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Abstract. The IEEE 802.11 standard defines a 4-way handshake
between a supplicant and an authenticator for secure communication.
Many attacks such as KRACK, cipher downgrades, and key recovery
attacks have been recently discovered against it. These attacks raise the
question as to whether the implementation violates one of the required
security properties or whether the security properties are insufficient. To
the best of our knowledge, this is the first work that shows how to answer
this question using formal methods. We model and analyse a variety of
these attacks using the Tamarin prover against the security proper-
ties mandated by the standard for the 4-way handshake. This lets us
see which security properties are violated. We find that our Tamarin
models vulnerable to the KRACK attacks do not violate any of the
standard’s security properties, indicating that the properties, as spec-
ified by the standard, are insufficient. We propose an additional security
property and show that it is violated by systems vulnerable to KRACK
attacks, and that enforcing this property is successful in stopping them.
We demonstrate how to use Tamarin to automatically test the adequacy
of a set of security properties against attacks, and that the suggested
mitigations make 802.11 secure against these attacks.

Keywords: IEEE 802.11 · WPA2 · 4-way handshake · Group key
handshake · KRACK attack · Downgrade attack · Tamarin prover ·
SAPiC

1 Introduction

The IEEE 802.11 standard [3] defines a 4-way handshake as the key management
protocol. It involves exchanging four messages between an access point (AP) and
a client, or equivalently in 802.11 terminology, an authenticator and a supplicant.
These exchanges enables parties to compute and share session/group keys for
future unicast/multicast secure communication over the wireless medium. It also
provides mutual authentication and session-key agreement.
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The 4-way handshake was proven formally secure [13,14], and had no attacks
published on it until recently, when the so-called Key Reinstallation Attack
(KRACK) was uncovered by Vanhoef and Piessens in 2017 [22]. This attack
exploits design and/or implementation flaws in the 4-way handshake by rein-
stalling already in-use session or group keys. As a consequence, the adversary
can break the security guarantees, even with a secure protocol for data confi-
dentiality, such as the AES-based Counter Cipher Mode with Block Chaining
Message Authentication Code Protocol (AES-CCMP), and decrypt or replay
messages [22].

Moreover, various 4-way handshake implementations have been found to be
vulnerable to downgrade attacks in widely used routers [20], including models of
Cisco and TP-Link. These attacks mostly affect the AP, when both the AP and
the client support AES-CCMP and Temporal Key Integrity Protocol (TKIP)
cipher suites. Although the client is always likely to choose the stronger AES-
CCMP cipher suite over TKIP, an adversary can trick the AP into using TKIP.

We start our work by building models of 4-way handshake using the security
protocol verification tool Tamarin [18]. Our modelling focuses on the subset
of functionalities and messages for successful execution of the attacks on 4-way
handshake, and not building a complete model of the 802.11 state machines, thus
enabling a Dolev-Yao adversary [11] to exploit the vulnerabilities. We show that
Tamarin can find the attacks mentioned above, and our models can formally
verify that the suggested fixes to the vulnerabilities work as intended.

The IEEE 802.11 standard defines a list of security properties suggesting that
it will lead to a secure 4-way handshake (e.g., freshness of session keys, secrecy
of session/group keys, authentication). The existence of the attacks described
above raises serious questions about these security properties: Does the IEEE
802.11 specification or some implementation violate these properties, leading to
these attacks? Or are these security properties insufficient to guarantee security?
If so, what security properties would be sufficient to stop the attacks? In this
paper we show how these questions can be formally answered using Tamarin.

We encode the security properties from the standard using Tamarin, and use
the tool to see if any of these security properties are violated in the presence of
the attacks. We find that the weaknesses that lead to the KRACK attacks [22]
do not violate any of the required properties. This suggests that the security
properties, as defined in the standard, are insufficient. We then propose new
security properties, and by imposing them as restrictions in Tamarin, we show
that ensuring these new suggested properties is enough to stop these attacks.

We remark that our approach here is different from the normal use of formal
methods for checking security protocols, which consists in defining a model of a
protocol with its security properties to check for the existence of attacks. Instead,
we use our models and known attacks from previous works to check if the security
properties proposed in the standard are enough to ensure the security of the
protocol. Where they are not, we propose a new security property that could be
added to the standard, encode it in Tamarin, and use the tool to automatically
show that it would be enough to stop a class of attacks, such as KRACK.
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Fig. 1. IEEE 802.11 standard 4-way handshake and group key handshake

The main contributions of this work are:

– Presenting Tamarin models of the 802.11 4-way handshake that exhibit sev-
eral attacks [20,22], and formally showing correctness of suggested fixes.

– Showing how to use Tamarin to encode the security properties defined in
the standard, in order to automatically check if the weaknesses that causes
any attack violate any of these properties. We show that for the KRACK
attacks they do not, indicating that the current list of security properties in
the standard is insufficient.

– Proposing a set of new security properties to be added to the standard, and
use Tamarin to show how systems with this security property are not vul-
nerable to the attacks.

2 Preliminaries

The IEEE 802.11 Standard. This standard defines protocols for data con-
fidentiality, mutual authentication, and key management, providing enhanced
security at the medium access control (MAC) layer in wireless networks [3].

The original version of the standard [1] appeared in 1997, and defined the
Wired Equivalent Privacy (WEP) security algorithm, based on the weak RC4
cipher. The vulnerable WEP was replaced with Wi-Fi Protected Access (WPA),
as an intermediate measure, before the IEEE 802.11i amendment (WPA2) [2]
was released in 2004. WPA includes the use of a message authentication code
algorithm, coined as Message Integrity Check (MIC), as well as the TKIP cipher
suite, which allows a more secure per-packet key system compared to the fixed
key system used by WEP. The 802.11i amendment [2] and the current version of
the standard [3] requires support of even more secure algorithm suites, discussed
below. We summarise here the four stages of the 802.11 key generation process.
We refer the reader to [3] for the full details.
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– Network Discovery. In this stage, the clients search for available networks
along with their parameters. Clients can either actively send and receive
probes, or just observe the broadcast beacons passively to learn the sup-
ported cipher suites (e.g., TKIP and/or AES-CCMP), and version of WPA.
This set of parameters is called a Robust Security Network Element (RSNE).

– Authentication and Association. In this step, the Pairwise Master Key
(PMK) is derived at both ends. In WPA2-Personal mode, the PMK is derived
using a Pre-Shared Key (PSK) with a length of 8 to 63 characters, the Service
Set Identifier (SSID), and the SSID length, while in WPA2-Enterprise mode,
it is derived from a key generated by an Extensible Authentication Protocol
(EAP), e.g., using 802.1X authentication [4]. The PMK is used later in the
temporal keys generation. However, the real authentication is carried out
during the 4-way handshake. The client and the AP accept or reject the
association request based on the AP agreeing to the client’s choice of RSNE.

– 4-Way Handshake. The 4-way handshake takes place to agree on a fresh ses-
sion key, namely the Pairwise Transient Key (PTK), and optionally the Group
Temporal Key (GTK); see Fig. 1. PTK derivation [3, Sec. 12.7.1.7.5] uses the
shared PMK, a supplicant nonce SNonce, an authenticator nonce ANonce, and
both MAC addresses. The PTK can be refreshed after a fixed time inter-
val, or at request from either party, by executing another 4-way handshake.
The PTK is split into a Key Confirmation Key (KCK), Key Encryption Key
(KEK), and Temporal Key (TK). The KCK and KEK protect handshake
messages, while the TK protects data frames through the data confidential-
ity protocol. The 4-way handshake also transports the current GTK to the
supplicant. Every message in the 4-way handshake follows the layout of EAP
over LAN Key frames (EAPOL-Key) [3], and we use Msgn to denote the
nth message in the handshake. The authenticator starts the handshake and
increments the replay counter on every message sent. The supplicant replies
to messages using the received replay counter.

– Group Key Handshake. The standard allows for refreshing the GTK reg-
ularly, using a group key handshake, to ensure that only active clients are in
possession of it. This process is initiated by the authenticator sending group
message 1, denoted GrMsg1, to all clients. The clients reply, in turn, with
group message 2, GrMsg2, with the received replay counter; see Fig. 1.

– Data Confidentiality and Integrity Support. The standard defines sev-
eral data confidentiality suites such as AES-CCMP and AES-GCMP as
mandatory, but also TKIP for backwards interoperability with WPA [3]. All
suites include message integrity of the data frames. For brevity, we use the
same notation as in [22] to denote an encrypted frame Encnk (), being n the
nonce (replay counter) in use, and k the key, i.e., PTK for unicast and GTK
for broadcast messages.

We note that our focus is mainly on the attacks to the 4-way handshake. There-
fore, the authentication and association stages are out of the scope of this paper,
and we will hereafter assume that the PMK is already available at both ends.
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Analysing Security Properties. The IEEE 802.11 standard lists five proper-
ties, labelled from a) to e), for the 4-way handshake [3, Sec. 12.6.14]. He et al. [14]
aggregate four out of five of these security properties into session authentica-
tion, which can only be asserted when key secrecy is guaranteed. They formalise
authentication in the cryptographic model using the notion of matching conver-
sations [6], guaranteeing that the two entities have consistent views of the pro-
tocol runs. Using Protocol Composition Logic (PCL) [10], they verify that such
properties hold. However, PCL has been subject of criticism by some authors
such as [8], as it allows one to verify authentication protocols that rely on signing,
but not those relying on decryption. More disconcertingly, there are no means
to establish preceding actions in a thread. In contrast to matching conversations
used in [14], we use standard notions of authentication from Lowe [17], e.g.,
mutual, injective agreement, to verify the security properties. Moreover, in their
approach using PCL [14], the authors confirm that all their proofs were con-
structed manually. On the other hand, our verification using Tamarin is among
the first attempts to verify security properties of 802.11 automatically.

Concurrent to our work, Cremers et al. [9] have also developed a detailed
Tamarin model of the WPA2 protocol capable of detecting KRACK attacks,
among others. Though yet to appear their work, as ours, verifies the effectiveness
of the patched protocol, post-discovery of the KRACK attacks, in stopping all
the attacks, including the KRACK attacks. However, our goals are different; our
focus is on developing a framework to test the adequacy of the required security
properties in spotting the attacks. Therefore, we only model the functionalities
required to demonstrate the attacks (KRACK and downgrade), rather than the
whole protocol.

The Tamarin Prover and SAPiC. Tamarin is a state-of-the-art tool for
symbolic verification and automated analysis of security properties in protocols,
under the Dolev-Yao model [11], with respect to an unbounded number of ses-
sions. There are similar tools for symbolic verification, most notably ProVerif [7],
where protocols are specified using applied pi-calculus [5]. In our approach, we
have decided to implement our models with Tamarin, since it can handle pro-
tocols with unrestricted global states and unbounded sessions. Sometimes, how-
ever, the user may have to provide auxiliary lemmas for complex protocols in
order to help the tool terminate. Most importantly, Tamarin has the restric-
tion feature, which allows a property to be enforced on the traces. This feature is
essential for our work, to verify if enforcing particular security properties would
stop an attack. To the best of our knowledge, other tools such as ProVerif do
not offer this feature and hence are not suitable to our approach.

More concretely, we have developed our models using the SAPiC front-end,
which allows to specify Tamarin models using processes. We provide a brief
overview of these tools, but we refer the reader to [16,18] for further refer-
ence. SAPiC parses descriptions of protocols in an extension of the applied pi-
calculus [5], called stateful applied pi-calculus, and converts them into (labeled)
multiset rewriting rules (MSRs) to be analysed by Tamarin.
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Fig. 2. SAPiC syntax (a ∈ FN , x ∈ V, m, t ∈ T , F ∈ F)

Figure 2 describes the SAPiC syntax. The calculus comprises an order-sorted
term algebra with infinite sets of publicly known names PN , freshly generated
names FN , and variables V. It also comprises a signature Σ, i.e., a set of function
symbols, each with an arity. The messages are elements of a set of terms T over
PN , FN , and V, built by applying the function symbols in Σ.

The set of facts is defined as F = {F (t1, . . . , tn) | ti ∈ T , F ∈ Σ of arity k}.
The special fact K(m) states that the term m is known to the adversary. For
a set of roles, the Tamarin MSRs define how the system, i.e., protocol, can
make a transition to a new state. An MSR is a triple of the form [L] −[A]→ [R],
where L and R are the premise and conclusion of the rule, respectively, and A
is a set of action facts, modelled by SAPiC events. For a process P , its trace
Tr(P ) = [F1, . . . , Fn] is an ordered sequence of action facts generated by firing
the rules in order.

Tamarin allows to express security properties as temporal, guarded first-
order formulas, modelled as trace properties. The construct F@i states the pres-
ence of the fact F at time point i. A property can be specified as a lemma to
be tested if it holds or not, and enforced as a restriction, while testing the other
lemmas in presence of this property [18].

3 Methodology for Analysing Security Properties

We summarise our process of analysing the security properties in Fig. 3. We start
by building a model of a protocol with known attacks in Sect. 4. Subsequently, we
verify all the security properties listed in the standard to see if they are satisfied
or violated in Sect. 5. A violated security property can then be enforced as a
restriction to check if it would stop the attacks, indicating an implementation
issue. Alternatively, if all the security properties are verified, but the attack still
exists, we can conclude that the security properties required by the standard are
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Fig. 3. Flow diagram for verifying security properties, identifying new ones, and fixing
the model against an attack

insufficient and need to be augmented. After analysing the attacks, we propose
a security property corresponding to the attack, shown below in Sect. 6. To test
that the new property is successful in stopping the attack, we first place it as a
lemma in the model and expect it to be falsified. Then, we enforce this property
as a restriction in the model, expecting that it stops the attack. This helps us to
verify if the attack corresponds to the new proposed security property. Finally,
we execute the protocol model after fixing the vulnerability, to verify the absence
of the attack. The verification of our newly proposed security properties and the
fixes proves both the adequacy of the final set of properties, and correctness of
the fixes in the protocol. We discuss this in Sects. 6 and 7.

4 Formal Models of the 802.11 4-Way Handshake Attacks

We present some variants of the KRACK attacks, exploiting nonce reuse [22],
and a downgrade attack from [20]. Along with the attack steps, we also highlight
some relevant details of our SAPiC models for the attacks and for the security
lemmas corresponding to each one. Some of the details, e.g., MIC, the usage
of cipher suites in encryption, or some events are omitted here due to space
constraints, but they can be easily understood from the context. The complete
source for the models and mechanised proofs are available at [19].

4.1 KRACK Attacks

The KRACK attacks exploit vulnerabilities in the 802.11 key management pro-
tocols [22]. An adversary tricks a victim into reinstalling an already used key
by dropping, delaying or altering the order of the 4-way handshake messages
between two honest principals. On every key installation, the standard mandates
that the replay counter (nonce) of the data confidentiality protocol be reset. The
adversary can collect different encrypted messages using the same key and nonce:
messages sent after the initial key installation, and messages sent after the key
reinstallation. The adversary can then use this information to attack the data
confidentiality protocol. The practical implications of the attack may enable the
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Supplicant AuthenticatorAdversary

Reinstall PTK and GTK

Install PTK and GTK

Install PTK ?
Nonce 1 reuse starts

Fig. 4. KRACK - plaintext retransmission of message 3 after PTK install

adversary to replay, decrypt or even forge the data packets, depending on the
choice of the cipher suite (e.g., TKIP, AES-CCMP,AES-GCMP). We refer the
reader to [15,22] for the detailed consequences of the attack.

The underlying causes of the attacks are the unclear standard specifications,
such as the authenticator accepting any replay counter previously used in the
4-way handshake, not only the latest one [3, Sec. 12.7.6.5]. However, in practice,
many APs fail to validate it, and imprudently accept an older replay counter.

We have successfully modelled several KRACK attacks exploiting the retrans-
mission of message 3 and forcing nonce reuse [22]. We remark that the goal of
our models is not to verify the compromise of the data confidentiality protocol.
Instead, we aim at detecting the sufficient conditions that allow an adversary to
exploit it, i.e., reinstallations of the same key.

Retransmission of Message 3 After PTK Install. This variant of KRACK
[22, Sec. 3.3] occurs when the supplicant accepts plaintext retransmission of mes-
sage 3, even after a PTK has been installed. The message flow of the attack is
shown in Fig. 4, and the outline of our model of the supplicant and authentica-
tor are in Fig. 5. Note that we prepend ‘S_’ and ‘A_’ to the events executed
at the supplicant and authenticator, respectively. The main process is defined
as ν pmk; (!Supplicant | Authenticator), instantiating an arbitrary number of
supplicant processes. Our model computes the PTK [3, Sec. 12.7.1.7.5] with the
identifiers Aid, Sid acting as the MAC addresses as follows:

ptk = CalcPtk(pmk,ANonce, SNonce, Aid, Sid).

The adversary sits between the supplicant and the authenticator to perform
a man-in-the-middle (MitM) attack, and forwards messages 1–3 normally. The
event S_InstallsPtk(Sid, ptk) captures an initial PTK install, after which the
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Fig. 5. Model outline for supplicant and authenticator vulnerable to KRACK attack
based on plaintext retransmission of message 3

supplicant can send encrypted frames using the encryption key TK associated
to PTK. Message 4 is blocked from reaching the authenticator by the adversary.
The model uses the non-deterministic choice in the authenticator process via the
+ operator from the SAPiC calculus. Therefore, it captures either the reception
of message 4, and installs the PTK, or timeouts and retransmits message 3 with
an updated replay counter, and waits again for the confirmation.

Similarly, in order to capture the fact that the state machine of the supplicant
accepts plaintext retransmission of message 3, we also branch the supplicant
process, in order to capture traces completing a normal run of the protocol, and
traces with an adversary blocking message 4. This latter case matches the attack
scenario with the supplicant reinstalling an already in-use PTK (and GTK). It
follows that the next data frames sent by the supplicant will be encrypted with
a reused nonce. Our model, therefore, is aimed at capturing the traces with key
reinstallations on the supplicant side using the same PTK already installed.

Retransmission of Message 3 Before PTK Install. This KRACK attack
has two variants with the supplicant accepting either a plaintext or encrypted
retransmission of message 3 with the PTK yet to be installed [22, Sec. 3.4].

The first case is shown in Fig. 6. This attack assumes that the authentica-
tor performs its actions as expected. The first two messages are transmitted
normally. However, the original message 3 is blocked by the adversary while he
waits for retransmitted of message 3. Both messages are then forwarded to the
supplicant. This triggers a race condition between the CPU and the network
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(a) (b)

Fig. 6. KRACK - plaintext retransmission of message 3 before PTK install

interface controller (NIC), which causes that the same key be reinstalled. In our
model for this attack, Fig. 6b, the supplicant comprises both the NIC and the
CPU, and it considers two branches in order to capture an implementation vul-
nerable to the attack: one where the 4-way handshake follows the normal course,
and another where the attacker is able to cause key reinstallation.

The second case of this attack is presented in Fig. 7. The main difference is
that it can only be executed during the PTK rekey phase. After an initial suc-
cessful handshake, both principals install a PTK. During the PTK rekey process,
the adversary follows the same strategy as above: it waits for a retransmission
of message 3. This time, the messages are encrypted under the installed PTK,
but the adversary is able to identify what particular message is being sent (e.g.,
by timeouts or message lengths). By appropriately delaying and forwarding the
messages, the adversary causes a reinstall of the PTK being refreshed, ptk′. Our
model (Fig. 7b) captures an arbitrary number of PTK rekey negotiations, and,
again, it branches non-deterministically to capture the transitions of a supplicant
state machine vulnerable to the attack.

For all three cases above (Figs. 4, 6 and 7), we query for the absence of
KRACK attacks with lemma: “given an installation of PTK by the supplicant,
it is not the case that there exists an earlier installation with the same PTK,”

∀id, ptk, t1. S_InstallsPtk(id, ptk)@t1 ⇒
¬(∃t2. S_InstallsPtk(id, ptk)@t2 ∧ (t2 < t1)). (NoKrackPtk)

The events S_InstallsPtk are placed in the parts of the model where the prim-
itive MLME-SETKEYS.request [3] is called, which causes nonce reset.
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(a) (b)

Fig. 7. KRACK - encrypted retransmission of message 3 before PTK install

As expected, our Tamarin models [19] falsify Lemma (NoKrackPtk), proving
the existence of KRACK, allowing an adversary to cause key reinstall, nonce
reuse and break the security guarantees of the data confidentiality protocol.

Attack Against the Group Key Handshake. This variant of the KRACK
attack targets the group key handshake, and tricks the supplicant into rein-
stalling a GTK, rather than a PTK [22, Sec. 4.1]. The attack is shown in Fig. 8.
Note that the group key handshake runs encrypted by the already installed
PTK. The standard requires that the supplicant install the GTK upon receipt
of group message 1, regardless of whether it is a retransmission or not, and reply
with group message 2. The adversary delays group message 2 from reaching the
authenticator, triggering retransmission of group message 1. Now, the adver-
sary forwards both versions of group message 1 to the supplicant, which causes
a GTK install and subsequent reinstall. This will allow the attacker to replay
group data frames to the supplicant [22].

To capture the reinstall of the GTK, Tamarin falsifies the following lemma
stating that “given an installation of GTK by the supplicant, it is not the case
that there exists an earlier installation with the same GTK,”

∀id, gtk, t1. S_InstallsGtk(id, gtk)@t1 ⇒
¬(∃t2. S_InstallsGtk(id, gtk)@t2 ∧ (t2 < t1)). (NoKrackGtk)
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(a) (b)

Fig. 8. KRACK against group key handshake

Our model (Fig. 8b) captures a scenario with a supplicant accepting arbitrary
number of executions of the group key handshake, as long as the group message 1
has an increased replay counter. We note that for this model we assume an initial
valid 4-way handshake without exhibiting PTK reinstall.

4.2 Cipher Suite Downgrade

The downgrade attack we consider [20] is limited to the authenticator-side only.
In a correct implementation, a client should be able to detect this attack easily
by observing inconsistencies in the RSNE information. Recall from Sect. 2 that
the RSNE information is selected in the association stage in plaintext, and sub-
sequently encrypted and transmitted as part of message 3, as shown in Fig. 1.
The supplicant must verify that the RSNE information observed in the associa-
tion stage matches with the authenticated contents of message 3, and it should
terminate the handshake otherwise.

In a downgrade attack, depicted in Fig. 9, the adversary forces GTK encryp-
tion with a weak cipher suite (RC4), rather than the intended strong cipher
suite (AES-CCMP). The attack was discovered on the access point TP-Link
WP841P [20, Sec. 5.2]. The authenticator advertises support for AES-CCMP
during the association stage. However, it will follow the supplicant in switching
the cipher suite in mid-handshake process, accepting the TKIP-based message 2.

An adversary acts as a MitM by negotiating the AES-CCMP suite with the
authenticator, and TKIP with the supplicant, as message 1 is in plain. The sup-
plicant calculates the PTK and replies with message 2 using the TKIP suite.
The authenticator accepts the message, overrides its initial AES-CCMP selec-
tion, and responds with a well-formed TKIP message 3 containing the GTK
encrypted with RC4. The adversary can now exploit the weakness of this cipher
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(a) (b)

Fig. 9. Downgrade Attack on 802.11 (TP-Link WP841P)

to recover the GTK [21]. The RSNE mismatch can be easily detected on forward-
ing of message 3 to the supplicant, which can drop the connection. Unfortunately,
by this time, the adversary is already in possession of the RC4-encrypted GTK.

Encryption with different cipher suites can be modelled, e.g., with a signature
Enc′, Dec′ indicating the cipher suite cs as an additional parameter. Then,

∀m, k, cs. Dec′
k(Enc

′
k(m, cs), cs) = m.

Note, that this theory is semantically equivalent to the usual symmetric encryp-
tion using as key the tuple k′ = 〈cs, k〉, because Dec〈cs,k〉(Enc〈cs,k〉(m)) = m.

Our Tamarin model queries that “for each run of the protocol, the cipher
suites used by them will be the same,” implying that a change of the cipher suite
in between a run is impossible. As expected, the lemma below is falsified:

∀tid, cs1, cs2, t1, t2. A_SentMsg3(tid, cs1)@t1∧
A_Starts(tid, cs2)@t2 ⇒ (cs1 = cs2). (NoDowngrade)

5 Analysis of IEEE 802.11 Security Properties

In this section, we list the five properties a)-e) specified for the 4-way handshake
in the 802.11 standard [3, Sec. 12.6.14]. These properties overlap with each other
and cannot be easily encoded into conventional queries, e.g., secrecy or authen-
tication. Therefore, we sometimes define multiple security lemmas that jointly
satisfy a given property. Moreover, the standard is unclear about what properties
are satisfied by the group key handshake. In that case, we consider an extension
of property c) below for GTK. We recall that we prepend ‘S_’ and ‘A_’ to the
supplicant and authenticator events, respectively.
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a) Confirm the existence of the PMK at the peer. As stated in Sect. 2, our
model treats this property as a premise. However, to confirm this property,
we use the following lemma:

∀id1, id2, pmk1, pmk2, t1, t2. A_HasPmk(id1, pmk1)@t1∧
S_HasPmk(id2, pmk2)@t2 ⇒ (pmk1 = pmk2). (ConfPmk)

b) Ensure that the security association keys (PTK/GTK) are fresh.
This security property states that at every run (thread tid) of the protocol it
must generate a fresh PTK/GTK. We verify this property at the supplicant
side through lemma

∀id1, id2, ptk, t1,t2. S_ComputesPtk(id1, ptk)@t1∧
S_ComputesPtk(id2, ptk)@t2 ⇒ (tid1 = tid2). (FreshPtk)

Similarly, we define Lemma (FreshGtk) for the case of GTK (omitted).
c) Synchronise the installation of temporal keys into the MAC. We

consider the strongest authentication property from Lowe’s hierarchy [17],
namely, injective agreement. For the case of PTK, we verify that: “for each
S_CommitPtk event executed by the supplicant Sid, the associated authenti-
cator Aid executed the corresponding A_RunningPtk earlier, and for each run
of the protocol there is a unique S_CommitPtk for each A_RunningPtk,”

∀Sid, Aid, pars, t1. S_CommitPtk(Sid, Aid, pars)@t1 ⇒
((∃t2. A_RunningPtk(Aid, Sid, pars)@t2 ∧ (t2 < t1))
∧ ¬(∃S′

id, A
′
id, t3. S_CommitPtk(S′

id, A
′
id, pars)@t3 ∧ ¬(t3 = t1))).

(AgreePtk)

Obviously, the set of parameters pars must contain the value of the PTK.
S_CommitPtk events are placed as late as possible on the supplicant side.
A_RunningPtk events are executed as earlier as possible, when all the param-
eters to agree are available to the authenticator. In order to capture mutual
agreement, the lemma also needs to include the case when the roles of the
authenticator and supplicant are reversed. For brevity, we omit this case in
our exposition, but it can be found in the source of our models [19].
As customary, authentication requires key secrecy to be asserted. We verify
this using the following lemma for PTK:

∀id, ptk, t1. S_InstallsPtk(id, ptk)@t1 ⇒ ¬(∃t2. K(ptk)@t2). (SecretPtk)

Again, S_InstallsPtk models the primitive MLME-SETKEYS.request [3],
and we require that any installed PTK is unknown to the adversary.
For GTK, we define the Lemmas (AgreeGtk) and (SecretGtk) equivalently.
Moreover, we also need to capture weak agreement [17] of GTK in the group
key handshake, through the lemma

∀Sid, Aid, pars, t1. S_WCommitGtk(Sid, Aid, pars)@t1 ⇒
((∃t2. A_WRunningGtk(Aid, Sid, pars)@t2 ∧ (t2 < t1)),

(WeakAgreeGtk)
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Table 1. Tamarin results of testing properties a)–e) from the 802.11 standard and
proposed property f) in Sect. 5. No[Attack ] refers to (NoKrackPtk), (NoKrackGtk) or
(NoDowngrade) accordingly. (✓ verified; ✗ falsified; – n/a)

Security Property – a) ConfPmk b) FreshKeys c) SynchronisedKeys d) SameGTK e) ConfCiphers f) NoKeyReuse
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PTK reinst. Figs. 4, 5 –
PTK reinst. Fig. 7 –
PTK reinst. Fig. 9 –
GTK reinst. Fig. 11 –
Downgrade Fig. 13 –

which includes the GTK in pars. As opposed to (AgreeGtk) in the 4-way
handshake, the agreement in the group key handshake is not injective, because
multiple retransmissions of the same GTK are allowed.

d) Transfer the GTK from the Authenticator to the Supplicant. We
verify if the GTK received by the supplicant is the same GTK calculated and
forwarded by the authenticator using lemma

∀id, gtk, t1. S_InstallsGtk(id, gtk)@t1 ⇒
(∃t2. A_GeneratesGtk(gtk)@t2 ∧ (t2 < t1)). (SameGtk)

e) Confirm the selection of cipher suites. We capture injective agreement
of the cipher suite with Lemma (AgreeCs), similar to (AgreePtk) above, by
using the cipher suite within the parameters pars.

We queried the lemmas defined for the above five properties in the Tamarin
models presented in Sect. 4, in order to verify them in presence of KRACK
and downgrade attacks. Unexpectedly, all of the lemmas were reported as ver-
ified when KRACK attacks were present, as shown in Table 1. In the case
of the downgrade attack, however, Tamarin reported expected violation of
Lemma (AgreeCs) only.

6 Proposing New Security Properties

Security Property for KRACK Attack. Section 5 clearly establishes the
inadequacy of set of security properties mandated by the IEEE 802.11 stan-
dard to capture security violation by KRACK attacks reviewed in Sect. 4.
Though IEEE has since addressed the issue of nonce reuse in 802.11 implemen-
tations [12], and the Wi-Fi Alliance tests the devices before certifying them for
WPA2/3 [23], there is no mention of security properties being added to the stan-
dard that could capture various KRACK variants such as the ones presented by
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Lemmas (NoKrackPtk) and (NoKrackGtk). Accordingly, we propose an addi-
tional security property to capture such vulnerabilities:

f) Ensure that the security association keys are not used more than once.

The security property f) is encoded, using the following lemma, in Tamarin.
All the KRACK attack models from Sect. 4 violate either one or both properties
(See Table 1), i.e., the KRACK attacks are now captured by property f):

∀id, ptk, t1, t2. S_InstallsPtk(id, ptk)@t1∧
S_InstallsPtk(id, ptk)@t2 ⇒ (t1 = t2). (NoPtkReuse)

Equivalently, we define the Lemma (NoGtkReuse) using GTK in place of PTK.

Security Property for Downgrade Attack. The downgrade attack from
Fig. 9 violates property e) through the Lemma (AgreeCs). Surprisingly, the
attack continue to exist even after enforcing this property as restriction. Since
enforcing the agreement property on cipher suite does not stop the attack, it is
violating a property not present in the standard. A detailed analysis of property
e) along with the downgrade attack suggests that though the standard guar-
antees authentication w.r.t. other party, it does not perform agreement with
itself. Accordingly, we suggest the following additional security property g), as
Lemma (ValidCipherSuite), to the model of Fig. 9b that captures this attack
(results omitted from Table 1 due to space constraints).

g) The cipher suite that the authenticator started with is the cipher suite that
the authenticator finishes with, and is the strongest one from the available
choices.

As expected, the downgrade attack from Sect. 4 is captured by property g), which
is encoded in Tamarin using lemma

∀tid, cs1, cs2, t1,t2. A_SentMsg3(tid, cs1)@t1∧
A_Starts(tid, cs2)@t2 ⇒ (cs1 = cs2). (ValidCipherSuite)

To verify that our proposed security properties f) and g) correspond to respec-
tive attacks, we fix the respective Tamarin models of Sect. 4 by enforcing (NoP-
tkReuse), (NoGtkReuse) and (ValidCipherSuite) as restrictions.

On testing the security properties from Sect. 4, i.e., Lemmas (NoKrackPtk),
(NoKrackGtk), and (NoDowngrade), Tamarin verifies them in the fixed model,
proving that the proposed security properties are successful in stopping these
attacks.

7 Verifying the Mitigations to the Models

Finally, we fix the KRACK models, from Sect. 4, making sure that they follow
the newly proposed security property f), i.e., disconnect if there is an attempt to
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install with the same PTK or GTK, and then execute the model again. After the
fix, both of the attack lemmas, i.e., Lemmas (NoKrackPtk) and (NoKrackGtk),
along with the security properties (NoPtkReuse) and (NoGtkReuse) are verified.
The absence of the attack, with the new security properties verified, shows the
validity of the proposed fix. This result is also a verification of the proposed
countermeasure for KRACK by [22].

Similarly, the downgrade attack from Fig. 9 can be easily detected at the
supplicant side [20], and can be stopped if the authenticator implementation
disallows the change of cipher suites mid-handshake. Accordingly, we fix the
model ensuring that it rejects a connection where the authenticator does not
start and finish with the same cipher suite. After fixing it, Tamarin reports
the attack Lemma (NoDowngrade) as verified, i.e., the downgrade attack no
longer exists, and that the mitigation is valid. Both the fixed Tamarin models,
of KRACK and downgrade attacks, are publicly available at [19].

8 Conclusion and Further Work

We have presented formal models of various KRACK attacks on the IEEE
802.11 4-way handshake and group key handshake, and downgrade attacks on
implementations of the 4-way handshake. Using the automatic verification tool
Tamarin, we verify all the security properties of the 4-way handshake mandated
by the 802.11 standard, in the presence of KRACK and downgrade vulnerabil-
ities. We find that KRACK attacks do not violate any of the required security
properties. We conclude that the set of properties is inadequate to capture these
attacks. Using a novel approach, we propose additional security properties to be
added to the 802.11 standard, enabling it to capture them. We also demonstrate
that enforcing these security properties in our model successfully stops these
attacks. Accordingly, we fix the models with countermeasures to mitigate the
attacks and verify all the security properties, providing a formal proof of correct-
ness of the recommended countermeasures. Our novel technique can strengthen
protocol specifications, by testing the adequacy of the set of required security
properties against known or newly discovered attacks, and by augmenting them
with new properties, if required. For future work, we would like to extend it
to other use cases, i.e., to test the set of required security properties for other
protocols against known attacks on them.
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