
Remote Registration of Multiple Authenticators
Yongqi Wang

yxw1112@alumni.bham.ac.uk
University of Birmingham

Birmingham, UK

Thalia Laing
thalia@hp.com
HP Security Lab

Bristol, UK

José Moreira
jose.moreira.sanchez@valory.xyz

Valory AG
Zug, Switzerland

Mark D. Ryan
m.d.ryan@bham.ac.uk

University of Birmingham
Birmingham, UK

ABSTRACT
User authentication with discrete authenticators, such as YubiKeys,
is becoming increasingly popular. The authenticators can be exter-
nal or on-device. They work using challenge-response protocols
and public key cryptography. Multiple accounts can be associated
with each authenticator. Compared with other forms of authentica-
tion, this approach has advantages in security and usability. There
are, however, significant limitations which persist. In particular, if
users possess only one authenticator, they lack resilience to loss
and malfunction. On the other hand, if they possess multiple au-
thenticators, they lack practical solutions to keep authenticators
synchronised. In this paper, we present three solutions which com-
bine the usability of a single authenticator with the resilience of
multiple authenticators. We also present two key derivation func-
tions which are used in our solutions. All three solutions maintain
core security and privacy properties found in existing systems.
Meanwhile, each solution provides additional value in different use
cases. The security of our solutions is analysed using ProVerif.

CCS CONCEPTS
• Security and privacy→ Key management; Authentication.

KEYWORDS
Entity authentication; discrete authenticators; usability; resilience.

ACM Reference Format:
Yongqi Wang, Thalia Laing, José Moreira, and Mark D. Ryan. 2024. Remote
Registration of Multiple Authenticators. In Proceedings of the Fourteenth
ACM Conference on Data and Application Security and Privacy (CODASPY
’24), June 19–21, 2024, Porto, Portugal. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3626232.3653273

1 INTRODUCTION
User authentication is required to secure online services. An in-
creasingly popular approach is to use discrete authenticators, with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CODASPY ’24, June 19–21, 2024, Porto, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0421-5/24/06.
https://doi.org/10.1145/3626232.3653273

challenge-response protocols and public-key cryptography, to es-
tablish a channel between a relying party (RP) and an authenticator.
The Fast IDentity Online (FIDO) standards are a prominent example
of this approach [6, 15].

In this context, RPs are online services which register and au-
thenticate users. Authenticators are components which generate
credentials, store credentials, and provide authentication outputs.
Authenticators can be embedded in general purpose devices like
laptops or smartphones; they can also take the form of external
security keys.

Compared to other forms of authentication, such as passwords,
discrete authenticators and challenge-response protocols provide
advantages in security and usability [13]. There are, however, sig-
nificant limitations which impede the adoption of these methods
and the move away from passwords [22].

In particular, users currently have limited options for managing
their authenticators. The basic options are summarised in Table 1.
Here, usability refers to the work required to register and authen-
ticate. This includes the work required to carry authentication
devices or access their physical location. Resilience refers to the
ability to maintain functionality when something goes wrong; for
example, when an authenticator is lost or broken.

To use the form of authentication we are discussing, users must
possess at least one authenticator. This authenticator should be
readily available to allow users to access their accounts, and cre-
ate new accounts, at different times and in different locations. In
practice, this authenticator is often an object which the user carries
on their person. However, with only one authenticator, resilience
is limited. If the authenticator is lost or broken, the user will ei-
ther lose access to their accounts or they will need to carry out
burdensome and potentially insecure recovery processes for each
account [5]. Therefore, users are advised to possess more than one
authenticator [20].

If users possess more than one authenticator, they must decide
how to manage these authenticators. Users can either carry addi-
tional authenticators on their person or they can store them in a safe
location. Currently, both options have significant disadvantages.

If users carry additional authenticators on their person, these
authenticators can be registered as soon as a new account is created.
However, usability is limited in other ways. Fundamentally, it is
inconvenient to carry more than one authenticator for the sake of
redundancy. Users are not expected to do this for other necessary
items such as mobile phones and house keys. Moreover, by carrying

https://doi.org/10.1145/3626232.3653273
https://doi.org/10.1145/3626232.3653273

CODASPY ’24, June 19–21, 2024, Porto, Portugal Yongqi Wang, Thalia Laing, José Moreira, and Mark D. Ryan

Table 1: The trade-off between usability and resilience

Option Usability Resilience

1. Possess only one authenticator Good Limited

2. Possess two or more authenticators and carry addi-
tional authenticators

Limited Limited

3. Possess two or more authenticators and store back-
ups in a safe location

Limited Good

additional authenticators, resilience is not necessarily improved;
two authenticators, such as a security key and a mobile phone,
carried in the same coat or bag, can easily be lost at once.

If users store additional authenticators in a safe location, a subset
of authenticators is likely to be unavailable when new accounts are
established. Periodically, users will need to register these authenti-
cators with recently established accounts. Currently, this requires
users to access the physical location of each authenticator. Realisti-
cally, many users will forget or neglect to perform these additional
registrations. There is also an inevitable delay, between the regis-
tration of the original authenticator and subsequent authenticators,
during which the original authenticator can be lost or broken.

The problem described here stems from the fact that, with cur-
rent solutions, each authenticator needs to be physically present
at the time of registration. This helps to ensure that registration is
secure; however, it is not a necessary condition of security. In this
paper, we present solutions which allow several authenticators to
be registered when only one authenticator is physically present. In
other words, users only need to have one of their authenticators
with them to register multiple authenticators. Additional authen-
ticators can be kept offline and in safe locations which are not
accessed regularly.

We recognise that authentication occurs in myriad use cases.
Moreover, this list of use cases is likely to increase with the prolifer-
ation of services and devices. Therefore, we have chosen to present
three solutions rather than a single solution. Each solution solves
the fundamental problem described above and certain solutions are
more suitable for certain use cases. This is discussed in Sec. 4.

We also present two key derivation functions which are used in
our solutions. The first allows each authenticator to derive a key
pair which is known by all authenticators and unique for each
RP. The second allows each authenticator to derive a key pair
which is unique for itself and for each RP, whilst also enabling each
authenticator to derive the public keys of the other authenticators.
Further details are provided in Sec. 5.

Contributions. The aim of our work is to improve usability
and resilience when using discrete authenticators. We present three
solutions which allow several authenticators to be registered, when
only one is physically present, whilst maintaining core security and
privacy properties of existing solutions. These authenticators can
be used individually or as part of a multi-factor system.

We believe that addressing this problem has real-world utility
as physical authenticators greatly improve the security of user au-
thentication and the difficulty of registering back-up authenticators
is a hurdle to adoption.

We designed our solutions to be simple and intuitive from the
user’s perspective. This required some careful consideration of
options and requirements. For example, we wanted the authenti-
cators to be interchangeable, rather than having “primary” and
“secondary” authenticators which would cause confusion. We also
avoided additional entities, such as dealers for group keys or trusted
parties for recovery, which would be difficult to incorporate into
existing frameworks such as FIDO2.

Organisation. In Sec. 2, we give a brief introduction to the
signature schemes used in our solutions. In Sec. 3, we discuss our
design goals. Our solutions are defined in Sec. 4. Sec. 5 sets out our
key derivation schemes. We analyse the security of our solutions,
using ProVerif, in Sec. 6. In Sec. 7, we include some discussion points
for context. We conclude in Sec. 8.

2 PRELIMINARIES
The core topic of this paper is the problem of registering multiple
authenticators securely and conveniently using challenge-response
protocols and public-key cryptography. In this section, we focus
on the preliminaries which are directly relevant to our work. Our
paper touches on other topics, which facilitate our solutions and
analysis, such as key derivation functions and ProVerif proofs. We
are conscious of well developed literature in these areas. We have
refrained from a lengthy discussion of this literature, in this section,
but we have included references to pertinent work at appropriate
points in the text.

2.1 Registration and Authentication
User authentication with discrete authenticators and challenge-
response protocols involves a registration stage and an authenti-
cation stage. In both stages, the user needs physical access to an
authenticator.

During registration, the user requests that an authenticator be
linked with a new or existing account. The RP sends a challenge to
the authenticator. The authenticator generates a public-private key
pair and signs the challenge with the private key. The signature
and the public key are sent to the RP for verification. If valid, the
RP stores the public key and links it with the user’s account.

During authentication, the user requests access to an account.
The RP sends a fresh challenge to the authenticator. The authenti-
cator signs the challenge with the same private key as above. The
signature is sent to the RP. The RP retrieves the public key associ-
ated with the account to verify the signature. If valid, the RP grants
access to the account.

General purpose devices, such as laptops and smartphones, often
have authenticators built into them. This may consist of a number
of components working together including, for example, a bio-
metric sensor and a hardware anchor. Meanwhile, mobile devices,
like smartphones or wearables, and discrete security keys, like the
YubiKey, can be used as roaming authenticators when accessing
accounts on another device.

2.2 FIDO2 Specifications
We have focused on FIDO2 as the most developed example of au-
thentication with discrete authenticators. To make our solutions
practical for real-world applications, we have built on the existing

Remote Registration of Multiple Authenticators CODASPY ’24, June 19–21, 2024, Porto, Portugal

framework of FIDO2, rather than starting something entirely new.
FIDO2 does not offer a solution to the problem we have identified,
nor have we found a solution in the wider literature.

The FIDO Alliance describes itself as “an open industry asso-
ciation with a focused mission: authentication standards to help
reduce the world’s over-reliance on passwords” [6]. The alliance
consists of a group of major technology companies and adjacent
organisations.

The latest set of specifications in this area is called FIDO2. Its
purpose is “to leverage common devices to easily authenticate to
online services in bothmobile and desktop environments” [6]. There
are two separate specifications which make up FIDO2. The first is
the Web Authentication (WebAuthn) specification and the second
is the Client-to-Authenticator Protocol (CTAP) specification.

The primary elements involved in FIDO2 are the authenticators,
clients, client devices, and relying parties [15]. Authenticators come
in different forms with overlapping properties. Their role is to
generate public key credentials, authenticate the user, and provide
authentication assertions to the relying party [15].

Next, the clients are web browsers which act as an intermediary
between the authenticator and the relying party. The client device,
meanwhile, is the hardware on which the client is running and the
operating system running on that hardware [6]. Finally, relying
parties are the providers of web applications which use the Web
Authentication API to register and authenticate users [15].

The interaction between authenticator and client uses CTAP [6].
This incorporates existing standards for USB, Lightning, NFC, and
Bluetooth. The interaction between client and relying party uses
WebAuthn [15]. This is a passwordless challenge-response protocol
using public-key cryptography.

2.3 Schnorr Signatures
In our first two solutions, presented in Sec. 4, we use Schnorr
signatures [24], defined below. For some security parameter 𝜆, users
agree on a cyclic groupG of order𝑞, where ∥𝑞∥ = 𝜆, and a generator
𝑔. 𝐻 is a cryptographically secure hash function such that 𝐻 :
{0, 1}∗ → Z𝑞 . The set P = (G, 𝑞, 𝑔) denotes the public parameters
of the scheme. In the following description, we define the function
symbol Pk(𝑥) = 𝑔𝑥 (mod 𝑞). We also include modular reduction
notation, which we will omit in subsequent sections for simplicity.
KeyGen(P) = (𝑥,𝑦) is the key generation algorithm which takes

as input the public parameters and produces a private key 𝑥
and a public key 𝑦:

𝑥 := a uniformly random integer, 1 ≤ 𝑥 ≤ 𝑞 − 1, (1)

𝑦 := Pk(𝑥) def
= 𝑔𝑥 (mod 𝑞). (2)

Sign(𝑥,𝑚) = 𝜎 is the signing algorithm which takes as input a
private key 𝑥 and a message𝑚 and produces the signature
𝜎 as follows:

𝑟 := a random integer, 1 ≤ 𝑟 ≤ 𝑞 − 1,
𝑅 := 𝑔𝑟 (mod 𝑞),
𝑐 := 𝐻 (𝑦 ∥ 𝑅 ∥ 𝑚),
𝑠 := 𝑟 − 𝑐𝑥 (mod 𝑞),
𝜎 := (𝑐, 𝑠).

Verify(𝑦,𝑚, 𝜎) = 𝑣 is the signature verification algorithm which
takes as input a public key 𝑦, a message𝑚, and a signature
𝜎 = (𝑐, 𝑠), and produces the verdict 𝑣 as follows:

𝑅 := 𝑔𝑠 𝑦𝑐 (mod 𝑞),
𝑐 := 𝐻 (𝑦 ∥ 𝑅 ∥ 𝑚),
If 𝑐 = 𝑐, then 𝑣 := Accept,
else 𝑣 := Reject.

2.4 Ring Signatures
Our third solution uses ring signatures which were formalised in
2001 by Rivest et al. [23]. They are a means of signing information
such that others can verify the authenticity of the information
without revealing the identity of the signer. The signer uses two or
more public keys, and one corresponding private key, to create a
ring signature over some information. The signer does not require
help or approval from the owners of the other public keys. Given
a list of the public keys, and the ring signature, the RP can verify
that one of the corresponding private keys was used to create
the signature. However, they cannot determine which public key
corresponds to this private key.

The ring signature presented by Rivest et al. is based on RSA sig-
natures. In 2002, Abe et al. presented a more efficient 1-out-of-𝑛 ring
signature based on Schnorr signatures [4]. To our knowledge, no
subsequent scheme offers appreciable improvements in efficiency.
Moreover, Schnorr signatures are closely related to the widely used
EdDSA. Thus, we have used Abe’s ring signature in our solution
and developed a compatible key derivation process, shown in Sec. 5.

Abe et al.’s ring signature [4] is as follows. Key generation results
in a collection of private keys, 𝑥1, . . . , 𝑥𝑛 , and their corresponding
public keys, 𝑦1, . . . , 𝑦𝑛 . Signing is executed by any participant 𝑖 by
taking their private key 𝑥𝑖 , and all public keys in the ring,𝑦1, . . . , 𝑦𝑛 ,
as input. For convenience, we denote the array of public keys as
𝐿 = (𝑦1, . . . , 𝑦𝑛). During verification, the equivalence holds if the
signature was created using an 𝑥𝑖 among 𝑥1, . . . , 𝑥𝑛 . The verification
process is the same, regardless of which 𝑥𝑖 was used.
KeyGen(P) = (𝑥𝑖 , 𝑦𝑖) takes as input public parameters P and out-

puts a private key 𝑥𝑖 , and public key 𝑦𝑖 , as defined by (1)–(2).
This algorithm is executed 𝑛 times.

RingSign(𝑥𝑖 , 𝐿,𝑚) = 𝜎 is the ring signing algorithm which takes as
input a private key 𝑥𝑖 , a list of public keys 𝐿 = (𝑦1, . . . , 𝑦𝑛),
and a message𝑚, and produces the ring signature 𝜎 as fol-
lows:

𝑐1, . . . , 𝑐𝑖−1,

𝑐𝑖+1, . . . , 𝑐𝑛 := random integers, 1 ≤ 𝑐 𝑗 ≤ 𝑞 − 1,
𝑟 := a random integer, 1 ≤ 𝑟 ≤ 𝑞 − 1,

𝑅 := 𝑔𝑟𝑦
𝑐1
1 · · ·𝑦𝑐𝑖−1

𝑖−1 · 𝑦𝑐𝑖+1
𝑖+1 · · ·𝑦𝑐𝑛𝑛 ,

𝑐 := 𝐻 (𝐿 ∥ 𝑅 ∥ 𝑚),
𝑐𝑖 := 𝑐 − 𝑐1 − · · · − 𝑐𝑖−1 − 𝑐𝑖+1 − · · · − 𝑐𝑛,

𝑠 := 𝑟 − 𝑐𝑖𝑥𝑖 ,

𝜎 := (𝑐1, . . . , 𝑐𝑛, 𝑠) .

RingVerify(𝐿,𝑚, 𝜎) = 𝑣 is the ring signature verification algorithm
which takes as input a list of public keys 𝐿 = (𝑦1, . . . , 𝑦𝑛),

CODASPY ’24, June 19–21, 2024, Porto, Portugal Yongqi Wang, Thalia Laing, José Moreira, and Mark D. Ryan

a message 𝑚, and a ring signature 𝜎 = (𝑐1, . . . , 𝑐𝑛, 𝑠), and
produces the verdict 𝑣 as follows:

𝑐 := 𝐻 (𝐿 ∥ 𝑔𝑠 𝑦𝑐11 · · ·𝑦𝑐𝑛𝑛 ∥ 𝑚),
If 𝑐 = 𝑐1 + · · · + 𝑐𝑛, then 𝑣 := Accept,
else 𝑣 := Reject.

3 DESIGN GOALS
The solutions we present in Sec. 4 satisfy the following design goals.
To overcome the problem described in Sec. 1, without requiring a
significant increase in resources, we have the following goals.

G1 Convenient registration of backup authenticators.Mul-
tiple authenticators can be registered with only one regis-
tration session and one authenticator physically present at
the time of registration. All other authenticators can be kept
offline and in remote locations.

G2 Convenient storage of back up authenticators. Apart
from an introduction phase (discussed in Sec. 4) in which the
authenticators establish a shared secret between themselves,
the authenticators do not need to communicate with each
other; thus, back up authenticators can be stored in safe
locations which are not accessed regularly.

G3 No significant increase in authenticator requirements.
Compared to existing implementations, our solutions do not
require a significant increase in resources. All cryptographic
operations performed by the authenticators are efficient and
widely implemented. In addition, keys associated with partic-
ular RPs can be derived during registration and authentica-
tion. This minimises the information that each authenticator
needs to store.

G4 No significant increase in RP requirements. Compared
to existing implementations of RPs, our solutions do not
require a significant increase in resources. All cryptographic
operations performed by the RPs are efficient and widely
implemented.

G5 No additional entities. Similar to the FIDO2 Standard [6,
15], no additional entities are required as intermediaries or
trusted third parties. In other words, our goal is to avoid
introducing extra entities to those required in FIDO2, whilst
solving the problem which we have identified.

In addition, we include a number of properties from FIDO2which
are important to maintain [7]. (Note, FIDO2 has other properties
which are beyond the scope of this paper.) For our purposes, the
key properties are as follows.

G6 Secure hardware-based authentication. Only those with
physical access to a registered authenticator can authenti-
cate. Another factor, such as a password or a biometric, may
be added for local authentication (of the user to the authen-
ticator) or as a second factor for the RP.

G7 Secure registration of authenticators.Authenticators can
be registered when an account is created. They can also be
registered during a session in which the user has already au-
thenticated with a registered authenticator. Authenticators
cannot be registered in any other instance.

G8 Interchangeable authenticators. For convenience and re-
silience, the user can designate a set of authenticators such

that each authenticator in the set has the same functionality
and can be used interchangeably. The loss or destruction of
a subset of authenticators does not prevent the remaining
authenticators from functioning.

G9 Privacy across RPs. A user’s interactions with an RP can-
not be linked to their interactions with any other RP.

The property of privacy across RPs (unlinkability between differ-
ent RPs) is motivated by existing implementations such as FIDO2
(see goal SG-4 in [7]).

Two of our solutions, described in the following section, also
provide a complementary property which is privacy across authen-
ticators. This is useful when the user does not want to disclose to the
RP which devices they are using. In other words, valid signatures
from different authenticators, authenticating to the same account,
cannot be distinguished by the RP. Examples of information hungry
RPs are abundant and the pattern of authenticator use can be a
valuable data point for advertisers and other entities. For example,
the RP may be able to infer a lost device, or the location of a user,
based on authenticator use.

4 SOLUTIONS
In this section, we present three solutions to the problem introduced
in Sec. 1.We call theseDuplicate,Proxy, andRingAuthenticators.
All three solutions satisfy the design goals, presented in Sec. 3, and
each relies on a key derivation algorithm, presented in Sec. 5. Differ-
ences between the solutions, which are advantageous in different
scenarios, are outlined in Table 2.

Duplicate Authenticators. Our first solution, Duplicate Authenti-
cators, requires the least storage. In Proxy and Ring, each authenti-
cator must store a public key for each other authenticator. Thus, the
number of public keys stored, and the amount of memory required,
increases linearly with the number of authenticators. Duplicate
Authenticators break this relationship by having a common key for
all authenticators; therefore, each authenticator is only required to
store one public key. This does, however, come at a cost to security:
if one authenticator is compromised in the duplicate solution, all
authenticators are compromised. This is not true for the Proxy and
Ring solutions.

Minimisingmemory is particularly valuable when authenticators
are embedded in everyday objects. In addition to being secure
and usable, these implementations need to be small, simple, and
inexpensive. These qualities will also increase the accessibility of
physical authenticators for wider user groups.

Furthermore, Duplicate Authenticators offer a high level of pri-
vacy since valid signatures from different authenticators, authenti-
cating to the same account, cannot be distinguished by the RP.

Ring Authenticators. Similar to Duplicate Authenticators, Ring
Authenticators offer a high level of privacy where valid signatures
from different authenticators cannot be distinguished by the RP.
In addition, Ring Authenticators allow for unique key pairs on
each authenticator. This offers security benefits over the Duplicate
solution; each authenticator can generate its own key pair and,
if one authenticator is compromised, the others maintain their
security. This solution is valuable in scenarios where security and
privacy are paramount, but memory is less restricted.

Remote Registration of Multiple Authenticators CODASPY ’24, June 19–21, 2024, Porto, Portugal

Table 2: Differences between the three solutions

Property Duplicate Proxy Ring

The authenticators can be registered and revoked
independently (see Sec. 7.2).

× ✓ ×

The key pairs used for authentication are unique
to each authenticator (and to each RP).

× ✓ ✓

If the shared secret 𝑘 is leaked, the security of the
private keys would be unaffected.

× ✓ ✓

Given two valid signatures from two authenticators,
an RP cannot distinguish between them (unless
other information is included).

✓ × ✓

The authenticators do not need to store the public
keys of other authenticators.

✓ × ×

Finally, Proxy Authenticators are particularly beneficial when
the set of authenticators often changes. Each authenticator can be
registered and revoked easily and independently. This is because the
public keys are independent, which is not the case with Duplicate or
Ring Authenticators. In particular, there is no need to contact each
RP that the incoming or outgoing authenticator is registered with.
In a world where the average user has more than 100 accounts [25],
this can significantly reduce the workload required by the user.

Also, similar to Ring Authenticators, every authenticator has its
own unique key. Thus, Proxy Authenticators offer a convenient, se-
cure solution when there is no need to maximise privacy (as in Ring
and Duplicate) or minimise storage (as in Duplicate). We believe
this is applicable to many everyday authentication scenarios.

Each solution we present consists of three stages: introduction,
registration, and authentication. The introduction stage is the only
stage which requires more than one authenticator to be present. It is
carried out during an initial setup where two ormore authenticators
form a set by establishing a shared high entrophy secret 𝑘 . It is
repeated only when a new authenticator is added to the set. The
registration stage requires only one authenticator to be present for
multiple authenticators to be registered. It is carried out each time
the user creates a new account with an RP. It is repeated when the
user wants to add to the set of authenticators registered with an RP.
The authentication stage requires one authenticator to be present.
It is carried out each time the user is required to authenticate before
accessing one of their accounts.

The sequences below are presented for the case of two authen-
ticators, 𝐴1 and 𝐴2. In each case, 𝐴1 registers both authenticators,
without 𝐴2 being present during registration, and 𝐴2 authenticates
later on. It is straightforward to generalise the sequences for 𝑛
interchangeable authenticators.

Note that the three solutions require the commonplace security
practice of tagging the registration and authentication protocols [3,
10]. In this case, we use the constant values “REG” and “AUTH”. If
this security measure is not implemented, the adversary could mix-
and-match messages from both protocols, breaking the expected
security properties (see Sec. 6.2). We recall that the security of a
tagged protocol does not imply the security of its untagged version.

Solution 1: Duplicate Authenticators. In this solution, 𝐴1 and
𝐴2 each derive the same key pair which is unique to the relying

party 𝑅𝑃 𝑗 . That is, (𝑥1𝑗 , 𝑦1𝑗) = (𝑥2𝑗 , 𝑦2𝑗). In other words,𝐴1 and𝐴2
are duplicates.𝐴1 registers the public keywith the RP. Subsequently,
𝐴2 can authenticate using the private key. The protocols for this
solution are depicted in Fig. 1, whereDer(𝑘, 𝑅𝑃 𝑗) is used to generate
the key pairs; this is defined in Sec. 5. Sign and Verify are the
signature and verification algorithms defined in Sec. 2.3.

Solution 2: Proxy Authenticators. In this solution, 𝐴1 and 𝐴2
have different primary key pairs, (𝑥1, 𝑦1) and (𝑥2, 𝑦2), respectively.
These key pairs are used to derive a unique key pair per authenti-
cator and RP. First, 𝐴1 uses DerMulti(𝑥1, (𝑦1, 𝑦2), 𝑘, 𝑅𝑃 𝑗), defined
in Sec. 5, to derive its own private key 𝑥1𝑗 and the list of public
keys 𝐿𝑗 = (𝑦1𝑗 , 𝑦2𝑗) linked to 𝑅𝑃 𝑗 . Then, it registers 𝐿𝑗 with the
RP. In other words, 𝐴1 nominates 𝐴2 as a proxy. Subsequently, 𝐴2
derives its own private key 𝑥2𝑗 in a similar way, and creates a valid
signature as Sign

(
𝑥2𝑗 , (AUTH,𝑚2)

)
to authenticate the user. The

protocols for this solution are depicted in Fig. 2. Again, Sign and
Verify are the algorithms defined in Sec. 2.3.

Solution 3: Ring Authenticators. Similarly, in this solution, 𝐴1
and 𝐴2 have primary key pairs that are used to derive unique key
pairs per authenticator and RP. The key derivation process is the
same as for proxy authenticators above.𝐴1 registers 𝐿𝑗 = (𝑦1𝑗 , 𝑦2𝑗)
with the RP, nominating 𝐴2 as a member of the ring. Subsequently,
𝐴2 can derive its own private key 𝑥2𝑗 and the list of public keys 𝐿𝑗 to
create a valid ring signature using RingSign

(
(𝑥2𝑗 , 𝐿𝑗 , (AUTH,𝑚2)

)
.

The protocols for this solution are depicted in Fig. 3. RingSign
and RingVerify are the ring signature and verification algorithms
defined in Sec. 2.4.

Privacy Properties. All three solutions satisfy the standard pri-
vacy property which is featured in FIDO2; namely, privacy across
relying parties. This follows immediately from the fact that a unique
public key is used for each RP.

Duplicate and Ring Authenticators also satisfy a complementary
privacy property which is privacy across authenticators. For Du-
plicate Authenticators, this property follows from the fact that 𝐴1
and𝐴2 interact with the RP using identical protocols and the public
keys for both authenticators, 𝑦1𝑗 and 𝑦2𝑗 , are identical. Therefore,
there is no information with which the RP can distinguish between
𝐴1 and 𝐴2. This property generalises immediately to the case of 𝑛
authenticators with 𝑛 identical public keys.

For Ring Authenticators, the property of privacy across authenti-
cators follows directly from the basic properties of a ring signature.
Given a ring signature and the corresponding list of public keys,
𝐿𝑗 , the RP cannot determine which public key corresponds to the
private key which was used to generate the signature. In other
words, from the perspective of the RP, each ring member is equally
probable to have been the one who created the signature.

5 KEY DERIVATION
In this section, we present two key derivation algorithms, Der and
DerMulti, which allow authenticators to derive related keys used in
our solutions. Der, used in Solution 1, allows the authenticators to
derive a unique key pair per RP by using the shared secret 𝑘 as the
seed. This key pair is known by all the authenticators. DerMulti,
used in Solutions 2 and 3, allows the authenticators to derive a

CODASPY ’24, June 19–21, 2024, Porto, Portugal Yongqi Wang, Thalia Laing, José Moreira, and Mark D. Ryan

Authenticator 𝐴1 Relying party 𝑅𝑃 𝑗 Authenticator 𝐴2

Establish secret 𝑘 with 𝐴2 Establish secret 𝑘 with 𝐴1

Store 𝑘 Store 𝑘

Introduction

𝑅𝑃 𝑗 ,𝑚1

(𝑥1𝑗 , 𝑦1𝑗) = Der(𝑘, 𝑅𝑃 𝑗)

𝜎1𝑗 = Sign
(
𝑥1𝑗 , (REG,𝑚1)

)
𝑦1𝑗 , 𝜎1𝑗

Verify(𝑦1𝑗 , (REG,𝑚1), 𝜎1𝑗) =

Accept or Reject

Link 𝑦1𝑗 with an account

Confirmation

Registration

𝑅𝑃 𝑗 ,𝑚2

(𝑥2𝑗 , 𝑦2𝑗) = Der(𝑘, 𝑅𝑃 𝑗)

𝜎2𝑗 = Sign
(
𝑥2𝑗 , (AUTH,𝑚2)

)
𝑦2𝑗 , 𝜎2𝑗

Verify(𝑦2𝑗 , (AUTH,𝑚2), 𝜎2𝑗) =

Accept or Reject

Decision

Authentication

Figure 1: Message sequence for Solution 1: Duplicate Authenticators

unique key pair per RP and per authenticator by using both the
shared secret 𝑘 and a unique, per-authenticator private key 𝑥𝑖 as
seeds. Moreover, DerMulti derives the public keys of the other
authenticators that correspond to the same RP. Der and DerMulti
are constructed to satisfy the following requirements:

R1 Unique key pairs. The derived key pairs are unique for
each RP. Using the same public key across different RPs can
lead to vulnerabilities in privacy. This would conflict with
our design goals in Sec. 3.

R2 Repeatable key derivation. Key pairs can be derived de-
terministically and on demand. This minimises information
that authenticators must store.

R3 Secure private keys. Each authenticator in the set can de-
rive exactly one private key for each RP. No entity outside
of the set can compute any private keys.

R4 Mutually derived public keys. In addition to their own
public key, each authenticator can derive the public keys of
other authenticators in the set.

R5 Privacy preserving public keys. Other than authentica-
tors in the set, no other entity can derive the public keys
which are used for authentication. Otherwise, they would
be able to link public keys across RPs.

R6 Compatibility with chosen signature schemes. Finally,
the derived key pairs should be compatible with the appro-
priate signature scheme for each solution in Sec. 4.

The two key derivation algorithms executed by the authentica-
tors rely on a shared secret 𝑘 . Suppose we want to generate keys
for authenticator 𝑖 and relying party 𝑅𝑃 𝑗 .

Der(𝑘, 𝑅𝑃 𝑗) = (𝑥𝑖 𝑗 , 𝑦𝑖 𝑗) is a key derivation algorithm, which takes
as input a shared secret 𝑘 and an RP identifier 𝑅𝑃 𝑗 , and
produces a private key 𝑥𝑖 𝑗 and a public key 𝑦𝑖 𝑗 as follows:

𝑥𝑖 𝑗 := 𝐻 (𝑘 ∥ 𝑅𝑃 𝑗),

𝑦𝑖 𝑗 := Pk(𝑥𝑖 𝑗)
def
= 𝑔𝑥𝑖 𝑗 .

Remote Registration of Multiple Authenticators CODASPY ’24, June 19–21, 2024, Porto, Portugal

Authenticator 𝐴1 Relying party 𝑅𝑃 𝑗 Authenticator 𝐴2

Establish secret 𝑘 with 𝐴2 Establish secret 𝑘 with 𝐴1

Generate (𝑥1, 𝑦1) Generate (𝑥2, 𝑦2)

𝑦1

𝑦2

Store 𝑘, 𝑥1, 𝑦1, 𝑦2 Store 𝑘, 𝑥2, 𝑦1, 𝑦2

Introduction

𝑅𝑃 𝑗 ,𝑚1

(
𝑥1𝑗 , (𝑦1𝑗 , 𝑦2𝑗)

)
=

DerMulti
(
𝑥1, (𝑦1, 𝑦2), 𝑘, 𝑅𝑃 𝑗

)
𝜎1𝑗 = Sign

(
𝑥1𝑗 , (REG,𝑚1)

)
(𝑦1𝑗 , 𝑦2𝑗), 𝜎1𝑗

Verify(𝑦1𝑗 , (REG,𝑚1), 𝜎1𝑗) =

Accept or Reject

Link (𝑦1𝑗 , 𝑦2𝑗) with an account

Confirmation

Registration

𝑅𝑃 𝑗 ,𝑚2

(
𝑥2𝑗 , (𝑦1𝑗 , 𝑦2𝑗)

)
=

DerMulti
(
𝑥2, (𝑦1, 𝑦2), 𝑘, 𝑅𝑃 𝑗

)
𝜎2𝑗 = Sign

(
𝑥2𝑗 , (AUTH,𝑚2)

)
𝑦2𝑗 , 𝜎2𝑗

Verify(𝑦2𝑗 , (AUTH,𝑚2), 𝜎2𝑗) =

Accept or Reject

Decision

Authentication

Figure 2: Message sequence for Solution 2: Proxy Authenticators

CODASPY ’24, June 19–21, 2024, Porto, Portugal Yongqi Wang, Thalia Laing, José Moreira, and Mark D. Ryan

Authenticator 𝐴1 Relying party 𝑅𝑃 𝑗 Authenticator 𝐴2

Establish secret 𝑘 with 𝐴2 Establish secret 𝑘 with 𝐴1

Generate (𝑥1, 𝑦1) Generate (𝑥2, 𝑦2)

𝑦1

𝑦2

Store 𝑘, 𝑥1, 𝑦1, 𝑦2 Store 𝑘, 𝑥2, 𝑦1, 𝑦2

Introduction

𝑅𝑃 𝑗 ,𝑚1

(
𝑥1𝑗 , (𝑦1𝑗 , 𝑦2𝑗)

)
=

DerMulti
(
𝑥1, (𝑦1, 𝑦2), 𝑘, 𝑅𝑃 𝑗

)
𝜎1𝑗 = RingSign

(
𝑥1𝑗 , (𝑦1𝑗 , 𝑦2𝑗), (REG,𝑚1)

)
(𝑦1𝑗 , 𝑦2𝑗), 𝜎1𝑗

RingVerify
(
(𝑦1𝑗 , 𝑦2𝑗), (REG,𝑚1), 𝜎1𝑗

)
=

Accept or Reject

Link (𝑦1𝑗 , 𝑦2𝑗) with an account

Confirmation

Registration

𝑅𝑃 𝑗 ,𝑚2

(
𝑥2𝑗 , (𝑦1𝑗 , 𝑦2𝑗)

)
=

DerMulti
(
𝑥2, (𝑦1, 𝑦2), 𝑘, 𝑅𝑃 𝑗

)
𝜎2𝑗 = RingSign

(
𝑥2𝑗 , (𝑦1𝑗 , 𝑦2𝑗), (AUTH,𝑚2)

)
(𝑦1𝑗 , 𝑦2𝑗), 𝜎2𝑗

RingVerify
(
(𝑦1𝑗 , 𝑦2𝑗), (AUTH,𝑚2), 𝜎2𝑗

)
=

Accept or Reject

Decision

Authentication

Figure 3: Message sequence for Solution 3: Ring Authenticators

Remote Registration of Multiple Authenticators CODASPY ’24, June 19–21, 2024, Porto, Portugal

Security of the Der algorithm. Suppose 𝐻 is a cryptographic
hash function, 𝑘 is secret information, and 𝑅𝑃 𝑗 is a salt value. By
definition, 𝐻 (𝑘 ∥ 𝑅𝑃 𝑗) is identical to a one-step key derivation
function which is included in the international standard ISO/IEC
11770-6 and denoted OKDF1 [19]. The security of the private key,
𝑥𝑖 𝑗 := 𝐻 (𝑘 ∥ 𝑅𝑃 𝑗), follows directly from the security of OKDF1. In
other words, 𝑥𝑖 𝑗 is a uniformly random integer. Therefore, 𝑦𝑖 𝑗 :=
𝑔𝑥𝑖 𝑗 is a valid public key for a Schnorr Signature, as defined in
Sec 2.3, and (𝑥𝑖 𝑗 , 𝑦𝑖 𝑗) is a valid key pair for a Schnorr Signature.

DerMulti(𝑥𝑖 , 𝐿, 𝑘, 𝑅𝑃 𝑗) = (𝑥𝑖 𝑗 , 𝐿𝑗) is a key derivation algorithm,which
takes as input a private key 𝑥𝑖 , a list of public keys 𝐿 =

(𝑦1, . . . , 𝑦𝑛), a shared secret 𝑘 and an RP identifier 𝑅𝑃 𝑗 , and
outputs a private key 𝑥𝑖 𝑗 , and a list of public keys 𝐿𝑗 =

(𝑦1𝑗 , . . . 𝑦𝑛𝑗). DerMulti is applied by each authenticator 𝐴𝑖 ,
using the authenticator’s private key 𝑥𝑖 . The correctness as-
sumption is that 𝑦𝑖 = Pk(𝑥𝑖) holds for the input arguments.
For convenience, we introduce the function symbols DerSk
and DerPk:

(1) Compute own private key:

𝑘𝑖 𝑗 := 𝐻 (Pk(𝑥𝑖) ∥ 𝑘 ∥ 𝑅𝑃 𝑗),

𝑥𝑖 𝑗 := DerSk(𝑥𝑖 , 𝑘, 𝑅𝑃 𝑗)
def
= 𝑥𝑖 · 𝑘𝑖 𝑗 .

(2) Compute all authenticators’ public keys:

for 1 ≤ 𝑖 ′ ≤ 𝑛 :
𝑘𝑖′ 𝑗 := 𝐻 (𝑦𝑖′ ∥ 𝑘 ∥ 𝑅𝑃 𝑗)

𝑦𝑖′ 𝑗 := DerPk(𝑦𝑖′, 𝑘, 𝑅𝑃 𝑗)
def
= 𝑦

𝑘𝑖′ 𝑗
𝑖′ .

Security of the DerMulti algorithm. For 1 ≤ 𝑖, 𝑗 ≤ 𝑛, suppose
𝑥𝑖 are uniformly random integers, 𝑦𝑖 = 𝑔𝑥𝑖 are Schnorr Signature
public keys, 𝐻 is a cryptographic hash function, 𝑘 is secret informa-
tion, and the remaining inputs of 𝐻 (𝑦𝑖 ∥ 𝑘 ∥ 𝑅𝑃 𝑗) are salt values.
By definition, 𝐻 (𝑦𝑖 ∥ 𝑘 ∥ 𝑅𝑃 𝑗) is identical to OKDF1 as specified
in ISO/IEC 11770-6 [19]. The security of 𝑘𝑖 𝑗 := 𝐻 (𝑦𝑖 ∥ 𝑘 ∥ 𝑅𝑃 𝑗)
follows directly from the security of OKDF1. In other words, 𝑘𝑖 𝑗 are
uniformly random integers for 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Therefore, 𝑥𝑖 𝑗 := 𝑥𝑖 ·𝑘𝑖 𝑗 ,
the product of two uniformly random integers, is also a uniformly
random integer.

Hence, for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑦𝑖 𝑗 := 𝑦
𝑘𝑖 𝑗
𝑖

= 𝑔𝑥𝑖𝑘𝑖 𝑗 = 𝑔𝑥𝑖 𝑗 is a valid pub-
lic key for a Schnorr Signature, as defined in Sec 2.3, and (𝑥𝑖 𝑗 , 𝑦𝑖 𝑗)
is a valid key pair for a Schnorr Signature. The security of the new
key pair, (𝑥𝑖 𝑗 , 𝑦𝑖 𝑗), is equivalent to the security of the original key
pair, (𝑥𝑖 , 𝑦𝑖) since the secret 𝑥𝑖 is required to compute 𝑥𝑖 𝑗 := 𝑥𝑖 ·𝑘𝑖 𝑗 .

Subsequently, it is straightforward to confirm that both Der and
DerMulti satisfy the requirements above. R1 follows from the unique-
ness of 𝑅𝑃 𝑗 and due to the collision resistance property of crypto-
graphic hash functions. R2 holds because the hash function 𝐻 is
deterministic and all the inputs are constants. For Der, R3 holds
because 𝑘 is only known to the authenticators in the set and, due to
the security of the underlying signature scheme, the public key will
not reveal any information about the private key. For DerMulti, R3
depends on the fact that only authenticators in the set can com-
pute 𝑘𝑖 𝑗 , as only they know 𝑘 . Then each private key, 𝑥𝑖 , is only
known to one authenticator, thus the output of the multiplication

Table 3: Notation

Symbol Description

𝐴𝑖 Authenticator 𝑖 ∈ {1, . . . , 𝑛}.
𝑅𝑃 𝑗 Unique identifier of relying party 𝑗 .

𝑘 A strong secret shared by all the authenticators.
𝐿 A list of public keys; see Sec. 2.4.
𝐿𝑗 A list of public keys associated with 𝑅𝑃 𝑗 ; see Sec. 5.
𝑚 A challenge sent by the relying party.

(𝑥𝑖 , 𝑦𝑖) A primary key pair belonging to𝐴𝑖 .
(𝑥𝑖 𝑗 , 𝑦𝑖 𝑗) A derived key pair belonging to𝐴𝑖 and associated with 𝑅𝑃 𝑗 .

REG Registration tag.
AUTH Authentication tag.

𝑥𝑖 · 𝑘𝑖 𝑗 , which is kept private, can only be computed by the one
authenticator. For Der, R4 holds immediately since the derivation
is deterministic, thus all authenticators will compute the same key
pair (𝑥𝑖 𝑗 , 𝑦𝑖 𝑗). For DerMulti, R4 follows from the definition of 𝑦𝑖′ 𝑗
for which the inputs are known to all authenticators in the set and
because the derivation is deterministic. R5 holds because 𝑘 is a
secret shared by only the authenticators in the set, thus only the
authenticators in the set can derive 𝑘𝑖 𝑗 . Non-authenticators will
then be unable to compute 𝑦𝑖 𝑗 without knowledge of 𝑘𝑖 𝑗 . Finally,
R6 follows by definition.

Note that the algorithm Der does not derive keys based on any
authenticator-specific secret, hence (𝑥𝑖 𝑗 , 𝑦𝑖 𝑗) = (𝑥𝑖′ 𝑗 , 𝑦𝑖′ 𝑗) for all 𝑖
and 𝑖 ′. On the other hand, DerMulti requires that each authenti-
cator has a unique, primary key pair (𝑥𝑖 , 𝑦𝑖) that must have been
generated in advance. Then, Authenticator 𝑖 uses that key pair to
derive secondary key pairs (𝑥𝑖 𝑗 , 𝑦𝑖 𝑗) that are unique to Authentica-
tor 𝑖 and relying party 𝑅𝑃 𝑗 . Any Authenticator 𝑖 is able to obtain its
own secondary key pair (𝑥𝑖 𝑗 , 𝑦𝑖 𝑗) through the usage of DerMulti,
but can also obtain the secondary public keys 𝑦𝑖′ 𝑗 of the other
authenticators for that relying party 𝑅𝑃 𝑗 .

For all 𝑥𝑖 , 𝑘, 𝑅𝑃 𝑗 , we have

DerPk(Pk(𝑥𝑖), 𝑘, 𝑅𝑃 𝑗) = Pk(DerSk(𝑥𝑖 , 𝑘, 𝑅𝑃 𝑗)), (3)

which enables any authenticator to derive the public keys of the
other authenticators.

In addition, unlike for Der, the shared secret 𝑘 is not used to
generate any keys directly in DerMulti. Instead, it is included to
prevent anyone other than the legitimate authenticators from gener-
ating and linking the secondary public keys 𝑦1𝑗 , . . . , 𝑦𝑛𝑗 associated
with 𝑅𝑃 𝑗 . If 𝑘 is leaked, the security of the private keys would be
unaffected. However, there would be an impact on privacy since an
adversary could link the secondary public keys.

6 MODELLING AND VERIFICATION OF
SECURITY PROPERTIES

We have developed models for the three solutions (Duplicate, Proxy
and Ring) in the symbolic model of cryptography using the auto-
mated protocol verifier ProVerif [11, 12]. Moreover, we have devel-
oped a macro language to adapt the ProVerif syntax to our needs.

ProVerif receives as input a protocol specified in the applied
pi-calculus [2] and a set of security properties to query, specified in
a syntax equivalent to a first-order logic formula. ProVerif works
under the assumption of a Dolev-Yao adversary [17], which is able

CODASPY ’24, June 19–21, 2024, Porto, Portugal Yongqi Wang, Thalia Laing, José Moreira, and Mark D. Ryan

to intercept, replay, delay, suppress and modify messages (subject to
the algebra on defined primitives). We recall that ProVerif is sound
but not complete, because the verification of security properties
is undecidable for an unbounded number of protocol sessions and
message space [1, 8, 18]. However, if it claims that a protocol satisfies
a security property, then the property is actually satisfied. When
the tool cannot prove a property, it tries to reconstruct an attack, i.e.,
an execution trace of the protocol that falsifies that property. We
refer the reader, e.g., to [10–12, 16, 17] for a further discussion on
the topic of formal verification in the symbolic model and ProVerif.

We have considered a number of security properties detailed
below in order to prove both the design goals (G1-G9 from Sec. 3)
and the key derivation design requirements (R1-R6 from Sec. 5).
ProVerif is able to prove that all three of our solutions meet all the
defined security properties. We remark that some of the goals or
requirements are either not verifiable in the symbolic model or not
expressible as security properties.

The repository with the models is available at [26], and we pro-
vide the most important details for them below.

6.1 Equational Theories
We require two equational theories for the three solutions; namely,
signatures and ring signatures, as described in Sec. 2. To accommo-
date probabilistic signatures, it is customary to define an additional
function symbol that handles the randomness. Therefore, for the
case of signatures from Sec. 2.3, the equational theory consists of
the function symbols Pk/1, Sign/2, InternalSign/3, and Verify/3,
so that the ProVerif code for the signing function looks as follows:

letfun Sign(𝑥,𝑚) = new 𝑟; InternalSign(𝑥,𝑚, 𝑟).
Hence, the matching rewrite rule in the destructor [12, Sec. 3.1.1] is

Verify(Pk(𝑥),𝑚, InternalSign(𝑥,𝑚, 𝑟)) = true.

For the case of ring signatures from Sec. 2.4, we also define
a probabilistic scheme with function symbols Pk/1, RingSign/3,
InternalRingSign/4, and RingVerify/3, and a type for the list of
public keys built with the data constructor PkList(𝑦1, . . . , 𝑦𝑛). Thus,

letfun RingSign(𝑥, 𝐿,𝑚) =

new 𝑟; InternalRingSign(𝑥, 𝐿,𝑚, 𝑟).
Since it should not be possible to determine which key in the

ring produced a signature, there is the need to define 𝑛 rewrite rules
for the destructor, in order to reflect the fact that any key in the
ring is capable of producing a valid signature. That is, for all lists
of public keys 𝐿 = PkList(Pk(𝑥1), . . . , Pk(𝑥𝑛)), we have

RingVerify(𝐿,𝑚, InternalRingSign(𝑥1, 𝐿,𝑚, 𝑟)) = true

.

.

.

RingVerify(𝐿,𝑚, InternalRingSign(𝑥𝑛, 𝐿,𝑚, 𝑟)) = true.

ProVerif does not offer support to expand these collections of
rewrite rules for an arbitrary value 𝑛 passed as a parameter. Hence,
we have developed a macro language that handles this operation
conveniently. See Sec. 6.3 below.

Finally, we also model the theories defined in Sec. 5. Recall that
a given authenticator 𝐴𝑖 uses DerSk to derive the secret key asso-
ciated with itself and 𝑅𝑃 𝑗 , and it uses DerPk to derive the public
keys of all the authenticators for 𝑅𝑃 𝑗 . Consequently, we define the

function symbols DerPk/3 and DerSk/3 and make explicit their
relationship in Eq. 3 as a ProVerif equation, which is required so
that the tool can complete the verification:

equation forall 𝑥𝑖, 𝑘, 𝑅𝑃 𝑗;

DerPk(Pk(𝑥𝑖), 𝑘, 𝑅𝑃 𝑗) = Pk(DerSk(𝑥𝑖 , 𝑘, 𝑅𝑃 𝑗)).
Note that due to technical constraints of the resolution algorithm,
this equation must be defined as presented above. Swapping the
LHS and RHS will cause the algorithm to fail.

6.2 Events and Security Properties
In the symbolic model, the adversary is in control of the public
channel used by the honest parties to exchange messages. Events
are used to annotate the protocol at specific places without changing
the semantics of the processes, and to define security properties.
Events can be thought of as “local computations” or as mere check
points on locations of interest that record object values. We prepend
“A_” to events executed at an authenticator process, and “R_” to
events executed at an RP process. We follow a naming convention
similar to [21] to name the events:
A_Register: Executed before an authenticator outputs a register

message, i.e., the list of public keys to register to 𝑅𝑃 𝑗 .
A_Running: Executed before an authenticator outputs a signed

challenge to authenticate against an RP.
R_Register: Executed after an RP receives a registration request.
R_Commit: Executed after an RP validates a signature from an

authenticator.
By convention, the parameters in the events follow the order

1) terms referring to the identity of the party where the event is
launched, 2) available terms referring to the other party identity,
and 3) agreement parameters. For example,

A_Running(𝑢𝑖𝑑, 𝑖, 𝑥𝑖 , 𝐿𝑗 ,︸ ︷︷ ︸
User and authenticator

identity terms

𝑅𝑃 𝑗 ,︸ ︷︷ ︸
RP identity

term

𝑝︸︷︷︸
Agreement
parameters

).

Of course, not all events make use of all the terms. For example,
RPs do not have access to the user identifier 𝑢𝑖𝑑 , the authenticator
index 𝑖 nor the private key 𝑥𝑖 , and therefore these parameters are
omitted for events executed at the RP side.

Using these events, we can describe a number of high-level secu-
rity properties. The main focus is to verify correct authentication
between any registered authenticator belonging to a user with iden-
tifier 𝑢𝑖𝑑 . The notation Event(𝑝1, . . . , 𝑝𝑛)@𝑡 signifies that event
“Event” was executed with parameters 𝑝1, . . . , 𝑝𝑛 at time 𝑡 . We only
show the security properties for ring authenticators (duplicate and
proxy authenticators follow similarly). To avoid ambiguity, we
present the security properties as fully expanded first-order logic
formulas, although ProVerif provides a simplified syntax.

Sanity check. It is reachable that all the authenticators belonging
to a user 𝑢𝑖𝑑 cast the same list of public keys to register with 𝑅𝑃 𝑗 :

∃𝑢𝑖𝑑, 𝑥1, . . . , 𝑥𝑛, 𝑘, 𝑅𝑃 𝑗 , 𝑡1, . . . , 𝑡𝑛 .
A_Register(𝑢𝑖𝑑, 1, 𝑥1, 𝐿𝑗 , 𝑅𝑃 𝑗)@𝑡1 ∧
.
.
.

A_Register(𝑢𝑖𝑑, 𝑛, 𝑥𝑛, 𝐿𝑗 , 𝑅𝑃 𝑗)@𝑡𝑛,

Remote Registration of Multiple Authenticators CODASPY ’24, June 19–21, 2024, Porto, Portugal

where 𝐿𝑗 denotes the list of public keys, derived as

𝐿𝑗 = PkList
(
Pk(DerSk(𝑥1, 𝑘, 𝑅𝑃 𝑗)), . . . ,

Pk(DerSk(𝑥𝑛, 𝑘, 𝑅𝑃 𝑗))
)
. (4)

Property 1 (G1, G2, G7, G8, R4). All authenticators of user 𝑢𝑖𝑑 regis-
ter the same list of public keys with 𝑅𝑃 𝑗 :

∀𝑢𝑖𝑑, 𝑖, 𝑖 ′, 𝑥𝑖 , 𝑥𝑖′, 𝐿𝑗 , 𝐿′𝑗 , 𝑅𝑃 𝑗 , 𝑡, 𝑡
′.

A_Register(𝑢𝑖𝑑, 𝑖, 𝑥𝑖 , 𝐿𝑗 , 𝑅𝑃 𝑗)@𝑡 ∧
A_Register(𝑢𝑖𝑑, 𝑖 ′, 𝑥𝑖′, 𝐿′𝑗 , 𝑅𝑃 𝑗)@𝑡 ′ ⇒ 𝐿𝑗 = 𝐿′𝑗 .

Property 2 (G1, G7, G8, R1, R3). All authenticators of user 𝑢𝑖𝑑 regis-
ter a given list of public keys with at most one RP:

∀𝑢𝑖𝑑, 𝑖, 𝑖 ′, 𝑥𝑖 , 𝑥𝑖′, 𝐿𝑗 , 𝑅𝑃 𝑗 , 𝑅𝑃 ′𝑗 , 𝑡, 𝑡
′.

A_Register(𝑢𝑖𝑑, 𝑖, 𝑥𝑖 , 𝐿𝑗 , 𝑅𝑃 𝑗)@𝑡 ∧
A_Register(𝑢𝑖𝑑, 𝑖 ′, 𝑥𝑖′, 𝐿𝑗 , 𝑅𝑃 ′𝑗)@𝑡 ′ ⇒ 𝑅𝑃 𝑗 = 𝑅𝑃 ′𝑗 .

Property 3 (G1, G2, G7, G8, R4). It is reachable that an authenticator
of user 𝑢𝑖𝑑 registers all their authenticators, and any other authen-
ticator of 𝑢𝑖𝑑 can then log in. We present an instantiation of this
property showing that Authenticator 1 registers with 𝑅𝑃 𝑗 , and all
the other authenticators are able to authenticate:

∃𝑢𝑖𝑑, 𝑥1, . . . , 𝑥𝑛, 𝑘, 𝑅𝑃 𝑗 , 𝑝1, . . . , 𝑝𝑛, 𝑡, 𝑡1, . . . , 𝑡𝑛, 𝑡 ′1, . . . , 𝑡
′
𝑛 .

A_Register(𝑢𝑖𝑑, 1, 𝑥1, 𝐿𝑗 , 𝑅𝑃 𝑗)@𝑡 ∧
A_Running(𝑢𝑖𝑑, 1, 𝑥1, 𝐿𝑗 , 𝑅𝑃 𝑗 , 𝑝1)@𝑡1 ∧
R_Commit(𝑅𝑃 𝑗 , 𝐿𝑗 , 𝑝1)@𝑡 ′1∧
.
.
.

A_Running(𝑢𝑖𝑑, 𝑛, 𝑥𝑛, 𝐿𝑗 , 𝑅𝑃 𝑗 , 𝑝𝑛)@𝑡𝑛 ∧
R_Commit(𝑅𝑃 𝑗 , 𝐿𝑗 , 𝑝𝑛)@𝑡 ′𝑛,

where 𝐿𝑗 denotes the associated list of public keys as in (4).
ProVerif finds a trace in which only Authenticator 1 registers

and the others authenticate. Although we could have considered
adding restrictions to prevent other authenticators from registering,
this was unnecessary since the trace found by ProVerif already
has this property. We can establish analogous formulas showing
a trace where only Authenticator 𝑖 registers (𝑖 > 1) and all others
authenticate.

Finally, the last property corresponds to a variation of injective
agreement [21, Sec. 2.4] for registered authenticators. This is the
main property we want to test.

Property 4 (G6, G7, G8, R3). Whenever 𝑅𝑃 𝑗 completes a run of the
authentication protocol, apparently with a registered authenticator
belonging to user 𝑢𝑖𝑑 (and whose public key is in 𝐿𝑗), then an
authenticator belonging to user 𝑢𝑖𝑑 has previously been running
the protocol, apparently with 𝑅𝑃 𝑗 , and the two agents agreed on
the data values corresponding to all the variables in 𝑝 , and each
such run of the protocol on 𝑅𝑃 𝑗 corresponds to a unique run of the

protocol on the authenticator:

∀𝑢𝑖𝑑, 𝑖, 𝐿 𝑗 , 𝑅𝑃 𝑗 , 𝑝, 𝑡1, 𝑡2, 𝑡4 .
A_Register(𝑢𝑖𝑑, 𝑖, 𝑥𝑖 , 𝐿𝑗 , 𝑅𝑃 𝑗)@𝑡1 ∧
R_Register(𝑅𝑃 𝑗 , 𝐿𝑗)@𝑡2 ∧
R_Commit(𝑅𝑃 𝑗 , 𝐿𝑗 , 𝑝)@𝑡4 ⇒(

∃𝑖 ′, 𝑥𝑖′, 𝑡3 . A_Running(𝑢𝑖𝑑, 𝑖 ′, 𝑥𝑖′, 𝐿𝑗 , 𝑅𝑃 𝑗 , 𝑝)@𝑡3 ∧
(𝑡3 < 𝑡4)

)
∧

¬
(
∃𝑡 ′4 . R_Commit(𝑅𝑃 𝑗 , 𝐿𝑗 , 𝑝)@𝑡 ′4 ∧ ¬(𝑡4 = 𝑡 ′4)

)
.

Events A_Register and R_Register indicate a successful registra-
tion of the authenticators belonging to user 𝑢𝑖𝑑 . Event R_Commit
indicates a successful authentication at the RP side. If all three
events are found in a trace, it must be the case that a legitimate au-
thenticator executedA_Running before the RP executedR_Commit.
The last line in the formula above signifies the injectivity between
the events A_Running and R_Commit, i.e., each successful exe-
cution must correspond to a distinct run of the authentication
protocol.

6.3 Macro Language
To accommodate an arbitrary (but finite) number of authenticators,
we have developed an extension to the ProVerif syntax that expands
a block of code into a specified number of repetitions, in our case
the number of authenticators 𝑛 per user. The extension syntax is:

{⟨prefix⟩$⟨var_name⟩;⟨suffix⟩/⟨separator⟩}
where ⟨prefix⟩ and ⟨suffix⟩ are constant strings, ⟨var_name⟩ is
the name of the variable to be substituted, and ⟨separator⟩ is the
string inserted between substitutions (defaulting to “, ” if unspeci-
fied). This syntax allows to parameterize ProVerif constructs.

For example, a list 𝐿 of an arbitrary number of public keys

let PkList({y$i;}) = L in

will expand for three authenticators (1 ≤ 𝑖 ≤ 3) as

let PkList(y1, y2, y3) = L in

by calling the macro preprocessor with the appropriate range for
the parameter 𝑖 . The syntax supports nested constructs (within the
⟨prefix⟩ or the ⟨suffix⟩) using the same or a different variable
name. The preprocessor will first expand the innermost blocks of
code before proceeding to the outer ones.

7 DISCUSSION
7.1 Generating the Shared Secret
The shared secret 𝑘 is generated during the introduction stage, dur-
ingwhichwe assume authenticators𝐴1 and𝐴2 are in the same phys-
ical location and can communicate securely. The secret 𝑘 should be
known by all authenticators in the set and no other entities.

When there are two authenticators only, the shared secret 𝑘
can be derived using Elliptic-curve Diffie–Hellman (ECDH) or a
similar approach [9]. When there are more than two authentica-
tors, more elaborate algorithms can be used to generate a group
key [14]. Alternatively, the secret can be generated by a subset of
the authenticators then encrypted and sent to the others. When
a new authenticator joins the set, there is no need to establish a

CODASPY ’24, June 19–21, 2024, Porto, Portugal Yongqi Wang, Thalia Laing, José Moreira, and Mark D. Ryan

new 𝑘 . The new authenticator can be sent the existing key 𝑘 by
one of the existing authenticators (via some secure channel, such
as Bluetooth for example).

7.2 Revocation
Once registered, an authenticator may need to be revoked if the
authenticator is lost, broken, or replaced. In all our solutions, the
user must begin a session with the relying party, by successfully
authenticating, before they can change the list of authenticators.
This also applies to existing solutions like FIDO2.

In Solution 1, a single public key is linked with the user’s account.
The corresponding private key is held by each authenticator. Thus,
to revoke one authenticator, the user must revoke all authenticators.
The user can then be given the choice to register an updated set of
authenticators or to use a different method of authentication.

In Solution 2, multiple public keys are linked with the user’s
account: each corresponding to a distinct authenticator. Therefore,
each authenticator can be revoked independently.

In Solution 3, an ordered list of public keys is linked with the
user’s account. Each entry in the list corresponds to a distinct
authenticator. Thus, each one can be revoked without revoking
the others. This can be done by updating the ordered list stored by
the relying party. However, to generate valid ring signatures in the
future, the list must also be updated in the remaining authenticators.

8 CONCLUSION
In this paper, we present solutions to improve the use of discrete
authenticators. The FIDO standards are the key precedent in this
space [6, 15]. FIDO provides authentication security without pass-
words by allowing users to assert their identity using an authenti-
cator. However, authenticators can be lost or destroyed. Therefore,
FIDO recommends that users have two authenticators and keep
one in a safe place. The problem with this approach is that the
second authenticator is generally not available during registration,
precisely because it is being kept in a safe place. A natural solution
to this problem is to allow one authenticator to register all the other
authenticators possessed by the user. This would allow the user to
carry a single authenticator whilst others are kept in safe locations
as backups. We propose three schemes for how this can be done.

Why three solutions? Because each offers different advantages.
Duplicate requires the least storage and the storage requirement
is independent from the number of authenticators. In our other
solutions, the relationship is linear. Also, Duplicate offers a high
level of privacy; namely, authenticators cannot be differentiated by
relying parties. Ring offers a similar level of privacy as Duplicate. In
addition, Ring provides increased security by using unique key pairs
for each authenticator. Proxy also offers unique key pairs for each
authenticator. However, it does not offer the same level of privacy
as Duplicate and Ring. The main advantage of Proxy is that each au-
thenticator can be registered and unregistered independently. This
is not the case in our other solutions. This property is particularly
useful when the set of authenticators changes frequently.

ACKNOWLEDGMENTS
EPSRC has provided funding through grant EP/R012598/1 “User-
controlled hardware security anchors: evaluation and designs.”

REFERENCES
[1] Martín Abadi and Véronique Cortier. 2006. Deciding knowledge in security

protocols under equational theories. Theoretical Computer Science 367, 1-2 (Nov.
2006), 2–32.

[2] Martín Abadi and Cédric Fournet. 2001. Mobile values, new names, and secure
communication. In ACM SIGPLAN-SIGACT Symposium on Principles of program-
ming languages (POPL). ACM, London (UK), 104–115.

[3] Martín Abadi and Roger Needham. 1996. Prudent engineering practice for
cryptographic protocols. IEEE Transactions on Software Engineering 22, 1 (Jan.
1996), 6–15.

[4] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 2002. 1-out-of-n signatures
from a variety of keys. In International Conference on the Theory and Application
of Cryptology and Information Security. Springer, Queenstown, New Zealand,
415–432.

[5] Fatma Al Maqbali and Chris J Mitchell. 2018. Email-based password recovery-
risking or rescuing users?. In International Carnahan Conference on Security
Technology (ICCST). IEEE, Montréal, Canada, 1–5.

[6] FIDO Alliance. 2021. Client to Authenticator Protocol (CTAP) Proposed
Standard. https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-
authenticator-protocol-v2.1-ps-20210615.html.

[7] FIDO Alliance. 2022. FIDO Security Reference. https://fidoalliance.org/specs/
common-specs/fido-security-ref-v2.1-ps-20220523.html.

[8] Myrto Arapinis. 2008. Security of Cryptographic Protocols: Decidability and Re-
duction Results. Ph.D. Dissertation. Paris-East Créteil University.

[9] Elaine Barker, Lily Chen, Sharon Keller, Allen Roginsky, Apostol Vassilev, and
Richard Davis. 2017. Recommendation for pair-wise key-establishment schemes
using discrete logarithm cryptography. Technical Report. National Institute of
Standards and Technology.

[10] Bruno Blanchet. 2016. Modeling and Verifying Security Protocols with the
Applied Pi Calculus and ProVerif. Foundations and Trends in Privacy and Security
1, 1-2 (2016), 1–135.

[11] Bruno Blanchet, Vincent Cheval, and Marc Sylvestre. [n.d.]. ProVerif: Crypto-
graphic protocol verifier in the formal model. http://prosecco.gforge.inria.fr/
personal/bblanche/proverif/.

[12] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc Sylvestre. 2023. ProVerif
2.05: Automatic Cryptographic Protocol Verifier, User Manual and Tutorial.

[13] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano. 2012.
The quest to replace passwords: A framework for comparative evaluation of web
authentication schemes. In IEEE Symposium on Security and Privacy. IEEE, San
Francisco, CA, 553–567.

[14] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. 2001. Provably
authenticated group Diffie-Hellman key exchange—the dynamic case. In Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security. Springer, Gold Coast, Australia, 290–309.

[15] World Wide Web Consortium. 2021. Web Authentication: An API for accessing
Public Key Credentials Level 2 W3C Recommendation. https://www.w3.org/TR/
webauthn/.

[16] Véronique Cortier and Steve Kremer. 2014. Formal Models and Techniques for
Analyzing Security Protocols: A Tutorial. Foundations and Trends in Programming
Languages 1, 3 (2014), 151–267.

[17] Danny Dolev and Andrew Yao. 1983. On the security of public key protocols.
IEEE Transactions on Information Theory 29, 2 (March 1983), 198–208.

[18] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. 1999. Undecidability of bounded
security protocols. InWorkshop on Formal Methods and Security Protocols. Trento,
Italy.

[19] ISO/IEC. ISO/IEC 11770-6:2016. Information technology – Security techniques –
Key management – Part 6: Key derivation.

[20] Juan Lang, Alexei Czeskis, Dirk Balfanz, Marius Schilder, and Sampath Srinivas.
2016. Security keys: Practical cryptographic second factors for the modern web.
In International Conference on Financial Cryptography and Data Security. Springer,
Christ Church, Barbados, 422–440.

[21] Gavin Lowe. 1997. A hierarchy of authentication specifications. In IEEE Computer
Security Foundations Workshop (CSFW). IEEE, Rockport, MA, 31–43.

[22] Sanam Ghorbani Lyastani, Michael Schilling, Michaela Neumayr, Michael Backes,
and Sven Bugiel. 2020. Is FIDO2 the kingslayer of user authentication? A compar-
ative usability study of FIDO2 passwordless authentication. In IEEE Symposium
on Security and Privacy (SP). IEEE, San Francisco, CA, 268–285.

[23] Ronald L Rivest, Adi Shamir, and Yael Tauman. 2001. How to leak a secret. In
International conference on the theory and application of cryptology and information
security. Springer, Gold Coast, Australia, 552–565.

[24] Claus-Peter Schnorr. 1991. Efficient signature generation by smart cards. Journal
of cryptology 4, 3 (1991), 161–174.

[25] Anthony Spadafora. 2021. Struggling with password overload? You’re
not alone. https://www.techradar.com/uk/news/most-people-have-25-more-
passwords-than-at-the-start-of-the-pandemic.

[26] Yongqi Wang, Thalia Laing, José Moreira, and Mark D. Ryan. 2024. Repository of
ProVerif models. https://github.com/jmor7690/acm-codaspy2024-authenticators.

https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-ps-20220523.html
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-ps-20220523.html
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://www.techradar.com/uk/news/most-people-have-25-more-passwords-than-at-the-start-of-the-pandemic
https://www.techradar.com/uk/news/most-people-have-25-more-passwords-than-at-the-start-of-the-pandemic
https://github.com/jmor7690/acm-codaspy2024-authenticators

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Registration and Authentication
	2.2 FIDO2 Specifications
	2.3 Schnorr Signatures
	2.4 Ring Signatures

	3 Design Goals
	4 Solutions
	5 Key Derivation
	6 Modelling and Verification of Security Properties
	6.1 Equational Theories
	6.2 Events and Security Properties
	6.3 Macro Language

	7 Discussion
	7.1 Generating the Shared Secret
	7.2 Revocation

	8 Conclusion
	Acknowledgments
	References

