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Abstract—Hardware tokens are increasingly used to support
second-factor and passwordless authentication schemes. While
these devices improve security over weaker factors like pass-
words, they suffer from a number of security and practical issues.
We present the design and implementation of Symbolon, a system
that allows users to authenticate to an online service in a secure
and flexible manner by using multiple personal devices (e.g., their
smartphone and smart watch) together, in place of a password.
The core idea behind Symbolon is to let users authenticate only
if they carry a sufficient number of their personal devices and
give explicit consent. We use threshold cryptography at the client
side to protect against strong adversaries while overcoming the
limitations of multi-factor authentication in terms of flexibility.
Symbolon is compatible with FIDO servers, but improves the
client-side experience compared to FIDO in terms of security,
privacy, and user control. We design Symbolon such that the user
can (i) authenticate using a flexible selection of devices, which
we call “authenticators”; (ii) define fine-grained threshold policies
that enforce user consent without involving or modifying online
services; and (iii) add or revoke authenticators without needing
to generate new cryptographic keys or manually (un)register
them with online services. Finally, we present a detailed design
and analyse the security, privacy and practical properties of
Symbolon; this includes a formal proof using ProVerif to show
the required security properties are satisfied.

Index Terms—authentication, FIDO, threshold cryptography,
signatures, proverif

I. INTRODUCTION

The security and usability issues plaguing passwords as a
form of user authentication on the web are well known [2],
[23]. To compensate for these weaknesses, security profes-
sionals [18] advocate complementing or even replacing pass-
words with strong cryptographic factors rooted in hardware-
based security mechanisms. Solutions like portable hardware
tokens or integrated security micro-controllers offer many
advantages as a form of authentication over passwords, one
notable advantage being that hardware tokens, unlike users,
are able to memorise and use cryptographically strong keys.
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The Fast IDentity Online (FIDO) Alliance [14] has recently
produced a standard framework that aims to create a common
and easy-to-use ecosystem for users to authenticate online
through hardware-based security keys. FIDO has been adopted
by a number of companies, such as Google, Dropbox and
Facebook, and is now supported by Microsoft and OpenSSH.

Despite FIDO-like protocols providing many benefits over
memorised secrets, they still suffer from limitations [22]. From
a security standpoint, hardware tokens are vulnerable to theft.
On one hand, if a token is used as the sole authentication
factor, a thief can steal the token and use it to impersonate
them. While asking users to locally authenticate to the token
first (e.g., using a PIN or biometrics) can mitigate these threats
to some extent, these devices tend to offer limited (or no)
protection against adversaries who have physical access to
them (see Section IX for more details). On the other hand,
if the hardware token used as a second factor is stolen, the
user is left with the remaining first factor to protect their
account, which is normally much weaker than the token. In
short, although hardware tokens enable users to protect their
accounts using cryptographic keys, the risk of loss of the
hardware token (and hence the whole key) must be considered.

Besides these security concerns, FIDO has several practical
limitations. For example, the user must have a hardware
token available whenever they wish to authenticate. Forgetting,
losing, or damaging the token will render the user unable to
access their account, as their token is a single point of failure
in terms of availability1. To reduce this frustration, FIDO (and
other similar protocols) allows users to register multiple tokens
for a single user account, and authenticate with any of them.
This solution increases the availability of authentication for
the user by having more tokens, but in doing so it (i) gives
a physical attacker multiple devices to target for theft and
(ii) allows the online service to learn potentially sensitive
information about which of their devices a user authenticates

1Note that this issue is aggravated by the fact that users typically reuse
their authenticators across websites.



with2. Besides, adding alternative tokens in this way also
places a burdensome management process on the user. If one
of their tokens is lost, broken or replaced, the user will need
to unregister and register new tokens with each online service
they have accounts with. This is a manual and laborious task
that should be avoided.

We present Symbolon, a multi-device based user authentica-
tion solution that increases the resiliency of FIDO-like systems
against physical attackers whilst simultaneously increasing the
availability of the system and allowing easy management for
users. At a high level, Symbolon uses a threshold signature
scheme to register a single public key to an online service,
and secret-shares the private key among a set of user’s personal
devices. The user is then able to authenticate only if a threshold
number of their personal devices are present, and after giving
explicit consent. Symbolon extends solutions such as FIDO
and requires changes on the client side only, meaning that
FIDO compatible servers are not required to be updated.

In summary, Symbolon is compatible with FIDO servers,
but improves the client-side experience compared to FIDO in
these ways:
• Security. Compromise of a single hardware token authen-

ticator does not allow the adversary to masquerade as the
user (as it can in FIDO). Thus, adding new authenticators
does not introduce single points of security failure.

• Flexibility, privacy, and user control. Adding/removing
authenticators is done independent from the online ser-
vices. The user can authenticate with flexible subsets of
their devices, the online services do not know which or
how many authenticators the user has, nor which ones
they use in any particular authentication session.

Our contributions. In this paper, we propose Symbolon,
a framework allowing multiple personal devices chosen by
a user to contribute to user-authentication sessions, in order
to make user authentication more secure while maintaining
flexibility for the user. Concretely, the contributions of this
work are the following:
• We detail Symbolon; conceptually quite simple, there

are tricky issues that arise when figuring out the details.
Resolving these is our principal contribution.

• We present Symbolon iteratively, first by means of an
example (Section III), and then informally focusing on the
requirements (Section IV). Next, we give the formal de-
tails (Section V), including how the user selects devices,
uses them to authenticate, and updates their selection with
new or lost devices.

• We extend Symbolon to minimise the need for explicit
user consent on each device while cryptographically
enforcing consent on at least one user-specified authenti-
cator device (Section VI).

• We provide measurements of the feasibility of our so-
lution in terms of computational load on devices and

2Online services may accumulate information about which device is used
for each authentication session to infer information about the user, such as
where they are, whether their routine is changed, or whether a device is lost.

speed of authentication, derived from our implementation
(Section VII).

• We analyse the security, privacy and practicality of our
solution (Section VIII). This includes a formal evaluation
of security properties using ProVerif (see [4]).

A longer version of the paper containing some extra material is
available at https://www.dropbox.com/sh/rh0n9qm1gnf7k0y/
AAAAcx8 0Ayw9YGEdYnQhEmda?dl=0 [4].

II. BACKGROUND

FIDO authentication. Figure 1 illustrates a generalised archi-
tecture of FIDO-based authentication schemes. Users interact
with online services, called relying parties (RP), through a
client device like a laptop or mobile phone. The RP authen-
ticates the user using an (internal or external) authentication
service. The user possesses a FIDO authenticator that protects
the user’s identity keys and performs the cryptographic oper-
ations needed to authenticate the user. An authenticator may
be internal (e.g., secure element or Trusted Platform Module)
or external (e.g., a USB token) to the client device.

FIDO-based authentication over the web is defined by two
specifications: Web Authentication (WebAuthn) [35] and the
Client to Authenticator Protocols (CTAP) [3]. The former is
a standard web API that can be built into existing browsers,
while the latter enables authenticators to interact with browsers
supporting WebAuthn. FIDO authentication is realised by
means of a challenge-response protocol that comprises two
phases: registration and authentication.
Registration phase. Initially, the user plugs their authenticator
into a client device and sends a request to an RP through
a browser or app in the client device. The RP generates a
random challenge and returns it to the user’s browser over a
secure channel (such as TLS). The browser sends the user’s
authenticator a hash of the client data (denoted c), which
includes: (i) origin (RP’s URL), (ii) the challenge, and (iii)
an optional binding (to preclude MiTM attacks). The user’s
authenticator then generates a public/private key pair, kpub
and kpriv , and a key handle Hk to retrieve kpriv during the
authentication phase. Next, the authenticator returns kpub and
Hk along with a signature over c, kpub and Hk to the browser.
This information is forwarded along with the challenge and
binding to the RP. Finally, the RP verifies the signature using
kpub and stores kpub and Hk.
Authentication phase. When the user wants to authenticate
to an RP, they send a request containing the account they wish
to authenticate to. The RP then checks whether there exists an
Hk associated with the user’s account. If Hk is found for this
user’s account, the RP generates a random challenge and sends
it along with Hk to the user’s browser. The browser then sends
the authenticator: (i) the origin, (ii) Hk and (iii) the hash of
the client data c. Upon receiving this information, the user’s
authenticator verifies whether (i) it has a kpriv associated with
Hk and (ii) it received an origin that matches the one stored
alongside Hk. If both conditions are satisfied, the authenticator
waits for the user to give explicit consent (e.g., by pressing
a button on it) to authenticate to the RP. Only if consent is

https://www.dropbox.com/sh/rh0n9qm1gnf7k0y/AAAAcx8_0Ayw9YGEdYnQhEmda?dl=0
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Fig. 1: Simplified FIDO architecture.

given will the user’s authenticator unlock kpriv in order to
produce a signature on c and send this information to the
browser. The browser forwards the signature, the challenge
and the binding to the RP. Finally, the RP verifies the received
signature using kpub stored in relation to the user’s account.
Threshold secret sharing schemes distribute a secret s by a
dealer amongst a set of entities, by giving each entity a share
of the secret [6], [28]. In a (t, n)-threshold scheme, where
t, n ∈ Z, 2 ≤ t ≤ n, s is distributed between n entities such
that any subset of t can jointly recover s. Shamir’s scheme [28]
distributes s by defining a polynomial f(x) of degree t−1 with
random coefficients such that f(0) = s. Entity i for 1 ≤ i ≤ n
is allocated the share f(i). The secret can be reconstructed by
t entities performing polynomial interpolation, whilst fewer
than t entities learn no information about s.
Threshold signatures use secret sharing to construct a signa-
ture scheme with n signers, where a valid signature can only be
produced if at least t signers participate in the signing. There
exist threshold signatures compatible with existing verification
algorithms, including RSA [11], [29], DSA and ECDSA [16],
[17] and Schnorr [33]. Some threshold signatures, such as
Shoup’s RSA scheme [29], are non-interactive and each signer
outputs their contribution to the signature, which we call a
partial signature, which are combined to produce the complete
signature. Other schemes, such as [16], [17], are interactive
and require rounds of communication between signers.

III. MOTIVATING EXAMPLE

FIDO-based authentication offers users the ability to authen-
ticate with a simple physical token, greatly improving security
over weaker, memory-based passwords. However, the reality
of authenticating with a physical token is that a user may
lose it (leading to loss of availability to the account), or have
it stolen or compromised by an attacker. Even if the token
requires users to locally authenticate, attackers with physical
access can launch practical and effective side-channel attacks
to bypass the local authentication step and gain access to the
user’s account (see Section IX for more details).

Let us now consider a more convenient and secure system
for a user, Alice, who wants to authenticate to her bank using
a FIDO-based protocol. Without loss of generality, we assume
Alice starts by enrolling four devices (her laptop, phone,
smartwatch and Bluetooth headphones) as authenticators. She
then specifies that at least three of these devices must suc-
cessfully authenticate before the bank is convinced it is Alice.

In many online services today, registering multiple devices
is possible, as is requiring multiple factors for successful
authentication. However, requiring a threshold policy (such as
any three of the four authenticators) is not generally possible.
Even if it were possible, Alice would need to rely on the RP
to both implement and enforce such a policy. Due to this, the
RP might also begin to infer access patterns based on which
devices Alice chooses to use at each authentication session.

To address these issues, Symbolon employs threshold sig-
natures and shares the signing capability of a FIDO authen-
ticator among Alice’s devices. This offers more user-centric
control over the use and management of a multi-device-based
authentication experience. With Symbolon, Alice uses a dealer
to generate and enrol a public key to the RP, and to share
the corresponding private key amongst her four devices. The
dealer is trusted to protect the private key and is only used to
enrol to new RPs and update the set of participating devices.
In Section VII we detail possible ways to realise the dealer in
practice. In brief, the dealer can be either a physical device
(distinct from the authenticators), or an online cloud service.
Say Alice uses a USB token as her dealer. She plugs the dealer
into her laptop and interacts it with via the dealer’s GUI.

Now that Alice has completed the set-up, she can store
her dealer token in a secure location and use any three of
her authenticators to authenticate to the bank. When she tries
to log in to her bank account using her laptop, the browser
receives the challenge from the bank and distributes it to all
available authenticators. The authenticators partially sign the
challenge using their key share; some will also capture Alice
consenting to authenticate, e.g., by pressing a button on a
device (see Section VI). Subsequently, the browser combines
these partial signatures and forwards the result to the bank.
The signature will be valid and therefore the authentication
to the bank successful provided a threshold number of par-
tial signatures are combined. The result is an authentication
experience that enables flexible choice of authenticators and
threshold policies without the need for Alice to depend on the
bank to implement such a mechanism using more traditional
multi-factor authentication flows that also discloses her device
usage patterns.

At any future time, Alice can edit the set of registered
authenticators. She might do so if she loses her phone, for
example. To do this, she retrieves her dealer and interacts with
the dealer’s GUI to add or remove authenticators.
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IV. SYSTEM DESIGN

We now describe the design of Symbolon including our
design requirements, assumptions, and threat model.

A. Architecture

We designed Symbolon to enable threshold secret sharing
of a single authenticator’s signing key. Figure 2 illustrates how
our architecture extends the FIDO2 model to achieve this. This
includes the following changes:
Symbolon authenticators. Instead of a single authentica-
tor, a collection of the user’s personal devices – such as
a smartphone, laptop or smart watch – work together as
a collective “threshold” authenticator. A dealer provisions
individual key shares to each authenticator per account. The
authenticators coordinate with a mediator to perform partial
signing operations that contribute to a full signature during
authentication. Each device is capable of storing data, per-
forming cryptographic operations and communicating with the
dealer and mediator over a secure communication channel.
Some authenticators (e.g., smartphones) are capable of secure
user I/O, while others (e.g., spectacles) may have limited or
no user interface.
Dealer. The dealer is responsible for generating user authen-
tication credentials (signing key pair) and distributing shares
of the private key to each of the authenticators. We envision
the dealer as a secure, dedicated service or a device specific
to and controlled by the user. The dealer is only needed
during registration with an RP and when modifying the set of
authenticators. It is not involved in authentication phases and
thus it is not an authenticator the user employs to authenticate.
Mediator. The mediator acts as a bridge between the Sym-
bolon authenticators and the browser or app in the client
device. It forwards challenges from the RP to the authenti-
cators, collects partial signatures, and combines them to form
a response. The mediator is stateless and can be on multiple
client devices.

Our design effectively decouples the registration and authen-
tication capabilities of a single authenticator, giving the user
the flexibility to manage their set of authenticators independent
from the RP. The user also benefits from the resiliency of the
threshold scheme as adversaries must compromise multiple de-
vices to authenticate as the user. Finally, the user can leverage

more hardened but less convenient key protection mechanisms
for the dealer as it is not required for authentication. There are
several ways the dealer can be realised to maximise security
and availability, discussed further in Section VII.

Authenticators must be securely paired with the dealer to
protect the distribution of key shares. Different options may
be supported according to the capabilities of those devices.
For example, pairing protocols like Bluetooth’s LE Secure
Channels mode with Numeric Comparison gives strong MITM
protection with user verification [7]. In other scenarios, pre-
installed identity certificates or out-of-band channels may
suffice depending on the user’s concerns. The latter is an
attractive solution that allows pairing of devices with limited
interfaces. For example, if the devices have (at least) a standard
input and/or output interface, it is possible for the user to pair
the devices by manually copying the data output from one
device into the other, comparing the output of both devices,
or entering the same data into both devices [15]. Likewise,
the user can pair the devices by shaking them simultaneously
in case they have no I/O interfaces but are equipped with an
accelerometer [10].

B. Design requirements
Symbolon aims to satisfy the following security, privacy

and practical requirements.
(Sec1) Threshold-based security. Anyone with fewer than the
predefined threshold number of authenticators should not be
able to authenticate as the user to an RP.
(Pri1) Authenticator privacy. An RP should not be able to
learn the number of authenticators a user has, the threshold
number of authenticators required, whether authenticators are
added or revoked, or distinguish between different sets of
authenticators used to authenticate at different times.
(Pra1) Flexibility. Users should be able to authenticate suc-
cessfully to an RP on any client device using any t of their
authenticators.
(Pra2) User control. Authenticated users should be able to set,
modify, implement and enforce their own threshold policies
without involvement of the RP. Furthermore, Symbolon should
guarantee that successful authentication to an RP occurs only
if users explicitly provide consent.
(Pra3) Authenticator set flexibility. Users should be able to
revoke/add authenticators easily without needing to generate



new cryptographic keys or manually (un)register them with
RPs. Furthermore, the computation and communication cost
involved from the remaining authenticators due to these pro-
cedures should be minimal.
(Pra4) FIDO2/WebAuthn compatible. Symbolon should be
compatible with existing browsers and RPs that authenticate
users using asymmetric signing keys (e.g., FIDO-compliant
services).

C. Threat model and assumptions

Threat model. Symbolon defends against adversaries whose
goal is to masquerade as the user to an RP by stealing,
compromising or leveraging genuine contributions. In partic-
ular, we adopt the Dolev-Yao adversary model [12] where
adversaries can eavesdrop, intercept and modify traffic as well
as relay signals transmitted over the air. Adversaries can also
compromise both up to t − 1 user’s authenticators (by, for
example, physical theft, malware running on the device or
remote code execution) and servers that do not implement
strong security practices. We model RPs as honest-but-curious,
meaning they follow the protocol as intended but try to learn
information about how users authenticate, e.g., which set of
devices users employ to authenticate. Denial-of-Service attacks
(e.g., blocking communication to an RP) are out of scope of
our work.
Assumptions. We employ a centralised dealer that is assumed
to be trusted. Such a dealer is analogous to a recovery key.
Our choice is motivated by the need to give users the ability to
easily (and securely) modify the set of authenticators or reduce
the threshold. As demonstrated by Ghorban et al. [22], this is
a fundamental requirement for user acceptance. Technically,
this can also be achieved through a decentralised dealer [19],
[25]. Yet, these solutions are less convenient for users and
require all devices to collaboratively store, manage and display
information, which introduces a significant communication
overhead. The client device acts as a bridge between the
user’s authenticators and the RP. While the client device does
not store any secrets and hence need not be trusted, it runs
the mediator correctly, forwards the information exchanged
between the aforementioned parties as intended and commu-
nicates with the RP using secure channels (e.g., TLS). For now,
we assume a secure non-interactive threshold signature scheme
in order to reduce the rounds of communication occurring over
possibly slow channels. Our system could be adapted to use
an interactive threshold scheme, but the mediator may need
to help the authenticators interact during each authentication
session. We assume the authenticators communicate with the
dealer over a confidential, authenticated end-to-end channel
and that user interfaces are secure.

D. Threshold parameter choices

The user must choose the initial parameters n and t to
register with. The user may choose n to be the number of
personal devices they have available to them for authentication
and then, once n is chosen, consider t. When choosing t, there
is a trade-off to be considered: the closer t is to n, the more the

system is resilient to theft, but the less flexible the system is to
the user losing or forgetting devices. As t decreases, flexibility
supersedes resilience. The choice of t will also depend on what
the devices are and how they are stored and used. Notably, if
t ≤ n/2, an adversary may be able to compromise t devices
while the user is still in possession of a distinct set of t honest
devices. The user may choose t > n/2 to avoid this happening.
To help the user, the system may suggest some sensible default
parameters, such as n = 3 and t = 2.

V. PROTOCOL

Symbolon uses a non-interactive threshold signature scheme
to let users authenticate to RPs. Partial signatures are combined
on the client side, producing a complete signature that is
sent to the RP. The signature is then verified using a stan-
dard verification algorithm, thus our system works with any
FIDO2/WebAuthn-enabled server. Below, we describe each
stage of the system.
Registration phase. The goal of the registration phase is for
the user to select a set of their personal devices to act as their
logical authenticator to the RP. The user must choose which of
their personal devices will act as authenticators, and pair each
device with the dealer. The procedure through which the dealer
establishes a secure communication channel with the user’s
personal devices depends on the interfaces and capabilities
they have (some options were discussed in Section IV-A).

Once the user’s personal devices have enrolled with the
dealer as authenticators, the user can initiate the registration
procedure with an RP. Figure 3 shows the Symbolon regis-
tration phase. The dealer receives the origin value and a hash
from the mediator; this message is the standard FIDO message
from the browser to the authenticator, since we want to remain
compatible with FIDO. Next, the dealer generates a key pair,
kpub and kpriv , and registers kpub with the RP. According to
parameters chosen by the user via a secure interaction (as
discussed in Section IV-A), the dealer shares kpriv into n
shares ki, for i ∈ (1, ..., n), and sends each authenticator their
share ki along with the origin (the DNS name of the RP), key
handle Hk and (if necessary for combining partial signatures)
n and t. Each authenticator stores this data, while the dealer
stores Hk, origin, kpriv and the randomness generated to
share kpriv (i.e., the t − 1 coefficients of the polynomial in
Shamir’s scheme). We emphasise that the dealer keeps kpriv to
offer a mechanism for users to revoke and add authenticators
after the initial registration (discussed later).

The registration phase is executed once per user account.
The user can follow this procedure to register more accounts
with the same or other RPs. As each account uses a different
public/private key, users can reuse their set of authenticators
across RPs without parties being able to track their accounts.
Authentication phase. The purpose of this phase is to au-
thenticate the user to an RP through a set of (at least) t
of their authenticators. Our authentication protocol, shown in
Figure 4, starts by the user connecting to the RP through their
client device. Following similar steps to those employed by
FIDO, the RP checks whether there exists an Hk associated
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Fig. 3: Symbolon registration. Client data includes origin, challenge, and binding.

Authenticator 1...n (n, t) Mediator Relying party

username
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c︷ ︸︸ ︷
hash(clientdata)
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Hk and sign c

t, n, si = signki
(c)

Wait for t partial signatures si to
combine into a single signature

signature, challenge, binding

Retrieve kpub from
Hk and verify

signature using kpub

Fig. 4: Symbolon authentication. Client data includes origin, challenge, and binding.

with the user’s account. Only if this condition is satisfied,
the RP generates a random challenge and sends it along with
Hk to the client device’s browser (or App). This information
is forwarded to the mediator, which broadcasts the hash of
the challenge and ChannelId along with Hk and origin
over all its communication channels (e.g., USB or Bluetooth).
Upon receiving the broadcasted message, each authenticator
individually verifies whether (i) it has a share associated with
Hk and (ii) it received an origin that matches the one stored
alongside Hk. If both conditions are fulfilled, the authenticator
computes a partial signature on the hash of the challenge and
ChannelId and returns their partial signature, along with t
and n (if needed to compute the combination function) to the
mediator. Beyond the initial consent expressed on the browser,
our system requires the user to give consent on one of their
authenticators in order to authenticate to the RP. (We refer the
reader to Section VI for the details on how user consent is
achieved and enforced.) Subsequently, the mediator waits to

receive partial signatures from user’s authenticators during a
specified time window. Once this period expires, the mediator
compares the values of t from each of the user’s authenticators.
Provided all authenticators send the same t value and at least t
of them contribute, the mediator combines t partial signatures
into a single signature. (If inconsistencies are detected in the
information reported by the authenticators, the protocol is
aborted.) The signature is then sent along with the challenge
and ChannelId via the browser to the RP. Finally, the RP
retrieves kpub from Hk and verifies the received signature.
Maintenance phase. At any point, the user can modify their
set of authenticators by using the dealer. Symbolon allows the
user to execute some of these operations (all, if forgetfulness
on the authenticators can be enforced), without the user
needing to authenticate to the RP and update kpub.
Adding a new authenticator. Suppose the user buys a new
device and wants to add it as an authenticator for one of
their accounts. Initially, the user must enrol their device with



the dealer. Through the dealer’s GUI, the user selects the
account to which they want to add the device. At this point,
the dealer computes a new share for the device by using
kpriv and the stored randomness (by, for example, evaluating
the stored polynomial in a Shamir threshold scheme at the
point n+ 1). Then it sends the share along with Hk, origin,
t (if necessary) and the newly updated n + 1 to the new
authenticator. Subsequently, when the authenticators send the
parameters to the mediator to combine the partial signatures,
the mediator will use the highest value of n received (the
newly added authenticator will have the new parameter n+1,
whilst the others will have n). If the user plans to use
this new authenticator for multiple accounts, the dealer can
provide a new share for each of the accounts the user selects
simultaneously.
Revoking an authenticator. Users must also be able to revoke
authenticators if they get lost or stolen. Our revocation mech-
anism leverages techniques from proactive secret sharing [19]
to allow the revocation of up to n − t devices without
updating kpub. The user first indicates on their dealer which
authenticator they wish to revoke from which account. Next,
the dealer computes and sends new shares to each of the
remaining n − 1 authenticators; these new shares are a new
sharing of kpriv with fresh randomness. Upon receiving the
new share, the authenticators must erase the old share and
start to use the new share. As the revoked authenticator does
not receive the update, the share it stores is incompatible with
the new shares and can no longer be used to produce a valid
partial signature. To avoid revoked authenticators collaborating
and authenticating on behalf of the user, at most t − 1
authenticators can be revoked simultaneously. This ensures t
revoked authenticators will not have compatible shares and
will not be able to maliciously authenticate.

If we cannot enforce the remaining authenticators to erase
their old shares, we can remove at most t − 1 authenticators
before having to refresh the system and execute the registration
phase again, otherwise the t revoked authenticators could
collaborate and authenticate with their old shares.

Decreasing t. A user may want to decrease t if, for example,
they initially set t to be too high for their convenience. As
with adding and revoking an authenticator, this change can be
made without updating the kpub on the RP. To do this, the
user indicates on the dealer that they wish to reduce t to, say,
t − 1. The dealer computes a new share using kpriv and the
stored randomness and broadcasts this share along with Hk to
all authenticators in the system. Every authenticator stores this
share alongside its other share, and reduces its stored value of
t. When the user authenticates, at least one authenticator must
submit a partial signature using the additional share as well
as a partial signature using their original share. Thus, t − 1
devices know t shares between them (their original t−1 shares
plus the additional share) and so can authenticate.

Increasing t. If we can enforce the authenticators forgetting
old shares, increasing t can be achieved by the dealer simply
re-sharing kpriv with new randomness, sending new shares to
all authenticators, and all authenticators deleting past shares.

If we cannot enforce authenticators erasing old shares, the
user must execute the registration phase again and generate a
new key pair with the new t. This is because, if we cannot
enforce deletion of past shares, there is nothing to stop the
authenticators using past shares, related to the lower threshold,
to authenticate, thus bypassing the increased threshold.

VI. ENFORCING USER CONSENT

So far Symbolon relies on a straightforward threshold signa-
ture scheme where all authenticators contribute equally to each
user authentication instance. Now, we adapt it to ensure the
user has actively granted consent to the authorisation on some
set of authenticators, e.g., by pressing a button. We define a
subset of authenticators that are able to register user consent
and adapt our use of threshold signatures to ensure that some
number of those devices (a ‘consent threshold’ tc) participate
in the protocol. Rather than simply distributing a signing key
amongst t authenticators as we did in Section V, we share the
signing key using iterative threshold schemes (first done by Ito
et al. [20]). In order to use such constructions to achieve our
desired access structure, we first split the signing key using a
(2, 2)-threshold scheme, then distribute the first share amongst
consentful authenticators, and use a (t, n)-threshold scheme
to distribute the second share amongst all authenticators. In
practice, this works as follows.
Setup phase. The user enrols their devices with the dealer
as in Section V, but the dealer additionally learns whether
each device is consentful (i.e., can register user consent). This
information is stored. The dealer then initiates registration
with an RP and proceeds as before until kpriv is distributed.
Rather than sharing kpriv into n shares, the dealer computes
the following steps:
• Distribute kpriv using a (2, 2)-threshold scheme. Denote

the resulting two shares of the key output as kc and
ka. (For example, if an RSA signature is used, a (2, 2)-
threshold scheme can be executed by generating kc and
ka such that kc + ka = kpriv mod φ(N), where N is
the RSA modulus, as in Section 3 of [9].)

• Distribute kc amongst the consentful authenticators ac-
cording to the parameters (tc, nc), where nc is the total
number of consentful authenticators and tc is the ‘consent
threshold’ (i.e. the number of authenticators the user must
register consent on, with tc chosen by the user such that
1 < tc ≤ t, we anticipate tc = 1 in most cases). Both kc
and the randomness generated to distribute kc are stored
by the dealer.

• Distribute ka amongst all n authenticators according
to the parameters (t, n). Both ka and the randomness
generated to distribute ka are stored by the dealer.

• The dealer sends each authenticator its share of ka, Hk,
origin, t and n. If the authenticator is consentful, it is
also given a share of kc and parameters tc, nc.

• As before, the dealer stores kpriv , and now also ka and kc
(along with the randomness used to distribute each value).

Authentication phase. Following the registration procedure,
the user’s authenticators first receive a broadcasted message



corresponding to a stored origin and Hk, then sign the
message with their share of ka and return their partial sig-
nature along with the necessary parameters. In addition, any
consentful authenticators will (if possible) display a message
to the user requesting consent. If consent is registered, the
consentful authenticator will send their partial signature using
their share of kc along with any necessary parameters (tc, nc)
to the mediator, and a flag marking this as a consentful partial
signature. Once the mediator receives sufficiently many partial
signatures (t partial signatures and tc partial signatures flagged
as consentful), the mediator will:
• Combine all consentful partial signatures to create a

signature on the message using kc.
• Combine all the remaining (non-consentful) partial sig-

natures to create a signature on the message using ka.
• Combine the two signatures to create a complete signa-

ture on the message.
• Pass the signature to the browser, who passes it to the RP.

Note this requires the mediator to be adapted, but the trust
assumptions on the mediator are unchanged. The RP will
verify the signature exactly as before.
Maintenance phase. As in Section V, the user can use the
dealer to add and remove devices and decrease t. If the user
wishes to add a new device as an authenticator, the dealer
can generate a new share of ka and, if it is consentful, a new
share of kc. If the user wishes to revoke a (non-consentful)
authenticator, the dealer can re-distribute ka and leave kc
unchanged. If the user wishes to revoke a consentful device,
the dealer can generate fresh values for ka and kc, and then re-
share them according to the decreased n. To decrease either t
or tc, the dealer can generate a new share of ka or kc and
broadcast the new share to all authenticators or consentful
authenticators respectively. As before, an increase of either t
or tc requires kpriv and the corresponding kpub to be updated.

VII. IMPLEMENTATION

This section details the design considerations we explored
in choosing how to implement the dealer. We also evaluated
the feasibility of our design by implementing a proof of
concept Symbolon authenticator and evaluating it against an
unmodified WebAuthn RP both in terms of performance and
compliance with the FIDO2/WebAuthn standards (see Table
I).

As discussed in Section IV, the dealer must be secure
since it holds the private key used to generate shares for
Symbolon authenticators. However, unlike a traditional FIDO2
authenticator, the dealer is decoupled from the authentication
phase and is only needed during less frequent operations like
registration and changing the set of authenticators. As a result,
the dealer is not required to be as highly available as the
authenticator devices. This gives implementors options in how
they secure the dealer when not in use. We consider two ap-
proaches that benefit different user profiles and requirements.
Dedicated local device. One possible realisation of the dealer
is in the form of a physical device designed solely for this
purpose. With this approach, the dealer can be kept offline

in a secure location when not needed to minimise exposure
to remote and physical adversaries. A physical device also
enables pairing with new devices over short range media. For
instance, a device with I/O interfaces such as a smartphone,
Raspberry Pi with a UI shield, or purpose built IoT device can
give user feedback on the set of enrolled devices and supports
more secure pairing modes with user confirmation.

For dealers without sufficient I/O interfaces to perform reg-
istration and device management on their own, an intermediary
device may be needed. For example, a dealer implemented
as a hardened USB token can be plugged into a laptop with
networking capabilities. Since the dealer would then depend
on the intermediary device, care must be taken to protect the
communication paths between the dealer and authenticators.
If the intermediary is not trustworthy, one option would
be to leverage available hardware security capabilities like
Trusted Execution Environments (TEE) in combination with
any solution that allows the creation of a secure communi-
cation channel between I/O peripherals and the TEE [13]).
This enables users to securely interact with the secure USB
token through the I/O interfaces of the (potentially malicious)
laptop. Another option would be to use trusted computing
capabilities that allow the dealer to verify the intermediary
before exposing its services. For example, a Trusted Platform
Module in combination with secure boot and an attestation
framework can report the current configuration to the dealer
for verification.

If it is anticipated the dealer will be unavailable for an
upcoming registration phase, the dealer could generate and
distribute shares of a public key kpub and a handle amongst the
authenticators in advance. When the user then wants to register
to an RP when the dealer is unavailable, t authenticators could
collaboratively act as the dealer and register with the RP by
constructing and signature on (c, kpub, Hk), as in Figure 3.

Another alternative if the dealer is unavailable is to allow
for a ‘throwaway’ dealer, whereby an ephemeral yet trusted
entity plays the role of the dealer and, after completing the
registration phase with the RP, either deletes the signing
key (forfeiting the ability to change the set of authenticators
without updating the public key) or encrypts the signing key
under a public encryption key belonging to the permanent
dealer before then deleting the signing key.
Cloud service. Alternatively, users may desire a dealer with
higher availability, which could be achieved by implementing
the dealer as an online service. A cloud service could be
realised in several ways. At the most basic level, the dealer’s
secrets could be stored securely in an online hardware security
module (HSM) and only migrated temporarily to a trusted
device when needed. A more convenient option would be to
host the dealer’s logic in a cloud as well. Tools like cloud-
based HSMs that implement dealer logic or TEE-enabled
Infrastructure as a Service (IaaS) solutions [1] eliminate the
need to trust cloud providers or the underlying hardware and
software where their workloads are executed. One inherent
limitation of using a cloud service as a dealer is that users must
authenticate to the cloud service. Users may opt to use layered



TABLE I: Comparison of registration and authentication duration for both implementations of standard FIDO2 and Symbolon
authenticators. Timings are mean values in ms with 95% confidence intervals for a sample size of 100.

Protocol phase FIDO2 a Symbolon
(t = 2, n = 3) a Symbolon

(t = 3, n = 4)
(i) FIDO2 client 9.6± 1.0 11.8± 0.9 9.9± 1.8
(ii) Public key selection 14.2± 0.4 15.6± 0.4 14.8± 0.9Registration
Total client side 23.8± 0.6 27.3± 0.6 24.7± 1.0
(i) FIDO2 client 10.0± 0.5 10.1± 2.6 10.8± 1.2
(ii) Signature generation 6.6± 0.2 28.1± 1.3 30.1± 0.8
(iii) Mediator 19.3± 0.5 18.8± 0.8
(iv) Authenticator 7.7± 0.3 9.2± 0.4

Authentication

Total client side 16.6± 0.4 38.2± 1.4 40.9± 0.8

MFA authentication schemes even if they are inconvenient as
this is a less frequent, but sensitive task.
Recovery from loss. A dedicated dealer device may be lost,
and a cloud service may become inaccessible (e.g., if the user
loses their cloud credentials). If this happens, the user has to
assert their identity to the RP using other means (e.g., calling
the help desk), to revoke their dealer and enrol a new one.

VIII. ANALYSIS

Here, we evaluate the properties offered by Symbolon,
referencing the requirements identified in Section IV-B. Next,
we use ProVerif to formally verify the security properties our
threshold approach provides, then evaluate our system in an
evaluation framework.
Threshold-based security (Sec1). Symbolon ensures users
can authenticate to RPs if and only if they have (at least)
t devices and give explicit consent on (at least) one of these
devices. We prove this using ProVerif in Section VIII-A.
Authenticator privacy (Pri1). In Symbolon, RPs only need
to store a single public key for each user account. Hence,
RPs cannot distinguish between Symbolon and other public-
key-based cryptographic protocols such as FIDO2. Another
advantage of Symbolon is that it is fully implemented on
the client side, which allows for concealing its underlying
parameters from RPs. This includes, for example, the number
of authenticators the user employs, the authenticators’ capabil-
ities and how often devices are added to or revoked from the
list of authenticators. All this information can reveal sensitive
information, which could allow the linkability of a user’s activ-
ity between RPs. In addition, RPs cannot distinguish between
sets of authenticators employed by the user to authenticate at
different times. This is particularly relevant when the set of
authenticators can disclose sensitive information such as their
location at a given time.
Flexibility (Pra1). Symbolon allows users to login to RPs
from a client device using any set of t authenticators, making
the scheme resilient to attacks while providing flexibility to
users. This is a desirable feature since users can specify dif-
ferent threshold policies depending on the RP they authenticate
to, and can still login to RPs even if they forget or lose n− t
of their authenticators.
User control (Pra2). The process by which devices are added
to or revoked from the list of authenticators is done locally
without requiring involvement of RPs. This is also true for

the selection of consentful authenticator(s) on which the user
performs an action to consent to authenticating.
Authenticator set flexibility (Pra3). In Symbolon, adding or
removing authenticators does not require users to update the
public key stored by RPs. This feature is particularly useful
when an authenticator is used for authenticating to several RPs,
since it allows revocation without requiring the user to login
into each RP and provide each with a new public key.
Compatible with FIDO2/WebAuthn (Pra4). Since Sym-
bolon works by allowing a set of authenticators to perform
the role of a FIDO2/WebAuthn authenticator, it is compat-
ible with browsers and RPs built for authentication using
FIDO2/WebAuthn.
The FIDO2/WebAuthn registration and authentication flows
are identical from the server and browser perspective, as the
signatures are computed by a threshold of authenticators and
combined using threshold cryptography on the client side.
We demonstrated this in our implementation (Section VII),
where the mediator process emulates a USB device acting as
a FIDO2/WebAuthn authenticator.

A. ProVerif analysis

ProVerif is a tool which allows one to model a cryptographic
protocol and check its security properties. Protocol participants
are defined in a process language which models input and
output on channels, and computations on data. Cryptographic
operations are defined using an equational theory, which is
expressive enough to allow one to define threshold-based
cryptography of the kind that Symbolon requires. We verify
our core security property Sec1. Here, we briefly outline our
method and results; more details are given in Appendix C in
the full version of our paper [4].
Generating model instances. Symbolon is parameterised
by four parameters: n (the number of authenticators), nc
(the number of authenticators capable of recording the user’s
consent), t (the threshold number of authenticators required to
authenticate, and tc (the number of those that are required to
have obtained the user’s consent). Unfortunately, the ProVerif
language can only model particular instances of Symbolon,
for example the instance (n, nc, t, tc) = (5, 2, 3, 1).

To overcome this limitation of ProVerif, we wrote a Python
script to generate all the models for n ranging from 2 to 8.
Models must satisfy n ≥ nc, t ≥ tc, n > t and nc ≥ tc; the
number of such models for each value of n is as follows:



n 2 3 4 5 6 7 8
no. of models 2 8 20 40 70 112 168

Note that we do not need to prove the properties for all n; we
focus on the values of n that are reasonable to choose.
Modeling details. We declare a process Dealer, which creates
the secret key and derives from it the corresponding public
key, as well as n shares k1, . . . , kn and nc ‘consentful’ key
shares ck1, . . . , cknc

. It distributes ki to processes representing
the signers (1 ≤ i ≤ n), and additionally distributes ckj
to the consentful signers (0 ≤ j ≤ nc). Authenticators
sign the challenge from the RP using their share ki, and
their key ckj if they have one. The threshold signatures
are encoded as follows. Each device constructs its signature
using its share(s), and then the function “combine” aggregates
the partial signatures into the complete one. This complete
signature is deemed valid (i.e., will be successfully verified
by the RP) if the combined signature has t regular signature
shares and tc consentful ones, i.e., if one of the following
“reduction rules” results in true:

reduc verify(pubkey, m,
combine(sign(ki1 ,m), . . . , sign(kit ,m), csign(ckj1 ,m),

. . . , csign(kjtc ,m)) = true

where the indices i1, . . . , it are all distinct and j1, . . . , jtc are
all distinct, and the key shares ki and ckj are derived from
a dealer master key. This means the arity of the combine
function, and the number of reduction rules of this form,
depend on the values of n, nc, t, tc. This is handled by our
Python script that generates all the models.

We then use ProVerif to check that the RP will accept
only signatures that have been made by a valid cohort of
authenticators. This is achieved by the process RelyingParty
declaring an event “authorised(c)” if it has accepted a signature
on the challenge c, and Signer processes declaring events
“signed(c)” and “csigned(c)” representing their ordinary and
consentful signatures respectively. Then the query to verify at
least t signers have signed is:

authorised(c) ⇒
∨

I⊆{1,...,n}
|I|=t

∧
i∈I

signed(ki, c)

and the query to verify tc of them are consentful is similar.
Additional checks. We want to verify that, within a particular
model for some n, if the number of authenticators is increased
or decreased (because new devices are enrolled or removed),
the authentication property still holds. To encode this in
ProVerif, we let the attacker choose if and when each of
the n signing keys are enabled. The attacker can enable or
disable each of them at will, and thus fully control adding
and removing signers (up to the limit of n signers in total).
Generating the models and running ProVerif. We generated
all 420 ProVerif models for the values 2 ≤ n ≤ 8 mentioned
in the table above. Some of the model text files are more than
1MB, demonstrating the power of our method (such a model
would be impossible to write by hand). We ran ProVerif 2.00
on all 420 models up to n = 8, and all the properties were

successfully verified. Small models are verified in seconds;
some larger ones took more than 30 hours. Our Python
program for generating ProVerif code, and some examples of
the generated ProVerif, are available at [4].
Conclusions. We verified the Sec1 property from Section IV-B
for all reasonably-sized models (up to n = 8).

IX. RELATED WORK

Attacks against hardware tokens. Recently, multiple side
channel attacks have been proposed that allow attackers with
physical access to hardware tokens to efficiently extract their
keys or bypass local authentication. For example, Oswald et
al. demonstrate a practical, non-invasive side channel attack on
Yubikey2 which extracts the AES key in one hour of access
to the device [26]; Nemec et al. devised an attack to retrieve
the private RSA key in Yubikey 4 devices [24]; Boneh et al.
use hardware faults to break RSA signatures [8]; and Yen et
al. demonstrate a fault attack on modular exponentiation [34].
These attacks show it is difficult to protect hardware tokens
executing cryptographic functions from attackers with physical
access. In this work, we advocate for the use of threshold
cryptography across multiple authenticators to counter inher-
ent security risks that emerge when hardware tokens utilise
cryptographic keys. This is an advantage of threshold cryp-
tography highlighted in the NIST standardisation process [9].
Existing solutions. Google’s Titan Security Keys (TSK) are
an authentication factor that protects users against phishing
and MiTM attacks. They rely on public-key cryptography and
contain a hardware chip resistant to physical attacks [21].
TSKs are compatible with browsers and RPs that support
FIDO and unfortunately, they suffer from the same limitations
as FIDO in terms of availability and security (see Section I).
Pico, presented by Stajano et al.’s, is a dedicated hardware
token whose initial goal was to eliminate passwords through
public-key cryptography [30]. The authors propose to keep the
Pico ‘locked’ when the user is not present by encrypting its
memory with a key that is secret shared among a set of other
devices worn by the user (called Picosiblings) [32]. Only if a
certain number of Picosiblings are nearby can Pico reconstruct
the key and decrypt its memory. However, the authors decided
to avoid public-key cryptography in their final version of Pico
due to deployability issues [31], which made Pico a password
manager implemented in a hardware token, and therefore
does not replace passwords. Pico is still lacking a system
specification and a full implemented prototype. Symbolon, like
the original Pico idea, relies on secret sharing, but is based
solely on public-key cryptography and does not require the
client device to store or reconstruct any secrets.
n-Auth, introduced by Peeters et al., is a mobile authentication
solution based on public-key cryptography [27]. To mitigate
attacks on a stolen n-Auth device, the keys are encrypted
on the device using a 4-digit PIN known to the user. The
user’s PIN is verified online using zero-knowledge techniques
by a server that rate limits PIN entries, mitigating brute-
force attacks and avoiding the server learning the PIN. If PIN
verification is successful, the server sends some information



so the n-Auth device can compute short-lived symmetric keys
to decrypt the private keys stored. Unlike Symbolon, n-Auth
does not offer any mechanism to recover from loss and is only
partially resilient to theft, due to learning (via shoulder surfing
or by using malware) or guessing a 4-digit PIN is not out of
reach of many adversaries, despite the server’s rate limiting.
Shatter leverages threshold cryptography to distribute private
signing keys of their apps amongst a set of their devices [5].
Shatter must be installed on all the user’s devices and can
be run without modifying the apps. When a cryptographic
operation must be performed, Shatter queries each of the user’s
devices to obtain their contributions to the operation; devices
are configured either to conduct the operation automatically
or to first ask the user to consent.

Shatter takes a different architecture approach to Symbolon
and requires the signing key to be reconstructed on one of
the authenticators for maintenance operations (i.e., adding
or removing authenticators). Because this reconstruction can
happen on any of the authenticators, every authenticator must
be trusted to reconstruct, re-distribute and then delete the
key. This is a large trusted computing base, especially as
the authenticators can be generic user devices and may have
large amounts of software on them. If the authenticator re-
constructing the key is infected with malware, the malware
could learn the key, despite compromising only a single au-
thenticator. In contrast, Symbolon takes a centralised approach
to maintenance by introducing the dealer, which stores the
key rather than having authenticators reconstruct the key. This
significantly reduces the trusted computing base compared to
Shatter, which we think unrealistically large, and protects our
system so malware on fewer than t of the user’s authenticators
cannot learn the signing key, as is possible in Shatter.

Shatter’s solution to user consent is also different to ours.
In Shatter, each device is individually configured to either
contribute to the signing operation automatically, or only after
consent is received. This may result in the user being required
to consent on every device contributing to the authentication, a
potentially burdensome activity. In contrast, Symbolon defines
a consent threshold tc, in addition to t, and distributes ‘con-
sentful shares’ (shares of kc, to be used only when user consent
is registered). This key distribution cryptographically enforces
that t primary shares and tc consentful shares are required
in order for a valid signature to be produced. Furthermore,
this distribution enables the user to choose which tc devices
are most convenient for them to consent on per authentication
session. Thus, we extend the flexibility offered by threshold
cryptography to enforcing user consent, rather than defining it
per-device as Shatter does.

X. CONCLUSIONS

We presented Symbolon, a multi-device-based user authen-
tication solution which requires a threshold number of users’
authenticators to be present, and for the user to provide consent
on (at least) one of their authenticators, in order for the authen-
tication to be successful. Our solution is fully implemented
on the client side and so is compatible with relying parties

that already employ public key based challenge response
user authentication systems, such as FIDO2/WebAuthn. After
presenting our solution, we analysed its security, privacy and
deployability. We found Symbolon offers enhanced security
properties over single factor FIDO: it inherits many security
properties from FIDO, but also it is resilient to theft of up to
t− 1 devices. Our solution also provides some other benefits
as authenticators can be added and removed by leveraging
the dealer (a trusted entity used for management of the
system that is owned and controlled by the user) without the
user having to contact each relying party on an account-by-
account basis. Symbolon offers multiple privacy benefits to the
user and lets them choose, implement and enforce their own
policy without having to rely on the relying party. Finally, we
implemented our solution as an extension to FIDO/WebAuthn,
and presented measurements to demonstrate its feasibility. In
our future work, we will explore the use of shared devices like
printers, networking equipment, and common infrastructure
that may provide additional context during authentication.
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J. Häikiö, “N-Auth: Mobile Authentication Done Right,” in Annual
Computer Security Applications Conference (ACSAC), 2017, pp. 1–15.

[28] A. Shamir, “How to share a secret,” vol. 22, no. 11, 1979, pp. 612–613.
[29] V. Shoup, “Practical threshold signatures,” in International Conference

on the Theory and Applications of Cryptographic Techniques (Euro-
crypt), 2000, pp. 207–220.

[30] F. Stajano, “Pico: No More Passwords!” in International Workshop on
Security Protocols, 2011, pp. 49–81.

[31] F. Stajano, B. Christianson, M. Lomas, G. Jenkinson, J. Payne,
M. Spencer, and Q. Stafford-Fraser, “Pico Without Public Keys,” in
International Workshop on Security Protocols, 2015, pp. 195–211.

[32] O. Stannard and F. Stajano, “Am I in Good Company? A Privacy-
Protecting Protocol for Cooperating Ubiquitous Computing Devices,”
in Security Protocols XX, 2012, pp. 223–230.

[33] D. Stinson and R. Strobl, “Provably secure distributed Schnorr signatures
and a (t, n) threshold scheme for implicit certificates,” in Australasian
Conference on Information Security and Privacy (ACISP), 2001, pp.
417–434.

[34] Y. Sung-Ming, S. Kim, S. Lim, and S. Moon, “A countermeasure against
one physical cryptanalysis may benefit another attack,” in International

Conference on Information Security and Cryptology. Springer, 2001,
pp. 414–427.

[35] W3C, “Web Authentication: An API for accessing Public Key
Credentials Level 1,” March 2019, [Online; accessed 01-May-2020].
[Online]. Available: https://www.w3.org/TR/webauthn/

https://fidoalliance.org/
https://www.w3.org/TR/webauthn/

	Introduction
	Background
	Motivating example
	System design
	Architecture
	Design requirements
	Threat model and assumptions
	Threshold parameter choices

	Protocol
	Enforcing user consent
	Implementation
	Analysis
	ProVerif analysis

	Related work
	Conclusions
	References

