice) will use all n trustees. In general, there may be
a larger universe of N > n trustees and Alice has the freedom to
select a subset of n from the universe.

We also work wth ElGamal encryption and assume that each
ciphertext C may be parsed as a pair (¢, ¢’) of the form (¢", m- PK").

87

WPES 25, October 13-17, 2025, Taipei, Taiwan

L. Num. of | Decryption . Provin,
Circuit Type trustees thre}s,flold Constraints time (s%
1 23,084 0.182
3 2 23,938 0.190
3 3 24,574 0.194
9 3 67,402 0.510
9 6 72,899 0.541
pr’seo'}”f’or 9 9 78,397 0.589
THRESHENC 30 10 255,781 1.65
30 20 305,719 2.33
30 30 354,408 2.35
90 30 1,007,805 6.02
90 60 1,352,005 10.2
90 90 1,696,205 12.7
Table 2: Performance of 7.j circuit
R . Proving
Circuit Type | MAX_q | Constraints .
time (s)
2 31,414 0.189
Tissue 63,178 0.343
proof for 32 190,234 1.11
set-up 128 698,458 3.97
512 2,731,354 15.9
Table 3: Performance of 755, circuit
Circuit Type MAX _c | T, depth | Constraints Proving
- time (s)
100 40 202,749 1.39
pr:z?%or 1,000,000 40 202,765 1.41
certonym creation 100 60 242,862 164
1,000,000 60 242,878 1.69

Table 4: Performance comparison of 7.5t with varying pa-
rameters. We fix n = 9 trustees with decryption threshold
t = 6. A T, depth of 60 roughly corresponds to a scenario in
which every human has created MAX, - MAX, certonyms for
MAXq =512 and MAX, = 1,000, 000.

Provi
Circuit Type MAX c | Constraints r oving
time (s)

Tfups for 100 3,124 0.0263
some BR queries | 1,000,000 3,128 0.0270

Table 5: Performance of 7y, the proof provided by the rely-
ing party when making a BR query of type fup.

B.1 Threshold key generation

This section explains how Alice creates a public key TPK and the
corresponding secret keys sk, ..., sk, such that any t < n of them
can decrypt information that has been encrypted with TPK. This
idea follows Shamir’s secret sharing scheme [20].

o Input: Number n of trustees, threshold ¢t < n, and trustee
public keys PK = (PKy, ..., PKp).
e Method:

https://doi.org/10.5281/zenodo.5819104

WPES 25, October 13-17, 2025, Taipei, Taiwan

o Public Inputs:
- E =(e1,-..en)
- TPK
- PK = (PK,, ..., PKy)
e Private Inputs:
- Qg .., -1
- ski,...,skn
— randomnesses associated with the encryptions within E

Constraints

o sk; equals p(i), where p is the degree ¢ — 1 polynomial given by
ag+ay - x+..+ap_q-xt71

e; is a valid encryption (using generator g) to public key PK; of

sk;, using the given randomness
o g% =TPK

Figure 6: Proof 7., of correct setup of threshold public key.
The proof ensures that the public key was formed to respect
the correct decryption threshold. In our implementation,
the sk; are elements of the Baby Jubjub scalar field rather
than group elements; as such, the e; are hashed ElGamal
ciphertexts. A new circuit must be compiled for each desired
value of ¢.

(1) Generate a random polynomial of degree ¢ — 1:

p(x)=ap+ar-x+..+ar—1 Cxtl

(2) Fori = 1,..., n,compute the evaluations: sk; = p(i) and cre-
ate encryption e; = Encpg; (sk;) of sk; for the ith trustee.
Let E=(e1...,en).

(3) Let TPK = g%.

(4) Constructs a zero-knowledge proof 7 that all this has been
done correctly, described in Figure 6.

e Output: (E,TPK,)

B.2 Definition of PartDecg, (C)

Trustee i parses ciphertext C as C = (¢,c¢’) = (¢",M - TPK"). To
execute PartDecgy, (C), the trustee computes m; = ki Note that
Trustee i is given e; and computes sk; = Decsg; (e;).

B.3 Definition of Interpolate((m;);er)

(1) The relying party computes d = [];¢f m?”’i where the La-
grange coefficients g ; for reconstructing the constant term
of a polynomial with ¢ parties are given by: dg; = [] jel]JT,

J#i
We note that if each trustee has correctly provided PartDec,
then

d= l—[cp(i)-/lo,i = cZier P(i)-doi — @0
iel

(2) The relying party finally computes M = ¢’ - d~1, which is
the plaintext of C.

88

Chen, Ho, Ryan, Williamson

C Simulation of the modified KZG scheme

We now discuss how the modified KZG scheme is simulatable. We
first recall the KZG scheme [13] and its modification in [17]. Given a
security parameter A, choose asymmetric bilinear groups (G, G, Gt)
of prime order p > 21.(’1), where [(A) is a polynomial of A. Let
@ €ZygeC,gi=g* €eGfori=(L..d),jeG gi=¢*ecG
and gp = g*”‘z € G. The public parameter is (g, {gi}le,g: g1, G2)-
Note that the secret parameter « is not used later. The target is to
prove a polynomial

deg(f)
fe=), fixh
i=0
where the degree of the polynomial deg(f) is up to d. The coeffi-
cients f; are known to the prover but not the verifier.
In the original KZG scheme, a commitment to this polynomial is

deg(f)
C= gf (x) — 1—[glﬁ
i=0
The commitment can be opened by outputing f(x). Given an input
z, a witness of such a commitment is
fla]-f(z)
wz =g a-z
Note that (x — z) must perfectly divide the polynomial f(x) — f(z).
This witness can be verified by checking the pairing equation

e(C.g) = e(wz,1/§°) - e(g,9)f @).

The original KZG paper makes use of a Type I pairing, i.e. G = G.
A randomized version of KZG in Material C of [17] works as
follows. In this modified KZG scheme, a commitment to a polyno-
mial f(x) = Z?jg(f) fix! is obtained by choosing y «g Z, and
computing
deg(f)+1

Let F(x) =y +x- f(x),C-g~" is a commitment to a polynomial
Fo(x) = F(x)—y = x- f(x) for which, given an input z, Fy(z) = z-y
and y = f(z).

Assume that (x — z) perfectly divides the polynomial f(x) —y
for z € Zp. Note that this condition is required in KZG as well. We
have

deg(f)-1
Fo(x) —y-x _ i
(x) = x-(x—2) B ; qx

and then the witness

deg(f)-1
r= [] g'=4"7cq
i=0

which is w; in the original KZG scheme. The following equation
holds:

e(C-9,%.9) =e(g.9)" - e(m. gz - 477).
Generate a NIZK proof of knowledge of (y, 7). Choose ry <g Zp,
Ry <R G and compute

R=e(9.9)" - e(Ru, g2 - 4).

Temporally-limited blind-regroup of anonymous credentials

WPES 25, October 13-17, 2025, Taipei, Taiwan

[linecolor=blue!40,linewidth=1pt]
e Public Inputs:
- Com
— Nhonceéjssuer

- Vsetup

e Private Inputs:
— nonceajice
- hmaxg+

Constraints

e Com is a valid commitment for nonceaj;ce

o hataxger = V(.. v(v(nonceaice) - v(noncerssuer)) ---) =
yMAXqt2 (v(nonceayice) - v(noncerssyer))

® Vserup = #(hpmaxy+2. 0)

Figure 7: Specification of proof 7jss . Our implementation
uses a hash commitment.

[linecolor=blue!40,linewidth=1pt]
o Public Inputs:
—_v
e Private Inputs:
W

- €

Constraints

e ¢ is a positive integer at most MAX,
o V' =#(W,¢)

Figure 8: Specification of proof 7,

Compute a challenge ¢ = H(|b|,C, y, z, R), where |b| is a label, and
sy =ry+c-yand Sy = Ry - 7°. Return the proof 7 = (¢, sy, Sz).
To verify (C, y, z, 7), compute

R=e(9.9)° - e(Sm g2 47) - e(C-9;%,9)™°).
Return 1if ¢ = H(|b|, C, y, z, R) and 0 otherwise.

Note that this modified KZG scheme is simulatable under the
random oracle model. Let’s see how it works. (c, sy) is a Schnorr
signature. Recall 7 = ¢9(®) . Let R, = ¢'7 and S, = ¢°~, where
sg =rr+q(a)-c so (c sy) is another Schnorr signature. It is well-
known that a Schnorr signature is simulatable under the random
oracle model. To do so, randomly choose ¢, s, and S;; and compute
R, then output 7 along with C, y, z and |b|. As the computation of
R is the same as the verification algorithm, so the output of the
simulation is indistinguishable from the original proof.

D Zero-knowledge proof specifications

We provide details of various zero-knowledge proofs. All global
parameters specified in Table 1 in Section 3.2 serve as public inputs
as needed and are omitted from the following three figures: Figure 6
(proof 7ep, of correct simulation of threshold public key), Figure 7
(proof 7issye), Figure 9 (proof 7est), and Figure 8 (proof rrfup).

89

[linecolor=blue!40,linewidth=1pt]

e Public Inputs:

- H/,VIAXq—ﬁ’ H/’VIAXq—ﬁ+1

— TR

-y

- W

— public inputs of 7epe
e Private Inputs:

- bitb

- hymaxy-p. hmaxy-peis hmaxg-pee. hvaxg-pes

- e €,€e’,€e”
- r]/\/IAXq—[i’ r]/\/[AXq—[iﬂ
— Leaf &),
- Leaf £,
— Leaf fest
— proof_of_presence(y,, Tr)
— proof_of_presence(fup, Tr)
— proof_of_presence(fest, Tr)
— private inputs of Zepe

Constraints

’

e e,€,€¢”,and e’

are positive integers at most MAX,

, "MAXg-p
° HM‘]qu[f = EnCTPK (hMAquﬁ)
, r}’\/IAXq—/}H
° HMAXq—/m =Encppk (hamaxg-p1)

o v(hpmaxy-p) = hmaxy,-p+
° V(hMAXq—ﬁH) = hMAXq—ﬁ+2
o V =#(hpmaxy—p+i:€)
o W =#(hpaxy-p+s Y)
e The constraints of 7.y hold
e bisabit
e b=1or
- by = (#(hMqu—/sw, €’),br)
— proof_of_presence(f,, Tr) is valid
e b=0or:
= v(hmaxy-pr2) = hmax,-pes
- ffup = (#(hMAXq7ﬁ+3’ 5"),fup)
— proof_of_presence(ffup, Tr) is valid
= lest = (#(hMAXq—ﬁﬂ) €'"), est)
— proof_of_presence(fest, Tr) is valid

Figure 9: Specification of proof 7.st. The first public inputs
are (non-hashed) ElGamal encryptions of Baby Jubjub group
elements. To avoid complexities associated with recursive
proofs, we duplicate the proof 7., naively inside 7cs;. The
first private input is a bit to indicate whether the certonym
is being established on the basis of a prior blind-regroup
query of type br or of type fup; the bit is 1 in the latter case.
Note that when b = 0, the user may not have leaves f,,
or fest but may supply dummy values for them and their
proof of presence without compromising the proof. Similarly
when b = 1, the leaf #,, and its proof of presence may be
dummy values. Capturing this conditionality within one
circuit, rather than using two seperate circuits, is important
to prevent information leakage about certonyms.

WPES 25, October 13-17, 2025, Taipei, Taiwan

E The ledger
E.1 Merkle trees

A Merkle tree is a tree in which every node is labelled with the
hash of the labels of its children nodes, and possibly some other
values. Suppose a node has n children labelled with hash values
01,...,0n, and has data d. Then the hash value label of the node
is the hash of vy, ..., v,, d. Merkle trees allow efficient proofs that
they contain certain data. To prove that a certain data item d is part
of a Merkle tree requires an amount of data proportional to the log
of the number of nodes of the tree. (This contrasts with hash lists,
where the amount is proportional to the number of nodes.)

Example: Figure 10 shows a Merkle tree containing data items
¢1,...,C¢ stored at the leaf nodes (in this tree, there are no data
items stored at non-leaf nodes). Figure 11 shows a larger Merkle tree
containing data items cy, . . ., ¢32 (again in this case stored only at
leaves). To demonstrate that c; is present in the tree, it is sufficient
to provide the additional data c12, hs, h14, h16, h20, i.e. one data item
per layer of the tree. The recipient of this data can then verify
the correctness of the root hash hy;. Proving that one Merkle tree
extends another can also be done in logarithmic space and time,
by providing at most one hash value per layer. For example, to
demonstrate that the tree of Figure 11 is an extension of the one in
Figure 10, it is sufficient to provide the data hy, h17, hgo. The hash
value at the root of the tree is called the root hash (or simply the
hash) of the tree.

We give examples of the API calls that we rely on in the paper.

e root() returns R = h(h(h(c1, c2), h(c3,cq)), h(cs, c6)) when
the ledger has the value shown in Figure 10, and returns
S = ha1 = h(h19, hoo) = ... when it has the value of Figure
11.

e add(x) creates a new leaf node and adds it to the right of
all the existing leaf nodes, and stores the data x there. The
hashes stored at non-leaf nodes are updated as needed. The
add function reorganises parts of the tree as needed. For
example, the sequence add(cy), ...add(c32) transforms the
ledger in Figure 10 to the one in Figure 11.

e proof_of presence(cy, R) returns data items stored in the
ledger that are sufficient to prove that c1; was stored in
the ledger when it had the root R. In this case, the list
¢12, hs, h1a, h1g, hog is returned.

o proof_of_extension(R, S), returns data items stored in the
ledger that are sufficient to prove that version of the ledger
with root S is an add-only extension of its previous version
which had root R. In this case, the list hy4, h17, hog is returned.

F Proof of correctness

F.1 Notation

We use fup-BR (resp. br-BR) to denote a BR query that is requested
using a tuple with its second entry set to fup (resp. br).
We also extend our previous notation:

e Vfrom;j(h) = {(#(W (h),e) | 1 < e < MAX,}

e Cfrom;(h) = {(G,H,V,W,y,n) € All | V € Vfrom;(h)}
We use the term the first generation to refer to the set of all certonyms
that a user can create after the Issue protocol has been run but prior
to any BR query.

90

Chen, Ho, Ryan, Williamson

h(h(h(c1, c2), h(cs, cq)), h(cs, c6))

N

h(h(c1,c2), h(cs, cq)) h(es, cs)

/N N

h(cy,c2) h(cs, cq)

ARV

Figure 10: A Merkle tree containing items cy, .. ., c.

F.2 Intermediate Lemmas

Recall that a user Alice creates a chain of values hy, ..., hMAXq+2
during the Issue protocol. We will refer to these values throughout
the lemmas in this section.

LEMMA 1. Any certonym that a user Alice creates must belong to
the set Cfromq(h) for some h € {hy, ..., hMAXq+1 1.

Proor. By comparing Step 4 of Figure 3 to Step 8 of Figure 2,
it is clear that the first certonym Alice can create must be an ele-
ment of Cfromo(hMAXqH), Any subsequently created certonym
C = (G,H,V,W,y,) must construct the value V as #(h’, €) for
some h’ that Alice knows and that satisfies v (k") = hamax+1 for
some integer i < MAX,. The only such possibilities for h’ are
hi, ... hp AX,- Alice cannot construct the V value using hy because
the construction would require that she know a pre-image of ho;
she cannot know one with non-negligible probability because hy is
randomly chosen. O

LEMMA 2. For any h, if Cfromg(h) # 0 and Cfromg(v(h)) = 0
then h = hMqu+1.

ProoF. By Lemma 1, we have that h € {hy, ..., hMAXq+1}. LetC
be an element of Cfromg (k). In order for C to have been established,
we have by Figure 3, Step 4 that the Merkle tree contains leaves:

o (#(v(h),€e),br), or
o (#(v2(h), €’), fup) and (#(v(h), €”’), est)

In the first case, that leaf was either inserted during the Issue pro-
tocol (Step 8) or during a BR query with respect to a certonym
in the set Cfromg(v(h)). The latter case is not possible by the
premise that Cfromg(v(h)) = 0. As such, the leaf was inserted
during the Issue protocol, and we have by Steps 5 and 8 of Figure 2
that v(h) = hpraxg+2, which implies that h = hyaxg+1- o

In the second case, the leaf (#(v(h), €’’), est) was either inserted
during the Issue protocol (Step 8) or during a certonym establish-
ment of a certonym in the set Cfromg(v(h)). The latter case is not
possible by the premise that Cfromg(v(h)) = 0. As such, the leaf
was inserted during the Issue protocol, and we have by Steps 5 and 8
of Figure 2 that v(h) = haraxq+2, which implies that b = hyraxg+1-

Temporally-limited blind-regroup of anonymous credentials

hig / hiy
N\
VANVANRVANRNAN
WAL LA LA

Figure 11: A Merkle tree containing items cy, ..

ha1

WPES 25, October 13-17, 2025, Taipei, Taiwan

hao
/ \
his has
his haa hae hao
NSNS

ho h1o has haa ha7 has h3o h31

I L A
C17 €18 €19 €20 €21 €22 (€23 C24 €25 C26 €27 C28 €29 €30 €31 €32

.,c32. To demonstrate that c;; is present in the tree, it is sufficient to provide the

additional data ci2, hs, h14, hi6, hoo. To demonstrate that this tree is an extension of the one in the previous figure, it is sufficient

to provide the data hy, hy7, hyg.

F.3 Proof of executability

We prove Claim 1 by induction. The base case is that no queries have
been requested. Alice, to establish a certonym C € Cfromg (A AXq+1)
in the initial generation, can use the leaf (#(hMAXq+2, 0), br), as
inserted into the tree during the Issue protocol, in order to com-
plete Step 5 of the Establishment protocol. Our inductive hypoth-
esis is that after i queries, Alice is able to (and does) produce a
certonym C’ € Cfromo(hMAXq_,-+1). When Alice produces this
certonym, (#(hMAXq—Hb €), est) is added as a leaf to the Merkle
tree (for some € < MAX,). We now want to consider whether after
the i + 1-st query, that Alice will be able to produce a certonym
C” e Cfromo(hMqu_i).

Case 1. The i + 1-st query is of type br. This type of query is
executed with respect to a certonym that the relying party has not
already linked to Alice via any prior BR query. As such, the input
certonym is a member of Cfromo(hMAXq_,-H). The query request
Merkle tree leaf will be of the form (V, br), where V is of the form
#(hMAXq_,-H,e') for some ¢/ < MAX,. This leaf’s existence is
sufficient for Alice to create a certonym in Cfromg (hpy AXq—i), as
desired.

Case 2. The i + 1-st query is of type fup. This type of query will
find a certonym from Alice of the latest already-linked generation
and the query request leaf will be of the form (V’,fup), where
V’ is of the form #(hmax, —is2s €’’) for some €’/ < MAX,. This
leaf, combined with the leaf (#(hyy AXg—i+1, €), est) that we already
established resides in the Merkle tree, are sufficient for Alice to
create a certonym in Cfromo(hMAXq_i), as desired.

F.4 Proof of completeness

We prove Theorem 1.

Proor. We argue three cases separately, which correspond to
the three return statements in Figure 4.

Case 1. First, we assume that the initial if statement is false. In
particular, there does not exist any h* € S such that V € Vfrom(h*).

91

In this case, a relying party will use the BR query mechanism to
decrypt the plaintext of H, which we denote h. The relying party
will then compute Cfrom(h), which is a set containing all of the
user’s certonyms, except (by Lemma 1) possibly those that belong
to Cfromg(h’) where vi(h’) = h for some i > 1. For the sake
of contradiction, we assume that such a certonym C’ has been
established. By Lemma 2 we may assume without loss of generality
that i = 1, namely that v(h’) = h and by Lemma 1 we may assume
that b’ # hmax,+1- In order for C’ to have been established, we
have by Figure 3, Step 4 that the Merkle tree contains leaves:

o (#(v(K),¢€),br), or
o (#(V2(R), €’), fup) and (#(v(h’'),€”), est)

We will find that in either scenario we reach a contradiction. In
consideration of the first bullet point, using our assumption that
W o# hMAXq+1, the existence of Merkle tree leaf (#(v(h’), €), br)
implies that a BR query was requested with respect to a certonym
belonging to Cfromg (v(h’)) = Cfromg(h). We then have that h € S,
by the fourth line of pseudocode in the final else block of Figure 4.
This is a contradiction of the initial assumption of Case 1.

Turning to the second bullet point, the existence of those leaves
implies that a fup-BR query was requested with respect to a certonym
C” = (G",H",V",W",y", ") belonging to Cfromg (v?(h’)). The
result of such a query is that the plaintext ¢g’’ of G’ will be de-
crypted by the relying party and added to S. By the construction of
certonyms, we have that ¢’ = v(h’) and we have already justified
the assumption that v(h’) = h. As such, we have that h € S, a
contradiction of the initial assumption of Case 1.

Case 2. Here we assume that the initial if statement is true
but the second if statement is false. As in Figure 4, we set b’ =
argmaxjez, {3k’ €S : v/ (k') = h}. By the condition in the second
if statement, we have that Cfromg(h’) = 0.

The query result will include any certonym of Alice that is an
element of Cfrom(h’). For the sake of contradiction, we assume
that a certonym C’ has been established but is not returned by the

query.

WPES 25, October 13-17, 2025, Taipei, Taiwan

By Lemma 2 we may assume that C’ € Cfromg(h*), where
v(h*) = I/.But then we have C’ € Cfromg(h*) but Cfromo(v(h*)) =
0, which by the same lemma implies that h* = hy, AX,+1- But this
is a contradiction because then the certonym C is an element of
Cfromo(hMAXq+2), contradicting Lemma 1.

Case 3. We assume that both if statements are true. Define h’
as in Figure 4 and let C’ be an element of Cfromg(h).

The query result will include any certonym of Alice that is an
element of Cfrom(h’’), where h’’ is such that v(h’”) = h’. For the
sake of contradiction, we assume that a certonym C* has been
established but is not returned by the query.

By Lemma 2 we may assume that C* € Cfromg(h*), where
v(h*) = h””. In order for C* to have been established, we have by
Figure 3, Step 4 that the Merkle tree contains leaves:

o (#(v(h"),€),br), or
o (#(v3(h*),¢), fup) and (#(v(h*),€"’), est)

We will find that in either scenario we reach a contradiction. In
consideration of the first bullet point, we have that the br-BR query
implies that v(h*) = h”/ € S, which contradicts the fact that A’ =
argmaxjez,,{3h €S: v/ (h') = h}. Turning to the second bullet
point, we have that the fup-BR query also implies that b’/ € §,
which yields the same contradiction as before. O

F.5 Proof of soundness
We prove Theorem 2.

o For a user u, let ho;, be the value created by the user in Step
2d of Figure 2.

o Let an,uz be a boolean random variable indicating that there
exists non-negative integers €,¢’ < MAX,, i < MAXq,
and j < 2MAXq such that #(v (hoy,), €) = #(v (hoy,), €).
(Here, the randomness underlying sz,uz is the randomness
associated with the selection of hg, and hgy,.)

We start by restating a folklore birthday problem upper bound:

Lemma 3. (Folklore, presented without proof.) If n random values
are chosen from a space of size R, then the probability that at least

two values are the same is at most ;’—R.

LEMMA 4. Suppose a certonym created by user uy # uy is returned
as part of a BR query execution done in relation to a certonym of user
uz. Then we have that V;;) , = 1.

ProoOF. Let h be the plaintext value decrypted with the help of
trustees during a BR query request done with respect to a certonym
of uy. The relying party will then compute Cfrom(h), which by defi-
nition involves computation of vk (h) fork=1,.., MAXg. Consider-
ing that h may be equal to v¥ (h,,) for any value ¢ € {0, ..., MAXg},
we have that the relying party will consider a certonym C with value
V as belonging to uz exactly when V is in the set {#(+/(h),€’) |
j < 2MAXg4, € < MAX.}.If a certonym of u; with value V” is in
this set, then by the definition of certonyms, it must be of the form
#(Vi(h(),ul), €) for some i < MAXy and € < MAX,. We then have
that #(v! (ho,), €) = #(1/ (hou,), €'), which means that V) O

1L,U2"

92

Chen, Ho, Ryan, Williamson

LEmMMA 5. If users ui, uy do not collude, then

(MAX, - MAX,)?
N _ q
Pr[V,) ,,=1<0 — |
Proor.
Pr[V,)] (1)
< Prlhou, = hou,] + Pr[qu,uzlho,u] # hou,] 2
1
< 1_3 + Pr[vlz,uz |h0,u1 * hO,UZ] (3)
1 (2-MAX. - (2MAX, +1))2
<L, (e (g+1) @
R 2R
(MAX, - MAX4)?
=0\ —% 6)

The first inequality follow from conditioning on whether hg ,, =
ho,u, and upper bounding the probabilities Pr[hq ., # hou,] and
Pr(V{ ., 1hou, = hou,] by 1. The second inequality follows from
the definition of the Issue protocol, in which a uniformly random el-
ement is jointly selected. The third inequality follows from applying
Lemma 3 to the scenario of modelling the hash function (with range
of cardinality R) as a random oracle, uniformly at random selecting
the elements of the sets {#(vi(ho,ul, €)) : i < MAXg, e < MAX,}
and {#(v/ (hou,. €')) : j < 2MAXg, €’ < MAX.} to test whether
they have a non-empty intersection, and the observation that the
total number of selected elements is at most 2-MAX.-(2MAX,). O

The proof of Theorem 2 is now an immediate corollary of Lem-
mas 4 and 5.

G Unforgeability proof

Here is the proof of the unforgeability property defined in Theo-
rem 4.

Proor. Intuitively, to successfully forge a signature on a message
m chosen by the adversary using a certonym C = (G, H, V,), there
are the following two cases:

Case 1: The adversary obtains a valid certonym C, which an
Issuer does not create. This indicates that A has successfully forged
a certonym, which includes Issuer’s signature o proved in 7 and
this is a signature from the relying party on a ciphertext with
the same plaintext as H. This will contradict the assumption that
Issuer’s signature scheme is EU-CMA secure.

Case 2: The adversary obtains a triple (C, s, m) and Verif (C, s, m)
outputs Accept, indicating that s is a valid signature on the message
m by using the certonym C. However, this signature is not created
through a signing query Og and the user u is honest. This means that
A has successfully forged a user’s signature s. This will contradict
the assumption that the underlying signature which makes use of

a certonym is EU-CMA secure.

While A has the target of winning the experiment Expirf;%e, S

has the target of either breaking the EU-CMA property of Issuer’s

Schnorr signature scheme or user u’s Schnorr signature scheme.
Unforg
cert, A

experiment and an Exp

(5 .
experiment, S

EU-CMA
u

For this purpose, during the run of the Exp

EU-CMA

simultaneously runs an Expy - -~

Temporally-limited blind-regroup of anonymous credentials

experiment with their simulators. In these two experiments, S plays
the role of an adversary.

In the Exp?gfel;/m experiment, S is given the target Schnorr

Unforge
cert, A
this key with A as the Issuer’s public key.

Given the above, we now prove that the certonym scheme en-
sures unforgeability because, in either of these two cases, the ad-
versary’s advantage in winning the game is negligible.

All hash functions in the protocol are through a random oracle
model, which is run by S. We demonstrate how S handles the
oracle queries, listed in section 5.1.

signature public key pkj, and in the Exp experiment, S shares

e Oc,y (create user): To create an honest user u, A sends
Ocry(u) to 8. S checks whether u € U. If yes, S rejects
this query; otherwise, S runs the Issue protocol with A,
in which S plays as an Issuer and A plays as u. To create
a new user u, S initiates the ExpEU'CMA experiment with

its simulator to obtain a given public key, y = g* (where

(y,x) are a public and secret key pair for u: y = pk, and

x = sky), and S provides y to A. Note that neither S nor

A knows the secret key x. To get the Issuer’s signature, S

sends a signing query to the simulator of the Expf‘g;CeI;AA
experiment to obtains oMAX,- At the end of the protocol, A
obtains ((hi,Hi)ogigMAXqﬂ, OMAX,» Vsetup)- S records the
transcript of this oracle run in U and marks that u is honest.

e Ocoy (corrupt user): To corrupt a user u, A sends Ocoy (4)
to S. S checks whether u € U and is marked as honest. If
not, S rejects this query; otherwise, S sends a corrupting
query on u to the simulator of the ExpEU'CMA experiment,
from which S receives the corresponding secret key x. S
discloses u’s secret key x to A and marks that u is corrupted.

e Occ (create certonym): To obtain a certonym for an honest
user u, A sends Occ(u) to S. S checks whether u € U and
is marked as honest. If not, S rejects this query; otherwise,
S runs the Establish protocol with A. In the protocol, S
handles (1) u’s Schnorr signature creation by sending a sign-
ing query to the simulator of the ExpEU"CMA experiment, (2)

the Issuer’s Schnorr signature creation by sending a signing

query to the simulator of the Expi[i;g;/m experiment, and
(3) random oracles. A acts as a user u, dealing with the hash
chain and NIZKP 7, but A does not create the user’s Schnorr
signature. At the end of the protocol, S creates a certonym
C = (G,H,V,), stores it in U and returns it to A.

o Os (sign message): To request signing a message m using the
certonym C and its corresponding key, A sends Os(C, m) to
S. S checks whether C € U and its corresponding user u is
marked as honest. If not, S rejects this query; otherwise, S
sends a signing query to the simulator of the ExpEU'CMA ex-

periment to obtain a Schnorr signature s on m under the key

corresponding to C. S records this result to U and returns
the signature s to A. In this oracle, we do not consider that
the adversary randomises its certonym C, as randomisation

does not affect the analysis result of unforgeability. If A

submits Os(C’, m) to S, in which C’ has been randomised,

so C’ ¢ U, Issuer verifies C’ and the verification passes,
meaning that C’ is a valid certonym. Issuer then sends the

93

WPES 25, October 13-17, 2025, Taipei, Taiwan

trustees (which is the adversary) a decryption request; as a
return, S will get the original C.

After an arbitrary number of the above queries, A decides to
complete the first phase (the querying phase) and outputs some

data D. As noted, there are two types of D which can indicate that

A wins the experiment Expi‘;?;%e.

Case 1: D involves a valid certonym C = (G,H,V,x) but C
is not in U (and it is not randomised from any C € U either),
which means that C is not from an output of any Occ queries.
When this happens, S can extract the underlying Issuer’s signature,
denoted by o from 7. This is a signature on a ciphertext, denoted

by H, with the same plaintext as H. This signature is forged by

A. S can then submit a valid forge (og;, H) to the simulator of

the Exp};ﬁ;gym experiment to win this experiment. However, this

result will contradict the assumption that Issuer’s signature scheme
is EU-CMA secure, so the probability of this case happening must
be negligible.

Case 2: D involves a triple (C, s, m), in which s is a valid Schnorr
signature on m and can be verified under the public key that is
associated with C. It is under the following conditions: C € U,
(s,m) ¢ U and the corresponding user u € U and marked as honest.
The signature (s, m) is not created through a signing query Os and
the user u is honest. This means that A has successfully forged a
user’s Schnorr signature s on a new message m. S can then submit
a valid forge (s, m) to the simulator of the ExpEU'CMA experiment
to win this experiment. This will contradict the assumption that the
underlying signature which makes use of a certonym is EU-CMA
secure. Therefore, the probability of this case happening must be
negligible. Note that, as we discussed before, randomisation on a
certonym will not affect this part of analysis, since given a ran-
domised certonym C’, S can retrieve the original C by asking the
trustees (in this case, the adversary) to do the decryption. Therefore,
a triple (C’, s, m) is equivalent to the triple (C, s, m).

As either of these two cases only happens with a negligible
probability, the theorem follows. O

	Abstract
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Parties to the protocol
	2.3 Dynamic threshold decryption
	2.4 Transparent decryption
	2.5 The ledger

	3 Certonyms and their protocols
	3.1 Certonyms and blind-regroup queries
	3.2 The protocols
	3.3 The construction in a nutshell
	3.4 Efficiency of blind-regroup
	3.5 Using certonyms
	3.6 Extensions and variations

	4 Correctness proofs
	4.1 Proof of executability
	4.2 Proof of completeness
	4.3 Proof of soundness

	5 Security proofs
	5.1 Oracles
	5.2 Anonymity and Unlinkability
	5.3 Unforgeability

	6 Implementation
	6.1 Zero-knowledge proofs and encryption
	6.2 Ledger and smart contracts
	6.3 Zero-knowledge proof performance

	7 Conclusions
	References
	A Zero-knowledge proof performance
	B Threshold decryption key setup
	B.1 Threshold key generation
	B.2 Definition of PartDecski(C)
	B.3 Definition of Interpolate((mi)iI)

	C Simulation of the modified KZG scheme
	D Zero-knowledge proof specifications
	E The ledger
	E.1 Merkle trees

	F Proof of correctness
	F.1 Notation
	F.2 Intermediate Lemmas
	F.3 Proof of executability
	F.4 Proof of completeness
	F.5 Proof of soundness

	G Unforgeability proof

