
Making Decryption Accountable

Mark D. Ryan

University of Birmingham

Abstract. Decryption is accountable if the users that create ciphertexts
can gain information about the circumstances of the decryptions that
are later obtained. We describe a protocol that forces decryptors to cre-
ate such information. The information can’t be discarded or suppressed
without detection. The protocol relies on a trusted hardware device. We
describe some applications.

1 Introduction

When I was a teenager, I wanted to be able to go out in the evening and not
have to tell my parents where I was going. My parents were understanding about
this wish for privacy, but explained that if for some reason I didn’t come back
at the expected time, they needed to have some clues to give to the police about
where I had been. So we came to the following compromise: I would leave a
sealed envelope explaining my activities. This would enable them to search for
me if they needed to, but if I came back on time I could retrieve the envelope
and see that it had not been opened. This idea seems closely connected to the
‘multi-objective’ theme of SPW’17: the protocol aims to simultaneously serve
the partly conflicting requirements of the teenager and his parents.

To have such a protocol in the digital world, we would need some way of
knowing whether someone who has all the needed material to perform a decryp-
tion has actually performed it. More generally, we need a way to make decryption
key holders accountable in some way for their use of the key. This accountability
might take many forms. For example, some applications might need fine-grained
accounts of exactly what was decrypted, and when, while in other cases we may
be interested only in volumes, frequencies, or patterns of decryption.

In this paper, we informally describe the requirements for making decryptions
accountable (section 2), and devise a protocol based on trusted hardware that
achieves them (section 3). We describe a few applications at a very high level
(section 4).

2 The requirements

We formulate the requirements as follows:

– Users U1, . . . create ciphertexts using a public encryption key ek.
– Decrypting agent Y is capable of decrypting the ciphertexts without any

help from the users.

Authors’ preprint of 2015-06-30.
Final version to appear in Proceedings of Passwords 2014, Springer LNCS.



– When Y decrypts ciphertexts, it unavoidably creates evidence e that is acces-
sible to the users. The evidence cannot be suppressed or discarded without
detection.

– By examining e, the users gain some information about the nature of the
decryptions being performed.

Here, the granularity of e is left open. We will see some examples in section 3.2.
Note that we focus on ensuring that if Y decrypts, then the user will be

able to achieve evidence that that has happened. The teenager envelope story
in the introduction had an additional property: the parents Y can give up the
possibility of ever decrypting, if they wish (by returning the unopened envelope).
We don’t include that additional property in our requirements.

3 Protocol design

Intuitively, if Y has a ciphertext and a decryption key, it is impossible to detect
whether she applies the key to to ciphertext or not. This implies that the key has
to be guarded by some kind of hardware device D that controls its use. In this
section, we propose a simple generic design that achieves some of the desired
functionality. The hardware device D embodies the secret decryption key dk
corresponding to ek. The secret decryption key dk never leaves the device.

In order to make the evidence e persistent, we assume a log L. The log is
organised as an append-only Merkle tree as used in, for example, certificate
transparency [1]. The log maintainer publishes the root tree hash H of L, and
is capable of generating two kinds of proof about the log’s behaviour:

– A proof of presence of some data in the log. More precisely, given some data d
and a root tree hash H of the log, the log maintainer can produce a compact
proof that d is indeed in the log represented by H.

– A proof of extension, that is, a proof that the log is maintained append-only.
More precisely, given a previous root tree hash H ′ and the current one H,
the log maintainer can produce a proof that the log represented by H is an
append-only extension of the log represented by H ′.

(Details of these proofs can be found in e.g. [8].) This means that the maintainer
of L is not required to be trusted to maintain the log correctly. It can give proofs
about its behaviour.

3.1 Performing decryptions

The decrypting agent Y uses the device D to perform decryptions. The device
will perform decryptions only if it has a proof that the decryption request has
been entered into the provably-append-only log.

The device maintains a variable containing its record of the most recent root
tree hash H that it has seen of the log L. On receiving a set R of decryption
requests, the decrypting agent performs the following actions:

2



– Obtain from the device its last-seen root tree hash H.
– Enter the set R of decryption requests into the log.
– Obtain the current root tree hash H ′ of the log.
– Obtain from the log a proof π of presence of R in the log with RTH H ′.
– Obtain from the log a proof ρ that the log with RTH H ′ is an append-only

extension of the log with RTH H.

The decrypting agent presents (R,H ′, π, ρ) to the device. The device verifies the
proofs, and if they are valid, it performs the requested decryptions R. It updates
its record H of the last-seen root tree hash with H ′.

3.2 Evidence

Evidence about decryptions is obtained by inspecting the log, which contains
the decryption requests. There are many ways that this could be organised. We
look at two examples:

Example 1: the log contains a hash of the ciphertext that is decrypted. This
allows a user U to detect if ciphertexts she produced have been decrypted.

Example 2: the log contains a unique value representing the decrypted ci-
phertext, but the value cannot be tied to a particular ciphertext (for example,
the value could be the hash of a re-encryption [7]). This allows users to see the
number of ciphertexts decrypted, but not which particular ones.

3.3 Currency

As described so far, the protocol is insecure because the device D could be
tracking a version of the log which is different from the version that the users
track. Although both the device and users verify proofs that the log is maintained
append-only, there is no guarantee that it is the same log. The log maintainer
can bifurcate the log, maintaining each branch independently but append-only.

Gossip protocols of the kind proposed for solving this problem for certificate
transparency [5] are insufficient here, because the device D is not capable of
reliably participating in them.

To ensure that users track the same version of the log that D tracks, we
introduce an additional protocol of D. In this second protocol, D accepts as
input a verifiably current value v. The value v cannot be predicted in advance,
but is verifiable by anyone. D outputs its signature Signsk(v,H) on the value v
and its current stored root tree hash H of the log. Thus, we require that D has
an additional secret key sk for signing. The corresponding verification key vk is
published. Like dk, the key sk never leaves the device.

There are several ways in which the verifiably current value v can be con-
structed. For example, v can be the hash of a data structure containing nonces
v1, . . ., each one produced by one of the users U1, . . .. Alternatively, v could be
the concatenation of the date and the day’s closing value of an international
stock exchange.

3



Periodically, the current value of H tracked by the device is published. By
means of the proofs of extension, users can verify that it is consistent with their
view of the log.

There remains the possibility that users can be denied the possibility of
inspecting the log, and/or denied the possibility of interacting with the device
to obtain the log root-tree hash H. In these cases, decryptions can take place
without the user being aware; but of course, the user knows s/he is being denied
access. Thus, if users are denied access they should assume that the agreement
concerning accountability has broken down.

3.4 The trusted hardware device

The protocol described relies on having a trusted hardware device D that per-
forms a specific set of operations that are recapped here. The aim is to keep the
functionality of D as small and as simple as possible, while still allowing it to
support the variety of applications mentioned below (section 4). In summary,
D stores persistent keys dk (decryption) and sk (signing), and the current root
tree hash H of a log. It offers two services:

Decryption. It accepts a tuple (R,H ′, π, ρ) as described in section 3.1. It ver-
ifies the proof π that R is present in the log with root tree hash (RTH) H ′,
and the proof ρ that H ′ is the RTH of a log that is an extension of the log
of which its current RTH is the H stored in D. (These verifications consist
of some hash calculations and comparisons.) If the verifications succeed, it
performs the decryptions R, and replaces its stored H with H ′.

Attestation. It accepts a value v, and returns Signsk(v,H) on the value v and
its current stored RTH H.

4 Applications

4.1 Application areas

Most electronic voting protocols begin with voting clients that encrypt votes
with a public key, and end with the result being decrypted by a trustworthy
party (or, possibly, a set of trustworthy parties each of which holds a share
of the decryption key). The decrypting agents are trusted only to decrypt the
result, and not the votes of individual voters. A protocol to make decryption
accountable could help make this verifiable.

Finance is an area in which privacy and accountability are often required to be
balanced. For this reason, the designers of Zerocash have introduced mechanisms
which allow selective user tracing and coin tracing in a cryptocurrency [6]. The
limitation of their approach is that authorities have to decide in advance of
the relevant transactions which coins or which users they want to trace. This
is inconvenient in practice: often, suspects only become clear after transactions
have taken place. Making decryptions accountable is another technique which

4



could help obtain the desired combination of privacy and accountability, and
would allow retrospective decryption.

The UK government has recently passed legislation allowing government
agencies to access information about the communications of private citizens [2],
in order to solve crimes. In an effort to provide some kind of accountability,
there are stipulations in the law to ensure that the provisions of the act are used
in ways that are necessary and proportionate to the crimes being addressed. A
protocol that makes decryption accountable could make verifiable the quantity
and perhaps the nature of decryptions [7].

Making decryptions accountable potentially addresses the problem of hav-
ing to trust escrow holders, for example in identity-based encryption [4] and
elsewhere [3].

4.2 Access control

The device and the protocols are desiged to guarantee just one thing: that if
decryptions take place, this fact can be detected by the user. Of course, in any
real application such as those given above, much more than that is needed. For
example, consider an email application, in which authorities are allowed to de-
crypt emails, and users can detect the extent to which this has been done. Our
protocols provide this detectability, but they do not provide other features that
would be required to make such a system acceptable. For example, in what cir-
cumstances can decryptions be requested, and by whom? How are the decrypted
mails to be treated? All these questions would have to be answered by access
control mechanisms layered on top of the protocols detailed in this paper.

5 Conclusion

There seems to be a variety of circumstances in which making decryption ac-
countable is attractive. This paper proposes the design of trusted hardware which
would assist in this process.

The idea of the design is that the decrypting agent has no way to decrypt
data without leaving evidence in the log, unless it can break the hardware device
D. This raises the question of who manufactures the device, and how the relying
parties (both users U1 . . . and decrypting agents Y ) can be assured that it will
behave as specified. It depends on the sensitivity of the information being pro-
cessed. One idea is that it is jointly manufactured by an international coalition
of companies with a reputation they wish to maintain.

References

1. Certificate transparency. Available: www.certificate-transparency.org (2007)
2. Investigatory Powers Act. Available: www.legislation.gov.uk/ukpga/2016/25/

contents/enacted (2016)

5

www.certificate-transparency.org
www.legislation.gov.uk/ukpga/2016/25/contents/enacted
www.legislation.gov.uk/ukpga/2016/25/contents/enacted


3. Abelson, H., Anderson, R., Bellovin, S.M., Benaloh, J., Blaze, M., Diffie, W.,
Gilmore, J., Green, M., Landau, S., Neumann, P.G., et al.: Keys under doormats:
mandating insecurity by requiring government access to all data and communica-
tions. Journal of Cybersecurity (2015)

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Annual
International Cryptology Conference. pp. 213–229 (2001)

5. Chuat, L., Szalachowski, P., Perrig, A., Laurie, B., Messeri, E.: Efficient gossip
protocols for verifying the consistency of certificate logs. In: IEEE Conference on
Communications and Network Security (CNS). pp. 415–423 (2015)

6. Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized anonymous
payments. IACR Cryptology ePrint Archive 2016, 61 (2016), http://eprint.iacr.
org/2016/061

7. Jia Liu, Mark D. Ryan and Liqun Chen: Balancing Societal Security and Individual
Privacy: Accountable Escrow System. In: CSF (2014)

8. Mark D. Ryan: Enhanced certificate transparency and end-to-end encrypted mail.
In Network and Distributed System Security (NDSS) (2014)

6

http://eprint.iacr.org/2016/061
http://eprint.iacr.org/2016/061

	Making Decryption Accountable

