
106 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 1, JANUARY 2018

DECIM:
Detecting Endpoint Compromise In Messaging

Jiangshan Yu, Mark Ryan, and Cas Cremers

Abstract— We present DECIM, an approach to solve the
challenge of detecting endpoint compromise in messaging.
DECIM manages and refreshes encryption/decryption keys in an
automatic and transparent way: it makes it necessary for uses of
the key to be inserted in an append-only log, which the device
owner can interrogate in order to detect misuse. We propose
a multi-device messaging protocol that exploits our concept to
allow users to detect unauthorised usage of their device keys.
It is co-designed with a formal model, and we verify its core
security property using the Tamarin prover. We present a proof-
of-concept implementation providing the main features required
for deployment. We find that DECIM messaging is efficient
even for millions of users. The methods we introduce are not
intended to replace existing methods used to keep keys safe (such
as hardware devices, careful procedures, or key refreshment
techniques). Rather, our methods provide a useful and effective
additional layer of security.

Index Terms— Key usage detection, transparency, secure
messaging, key management, formal analysis.

I. INTRODUCTION

SPURRED by government surveillance [1]–[3] and users’
desire for strong security [4], a new trend of using end-

to-end secure communication has spread. Large companies
and security communities have started to deploy and provide
message services with end-to-end encryption, which include
Apple iMessage, Facebook WhatsApp, Google End-to-End
email encryption, and Telegram Messenger, to millions of
users.

One challenge in providing end-to-end encrypted messag-
ing concerns how to authenticate public keys. Even though
methods based on the CA-model (e.g. S/MIME) and the web-
of-trust (e.g. OpenPGP) have been available for decades, they
have failed to be widely deployed because of the security and
usability concerns [5]. Recently, CIRT [6] and CONIKS [7]
have been proposed to solve the key authentication problem

Manuscript received March 16, 2017; revised June 2, 2017; accepted
June 29, 2017. Date of publication August 11, 2017; date of current version
November 20, 2017. This work was supported in part by the Fonds National de
la Recherche Luxembourg (FNR) through PEARL Grant FNR/P14/8149128,
and in part by the HP Research Chair in Cyber Security at Birmingham. The
associate editor coordinating the review of this manuscript and approving it
for publication was Prof. Jiankun Hu. (Corresponding author: Jiangshan Yu.)

J. Yu is with the Interdisciplinary Centre for Security, Reliability and
Trust, University of Luxembourg, Luxembourg City 4364, Luxembourg (e-
mail: j.yu.research@gmail.com).

M. Ryan is with the School of Computer Science, University of Birming-
ham, Birmingham B15 2TT, U.K. (e-mail: m.d.ryan@cs.bham.ac.uk).

C. Cremers is with the Department of Computer Science, University of
Oxford, Oxford OX1 2JD, U.K. (e-mail: cas.cremers@cs.ox.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2017.2738609

for messaging, by making all issued key bindings transpar-
ent to end-users. Both CIRT and CONIKS support multiple
devices, and detect misbehaviours or compromise of the key
certification authority. However, while these services provide
a good level of protection on users’ communication, they
still rely on the assumption that the end-device cannot be
compromised. Yet, this assumption is rather hard to justify in
practice: new software vulnerabilities [8]–[10] are discovered
every day, and malware is common on mobile devices such
as phones and tablets [11] as well as on traditional platforms
like desktop PCs.

Signal [12] (formerly TextSecure) moves a step towards han-
dling device compromise. It rotates keys through a ratcheting
process (a.k.a. Axolotl protocol), which generates three types
of keys, namely root key, chain key, and message key. The
root key is a relatively long-term key generated from users’
public keys and updated through the ratchet process. The chain
key and message key are ephemeral keys derived from the
associated root key. Each chain key is a session key, and the
associated message keys are used to encrypt/decrypt messages
exchanged in that session. (We refer the reader to [13] for more
detail.)

An attacker who learns the chain keys and message keys
will not be able to learn messages that have been exchanged
in other sessions. However, if the root key has also been
compromised, then the attacker is able to perform a man-
in-the-middle (MITM) attack to intercept future messages.
Additionally, the ratcheting process can lock the attacker out
from the point that the attacker discontinued being the MITM.
The ratcheting process has been built into several systems
including WhatsApp, one of the most popular messaging
platforms.

Whilst Signal is an important contribution to message
security, it leaves open the question of how to defend against
an attacker (e.g., a platform operator or an internet service
provider) who is in a unique position to act as a persistent
MITM, and has previously compromised a victim’s device.

This paper explores a different part of the complex design
space inhabited by CIRT/CONIKS and Signal. We develop
DECIM, a method to Detect Endpoint Compromise in
Messaging applications.

Contribution: Our first contribution is to develop an attacker
model in which platforms may be periodically compromised.
That means that they can be compromised by an attacker
at any time, but we assume that the victim periodically
takes steps to remove malware and eliminate vulnerabilities.
Unfortunately, the compromise could have revealed long-term

1556-6013 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on March 01,2022 at 15:53:50 UTC from IEEE Xplore. Restrictions apply.

YU et al.: DECIM: DETECTING ENDPOINT COMPROMISE IN MESSAGING 107

keys. We thus propose security goals that aim to detect the
subsequent usage of such keys by the attacker.

Second, we propose an approach for detecting endpoint
compromise in messaging (DECIM), to transparently man-
age ephemeral encryption/decryption keys. It enables users
to detect subsequent usage of compromised long-term keys
by the attacker even against a persistent MITM attacker,
while avoiding the use of expensive and inconvenient manual
process for re-authenticating and distributing keys through
the underlying PKIs (e.g. applying for a new certificate from
a CA), unless attacks are actually detected.

We develop two DECIM protocols. The first is a basic
protocol that makes strong assumptions about the participants
being simultaneously online, and serves mostly to explain
the concepts. The second protocol is a more fully developed
messaging application, supporting multiple devices per user
and allowing the receiver to be offline at the time the sender
sends a message.

We provide a proof-of-concept implementation of the
detailed messaging application, and conduct a performance
evaluation on the system. It shows that the protocol is efficient
and scalable: even in an extreme case, i.e. the messaging
system has been operating for 100 years with 109 users (each
with 3 devices), clients only need to download 2.2 KB extra
data for the compromise detection. The memory usage on the
server side for enrolling 105 new devices of distinct users is
only 410 MB, and it takes roughly 5.7 milliseconds on average
for each request.

Our third contribution is the security analysis which shows
that the protocols satisfy precise properties expressing software
damage containment. Informally, if an attacker controlled
device has been recovered from a compromised state to
a secure state, then our system can automatically detect a
(persistent) MITM attacker. Therefore the victim will be
prompted to manually revoke the key and generate a new one.
We use the TAMARIN prover to prove several core properties
of our protocol.

We proceed in the following way. In Section II, we present
the background and related work. We detail our attacker model
in Section III and present the main idea of our DECIM
protocols in Section IV. The implementation of our messaging
protocol is presented in Section V in full detail. We analyse the
security of our proposal in Section VI, present the performance
evaluations in Section VII, and conclude in Section VIII.

II. RELATED WORK

Axolotl Protocol: As mentioned previously, the Axolotl
protocol implemented in Signal [12] uses a ratchet process
to handle device compromise against a non-persistent MITM
attacker. Similar security guarantees are also provided by other
messaging protocols; see [14] for a detailed survey.

FlipIt:FLIPIT is an abstract game-theoretic framework for
modelling security scenarios similar to the attacker model of
our paper. In the FLIPIT game [15], the attacker player moves
by compromising a system, and the defender player moves by
recovering it into a secure state. The FLIPIT paper explores

strategies for defender and attacker, based on an abstract notion
of costs associated with moves.

Drifting Keys: Drifting keys [16] is an approach for detect-
ing device impersonation when an attacker has obtained a copy
of pre-shared secret keys stored in constrained devices (such
as sensors). Roughly speaking, each key is updated by the
sender by appending a random bit. If two inconsistent keys
of the same device are detected by the receiver, then it learns
that the pre-shared keys at the sender side (i.e. the constrained
devices) has been compromised and used by an attacker to
impersonate the device.

Funkspiel Schemes: Funkspiel schemes [17] is another
approach to provide some security guarantee when a small
device (e.g. a smart-card) is compromised. Assuming the
ability of the small device to detect a break-in and overwrite
stored secrets before being controlled by an attacker, it aims
to inform a recipient that this has happened, without being
noticed by the attacker.

Certificate Transparency: Certificate transparency (CT)
[18] is a technique proposed by Google aiming to detect mis-
issued public key certificates. CT achieves this by recording
all issued certificates in an append-only Merkle tree log.
CT has been extended to handle revocation [6], and much
work on building transparent systems has been proposed
based on the concept of CT. Examples include ARPKI [19]
and PoliCert [20] for transparent PKI, and CIRT [6] and
CONIKS [7] for transparency in messaging systems.

III. THREAT MODEL AND DESIGN GOALS

Assumptions: We assume a role called sender, that sends
messages, and another one called receiver, that receives mes-
sages. Users can perform one or both of those roles. Each user
has one or more devices, and can pick any of his/her devices
to send a message, and can receive messages on any of them.
We use Sally and Robert to refer to an arbitrary sender and
receiver, respectively.

Threat Model: The attacker has control over the network
and the messaging server. This means he can eavesdrop,
modify, insert and suppress any messages, and as many of
them he wants. In this way, he can act as a persistent MITM.
However, we also assume that the parties can occasionally
communicate short messages, possibly through an indepen-
dent, low-bandwidth and unreliable channel. The attacker
has only partial control of this additional channel — he
can intercept, modify and suppress messages, but not all
of them all of the time (occasionally, a message will get
through).1 In other words, we assume that the attacker can
block all communications in one channel, but cannot block all
communications in all possible diverse channels.

In addition, the attacker may compromise any user’s devices
at any time. After compromising a device, the attacker fully
controls it, and can retrieve and store all the data (including
secret keys) that are stored on it.

1The idea of this secondary channel is to enable the users to detect a
misbehaving log server that shows different versions of the log to different
users. It has been used in other transparent log based systems, such as in CT,
CIRT and CONIKS. We indicate how this works at the end of the section IV-C
on page 6.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on March 01,2022 at 15:53:50 UTC from IEEE Xplore. Restrictions apply.

108 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 1, JANUARY 2018

Fig. 1. A device is compromised at time t1, and then restored into a secure
state at time t ′1. This cycle is repeated. Thus, the device is in a compromised
state during the intervals {(t j , t ′j) | j ∈ {1, 2, 3, . . .}}.

Periodically and routinely, users detect and remove malware
on their devices, upgrade the operating system, and install
software patches that remove known vulnerabilities. This can
put the device back into a trustworthy state. The users do
not regenerate long-term keys or change passwords unless
evidence of a compromised device has been found.

Thus, we assume that devices are periodically trustworthy.
An attacker compromises the device by exploiting a vulnera-
bility, and sometime later the device owner restores it into a
secure state. This cycle repeats, as illustrated in Figure 1.

The Problem: Once a device is compromised, then the
victim’s secrets stored in the device are exposed to the
attacker. Performing security updates and removing malware is
insufficient to prevent the attacker masquerading as the victim.

Security Goals: To solve this problem, our system detects
key usages by the attacker. We state our security goal here,
and explain how to achieve the goal in the following sections.
In the security statements below, we assume a parameter ζ ,
which is a time period set by the user. A shorter ζ brings
greater security. However, devices are automatically unreg-
istered from the system if they are not used for periods
longer than ζ , and have to be re-registered. Thus, a very short
ζ reduces usability. Typically, ζ would be about two days.
We discuss ζ and other system parameters later.

In the next section, we develop two protocols: the basic
DECIM protocol and the full DECIM messaging application.
These offer slightly different guarantees.

• Basic DECIM protocol.
Suppose receiver Robert’s device is compromised during
the periods {(t j , t ′j) | j ∈ N}. Suppose a message is sent
by sender Sally at time t from a device in a trustworthy
state, and the plaintext is obtained by the attacker. Robert
can detect this attack provided his device

– was well within a trustworthy state when the message
was sent; that is, t ′j + ζ ≤ t ≤ t j+1 − ζ for some j .

• Messaging application (many users each with many
devices).
Suppose Robert’s devices are periodically compromised,
as before: Di is compromised during the intervals
{(ti, j , t ′i, j) | j ∈ N}. Suppose a message is sent by Sally
at time t from a device in a trustworthy state, and the
plaintext is obtained by the attacker. Robert can detect
this attack provided, for each of his devices Di ,

– Di was well within a trustworthy state when the
message was sent; that is, t ′i, j + ζ ≤ t ≤ ti, j+1 − ζ
for some j , or

– Di was in a compromised state, but had not been
used by Robert since t − ζ .

The last condition reflects the fact that one can tell that a
device has been compromised if the device was not being

used at the time its key was used. Later, in Section IV-B,
we show the user interface that allows a user to check
this.

As part of our solution, we introduce an auxiliary role called
the log maintainer. In practice, there can be one or more
agents acting as log maintainers. We do not require that any of
these log maintainers are trusted and assume that the attacker
controls them.

IV. OVERVIEW OF DECIM

We present an overview of two protocols for detecting
endpoint compromise. In the first, the participants are a single
sender and a single receiver, assisted by a log maintainer. This
situation is too simple to be useful, but serves to illustrate the
core concepts. The second protocol is more involved; there
are multiple senders and receivers, and each of them has
multiple devices. This reflects a more realistic situation, and
the multiple devices assist in the detection of attacks.

A. The Basic DECIM Protocol

Our solution involves three roles: senders, receivers, and a
log maintainer. We assume all of these can be compromised.
We assume a log maintainer is capable of receiving data and
storing it in an append-only log.

During the bootstrapping phase, the receiver Robert obtains
or generates a long-term signing and verification key pair
(skR, vkR), and the sender Sally obtains an authentic copy
of vkR . The log maintainer has a signing key skL , and
Robert and Sally have an authentic copy of the corresponding
verification key vkL . How these keys are securely distributed
is not the subject of this paper; we assume it can be done
through PKIs such as S/MIME [21], PGP [22]–[24], CIRT [6],
or CONIKS [7].

The log maintainer signs and publishes digests of the log.
We use ‘digest’ to denote a short data item that uniquely
summarises the log (in practice, it is the root tree hash of
a Merkle tree). The maintainer is able to create cryptographic
proofs that given data is present or absent from the log. Data
is never deleted from the log represented by a given digest.

The log maintainer can also create proofs that a given digest
represents an append-only extension of the log represented by
a previous digest.

Sally and Robert track the digests issued by the log, all the
time checking the proofs issued by the log that later digests
represent extensions of earlier ones. Sally and Robert also
periodically directly exchange the digests they know about,
and request and check proofs of extension of those digests
with respect to those they already have. Our assumption that
the attacker cannot suppress all messages ensures that they are
being presented with the same version of the log.

The transmission part of the basic DECIM protocol then
runs as follows (see Figure 2).

• To prepare for receiving a message, Robert’s device
creates an ephemeral encryption and decryption key
pair (ek, dk), and certifies it with his long-term signing
key skR . He publishes the certificate CertskR (R, ek) in

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on March 01,2022 at 15:53:50 UTC from IEEE Xplore. Restrictions apply.

YU et al.: DECIM: DETECTING ENDPOINT COMPROMISE IN MESSAGING 109

Fig. 2. The basic DECIM protocol. Robert has a pair (skR, vkR) of long
term keys for signature signing and verification. He generates an ephemeral
key pair (ek, dk) for encryption, creates the certificate σ = CertskR (R, ek) on
ek, and sends the certificate to the log maintainer for insertion into the public
log. Meanwhile, Robert also sends the certificate to Sally. After receiving σ ,
Sally requests from the log maintainer proofs that the certificate is present in
the log. If the proof is valid, Sally sends a message m to Robert encrypted
with ek. Robert requests proofs from the log maintainer to enable him to
verify whether the log contains signatures that he did not generate.

the log. Publishing the certificate in the log assures Sally
that it is a valid encryption key belonging to Robert.

• To send a message, Sally’s device retrieves
CertskR (R, ek) from the log along with a proof of
its currency in the log. She encrypts the message with ek
and sends it to Robert. Sally will not use a key whose
certificate is not in the log.

• Robert’s device receives the encrypted message and
decrypts it.

Additionally, Robert’s device periodically checks (where the
period is determined by the parameter ζ) that all the keys
ek ′ for which a certificate CertskR (R, ek ′) exists in the log
were put there by him. If he finds entries in the log not
corresponding to his actions, then he knows that his long term
credentials have been disclosed and abused by an attacker.

The basic protocol assumes that Robert is online at the
time that Sally wants to send a message. In the messaging
application protocol below, we generalise this to work when
Robert is offline.

Intuitively, our protocol design detects compromise attacks
because an attacker in possession of Robert’s long term key
would have to leave evidence of its usage of the key in the log.
We give examples of how this detection works in Section IV-C.
We perform a formal analysis of our designs in Section VI.

Properties of the Log: The security of the method requires
that an attacker cannot remove information from the log.
To achieve this, the log is typically stipulated to be append-
only. It is also a requirement that users of the log (including
Robert) can verify that no information has been deleted from
the log. For this purpose, the log can be organised as a Merkle
tree [25] in which data is inserted by extending the tree to the
right. Such a log was designed and introduced in certificate
transparency [18]. The log maintainer can provide efficient
proofs that (A) some particular data is present in the log,

and (B) the log is being maintained in an append-only manner.
Proof A is referred to as proof of presence (PoP) and proof B
is referred to as proof of extension (PoE).

Certificate transparency has been extended to provide proofs
that all data associated to some attribute (e.g. keys associated
to a user identity) is absent from the log, and proofs that some
data associated to some attribute is the latest valid data in the
log. The former is referred to as proof of absence, and the
latter as proof of currency [6], [7], [26].

B. DECIM Messaging Application

The DECIM messaging application generalises the basic
DECIM protocol, allowing the users to have multiple devices.
Sally can choose any of her devices to send a message, and
Robert is able to receive the message on all of his devices.
Although this makes the protocol a bit more complicated,
it also allows us to obtain a stronger security guarantee,
because even if one of Robert’s devices is in an untrustworthy
state we are able to leverage security from the other ones.

As before, we assume a log, with the same capabili-
ties mentioned above. We also assume that Robert and the
log maintainer have long-term signing and verification key
pairs (skR, vkR) (skL , vkL) respectively, and all parties have
authentic copies of the verification keys they need.

The Parameters δ, ε and ζ : The protocol is parameterised
by three values:

• δ is the period between the times at which device registra-
tion requests are processed. It is set by the log maintainer.
We expect it to be typically one hour.

• ε is the period between the times at which key update
requests are processed. We refer to such periods as
“epochs”. It is also set by the log maintainer, and is
typically one day.

• ζ is the maximum lifetime of a key. It is set by the user.
Different users can choose different values of ζ , subject to
the constraint ε ≤ ζ . We expect it to be about two or three
days.

The messaging protocol has three main sub-protocols:
enrolling, message transmission, and key updates. We describe
these in turn.

Enrolling a Device: To enroll a device D�, Robert needs
to install skR onto it. We assume that skR is derived from a
passphrase that Robert types into D�. Next, D� needs to create
a key pair and publish its certificate in the log. More precisely:

• D� generates a new ephemeral encryption key pair
(ek�, dk�) and sends the certificate CertskR (D�, ek�, t�)
to the log maintainer. Here, t� is the key creation time.
The key will be used from the current time until the next
epoch beginning, for the purpose of encrypting messages
for Robert’s device.

• After time δ, the log maintainer has inserted the certificate
into the log and sends to D� the list of device certificates
CertskR (Di , eki , ti) for Robert present in the log, together
with a proof that the list is complete, and current in the
log.

• D� verifies the proof of currency for CertskR (D�, ek�, t�).
It displays the table (Di , ti) (for each i) to Robert, so he

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on March 01,2022 at 15:53:50 UTC from IEEE Xplore. Restrictions apply.

110 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 1, JANUARY 2018

Fig. 3. An example of envisaged GUI that presents the table (Di , ti) for
i = {1, 2} to Robert. The ticked box against the “key usage proof” indicates
that the proofs about the usage statement (e.g., last update time) have been
cryptographically verified.

can check that the devices mentioned are indeed recently
used. If Robert sees a device mentioned that he has
not recently used, it is evidence of an attack (§ IV-D).
Figure 3 presents an example of the envisaged GUI to
show how the information is likely to be presented to
Robert.

The device is now ready to be used. When Sally encrypts
a message, her device will obtain all the public parts of the
current ephemeral keys for Robert from the log, and encrypt
the messages with each of them.

Remark: The method of displaying on a user’s device the
user’s activities on other devices is well-known (for example,
in Gmail, a user can click “last account activity” to see a table
of the sessions open by other devices). A crucial difference in
our protocol is that the displaying device can fully verify the
veracity of the account activity provided by the untrusted log
maintainer.

Sending and Receiving a Message:

• To send a message, Sally retrieves CertskR (Di , eki , ti)
(for each available i) from the log along with proofs of
currency. Her device encrypts a copy of the message by
using each received eki according to the specific end-
to-end secure messaging protocol that they both use.2

It sends the encrypted message and together with the
encrypted k to each of Robert’s devices.

• Robert picks up any of his devices, receives the encrypted
message, and decrypts it.

Updating the Keys: Whenever Robert invokes the messaging
app on a device D�, the device checks to see if it is the
first time it has run the app during that ε-long epoch. If so,
it generates a new device key which will become the key for
the following epoch. More precisely, on the first invocation
during an epoch:

• D� requests and verifies proof of currency for all of the
current epoch’s device certificates CertskR (Di , eki , ti) for
each available i . It verifies that ek� is indeed the one it
created and sent the previous epoch; if this verification

2The design of DECIM is agnostic about the specific end-to-end secure
messaging protocol used; e.g. it could be PGP, Axolotl, or something else.
For simplicity and concreteness, in the detailed presentation of DECIM in
section V, and also in the Tamarin proofs of section VI, we encrypt messages
by using the hybrid mechanism deployed in PGP and iMessage.

fails, it is evidence of an attack (§ IV-D). D� displays
the table (Di , ti) (each i) to Robert, so he can check that
the devices mentioned are indeed recently used. If Robert
sees a device mentioned that he has not recently used, it is
again evidence of an attack.

• D� next creates a new ephemeral encryption key pair
(ek ′

�, dk ′
�) and sends the certificate CertskR (D�, ek ′

�, t�)
to the log maintainer. Here, t� is the key creation time.

• By the next epoch, the log maintainer has inserted into the
log all the device keys thus received. If a device does not
send a new key during an epoch, the old key is retained
in subsequent epochs until a period ζ has elapsed. At that
time, keys of devices that did not send new keys are
revoked.

• When a new key becomes valid, D� securely removes the
old key in the device.

In other words, devices change their key every epoch, and if
they don’t do so (because the application is not invoked during
a particular epoch) then their key is reused for a certain period,
and then revoked. In this last case, the device can’t be used
until it re-registers.

C. Detecting Attacks: Examples

To provide intuition on how our protocol allows users
to detect attacks, we explain some potential attack detec-
tion scenarios. We will present our formal security analysis
in Section VI.

1) Attacks From a Third Party: Suppose one of Robert’s
devices, say his phone, is infected with malware, allowing
an adversary to misuse all the keys stored on the device.
Suppose the adversary is the messaging service provider acting
as a persistent MITM. The adversary may decrypt messages
encrypted with ephemeral keys in that epoch, and may create
new signed ephemeral keys by using the phone’s long term
key and inserting them into the log to perform MITM attacks
in future epochs.

Robert routinely performs malware scanning and software
patching, which may or may not help him regain the control
of his phone depending on the robustness of the malware.
It is obvious that one can do nothing for the epoch in which
the adversary has all the ephemeral secrets for decryption.
We focus on the more interesting case, namely, the security
of messages exchanged in future epochs.

If Robert regains control of his phone, and the attacker
continues to use the phone’s long-term key to create ephemeral
keys, the phone can detect this activity via the log, and report
it to the user.

If the adversary remains in full control of the phone, then
Robert might still be able to detect the device compromise by
monitoring the long-term key usage – he notices unexpected
usage of phone using the GUI of Figure 3. The figure shows
the GUI displayed on another device of Robert’s. It informs
him that (so far in the current epoch) the keys corresponding
to his phone and his iPad have been active. If Robert has not
used his phone in the epoch, then he learns that it has been
compromised. The GUI also confirms that the proofs about
the usage statement have been cryptographically verified.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on March 01,2022 at 15:53:50 UTC from IEEE Xplore. Restrictions apply.

YU et al.: DECIM: DETECTING ENDPOINT COMPROMISE IN MESSAGING 111

2) Attacks on or by the Log Maintainer: Suppose the log
maintainer is malicious or compromised. It may provide fake
proofs, or provide no proofs at all. This is readily detected
by client software. It may maintain the log incorrectly, either
by not correctly recording signed ephemeral keys or by
incorrectly recording fake ephemeral keys. These attacks are
detected when the key owner requests a complete proof of
presence.

A more interesting attack arises if the log maintainer shows
different versions of the log to different users. A receiver
may see a version in which his ephemeral keys are correctly
recorded, while the sender sees a version in which attacker-
owned keys are present instead. This would allow the attacker
to play man-in-the-middle attacks, preventing the sender and
receiver ever exchanging information about the log digests
they have. In DECIM, users can detect such attacks by
gossiping with their contacts, for example, through an out-
of-band channel as used in Signal [12], or through a gossip
protocol [27]–[29] as recommended by Google CT [18] and
CONIKS [7]. Such a procedure will ensure that the log main-
tainer is not misbehaving. We refer readers to the referenced
work for more detail.

D. Responding to Attacks

If Robert detects unexpected activity on a device, or some
verification fails, this is evidence of an attack. Robert’s
response should be to fix the software on his devices.
He should generate a new long-term key, in order to prevent
attacks occurring (and being detected) due to the disclosure
of his current long-term key. The corresponding public key
can be distributed using the method used in the bootstrapping
phase. Furthermore, he can inform Sally that some of her
recent messages to him may have been compromised. Robert
can also detect failure when he verifies the actions of the log
maintainer. His response is to change to a different provider.

V. DETAILED MESSAGING PROTOCOL

In this section we present our proposal’s details
in several parts. We first present the log structure
in Section V-A. We then turn to describe the protocol in more
detail in Section V-B. The procedures that ensure that we
detect malicious log maintainers are described in Section V-C.
we consider privacy concerns in Section V-D.

A. Log Structure

The public log is organised as a tree of trees: the
top-level tree is append-only, and its leaves are lexicographi-
cally ordered trees.

The top-level tree of the log is implemented by a append-
only Merkle tree [25]. The digest of a log is the root hash
value and the size of this tree. A Merkle tree is a tree in
which every node is labelled with the hash of the labels of its
children nodes. Suppose a node has two children labelled with
hash values h1, h2. Then the label of this node is h(h1, h2).
Merkle trees allow efficient proofs that they contain certain
data. To prove that a certain data item d is part of a Merkle

TABLE I

THE METHODS SUPPORTED BY THE MERKLE TREE

Fig. 4. An example of the log containing six updates {d1, d2, . . . , d6}. The
log is an append-only Merkle tree T whose leaves are ordered chronologically.

tree requires an amount of data proportional to the log of the
number of nodes of the tree. (This contrasts with hash lists,
where the amount is proportional to the number of nodes.)
If a Merkle tree is append-only, i.e. the only supported opera-
tion is to append some data to the tree, then it supports efficient
proof that a version of the tree is extended from a previous
version. If items in a Merkle tree are ordered lexicographically,
then the Merkle tree supports efficient proof that some data
is absent from the tree. The sizes of all the above proofs are
proportional to the log of the number of nodes of the tree.
More examples can be found in [6] and [18]. Table I shows
methods that a Merkle tree supports.

The append-only Merkle tree T (as shown in Figure 4)
records the entire update history. Items in T are stored only in
leaves and ordered chronologically, and each leaf is labelled
by the root hash value of another Merkle tree T ′ (presented
in Figure 5). Items in T ′ are also stored only in the leaves,
but ordered according to user identity. Each leaf of T ′ is
labelled by users’ identity and a list of ephemeral certificates
for different devices of the same user.

We give some examples based on Figure 4 and 5 to show
how the proof can be done with our log. We will explain how
to verify that the log is maintained correctly — i.e. the log
maintainer only appends data in T , and items in every T ′ are
ordered lexicographically — in §V-C.

Example of Proof of Presence: To prove that data d ′
2 for

Bob is in T ′
6 (see Figure 5), the log maintainer only needs to

give the data needed to compute the label of parent node from
d ′

2 to the root of the tree.

PoP(T ′
6, d ′

2) = [w, d ′
1, h(3,4), h(5,7)]

where w = l · l · r is the path to d ′
2, and l (resp. r) indicates

the path to the left (resp. right) child. So, given d ′
2, Root(T ′

6),

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on March 01,2022 at 15:53:50 UTC from IEEE Xplore. Restrictions apply.

112 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 1, JANUARY 2018

Fig. 5. An example of the data structure T ′ recording data in each update.
Items in T ′ are ordered lexicographically. For all a, b ∈ [1, 7], h(a,b) is
the root hash value of a Merkle tree containing data from d ′

a to d ′
b . For

example, h(1,2) = h(d ′
1, d ′

2), and h(1,7) = h(h(1,4), h(5,7)). Each leaf of T ′
is labelled by (h(I D), (D j , t j , h(cert j))

n
j=1), such that cert j is a certificate

on (D j , ek j , t j) issued by I D, where D j is the identity of the j th device of
I D, ek j is an (ephemeral) public encryption key, and t j is the issuing time.

and the proof PoP(T ′
6, d ′

2), one can verify the proof by recon-
structing the root value hT = h(h(h(d ′

1, d ′
2), h(3,4)), h((5, 7))).

If hT = Root(T ′
6), then the proof is valid.

Example of Proof of Currency: The proof of currency is the
same as the proof of presence, but there is an extra constraint
for the verifier to check, namely that the path to the root of
the lexicographic tree (e.g., the path from the root to d6 in
Figure 4) is of the form r · r . . . · r , i.e., the leaf should be the
rightmost leaf of the tree.

Example of Proof of Extension: To prove that the
current version of the log represented by T is an extension
of a previous version (Told) containing four updates
(i.e. Root(Told) = h(h(d1, d2), h(d3, d4)) and
Size(Told) = 4), the log maintainer gives h(d5, d6) as
the proof. Given the two digests and this proof, the verifier
can verify that T is extended from Told by reconstructing
Root(T). A well defined algorithm for generating the proof
in different cases is presented in §5.1.2 of [18].

Example of Proof of Absence: To prove that no certificates
for user identity ‘Bill’ is included in T ′

6, the log maintainer
needs to prove that any node whose label containing Bill is
absent from T ′

6, by performing the following steps.

• Locate node A such that the user identity contained in
its label is lexicographically the largest one smaller than
Bill. In our example, the label of node A is d ′

1 which
contains user identity ‘Alice’.

• Locate node B such that the user identity contained in its
label is lexicographically the smallest one greater than
Bill. In our example, the label of node B is d ′

2 which
contains user identity ‘Bob’.

• Prove that d ′
1 and d ′

2 are present in T ′
6, and they are

siblings (so no node is placed in between of them). The
former is proved by using proof of presence, and the latter
one can be verified by checking the path to d ′

1 and d ′
2.

B. Messaging Protocol Details

We recall the defined system parameters in Table II.
1) Enrolling a Device (Figure 6): We assume that all

Robert’s devices have shared his long-term signing key skR .

TABLE II

SYSTEM PARAMETERS

Fig. 6. The protocol for (re-)enrolling a device. In the protocol, if Robert is
re-enrolling his device, then dgold and σ old

L are the previously stored digest
and signature received from the log maintainer, respectively.

To enrol a device D�, it generates a new ephemeral certificate,
and publishes it in the log. In more detail, as presented
in Figure 6:

• D� generates a new ephemeral key pair (dk�, ek�)
for decryption and encryption, respectively. Then, D�

issues a certificate CertskR (D�, ek�, t�) on (D�, ek�, t�)
by using skR , where t� is the key creation time;
and sends the signed registration request m1 =
(req1, R, dgold , CertskR (D�, ek�, t�)) to the log, where
req1 is the request identity, R is the identity of Robert,
and dgold = (Root(Told), Size(Told)) is the digest of the
log that Robert possibly has previously stored (it is likely
to happen if Robert is re-enrolling his device D�).

• After the log maintainer receives the request, it verifies
the signature and the certificate, and that t� is in the time
interval of the current update epoch δ. If they are all valid,
it stores the request, and issues a signed confirmation
sign{Root(log), Size(log), CertskR (D�, ek�, t�)}skL ,
where log is organised as T , as explained in §V-A.
If dgold is provided, the log maintainer also generates

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on March 01,2022 at 15:53:50 UTC from IEEE Xplore. Restrictions apply.

YU et al.: DECIM: DETECTING ENDPOINT COMPROMISE IN MESSAGING 113

a proof P of extension that the current log is extended
from the log represented by dgold , and sends the proof
together with signed confirmation as the message m2 to
Robert.

• D� verifies the received signature and proof, stores the
new digest dgnew with signature σL , and sends the request
m3 containing a request identity req ′

1, Robert and the
device’s identity (R, D�), and current observed digest to
the log maintainer after δ time.

• After each period of length δ, the log maintainer updates
the log according to the list of device enrollment requests
received from its customers. The list of requests should
be in the form

(Ri , (CertskRi
(Di, j , eki, j , ti, j))

P
j=1)

M
i=1

where Ri is the client identity, P is the number of devices
that a client has requested to enroll this update, and M is
the total number of clients who have sent the enrollment
request for this update.
To update the log, the log maintainer retrieves the current
T ′

n such that Root(T ′
n) = Last(T), and creates T ′

n+1 by
adding each request to the appropriate node of T ′

n , where
n is the size of the current log. It then extends T with a
new rightmost node T ′

n+1.
In addition, the log maintainer proves that the list of
certificates (including the ones in the enrollment request)
for each participant Ri is complete, and current in the log.
If Ri has previously observed a digest dgold of the log,
then log maintainer also generates a proof of extension
that the current log is extended from the log represented
by dgold . To do so, the log maintainer locates the node
labelled with d for Ri in T ′

n+1, and generates:
– PoP(T ′

n+1, d) that d is present in T ′
n+1;

– PoC(T, T ′
n+1) that the root hash value of T ′

n+1 is the
label of the rightmost leaf in T ; and

– PoE(T, dgold) that the current log is extended from
the log represented by dgold .

So Ri can verify that d — which contains a full list of
certificates for his devices (including the newly enrolled
ones) — is present in the latest update of the log.

• D� verifies the received proofs and signatures. Addition-
ally, it displays the table (Di , ti) (for all i ∈ [1, P]) to
Robert, so he can check that the devices mentioned are
indeed recently used. If Robert sees a device mentioned
that he has not recently used, it is evidence of an attack
that an attacker who has used his long-term key without
authorisation and has inserted a certificate for him.

The device is now ready to be used. A similar process is
used to un-register a device with the log maintainer.

2) Sending and Receiving a Message (Figure 7): To send
a message to Robert, Sally’s device retrieves all the current
device certificates for Robert from the log, and encrypts the
messages with each of them. More precisely (as presented
in Figure 7), to send a message:

• Sally sends request m1 = (req2, R, r, dgold) to the log,
where req2

3 is the request identity, R is the identity

3This request corresponds to the ‘CertReq’ in our Tamarin code.

Fig. 7. The protocol for sending and receiving a message. In which, σold
L is

the signature received from the log maintainer in the last session. If any of
the stated verification checks fails, the agent aborts the protocol.

of Robert, r is a random number, and where dgold =
(Root(Told), Size(Told)) is the digest of the log that Sally
received in the last session.

• After receiving the request, the log maintainer locates the
leaf whose label d contains R in the latest update T ′ (that
is represented by the rightmost leaf of T), and generates
the proof P1 that Root(T ′) is current in T , proof P2 that d
is in T ′, and proof P3 that the current log is an extension
of the log that Sally has previously observed. It then
sends m2 to Sally. In particular, m2 is the signed message
(‘CertResp’, dgnew, Last(T), P1, P2, P3, r, md , t), where
‘CertResp’ is a tag, dgnew = (Root(T), Size(T)), md =
(R, (D j , t j , ek j , Cert j)

P
j=1) is the data associated to d ,

and t is the time to identify the current epoch.
• After receiving the message from the log maintainer,

Sally verifies if t corresponds to the current epoch, and
verifies the received signature, proofs, and certificates.
If all verifications succeed, she replaces dgold and σ old

L
by dgnew and σL , respectively, where σL is the signature
from the log maintainer.
Her device encrypts a copy of the message with a fresh
symmetric key k, and encrypts k with each received eki .
It sends the encrypted message and together with the
encrypted k to each of Robert’s devices.

• Robert picks up any of his devices, receives the encrypted
message, and decrypts it.

Note that in the protocol, if there is no certificate for Robert
in the latest update, then a proof of absence that the identity
of Robert is not in the latest update is provided to the user.

3) Updating the Keys (Figure 8): Devices change their key
every epoch w.r.t. ε, and if they don’t do so (because the
application is not invoked on a particular day), then their key
will be reused for a certain period (e.g. a few more ε), and
then will not be included in the log for the next further update
epoch. In this last case, the device can’t be used for receiving

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on March 01,2022 at 15:53:50 UTC from IEEE Xplore. Restrictions apply.

114 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 1, JANUARY 2018

Fig. 8. The protocol for updating keys. In the protocol, dkold
� is the

current valid ephemeral secret key, Certold is the corresponding certificate,
dgold and σ old

L are the digest and signature received from the log maintainer
in the last session, respectively.

and reading messages until Robert uses the device again —
it will re-register the device automatically. So, after Robert
can use this device again in δ time (e.g. one hour). Note that
if Robert has un-registered the device, then the device will not
automatically re-register itself; and Robert has to re-register it
manually in this case.

More precisely, whenever Robert invokes the messaging
app on a device D�, the device checks to see if it is the first
time it has run the app during that epoch w.r.t. ε. If so,

• D� creates a new ephemeral key pair (dk�, ek�), issues
a certificate CertskR (D�, ek�, t�), which will become the
valid key in next epoch, where t� is the key creation
time. Then, he sends the signed request m1 = (req3,
R, dgold , CertskR (D�, ek�, t�)) to the log maintainer,
where req3

4 is the identity of update request, dgold =
(Root(Told), Size(Told)) is the digest of the log that he
observed in the last session.

• After receiving the request, the log maintainer verifies
the signature, time t�, and the received certificate. If they
are all valid, then it generates a commitment σL =
sign{‘Confirmation’, dgnew, h(CertskR (D�, ek�, t�))}skL

that it will put the received new certificate in the log
by the end of this epoch. The log maintainer locates the
node d for Robert in the latest update of the log, and
generates the proof P1 that the root hash value of T ′ is
the label of the rightmost leaf in T , proof P2 that d is
present in T ′, and the proof P3 that T is an extension of
the log that Robert has observed in the last session. Note
that P1 and P2 together form the proof that d is the latest
update for Robert in the log. The log maintainer sends
the generated signature and proofs to D�.

• Upon receiving the response, D� verifies all signatures
and proofs. Additionally, it verifies that the hashed

4This request corresponds to the ‘UpdateReq’ in our Tamarin code.

certificate (contained in d) for D� in the latest update
is indeed corresponding to the one it created and sent
in the previous epoch. This verification ensures that no
unauthorised request has been generated and recorded in
the current log. (We will explain in the §V-C that why we
don’t need to require D� to verify all history certificates
for D� in the log are indeed generated by D�.) If all
verifications succeed, D� removes any expired keys stored
in D�, replaces the stored digest of the log with the new
one, and displays the table (Di , ti) (for each possible i)
to Robert, so he can check that the devices mentioned are
indeed recently used. If Robert sees a device mentioned
that he has not recently used, it is evidence of an attack.

• At the turn of the epoch, the log maintainer inserts all
received update request into the log. Suppose in the
current epoch, the log maintainer which maintains the
log (represented by T of size n) has the tree T ′

n containing

(Alice, DA,1, tA,1, h(cer tA,1)

DA,2, tA,2, h(cer tA,2)),

(Bob, DB,1, tB,1, h(cer tB,1)

DB,2, tB,2, h(cer tB,2)

. . .

DB,5, tB,5, h(cer tB,5)),

.

and receives

(Ri , (CertskRi
(Di, j , eki, j , ti, j))

P ′
j=1)

M ′
i=1

for some identity Ri and certificates for its devices Di, j ,
where P ′ is the number of a user’s devices that have sent
a key update request, and M ′ is the total number of clients
who have sent the key update request in this epoch.
To update the log, the log maintainer performs the fol-
lowing steps:

Step 1) creates a new tree T ′
n+1 by copying and pasting

the entire T ′
n;

Step 2) replaces the old certificates with the correspond-
ing new ones in T ′

n+1;
Step 3) checks if any un-replaced certificate is older than

ζ ; if there is any, the log maintainer removes
them from T ′

n+1;
Step 4) extends T with a new rightmost node

Root(T ′
n+1).

Similar to the idea explained in §V-B.1, the log main-
tainer can provide the proof that the list of certificates
(including the ones in the key update request) for Ri

is complete, and current in the log; and the proof that
the current log is an extension of the log that Ri has
previously observed.
If a device has not updated ephemeral keys and has been
excluded from the latest update by the log maintainer,
then the device will automatically re-register itself when
the owner has used the device again, so the device will be
included in the log and be ready to receive and decrypt
messages in δ time.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on March 01,2022 at 15:53:50 UTC from IEEE Xplore. Restrictions apply.

YU et al.: DECIM: DETECTING ENDPOINT COMPROMISE IN MESSAGING 115

C. Crowd-Sourced Verification

Since we want to guarantee some security even when the
log maintainer is not trusted, we need to monitor the log
maintainer’s behaviour to see if the log is maintained correctly.
This can be easily verified by allowing any interested party to
download and check the entire log at any time. Parties can set
themselves up as monitors to perform such checks as a public
service. Alternatively or in addition, to avoid having to rely
on such monitors, we can use crowd-sourced verification by
breaking the verification work into independent little pieces,
and distribute each piece to different devices.

First, we need to verify that the log update history recorded
in T is maintained in an append-only manner. This is achieved
by verifying the proof of extension performed in the proto-
cols for enrolling a device, updating the keys, and sending/
receiving a message. Hence, there is no need for any additional
verification.

Second, we need to verify that in each update T ′
i , items are

ordered lexicographically according to the user identity. It can
be verified by asking each device to pick a random leaf in
an update T ′

i , and verify that the user identity recorded in its
left (or right) neighbour leaf is lexicographically smaller (resp.
greater) than the user identity in the picked leaf.

Third, in our protocol a device only checks its latest cer-
tificate in the log, instead of verifying all certificates recorded
in the log. So, it cannot guarantee that no attacker-generated
certificates have been previously included in the log. To detect
such behaviour, we need to verify that the time of the key
generation for the same device in different updates of the
log is only going forward. To achieve this, each device picks
a random leaf for a user in an update Ti , and verifies that
either the record in an update is the same as the one in the
previous update, or it is different and the time in the node for
the same device of the user in the left (or right) neighbour
update Ti−1 (or Ti+1) is no greater (or no smaller) than the
time in the picked leaf, respectively. Additionally, if the two
times are equal, then the hash values of the certificates should
also be equal. A missing associated record in a new update is
evidence of misbehaviour. If no leaf for the user is included
in the neighbour update, then a proof of absence that a node
containing the user identity is not included in the update is
provided.

Remark: Note that these checks ensure that the log is
maintained correctly, and the most recently published device
key of all user devices are recorded in the latest log update
(i.e. the rightmost leaf of the top level tree, see §V-A). Any
unexpected record is evidence of misbehaviour of the log
maintainer. Thus, to detect the un-authorised usage of the
long-term keys, users only need to check their device records
against the records in the latest log update, as stated in the
protocol for enrolling a device and for updating the keys.

D. Privacy Considerations

The public log may cause some privacy concerns. For
example, depending on deployment specifics, one may want
to hide the user identities contained in a log against potential
spammers, the total number of communications of a user,

or the time distribution of a user’s communications, etc.
We provide an informal discussion here, and leave a detailed
formal study on the privacy of transparent log based systems
as a future work.

To hide the user identity, the log maintainer can issue a
signature on a user identity, then use a hash value of the
signed user identity in the labels of leaves in each log update,
rather than containing the user identity directly in the labels
(see Figure 5). The signature scheme used should be deter-
ministic and unforgeable, as suggested in [7]. Hence, users
that have the recipient’s address can request the signed user
identity from the log maintainer, and verify the log; but an
attacker who has downloaded the entire log cannot recover
the identity of users, based on the unforgeability of the chosen
signature scheme. In this case, the nodes in each update tree T ′

i
will be ordered lexicographically according to the hash value
of the signed user identity. In addition, users can also make the
log to be only available to a fixed set of contacts. To hide the
real number of communications associated to a given client of
the log, the client can generate some noise — for example, the
client can make ‘spoof queries’ to the log maintainer through
an anonymous channel (e.g. Tor network).

VI. SECURITY ANALYSIS

We provide all input files required to understand and repro-
duce our security analysis at [30]. In particular, these include
the complete DECIM models. The proof assumes that all users
see the same log (a gossip protocol can be used to detect
attacks in which different views of the log are presented to
different users). We also assume that each user has only one
device. The detection of some attacks when a user has multiple
devices would need the user’s involvement. A formal study on
the user behavior and security analysis with multiple devices
is an interesting future work.

A. Security Properties

Our messaging protocol achieves both classical security
properties as well as novel ones. In a classical sense, Sally
obtains the guarantee that if Robert’s devices are not com-
promised, then the attacker will not learn the messages she
sends.

The more interesting properties are achieved in the cases
where Robert’s devices get compromised. In this case, we can-
not avoid that messages sent by Sally in the same epoch are
also compromised. However, we prove that if any of Sally’s
messages from different epochs are compromised, then Robert
will be able to detect this.

B. Formal Analysis

We analyse the main security properties of the protocol
using the TAMARIN prover [31]. The Tamarin prover is a
symbolic analysis tool that can prove properties of security
protocols for an unbounded number of instances and supports
reasoning about protocols with mutable global state, which
makes it suitable for our log-based protocol. Protocols are
specified using multiset rewriting rules, and properties are

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on March 01,2022 at 15:53:50 UTC from IEEE Xplore. Restrictions apply.

116 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 1, JANUARY 2018

expressed in a guarded fragment of first order logic that allows
quantification over timepoints.

TAMARIN is capable of automatic verification in many
cases, and it also supports interactive verification by manual
traversal of the proof tree. If the tool terminates without finding
a proof, it returns a counter-example. Counter-examples are
given as so-called dependency graphs, which are partially
ordered sets of rule instances that represent a set of executions
that violate the property. Counter-examples can be used to
refine the model, and give feedback to the implementer and
designer.

C. Modeling Aspects

We used several abstractions during modeling. We model
the Merkle hash trees as lists, similar to the abstraction
used in [19].

We model the protocol roles S (sender), R (receiver) and
L (log maintainer) by a set of rewrite rules. Each rewrite
rule typically models receiving a message, taking an appro-
priate action, and sending a response message. Our modeling
approach is similar to most existing TAMARIN models. Our
modeling of the roles directly corresponds to the protocol
descriptions in the previous sections. TAMARIN provides built-
in support for a Dolev-Yao style network attacker, i.e., one
who is in full control of the network. We also specify rules
that enable the attacker to compromise devices and learn their
long and short-term secrets.

The final DECIM model consists of 450 lines for the base
model, and six main property specifications, examples of
which we will give below.

D. Proof Goals

We state several proof goals for our DECIM model, exactly
as specified in TAMARIN’s syntax. Since TAMARIN’s prop-
erty specification language is a fragment of first-order logic,
it contains logical connectives (|, &, ==>, not, ...) and
quantifiers (All, Ex). In Tamarin, proof goals are marked
as lemma. The #-prefix is used to denote timepoints, and
“E @ #i” expresses that the event E occurs at timepoint i .

The first goal is a check for executability that ensures that
our model allows for the successful transmission of a message.
It is encoded in the following way.

lemma protocol_correctness:
exists-trace
" /* It is possible that */
Ex d R skR dkR m #i.
/* R received an encrypted message m on device d */
MsgReceived(d, R, skR, dkR, m) @ #i
/* without the adversary compromising any device. */

& not (Ex d2 A ltk dkR #j.
Compromise_Device(d2, A, ltk, dkR) @ #j)"

The property holds if the TAMARIN model exhibits a
behaviour in which one of R’s devices received a message
without the attacker compromising any device. This property
mainly serves as a sanity check on the model. If it did not hold,
it would mean our model does not model the normal (honest)
message flow, which could indicate a flaw in the model.
Tamarin automatically proves this property in a few seconds
and generates the expected trace in the form of a graphical
representation of the rule instantiations and the message flow.

We additionally proved several other sanity-checking prop-
erties to minimize the risk of modeling errors.

The second example goal is the core secrecy property with
respect to a classical attacker, and expresses that unless the
attacker compromises one of Robert’s keys, he cannot learn
any messages sent by Sally. Note that K(m) is a special event
that denotes that the attacker knows m at this time.

lemma message_secrecy:
"All R skR ekR m #i.
/* If S sent a message m to R */

(MsgSent(R, skR, ekR, m) @ #i &
/* without the adversary compromising any of Robert’s

devices */
not (Ex #j d sk dkR.

Compromise_Device(d, R, sk, dkR) @ #j)
) ==>

/* then the adversary cannot know m */
(not (Ex #j. K(m) @ #j)) "

TAMARIN also proves this property automatically.
The above result implies that if Robert receives a message

that was sent by Sally, and the attacker did not compromise
his device during the current epoch, then the attacker will not
learn the message.

The final property encodes the unique security guaran-
tees provided by our protocol. If the attacker compromises
Robert’s device in an epoch, he can use the private ephemeral
key to decrypt Sally’s messages in that epoch. We prove
that if he uses the compromised long-term key of Robert to
learn messages sent by Sally in other epochs, then he will be
detected once Robert checks the log.

lemma detect_usage_S_sends:
"All d skR dkR m #i1 #i2 #i3 detectionresult R k.

/* If S sent to R an encrypted message m,
where pk(dkR)=ekR */

(MsgSent(R, skR, pk(dkR), m) @ #i1 &
/* and the adversary knows m */

K(m) @ #i2 &
/* and the ephemeral key used by the sender was

not compromised, i.e., the compromise occurred
in a different epoch */
not (Ex #j sk .

Compromise_Device(d, R, sk, dkR) @ #j) &
/* and Robert afterwards checks the log */

CheckedLog(d, R, detectionresult, k) @ #i3
& #i1 < #i3

) ==>
/* then we detect a compromise */

((detectionresult = ’bad’)) "

The property states that if Sally sends a message when
Robert’s device is not controlled by an attacker in the current
epoch (but might have been compromised previously), and
the attacker learns the message, then Robert detects the
fact that his key was previously compromised when he next
verifies the log.

The above properties are all proven automatically by the
TAMARIN prover on a laptop within a few minutes. Overall,
the modeling effort was in the order of weeks, with several
iterations to debug both the abstract model and the property
specifications. The verification process helped us not only to
prove, but also to refine the precise security properties of our
protocol.

VII. REALIZATION IN PRACTICE

A. Estimating Communication Cost

To check if deployment might be feasible, we estimate
the expected cost of our protocol design. As an example,

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on March 01,2022 at 15:53:50 UTC from IEEE Xplore. Restrictions apply.

YU et al.: DECIM: DETECTING ENDPOINT COMPROMISE IN MESSAGING 117

TABLE III

THE SIZE OF MESSAGES IN DIFFERENT PROTOCOLS. IN WHICH, SIZEP
IS THE SIZE OF PROOFS IN THE CORRESPONDING MESSAGE,

AND SIZEM IS THE MAXIMUM SIZE OF A MESSAGE

we consider the following scenario. We assume that there are
109 users, each user has 3 devices, the log has been operating
for 100 years, the log update period δ for registration request
is 1 hour, and the log update epoch ε for certificate update
is 1 day.

In this scenario, the size of T will be 100 · 365 + 100 · 365 ·
24 = 912500 < 220, and the size of each T ′ is 109 which is
less than 230. In addition, we assume that the size of a hash
value is 256 bits (e.g. SHA256), the size of a signature is
64 Bytes (e.g. ECDSA), and the size of a certificate is 1.5 KB.

In addition, we assume that the size of a user (or device)
identity is 12 Bytes, and time is in the 64-bit format, a random
number is 28 bytes (recommended by TLS 1.2 [32]), each
request identifier is 4 bits, and the size of a digest of a log
is 300 bits.

The size of a proof of presence that some data is in T and
is in T ′ will be at most 640 bytes and 960 bytes, respectively;
the size of the proof that a version of the log is extended from
a previous version is at most 640 bytes. We present the size of
messages in the protocol in our example scenario in Table III.

From Table III we can see that up to 5 KB data are needed
to be transferred for both enrolling a device and updating
keys. The protocol for fetching keys from the log is the most
expensive one, as the sender has to download all certificates
for different devices of the same users. In our example,
the sender needs to download 3 certificates, the size of which
is already 4.5 KB. The results of our analysis indicate that the
space cost of our system is acceptable.

B. Proof-of-Concept Log Server Prototype

To demonstrate the deployment of DECIM in a real-world
setting, we built a proof-of-concept prototype of the log
server. We implemented a full log server implementation with
interfaces, and client-side code for (a) adding users/devices,
(b) rotating keys at the end of each epoch, and (c) sending
messages. This involves all the operations to manipulate the
log (consisting of a tree of trees), produce various proofs, and
produce and verify the appropriate signatures. Anticipating
a deployment on platforms such as Google’s App Engine,
we implemented our code in Python. We use basic caching
mechanisms for previously computed results.

On a quad-core 4 GHz Intel Core i7 with 32 GB of memory,
we obtain the following times. The times are measured locally
and therefore do not include network latency. Performing
100000 (1e05) enrollment requests from distinct users takes
1526 seconds, i.e., 15 milliseconds per request on average.
When 100000 (1e05) users enroll 3 devices each, enrollment
takes 1708 seconds, i.e., 5.7 milliseconds on average. The
delay experienced by the user is therefore dominated by the
network latency of transmitting 4.1 KB (Table III), which is
certainly less than a second.

When the tree contains 10000 (1e04) entries, the server
produces 100000 (1e05) responses to message queries
in 14.1 seconds, i.e., 0.14 milliseconds per message query.
Updating a tree by simultaneously adding 10000 (1e04) entries
takes about 1 second, which is mostly spent in creating the
leaf data structures. Once again, the user’s experience is mostly
affected by the network latency, which is small because the
data transferred is a few KB.

The memory usage when 100000 (1e05) users enroll one
device is 410 MB (computed using “heapy” for the full
process, not just reachable objects). If they enroll three devices
each, memory usage increases to 900 MB.

Thus, even though our proof-of-concept implementation is
not yet optimized for efficiency or storage, its performance
already indicates our scheme is feasible.

VIII. CONCLUSION

End-to-end encryption has become popular in the years
since the Snowden revelations, motivating attackers wishing to
intercept messages to instead turn their attention to client end-
points. To address this, we have presented a novel messaging
protocol that offers security guarantees even when an attacker
can access all the secret keys in a user’s devices. In particular,
(a) the protocol limits the impact of a compromise, since the
attacker can only learn messages sent in the same epoch with-
out being detected, and (b) if the attacker uses compromised
long-term keys to impersonate users, then the protocol allows
the participants to detect this, and therefore to take remedial
action. Our protocol supports multiple devices per user, and
the multiplicity of devices helps detect attacks by intuitive
indicators to users about which (device) keys have recently
been active.

The methods we introduce are not intended to replace
existing methods used to keep keys safe. Existing technologies
such as Axolotl ratcheting, TPMs, smart-cards, and ARM
TrustZone are all useful for securing keys. However, none of
these technologies are completely secure. For example, even
if hardware security is used, malware may be able to trigger
usages of the key without having the ability to copy the key.
Our methods can also detect such cases. Thus, DECIM adds
an additional layer of security that allows users to detect when
other layers fail.

ACKNOWLEDGMENT

The authors specially thank Katriel Cohn-Gordon for his
assistance on the proof-of-concept implementation and per-
formance evaluation.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on March 01,2022 at 15:53:50 UTC from IEEE Xplore. Restrictions apply.

118 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 1, JANUARY 2018

REFERENCES

[1] B. Gellman and L. Poitras. (Jun. 2013). U.S. British Intelligence Mining
Data From Nine U.S. Internet Companies in Broad Secret Program.
The Washington Post. [Online]. Available: http://www.washingtonpost.
com/investigations/us-intelligence-mining-dat%a-from-nine-us-internet-
companies-in-broad-secret-program/2013/06/06/3a0c0da8-%cebf-11e2-
8845-d970ccb04497_story.html

[2] S. Braun, A. Flaherty, J. Gillum, and M. Apuzzo. (Jun. 2013). Secret to
Prism Program: Even Bigger Data Seizure. [Online]. Available: http://
bigstory.ap.org/article/secret-prism-success-even-bigger-data-se%izure

[3] E. MacAskill, N. Davies, N. Hopkins, J. Borger, and
J. Ball. (Jun. 2013). GCHQ Intercepted Foreign Politicians.
Communications at G20 Summits. The Guardian. [Online].
Available: http://www.guardian.co.uk/uk/2013/jun/16/gchq-intercepted-
communication%s-g20-summits

[4] M. Madden. (Nov. 2014). “Public perceptions of privacy and security
in the post-snowden era,” Pew Res. Internet Project, Tech. Rep.
[Online]. Available: http://www.pewinternet.org/2014/11/12/public-
privacy-perceptions/

[5] A. Whitten and J. D. Tygar, “Why Johnny can’t encrypt: A usability
evaluation of PGP 5.0,” in Proc. USENIX Secur., 1999, p. 14.

[6] M. D. Ryan, “Enhanced certificate transparency and end-to-end
encrypted mail,” in Proc. NDSS, 2014, p. 14.

[7] M. S. Melara, A. Blankstein, J. Bonneau, M. J. Freedman, and
E. W. Felten, “CONIKS: A privacy-preserving consistent key service
for secure end-to-end communication,” IACR Cryptol. ePrint Archive,
Tech. Rep., 2014. [Online]. Available: https://eprint.iacr.org/2014/1004

[8] Common Vulnerabilities and Exposures. Accessed: Feb. 2015. [Online].
Available: https://cve.mitre.org/cve/index.html

[9] A. Greenberg. (Mar. 2016). Hack Brief: Update iOS Now to Fix a
Serious Imessage Crypto Flaw. [Online]. Available: http://www.wired.
com/2016/03/hack-brief-update-ios-fix-serious-imessage%-crypto-flaw/

[10] L. Chang. Yahoo Tech. (Apr. 2016). Apple Just Fixed an Imes-
sage Bug That Researchers Called Easily Exploitable. [Online].
Available: https://www.yahoo.com/tech/apple-just-fixed-imessage-bug-
014700260.html

[11] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner,
“A survey of mobile malware in the wild,” in Proc. 1st ACM Workshop
Secur. Privacy Smartphones Mobile Devices, 2011, pp. 3–14.

[12] Signal. (Apr. 2016). https://whispersystems.org/
[13] M. Marlinspike. Whisper System Blog. (Nov. 2013). Advanced

Cryptographic Ratcheting. [Online]. Available: https://whispersystems.
org/blog/advanced-ratcheting/

[14] N. Unger et al., “SoK: Secure messaging,” in Proc. IEEE Symp. Secur.
Privacy, San Jose, CA, USA, May 2015, pp. 232–249.

[15] M. van Dijk, A. Juels, A. Oprea, and R. L. Rivest, “FLIPIT: The
game of ‘stealthy takeover,”’ J. Cryptol., vol. 26, no. 4, pp. 655–713,
2013.

[16] K. D. Bowers, A. Juels, R. L. Rivest, and E. Shen, “Drifting keys: Imper-
sonation detection for constrained devices,” in Proc. IEEE INFOCOM,
Turin, Italy, Apr. 2013, pp. 1025–1033.

[17] J. Håstad, J. Jonsson, A. Juels, and M. Yung, “Funkspiel schemes:
An alternative to conventional tamper resistance,” in Proc. ACM CCS,
2000, pp. 125–133.

[18] B. Laurie, A. Langley, and E. Kasper, Certificate Transparency,
document RFC 6962 (Experimental), Internet Engineering Task Force,
2013.

[19] D. A. Basin, C. Cremers, T. H. Kim, A. Perrig, R. Sasse, and
P. Szalachowski, “ARPKI: Attack resilient public-key infrastructure,”in
Proc. ACM CCS, 2014, pp. 382–393.

[20] P. Szalachowski, S. Matsumoto, and A. Perrig, “PoliCert: Secure
and flexible TLS certificate management,” in Proc. ACM CCS, 2014,
pp. 406–417.

[21] B. Ramsdell and S. Turner, Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 3.2 Message Specification, document
RFC 5751, Internet Engineering Task Force, Jan. 2010. [Online]. Avail-
able: http://www.ietf.org/rfc/rfc5751.txt

[22] S/MIME and OpenPGP. (Feb. 2015). Internet Mail Consortium.
[Online]. Available: http://www.imc.org/smime-pgpmime.html

[23] R. Zimmermann, The Official PGP User’s Guide. Cambridge, MA,
USA: MIT Press, 1995.

[24] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, OpenPGP
Message Format, document RFC 4880, Internet Engineering Task Force,
Nov. 2007. [Online]. Available: http://www.ietf.org/rfc/rfc4880.txt

[25] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Proc. CRYPTO, 1987, pp. 369–378.

[26] J. Yu, V. Cheval, and M. Ryan, “DTKI: A new formalized PKI with
verifiable trusted parties,” Comput. J., vol. 59, no. 11, pp. 1695–1713,
2016.

[27] L. Nordberg, Transparency Gossip, document draft-ietf-trans-gossip-04,
INTERNET-DRAFT, Internet Engineering Task Force, 2014.

[28] L. Nordberg, Transparency Gossip HTTPS Transport, document
raft-linus-trans-gossip-transport-https-00, INTERNET-DRAFT, Internet
Engineering Task Force, 2014.

[29] L. Chuat, P. Szalachowski, A. Perrig, B. Laurie, and M. Eran, “Effi-
cient gossip protocols for verifying the consistency of certificate
logs,” in Proc. IEEE Conf. Commun. Netw. Secur. (CNS), Sep. 2015,
pp. 415–423.

[30] J. Yu, M. Ryan, and C. Cremers. (2016). Tamarin Models for the
DECIM Protocol. [Online]. Available: http://www.jiangshanyu.com/doc/
paper/DECIM-proof.zip

[31] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin, “The TAMARIN
prover for the symbolic analysis of security protocols,” in Proc. CAV,
Saint Petersburg, Russia, Jul. 2013, pp. 696–701.

[32] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol
Version 1.2, document RFC 5246, RFCs 5746, 5878, 6176, Internet
Engineering Task Force, Aug. 2008, [Online]. Available: http://www.
ietf.org/rfc/rfc5246.txt

Jiangshan Yu is currently a research fellow at
the Interdisciplinary Centre for Security, Reliabil-
ity and Trust (SnT), University of Luxembourg,
and an honorary research fellow at the University
of Birmingham, where he received his Ph.D in
computer science. Before joining the University of
Birmingham, he received MSc and MPhil degree in
computer science (information security) respectively
in 2011 and 2012, from University of Wollongong,
Australia. The focus of his research has been on
cyber security and user privacy. In particular, he has

worked in applied crypto, secure authentication, key management, public key
certificate security, email security, secure cloud storage, security verification,
and public ledger based applications.

Mark Ryan is a full professor and the direc-
tor of the GCHQ Academic Centre of Excellence
in Cybersecurity Research at University of Birm-
ingham. He leads the computer security research
group in Birmingham, and is an EPSRC Leadership
Fellow (2010–2015). He has worked in protocol
verification analysis, electronic voting, access con-
trol, cloud computing security, verification of the
trusted platform module (TPM), privacy analysis,
and process calculus. In 2008 Mark spent seven
months at Hewlett Packard, on a secondment from

the University funded by the Royal Academy of Engineering. Mark currently
holds research grants valued at £3 million, from the UK EPSRC, the EU and
from industry.

Cas Cremers is a full professor in the Department
of Computer Science at the University of Oxford.
His research focuses on information security, in par-
ticular the formal analysis of security protocols.
This work ranges from developing mathematical
foundations for protocol analysis to the development
of analysis tools, notably the Scyther and Tamarin
tools. Recently his research expanded into direc-
tions such as protocol standardisation, including the
improvement of the ISO/IEC 9798 & 11770 and
IETF TLS 1.3 standards, and applied cryptography,

leading to the development of new security requirements and protocols.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on March 01,2022 at 15:53:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

