
Enhanced Certificate Transparency and
End-to-end Encrypted Mail

Mark D. Ryan
University of Birmingham, UK

Abstract—The certificate authority model for authenticating
public keys of websites has been attacked in recent years, and
several proposals have been made to reinforce it. We develop
and extend certificate transparency, a proposal in this direction,
so that it efficiently handles certificate revocation. We show
how this extension can be used to build a secure end-to-end
email or messaging system using PKI with no requirement
to trust certificate authorities, or to rely on complex peer-to-
peer key-signing arrangements such as PGP. This makes end-
to-end encrypted mail possible, with apparently few additional
usability issues compared to unencrypted mail (specifically, users
do not need to understand or concern themselves with keys
or certificates). Underlying these ideas is a new attacker model
appropriate for cloud computing, which we call “malicious-but-
cautious”.

1 Introduction

1.1 Background and motivation

Public-key cryptography relies on entities being able to
obtain authentic copies of other entities’ public keys. For
example, suppose a user wishes to log in to their bank account
through their web browser. The web session will be secured by
the public key of the bank. If the user’s web browser accepts
the wrong public key for the bank, then the traffic (including
login credentials) can be intercepted and manipulated by an
attacker.

In order to avoid such attacks, certificate authorities (CAs)
are used assure an entity about the public key of another one. In
the example given, the browser is presented with a public key
certificate for the bank, which is intended to be unforgeable
evidence that the given public key is the correct one for the
bank. The certificate is digitally signed by a CA. The browser
is pre-configured to accept certificates from certain known

CAs. A typical installation of Firefox has about 100 CAs in
its database.

Aside from cryptography issues [1], [2], [3], there are
two big problems with the CA model. Firstly, CAs must be
assumed to be trustworthy. If a CA is dishonest or compro-
mised, it may issue certificates asserting the authenticity of
fake keys; those keys could be created by an attacker or by the
CA itself. Unfortunately, the assumption of honesty does not
scale up very well. As already mentioned, a browser typically
has hundreds of CAs registered in it, and the user cannot
be expected to have evaluated the trustworthiness of all of
them. This fact has been exploited by attackers. If an attacker
manages to insert a malicious CA into the user’s browser, the
attacker can get the browser to accept fake keys for standard
services (such as bank web sites and webmail sites). Then
the attacker can intercept and manipulate the user’s traffic
with those sites. Many attacks based on these ideas have been
reported [4], [5], [6], [7], [8], [9]. In 2011, two CAs were
compromised: Comodo [10] and DigiNotar [11]. In both cases,
certificates for high-profile sites were illegitimately obtained,
and in the second case, reportedly used in an MITM attack
[12].

A second problem with the CA model is key revocation.
If a certificate owner loses control of its private key, it needs
to revoke the certificate before its expiration date. Currently,
web browsers attempt to check revocation on the fly: the
browser queries the CA to verify that a certificate hasn’t been
revoked. Unfortunately, that solution doesn’t work well; it
poses a large burden on CAs to respond to such requests; it
can be defeated by attackers that block such requests; and it
has privacy implications for web users.

Several interesting solutions have been proposed to address
these problems. (For a good survey, see [13].) Certificate
pinning addresses the problem of untrustworthy CAs, by
restricting in the client browser parameters concerning the set
of CAs that are considered entitled to certify the key for a
given domain [14], [15]. Crowd-sourcing techniques have been
proposed in order to detect untrustworthy CAs, by enabling a
browser to obtain warnings if the certificates it is offered are
out of line with those that other people are being offered [16],
[17], [18], [19]. In another direction, certificate transparency
[20] is an approach which aims to prevent certificate authorities
from issuing public key certificates for a domain without
being visible to the owner of the domain. The core idea is
that a public append-only log is maintained, showing all the

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/10.14722/ndss.2014.23379.



certificates that have been issued. A certificate is accepted only
if it is accompanied by a proof that it has been inserted into
the log.

Solutions for revocation management have also been pro-
posed; they mostly involve periodically pushing revocation
lists to browsers, in order to remove the need for on-the-fly
revocation checking [21], [22]. However, this solution creates
a window during which the browser’s revocation lists are out
of date until the next push. Revocation transparency [23] is
an extension of certificate transparency that aims to deal with
revocation, although (as we later explain) we believe it does
not scale up, since it requires space and time for each relying
party that is linear in the number of revocations.

1.2 Extending certificate transparency

Certificate transparency solves the problem that CAs are
required to be trusted. It uses public logs and optionally gossip
protocols to ensure that CAs leave persistent evidence of all
the certificates they issue. In that way, the activities of a CA
are visible (“transparent”) to its users and to observers. Users
accept a certificate only if it is accompanied by a proof that
it is included in the log. The proofs are short and efficiently
verifiable by browsers. Even if there are 109 certificates, the
proofs amount to 1KB or 2KB of data.

Unfortunately, certificate transparency does not handle
revocation efficiently. The core proposal in the IETF draft
[20] does not specify any revocation mechanism. An informal
proposal for handling revocation exists [23], but adopting it
has the side-effect of dramatically reducing the efficiency of
certificate transparency. Roughly speaking, the size of proofs
grows from 1KB or 2KB to tens or hundreds of GB.

We extend certificate transparency to handle revocation
efficiently. In our extension, proofs that a key is current (i.e.,
issued and not revoked) are as efficient as proofs of issuance
in certificate transparency. Proofs of absence (i.e., proofs that
a CA has not issued any certificates for a subject) are also as
efficient. Thus, all the proofs that browsers request are efficient
in our extension.

1.3 End-to-end encrypted mail

Public-key cryptography was invented to allow users to
send encrypted mail1; nevertheless, 35 years later, in practice
it is rather hard for users to encrypt their mail in a systematic
way. S/MIME and PGP exist but have failed to take off [24].
This failure of adoption of encryption for mail is in marked
contrast with the encryption for the web, where encrypted
browsing is routinely done by billions of users each day.
Numerous efforts to improve this situation have been made (a
brief review is in §2.4), but none of them simultaneously satisfy
the requirements of usability (there should be no confusing
warning messages about keys and certificates) and security
(encryption should be end-to-end, and there should be no
trusted parties).

1Indeed, the first line of the 1978 RSA paper is: The era of “electronic
mail” may soon be upon us; we must ensure that [. . . ] messages are private.

Certificate transparency was developed for web certificates,
but we demonstrate in this paper that, once extended to handle
revocation efficiently, it can be applied to address the problem
of end-to-end encrypted email too. As mentioned, the core
property of certificate transparency is that it allows CAs to be
untrusted. By using (our extension of) certificate transparency
as a foundation, we detail a method in which an untrusted
provider can act both as a CA and as a provider of the email
service. This allows users to send encrypted mail without
having to understand anything about keys or certificates, and
without having to rely on any trusted parties.

1.4 Our contribution

We develop and extend the idea of certificate transparency,
and we apply it to email encryption. In particular,

• We rework certificate transparency so that it properly
handles revocation, in space/time which is logarithmic
in the number of revocations.

• We show how it can be used to build a secure email or
messaging service using PKI with no trusted parties.

• We develop a new attacker model appropriate for
cloud computing, which we call “malicious-but-
cautious”.

Structure of paper: In section 2, we review some background
material on which the paper relies. Section 3 details our
extension to certificate transparency, which we call certificate
issuance and revocation transparency (CIRT) to emphasise
that it efficiently handles certificate revocation as well as
issuance. In section 4, we describe the application of CIRT
to email, and show that it enables end-to-end encrypted email
without requiring any trusted parties (such as CAs), and
without requiring any additional understanding or effort from
users. Discussion of our attacker model, called the “malicious
but cautious” attacker, is made in section 5.

2 Background

We review some of the background material on which the
paper relies.

2.1 Merkle trees

A Merkle tree is a tree in which every node is labelled
with the hash of the labels of its children nodes, and possibly
some other values. Suppose a node has n children labelled with
hash values v1, . . . , vn, and has data d. Then the hash value
label of the node is the hash of v1, . . . , vn, d. Merkle trees
allow efficient proofs that they contain certain data. To prove
that a certain data item d is part of a Merkle tree requires an
amount of data proportional to the log of the number of nodes
of the tree. (This contrasts with hash lists, where the amount
is proportional to the number of nodes.)

Example: Figure 1 shows a Merkle tree containing data
items c1, . . . , c6 stored at the leaf nodes (in this tree, there

2



h(h(h(c1, c2), h(c3, c4)), h(c5, c6))

h(h(c1, c2), h(c3, c4))

h(c1, c2)

c1 c2

h(c3, c4)

c3 c4

h(c5, c6)

c5 c6

Fig. 1. A Merkle tree containing items c1, . . . , c6.

are no data items stored at non-leaf nodes). Figure 2 shows
a larger Merkle tree containing data items c1, . . . , c32 (again
in this case stored only at leaves). To demonstrate that c11 is
present in the tree, it is sufficient to provide the additional data
c12, h5, h14, h16, h20, i.e. one data item per layer of the tree.
The recipient of this data can then verify the correctness of the
root hash h21. Proving that one Merkle tree extends another
can also be done in logarithmic space and time, by providing
at most one hash value per layer. For example, to demonstrate
that the tree of Figure 2 is an extension of the one in Figure 1,
it is sufficient to provide the data h4, h17, h20. The hash value
at the root of the tree is called the root hash (or simply the
hash) of the tree.

2.2 Certificate transparency

Certificate transparency [20], [25], [26] is a technique
invented by Google that aims to prevent TLS [27], [28], [29]
certificate authorities from issuing public key certificates for a
domain without being visible to the owner of the domain. It is
aimed at website certificates, and the technology is being built
into Google Chrome.

The core idea is that a public log is maintained, showing
all the certificates that have been issued. The log is append-
only. Anyone can append a certificate to the log. Auditors can
obtain two types of proofs: (a) a proof that the log contains
a given certificate, and (b) a proof that a snapshot of the log
is an extension of another snapshot (i.e., only appends have
taken place between the two snapshot).

Abstractly, we may consider a certificate as a signed
pair (subj , pk subj ), asserting that a subject subj ’s public key
is pk subj . In certificate transparency, the CA’s database of
certificates is maintained as a Merkle tree in which these pairs
are stored left-to-right in chronological order at the leaves of
the tree (Figures 1 and 2). Items are added chronologically, by
extending the tree to the right. A certificate is accepted by a
browser only if it is accompanied by a proof that the subject-
key pair has been inserted into the log. Observers can check
that the log is maintained as append-only. To perform such a
check, the observer submits to the CA the hash value of the
log at two different times. The CA returns a proof that the log
corresponding to the later hash value is an extension of the log
at the earlier time. The properties of Merkle trees ensure that
insertion into the log, and both proofs (the proof of presence

in the log, and the proof of extension of the log), can be done
in time/space O(log n).

Linearity: It is vital that the log is a single linear record. If the
log maintainer can create different versions of the log to show
to different users, the security is lost. Linearity is maintained
in two ways. Firstly, whenever a user interacts with the log,
it requests proof that the current snapshot is an extension
of the previously cached snapshot. This is best done before
authentication, to avoid the possibility that a version specially
constructed for a particular user is being used. Second, gossip
protocols [30] can be used to disseminate values of the log.
This means that users of the log (that is, client browsers) need
to have a way to exchange with other users the value of the
hash of the log that they have received. At any time, a user
can request proof that the snapshot currently offered by the
log is an extension of a previous snapshot received through
direct communication with other users.

2.2.1 Revocation transparency: In certificate transparency,
one can prove that a certificate is in the log, but there is no
notion of whether it is still current. Revocation transparency
[23] is an extension of certificate transparency that aims to
deal with revocation. Two alternative methods for revocation
transparency are proposed. The first method stores revocations
in a data structure called a sparse Merkle tree, which is a
Merkle tree in which most of the leaves are zero. A path in this
tree has length 256, and represents the hash of a certificate. The
path ends in a 1 or 0 leaf according to whether the certificate
is revoked or not. The tree is thus a binary tree with 2256

leaves, but because it is sparse, these leaves do not have to be
stored individually. To revoke a certificate, one alters the sparse
Merkle tree so that the relevant path terminates in a 1, and one
enters a record of this action in the certificate-transparency
append-only log. Unfortunately, checking whether a certificate
has been revoked is inefficient. One method is to track the
revocations by a separate mechanism, an action which is
linear in the number of revocations, which in turn can be
assumed proportional to the number of issued certificates.
Alternatively, one can check the entire certificate-transparency
log for revocation records, but this is again linear in the number
of issued certificates. In §3.2, we show that proofs requiring
linear space and time require data sizes measured in tens or
hundreds of gigabytes, which makes them impractical.

As mentioned, the sparse Merkle tree is one of the proposed
data structures for revocation transparency. The other one is a
sorted list organised as a search tree. It is also used in con-
junction with the certificate-transparency log. But, similarly to
the sparse Merkle tree, the ideas only address how revocations
should be stored. Checking revocations remains linear in the
number of issued certificates.

2.3 Other approaches to handling certificates securely

There are many other proposals for ensuring the authentic-
ity of public key certificates. Early ones are based on croud-
sourcing, where a user’s assurance that a certificate is genuine
is increased if other users have received the same certificate.

3



h21

h19

h16

h11

h1

c1 c2

h2

c3 c4

h12

h3

c5 c6

h4

c7 c8

h17

h13

h5

c9 c10

h6

c11 c12

h14

h7

c13 c14

h8

c15 c16

h20

h18

h15

h9

c17 c18

h10

c19 c20

h22

h23

c21 c22

h24

c23 c24

h25

h26

h27

c25 c26

h28

c27 c28

h29

h30

c29 c30

h31

c31 c32

Fig. 2. A Merkle tree containing items c1, . . . , c32. To demonstrate that c11 is present in the tree, it is sufficient to provide the additional data
c12, h5, h14, h16, h20. To demonstrate that this tree is an extension of the one in the previous figure, it is sufficient to provide the data h4, h17, h20.

Proposals in this vein include the SSL Observatory [31];
Certificate Patrol [32]; Perspectives [33]; DoubleCheck [34];
CertLock [35]; Covergence [36]; and TACK (2012) [37]. There
are also approaches based on using DNS, such as DANE [38];
and CAge (2013) [39].

Sovereign Keys [40] is, like certificate transparency, based
on the idea of a public log. Another recent proposal that
mixes several ideas and also relies heavily on public logs is
Accountable Key Infrastructure (AKI) [41].

2.4 End-to-end email encryption

As well as being useful to authenticate public keys for
organisations and web sites, public-key certificates can be
used for individuals, allowing end-to-end encrypted email. If
Alice wishes to send an encrypted email to Bob, she needs
to obtain an authentic copy of Bob’s public key. There are
two main standards in use for public key encryption of email,
called S/MIME2 and PGP3. They both require the user’s client
software to maintain the user’s private key, and the public keys
of the people she exchanges email with. The main conceptual
difference between S/MIME and PGP is the way in which a
user verifies that he has an authentic copy of another user’s
public key. In S/MIME, public keys come with a certificate
from a CA. If Bob is an employee of a large corporation such
as Boeing, his company may act as a certificate authority for
his email public key. But if Bob’s email address is from a
smaller organisation or is not a company address, there is no
natural certificate authority. If there is one, then as previously
mentioned, users have to assume it is honest, which may not
be a reasonable assumption. For these reasons, S/MIME really
works only in a large corporate environment, where the email
is the property of the company, and the corporation can act as
a CA for all its employees. It is natural for both employees

2S/MIME stands for Secure MIME, and was designed in 1995 as an
extension of the MIME format. MIME stands for Multipurpose Internet Mail
Extensions and is the standard for email attachments. S/MIME version 3
(1999) is standardised by IETF.

3The first version of PGP was designed in 1991. The name, Pretty Good
Privacy, is intended to be humorously ironic. OpenPGP, created in 1997, is
an open specification being standardised by IETF.

and external users that correspond with employees to trust the
corporation for email related to its business. S/MIME works
less well for small organisations, because they may not wish
to take on the complexities of being a CA.

PGP is targeted at individual email users rather than corpo-
rate users, and aims to avoid the requirement of “authorities”
that certify public keys. This recognises that, in the case of
individuals, there are no entities that can fulfil the requirements
of being a CA (namely: well-known, trusted by all users,
and free to use). To solve this, PGP spreads the certifying
role across a set of users, each of whom are somewhat
trusted and somewhat known to the sender and receiver, with
the expectation that, taken together, this comprises enough
evidence for the authenticity of the public key. By signing
each other’s keys in a peer-to-peer fashion, PGP users create a
“web of trust” that works not because of some highly trusted
pillars like CAs, but because all the users support the trust web
in a small way.

2.4.1 Inhibitors to take-up of email encryption: In spite
of support on all major client software and significant efforts
at supporting take-up, very few people use encrypted mail.
Yet, there are substantial motivations, including compliance
requirements as well as confidentiality requirements. End-to-
end encrypted mail seems to have a dedicated following among
a small number of people in very specific sectors.

“Why Johnny can’t encrypt” is a 1999 classic paper [24]
explaining why PGP encryption for email has failed to take
off. Other papers have developed the explanation further. The
reasons encrypted email is not routinely used are:

• It is too complicated for users to understand the model.
S/MIME is presented to users in a gobbledygook way,
asking them to understand public and private keys, key
servers, certificates, certificate authorities, etc. Most
users don’t want to have to spend time learning this
sort of stuff. The pain outweighs the gain.

• S/MIME assumes a hierarchical certificate-authority
system for certifying keys which is expensive and
cumbersome even for companies, and it appears to be

4



prohibitive for SMEs and individuals. PGP is aimed
more at individuals, having a peer-to-peer certifying
arrangement, but this also has proved impossible for
any but the most determined users to master.

• Even when set up on one platform (e.g., work desk-
top), the set-up has to be done again on other platforms
(laptop, phone) and is different each time. Again, users
have to copy keys around between devices, and the set-
up is different in different contexts (desktop, mobile,
webmail, etc.).

2.4.2 Identity-based encryption: Identity-based encryption
(IBE) [42], [43] aims to solve the problem of having to certify
public keys for individuals, by instead offering the possibility
of using a string representing their identity (e.g., their email
address string) as the public key. An identity provider publishes
a single public key (certified in the usual way), and then, for
each registered email address, it computes a private key for the
holder of the email address, and securely transmits it to him.
The encryption primitive takes as input the provider’s public
key, the email address of the addressee, and the message, and
returns a ciphertext. The ciphertext can now be decrypted using
the private key given by the provider to the email address
holder.

IBE is an attractive solution, because people are used to the
idea that a person is represented by a human-readable string
like an email address, rather than a public key. Unfortunately,
in IBE the identity provider computes the private keys for all
users, which means that the identity provider can decrypt any
ciphertext: this is called the key-escrow problem. Key escrow
can be considered reasonable in a corporate setting, where mail
is owned by the organisation, but not in other settings. Another
difficulty with IBE is key revocation, since the public key is
the email address.

Certificateless encryption [44] solves the key-escrow prob-
lem of IBE by allowing users to create by themselves a
public/private pair, which act in conjunction with, respectively,
the public email address and private key created by the
provider. In this setting, the encryption primitive takes as input
the provider’s public key, the addressee’s additional public
item, the email address of the addressee, and the message,
and returns a ciphertext. The ciphertext can now be decrypted
using the additional private item, and the private key given
by the provider to the email address holder. The identity
provider can’t decrypt because it doesn’t have the private item.
The public item does not need to be certified, justifying the
name “certificateless”, because a third party that fakes the
public item is not in possession of the private key from the
identity provider and therefore cannot decrypt. A remaining
weakness is that the identity provider can fake the public
item, allowing it to mount “active” attacks, but this is still
an improvement over IBE where the identity provider can
passively decrypt. Certificateless encryption does not solve the
revocation problem.

3 Certificate issuance and revocation trans-
parency (CIRT)

We detail our extension of certificate transparency, in par-
ticular showing how a certificate authority can create efficient
proofs that a given key is current (issued and not revoked).

3.1 Proving correct management of certificates

We propose a method which allows users of public keys to
rely on certificate authorities without having to trust them. To
put this another way, the method allows CAs to prove to users
that they have behaved correctly. This solves the core problem
related to certificate authorities. It also allows companies to
provide end-to-end encrypted email in a form that appears to
be as user-friendly as ordinary email is today.

The method uses many ideas from certificate transparency
(§2.2). In particular, a public append-only log is maintained
of the certificates issued by a given certificate authority. In
our method, the maintainer of the log can offer a proof that
a certain certificate is current in the log, i.e., it has not been
replaced or revoked. This is in contrast with certificate trans-
parency, where proofs are that a certain certificate is present in
the log, but not necessarily current. There are attempts to make
certificate revocation work with certificate transparency, but as
mentioned in §2.2.1 they require space/time which is linear
(rather than logarithmic) in the number of certificates issued,
and therefore the methods do not scale up. We describe and
quantify this scalability aspect in §3.2.

A certificate prover (CP) is an entity that maintains a public
log of certificates issued by a certificate authority. CP is able to
issue proofs of extension of the log (that is, that the log is only
ever appended), and proofs of currency of a given certificate.
Suppose that CP’s log consists of a collection of certificates:

db = [cert(Alice, pkAlice), cert(Bob, pkBob), . . .] .

To demonstrate its correct behaviour, CP must offer the
services listed in Figure 3. It is important that these operations
are done efficiently. More precisely, the data structure used for
db must allow these operations to be done so that the time and
transferred data is proportional to O(log n) or better, where n
is the number of certificates stored.

The database of certificates is maintained as a pair of
Merkle trees. In the first tree, items are stored left-to-right
in chronological order, as in certificate transparency. We call
this tree ChronTree. Certificates are added chronologically, by
extending the tree to the right (see Figures 1 and 2). Revocation
of a certificate is done by adding a new (perhaps null) key for
the subject. Thus, a key for a subject is considered current
only if there is no later item for the subject. Using this tree,
insertion, revocation and the extension proof are O(log n),
by exploiting the properties of Merkle trees. However, as in
certificate transparency, the currency proof is O(n) because
one has to show that a given key has not been revoked; this
involves enumerating all the transactions that took place after
the key was inserted. Similarly, an absence proof involves
enumerating the whole tree.

5



input result
– h(db): the hash of the current database

(subj , pk subj ) Insertion: the certificate
cert(subj , pk subj ) is inserted into the
database.

(subj , pk subj ) Revocation: the certificate
cert(subj , pk subj ) is marked as revoked
in the database.

h(db), h(db′) Extension proof: a proof that db′ is an
append-only extension of db. We write
this as h(db) v h(db′)

h(db), subj Currency proof: a proof that
cert(subj , pk subj ) is current according to
db

h(db), subj Absence proof: a proof that there are no
certificates for subj in db

Fig. 3. Services offered by a certificate prover.

d8
h(d8,h(d4,h(d2,h(d1),h(d3)),h(d6,h(d5),h(d7))),h(d10,h(d9),h(d11))

d4
h(d4,h(d2,h(d1),h(d3)),h(d6,h(d5),h(d7)))

d2
h(d2,h(d1),h(d3))

d1
h(d1)

d3
h(d3)

d6
h(d6,h(d5),h(d7))

d5
h(d5)

d7
h(d7)

d10
h(d10,h(d9),h(d11)

d9
h(d9)

d11
h(d11)

Fig. 4. An example of LexTree. The data items di have the form(
subji, (certi,1, certi,2, . . .)

)
, and subj1, . . . , subj11 are in lexicographic

order.

To address this limitation, we additionally store the
database as another Merkle tree, this time organised as a
binary search tree, which we call LexTree. More precisely,
the items (subj , (pk subj ,1, pk subj ,2, . . .)) are stored at leaf and
non-leaf nodes such that a left-right traversal yields the data
in lexicographic order of the subject subj . Figure 4 shows an
example, where the items di have the form

di =
(
subji, (certi,1, certi,2, . . .)

)
and subj1, . . . , subj11 are in lexicographic order. The size
of the list of certificates (certi,1, certi,2, . . .) is bounded by
a constant N in LexTree; in other words, we only store
up to N − 1 revoked keys, and throw older ones away. A
list of keys is stored for each subject, of which only the
last one is the current one (the others are revoked). Here,
insertion, revocation, currency proofs and absence proofs are
O(log n). For example, a proof that cert(Alice, pkAlice) is
current consists of showing that d = (Alice,LAlice) is in

LexTree (which is done in logarithmic time, using standard
Merkle tree proofs), and showing that pkAlice is the last item
in LAlice , which is done in constant time since the length of
LAlice is bounded by a constant. Absence proofs (e.g., a proof
that there are no keys for Bob in LexTree) can be done by
showing that (subj1 ,Lsubj1 ) and (subj2 ,Lsubj2 ) are adjacent in
the left-right traversal of LexTree, while lexicographically we
have subj1 ≤ Bob ≤ subj2; this is also O(log n). However,
to prove extension between db1 and db2 proof is now O(n)
because one has to consider each item that has been added
between db1 and db2.

To obtain efficient proofs for both certificate currency and
database extension, we use the two trees together. The database
is a pair of Merkle trees (ChronTree, LexTree). Insertion
and revocation are done on both trees together, to ensure
consistency. Extension and currency proofs are done using
ChronTree and LexTree respectively, so all the operations may
be done in time and space O(log n).

Because LexTree does not allow efficient proofs of exten-
sion, we bind LexTree to ChronTree by inserting the root hash
of LexTree into ChronTree along with the certificates. Thus,
the process of adding a a certificate c to (ChronTree, LexTree)
is as follows:

• Add c to LexTree. If the subject of c exists in the
tree, this is done by appending the new key to the
existing list; otherwise, it is done by creating a new
node for the new subject. The tree is maintained in
lexicographic traversal order by subject. Let hl be the
root hash of the new LexTree.

• Add (c, hl) to ChronTree.

We show a complete (ChtonTree, LexTree) pair in Figure 5,
and then update it with two further certificates, resulting in a
new pair in Figure 6. One could improve the efficiency of this
addition operation, by adding certificates in batches instead of
individually; a whole batch could occupy a single node of the
ChronTree, while the certificates of a batch are distributed in
LexTree in order to preserve the lexicographic ordering.

The definition of h(db) is the Merkle hash value at the root
of ChronTree, concatenated with that at the root of LexTree.
One still has to verify that the two parts of the data structure
are maintained consistently with each other. This verification
requires O(n) time and space, but it does not have to be
computed by any particular user’s browser. There are two ways
that can be used to achieve this efficiently.

• Random checking by users’ client software. The
client software specifies a randomly chosen path in
ChronTree, terminating in (say) (ci, hi). Then it re-
quests proof that the LexTree denoted by hi is pre-
cisely the tree denoted by hi−1 augmented by the
certificate ci.

• Public auditor. The auditor receives all the updates
from CP and maintains its own version of the two
trees. It compares the h(db) with the one reported by
the log. Anyone can be a public auditor.

In summary, we extend certificate transparency by using
two data structures, which are optimised for different kinds of

6



h(h(h(x1, x2), h(x3, x4)), h(x5, x6))

h(h(x1, x2), h(x3, x4))

h(x1, x2)

x1 := ((A, pkA), h1)

x2 := ((B, pkB), h2)

h(x3, x4)

x3 := ((A, pk′A), h3)

x4 := ((D, pkD), h4)

h(x5, x6)

x5 := ((E, pkE), h5)

x6 := ((H, pkH), h6)

d4 := (E, (pkE))
h6 = h(d4, h(d2, h(d1), h(d3)), h(d5))

d2 := (B, (pkB))
h(d2, h(d1), h(d3))

d1 := (A, (pkA, pk
′
A))

h(d1)

d3 := (D, (pkD))
h(d3)

d5 := (H, (pkH))
h(d5)

Fig. 5. Certificates are stored in a pair of trees (ChronTree, LexTree). ChronTree is ordered chronologically, in order of the time the certificates were stored; LexTree is ordered lexicographically by the
subject of the certificate. The certificates (A, pkA), (B, pkB), (A, pk′A) (replacing A’s key pkA by pk′A) (D, pkD), (E, pkE), and (H, pkH) shown are stored in order, resulting in LexTree and ChronTree
as shown. For convenience in displaying the ChronTree, the variables xi are defined at the leaves, and used in the other nodes. The items xi = (ci, hi) stored in ChronTree are pairs consisting of a certificate
ci and the root hash hi of the LexTree after ci is added. The LexTree after c6 is added is shown on the right, with root h6.

h(h(h(x1, x2), h(x3, x4)), h(h(x5, x6), h(x7, x8)))

h(h(x1, x2), h(x3, x4))

h(x1, x2)

x1 := ((A, pkA), h1)

x2 := ((B, pkB), h2)

h(x3, x4)

x3 := ((A, pk′A), h3)

x4 := ((D, pkD), h4)

h(h(x5, x6), h(x7, x8))

h(x5, x6)

x5 := ((E, pkE), h5)

x6 := ((H, pkH), h6)

h(x7, x8)

x7 := ((D, pk′D), h7)

x8 := ((K, pkK), h8)

d4 := (E, (pkE))
h8 = h(d4, h(d2, h(d1), h(d′3)), h(d6, h(d5), h(ε)))

d2 := (B, (pkB))
h(d2, h(d1), h(d′3))

d1 := (A, (pkA, pk
′
A))

h(d1)

d′3 := (D, (pkD, pk
′
D))

h(d′3)

d6 := (K, (pkK))
h(d6, h(d5), h(ε))

d5 : (H, (pkH))
h(d5)

ε
h(ε)

Fig. 6. We insert two new certificates into the (ChronTree, LexTree) of Figure 5: (D, pk′D) which replaces D’s key, and (K, pkK). The resulting LexTree has root hash h8, so that is paired with the eighth
certificate (K, pkK).



proofs of transparency, and observers and users perform audits
and random checks to ensure that the two data structures are
maintained consistently. As in certificate transparency, linearity
of the log is vital, and we use extension proofs and gossip
protocols to ensure it (explained in §2.2).

Coverage of random checking: We briefly demonstrate that
the random checking mentioned above is sufficient in terms
of the likelihood of detecting cheating. Recall that a check
consists of the following steps made by the client:

• Randomly choose a path in the current ChronTree,
terminating in (say) (ci, hi).

• If i = 1 and this is the leftmost path, check that h1

is the root hash of the LexTree corresponding to the
single certificate c1.

• If i > 1, let (ci−1, hi−1) be the entry in the ChronTree
immediately prior to (ci, hi). Request and verify the
proof that the LexTree denoted by hi is precisely the
tree denoted by hi−1 augmented by the certificate ci.

If all possible values (ci, hi) are eventually chosen, these tests
compose together to prove that, for all i, the LexTree whose
root hash is hi is consistent with the ChronTree whose entries
are c1, . . . , ci.

Suppose we want to have a probability of 0.5 or more of
achieving such detection. Suppose there are n users, and each
user logs in on average once per day, and one random check is
made at each login. Then there are n random checks per day.
Suppose a proportion v of the real users are “victims” (that is,
out of n real users, the provider is cheating on nv of them by
including a certificate for them in LexTree but not ChronTree,
or ChronTree but not LexTree.)

Then the probability of non-detection on a single check is
1−v, and the probability of non-detection within t days when
there are n checks per day is

(1− v)
nt

Suppose we set this at 0.5. Assuming that v is small (e.g.,
0 ≤ v ≤ 0.1), and approximating ln 2 as 1, this is equivalent
to:

nvt = 1

Thus, the time to detect cheating with probability 0.5 depends
on n and v, and is better when both n is large and v is at
the larger end of small. We plot two of these variables against
each other (with the third one fixed, as indicated) in the graphs
of Figure 7.

3.2 Space and time

In this section, we demonstrate the importance of the log
proofs requiring space/time proportional to O(log n) rather
than O(n), by calculating some typical values. We suppose
the database is required to store keys for one billion (109)
subjects, who register with the service over a 10 year period.
We also suppose that, on average, 5% of the keys are revoked
each year. This amounts to 270,000 sign-ups per day and

140,000 revocations per day, a total of 410,000 transactions
per day. Insertion and revocation each involve in the order
of log2 109 ≈ 30 operations on each tree. This will take
negligible time.

Extension proof: Suppose a user has used the service and
cached h(db1), and ten days later uses the service again and
obtains h(db2). The user’s software requests a proof that
h(db1) v h(db2). This proof is provided by CP by comparing
ChronTree1 and ChronTree2 corresponding to the two hashes.
Thanks to the property of Merkle trees, the size of proof that
CP provides is independent of the number of transactions that
have taken place between db1 and db2 (in our example, it is
about 1.4 million transactions). The proof consists of about 30
hash values, together with 30 other values. This is about 2 KB
of data.

Currency proof: Suppose a user wishes to obtain the current
key, with proof, for joeblogs@example.com. This proof is
provided by CP using LexTree, which is also a Merkle tree.
Because this tree is organised in order of subject identities,
all the information about joeblogs is in the same place. CP
merely has to prove the presence of the list of keys stored for
joeblogs. Exploiting the properties of Merkle trees, the proof
again consists of about 30 hashes and 30 other values, again
2 KB of data.

Necessity of both trees: Note that it is vital to store both
trees. A currency proof done with LexTree, or an extension
proof done with ChronTree, would be prohibitively expensive.
To illustrate this, consider again the user that previously stored
h(db1), and ten days later uses the service and obtains h(db2).
The user’s software requests a proof that h(db1) v h(db2),
and the proof is provided by CP by comparing LexTree1 and
LexTree2. Because the 4.1 million transactions that took place
in the last 10 days are scattered throughout the tree, CP has to
provide each transaction in turn along with the data required
to verify it. This amount of data is 4.1 million times 2 KB,
or about 10 GB. This is too much data and takes the user’s
software too long to download and process.

Consistency proof: Suppose an auditor wishes to check the
consistency of the database represented by h(db2). The naive
approach is to request a full account of all the sign-ups
and revocations, and recompute (ChronTree, LexTree). This
requires downloading all 109 certificates (which is in the order
of 109 × 60 bytes, or 60 GB).

This can be improved considerably, but it is still O(m)
where m is the number of transactions that have taken place
since the last audit. Suppose the auditor has previously con-
ducted an audit for h(db1) done the previous day. The auditor
now requests the transactions that have taken place in the last
day, i.e., between h(db1) and h(db2). As mentioned, there are
410,000 transactions per day. He also requests the necessary
parts of the Merkle trees to verify each transaction, one by one.
As above, about 2 KB of data is required per transaction. So
the auditor needs to download 800 MB per day. If he chooses
to audit every hour instead, it is 30 MB of data for each audit.

8



v

t

0.01 0.1

0.01

0.1

n = 103

n

t

100 106

0.0001

1

v = 0.01

v

n

0.01 0.1

100

1000

t = 0.1

Fig. 7. Plots showing the coverage of random checking of the consistency of ChronTree and LexTree. Here, n is the number of users, and also the number of
consistency checks per day. The time in days to detect inconsistency with probability 0.5 or greater is t, while v is the proportion of certificate subjects about
whom the CA tries to cheat. The graphs show that cheating is detected within a few hours (0.1 days) provided there are enough subjects (e.g. more than 1000)
and the victim rate v is not too small (e.g. more than 1%).

Summary of method: Users efficiently verify short proofs
that the certificate prover is honest in respect of the data
of concern to the user (her own certificates and those of
her associates). An auditor monitors larger proofs that the
certificate prover is maintaining data structures consistently.

4 Application to email

The ideas of the preceding sections imply a way to manage
email encryption key certificates which yields a system for
end-to-end email encryption enjoying high degrees of security
and the promise of user friendliness.

The core idea is that the email provider can at once be the
certificate authority for its users, the maintainer of the CA log,
and also the provider of storage for encrypted email. By using
(our extension of) certificate transparency, the provider acting
in this way is not required to be trusted by users.

Although our provider is not required to be trusted, we
assume it is not totally malicious either. Service providers
today are large corporations, such as Google, Amazon, and
Microsoft; they should not be trusted, although of course they
do make great efforts to protect users’ data from third-party
attackers, and they have much to lose if those users take
their custom elsewhere. The email system we detail below
uses certificate transparency to ensure that the service provider
cannot cheat without leaving evidence of its having cheated;
moreover, that evidence is

• Persistent: the service provider cannot avoid leaving
it, and cannot erase it;

• Readily verifiable: one can see that the evidence is
indeed evidence that the service provider has cheated;

• Transferable: the evidence is meaningful to arbitrary
observers, not just to the victim.

More precisely, the provider could, if it wished, certify a
bogus key for a user, and then decrypt subsequent mail for
the user. However, because this would be quickly detected,
the provider will not launch such an attack. If the provider is
a large organisation with a reputation to protect, it will not
launch any attacks that could lead to evidence of its cheating.

4.1 The protocol

A user is assumed to have a mail provider (MP) that
provides an email address and sending/receiving services (such
as SMTP and IMAP), as well as email storage. The user
also subscribes to a certificate prover service (CP). CP is a
CA which maintains an certificate issuance and revocation
transparency (CIRT) log of its certificates. In practice (as
indicated above), we expect MP and CP to be the same
provider. However, a user wishing to preserve an existing
email address with an existing MP could use the services of a
separate CP.

In brief, the protocol works as follows:

• Users have private/public keys, which are created and
managed by the client email browser application.

• CP certifies the users’ public keys, and maintains a
database relating each public keys and email address4.
It uses CIRT to maintain an append-only log of the
certificates it issues and revokes.

Users’ software automatically requests the log hashes and
requests and validates proofs of extension and certificate
currency, as detailed in the following sections.

4.1.1 Sign-up, sending, and receiving mail:

Alice signs up: Assume that Alice has downloaded an ap-
propriate application, or installed an extension in her Out-
look/Thunderbird, or is using an appropriately configured web
app. For simplicity, we refer to Alice’s client program as the
application. At sign-up time, Alice’s client software registers
with CP her new or existing email address that she has with
MP; then it creates her secret and public keys, and stores them
in encrypted form with CP. The key for this encryption is noted
k below. In more detail:

1) The application fetches current h(db) from CP, and
stores it.

4Storing email addresses in the clear may be undesirable, for privacy and
anti-spam reasons. To avoid this, the database and the logs and accompanying
proofs can have hashes of addresses instead of real addresses.

9



2) Alice enters user-name, say “alice@example.com”,
and chooses a new password pw . The software
chooses an encryption key k, which is stored securely
on Alice’s device. (Alternatively, to avoid storing k on
the device, the authentication password pw and key
k could be derived from a strong passphrase chosen
by the user.)

3) CP creates an account for Alice, with user name
“alice@example.com” and password pw .

4) The application creates public key pair
pkAlice , skAlice .

5) The application stores
(Alice, pkAlice , {h(db), skAlice , . . .}k ) with CP.

6) The application makes a random check of log con-
sistency, as detailed in §3.1.

In these steps, Alice’s application stores her encrypted secret
keys with CP, along with the current snapshot of the hash of
the log which is also in the encrypted package. This is used
later to verify that the log is correctly operated “append-only”,
and to prevent roll-back attacks in which CP sends Alice old
versions of her cached information.

Alice sends email message to Bob:

1) Prior to authenticating Alice to CP, Alice’s applica-
tion fetches current h(db′) from CP.

2) The application retrieves its locally stored h(dbs).
Optionally, it requests proof that h(dbs) v h(db′),
and verifies the proof. (This verification is not neces-
sary, since if it fails then a later verification will fail
too; but if we do it now we detect any misbehaviour
by CP slightly earlier.)

3) Alice requests and verifies proof that
cert(Alice, pkAlice) is current in db′.

4) The application authenticates Alice and fetches
(Alice, {h(db), pkAlice , skAlice , . . .}k ) from CP.

5) The application requests and verifies proof that
h(dbs) v h(db) and h(db) v h(db′). The application
replaces its locally stored h(dbs) with h(db′).

6) The application finds pkBob in db′ and requests and
verifies currency proof.

7) The application encrypts message for Bob with pkBob
and sends it to him.

8) The application makes a random check of log con-
sistency, as detailed in §3.1.

Step 1 and 2 ensure that CP is still maintaining the log in
append-only fashion. In step 3, Alice’s application verifies that
CP is correctly maintaining her certificate. Step 5 ensures that
the locally stored snapshot dbs is not later than the db stored
in the user’s account (db may in fact be later than dbs if the
user has checked her email on a different device, and thereby
updated db); and that the db stored in the account is prior to
the current db′. These two checks prevent roll-back attacks,
and attacks based on improper maintainance by CP of the log.

Bob receives mail from Alice: This process is similar. Bob’s
application retrieves his versions of h(dbs), h(db), and h(db′),
and:

• checks h(dbs) v h(db) v h(db′).

• checks (Bob, pkBob) is correct in db′.

• gets pkAlice from db′, and requests currency proof.

• decrypts Alice’s message and checks Alice’s signa-
ture5, if present.

4.2 Usability considerations

The system we describe here appears to have good usability
properties. Just as a web user is in practice shielded from the
requirement to have any real understanding of public keys and
certificates, with these ideas an encrypted-email user can avoid
having to understand the complexities of S/MIME and PGP.

To use end-to-end encrypted mail that follows these ideas,
users will download and install the application (or browser
extension). As with any software, the user must download it
from a trusted source. The user launches the software, and
configure it to access their existing mail account (or set up a
new account). This step is the same as configuring any mail
software.

When the user starts her email browser, it optionally shows
one or more icons (or perhaps “lights”; see Figure 8) indicating
the result of a consistency check of the service provider. Each
icon corresponds to the result of a check made by an auditor
that the user has subscribed to. The icon will display a visual
representation (for example, the light is coloured green or red)
indicating “healthy” or “problem”. The user can sign up to
whatever auditor he likes, by appropriately configuring the
browser. The user can be his own auditor.

To send a message, the user enters the email address as
usual, assisted by a contacts manager and autocompletion in
the usual way. It’s vital to be sure to send the mail to the
intended address, since the address determines the encryption
key that the application will select (and verify the proofs
about). This is the counterpart in PGP of being sure to have
the right public key in her keychain with the right trust level in
its signers, except here it is something the user can understand.
It is natural to users that if they send a message to the wrong
recipient, then confidentiality of the message may be lost.

The application handles recipients for whom there are no
public keys (in this case the log produces a proof of absence
of any certificate for that user6). The application displays by
means of a visual indicator (e.g., by colouring the address)
whether the message to that recipient will be encrypted or
not.

In the envisioned GUI, it is anticipated that there will be
no encrypt button and no decrypt button. Messages will be
encrypted or decrypted automatically in the cases in which the
CIRT infrastructure reports an appropriate key. There will be
no user dialogues or messages that refer to keys or certificates.
These design decisions will have to be considered carefully
and evaluated through user trials, since research shows that
automatic encryption may be confusing to users [45].

5We didn’t detail how the mail system supports digital signatures, but of
course they’re readily implemented too.

6Note that a downgrading attack is impossible: absence is not failure to
prove presence, but is a proof of absence.

10



To:

Cc:

Subject:

Hi Joe, Bob's away on business.

joe.bloggs@example.com

alice@alice-n-bob.com

Meeting tonight

Healthiness checks

Google

Verisign

Univ Washington

✔
✔

✗✗

Fig. 8. Email user interface. Visual symbols and/or colours show whether the email will be encrypted for the recipient. On the right, some auditor reports are
available showing the correctness status of CP’s log.

m
al

ic
io

us

m
al

ic
io

us
bu

t

ca
ut

io
us

ho
ne

st
bu

t
cu

rio
us

;
se

m
i-h

on
es

t

ho
ne

st

Fig. 9. A malicious provider is assumed to be willing to use any available
strategy to attack, no matter what the consequence. A malicious but cautious
provider is assumed to launch no attacks that would leave readily verifiable
evidence of the attack. An honest but curious provider is assumed to launch
no attacks that would leave any trace (whether verifiable or not); he confines
himself to passive attacks. An honest provider is assumed to launch no attacks.

4.3 Key and password management

As mentioned in the signing-up section of §4.1.1, there are
two options for arranging user authentication.

• Users’ passwords are high-entropy. In this option, the
user’s password pw is a high-entropy password, and
not disclosed to the server. The user authenticates to
server with kdf(pw, 1) for a suitable key derivation
function kdf , and uses k = kdf(pw, 2) as the key
purse encryption key. The password has to be high-
entropy to prevent the server (or anyone else) perform-
ing guessing attacks to obtain k.

• Users’ passwords are known to the server. In this
option, the key purse encryption key k is stored on the
user’s device. The password need not be high-entropy
because the server can prevent on-line guessing at-
tacks.

These two alternatives are fundemantal to any cloud com-
puting application in which users have encryption keys which
are confidential from the cloud provider; Wuala [46] and
ConfiChair [47] are examples, and their designers have the
same two options.

4.3.1 High entropy password: This option is the most
flexible, since the user can access the services from any device
without needing to provision it with the key purse encryption
key k. The main disadvantage, however, is that the server can
try offline guessing attack on pw in order to derive k.

If users want to change their password, this can be done
easily: the client application need only decrypt and re-encrypt
key purse, using the keys derived from the old and new
passwords respectively.

If a user loses her password, the system can’t offer any
recovery mechanism (as in Wuala [46]). At best, the user can
prove ownership of the account by out-of-band means; this
will allow her to revoke her public key and re-initialise the
account, but she won’t have access to her existing email store.

4.3.2 Device key: This option is more secure, but it requires a
means to migrate k to new devices. We detail such a protocol
in Figure 10, based on SPEKE [48].

Requests from a user to change her password are handled
by the usual means; requests to change the k are handled by
decrypting the key purse with the old k, and encrypting with
the new one. In the case of a lost password, the usual kind of
recovery mechanisms can be used.

If the key k is lost, then the user loses access to their
historic data, but can use knowledge of their password to
prove ownership of the account; as above, this will allow her
to revoke her public key and re-initialise the account. Note,
however, that since the user will typically have k on multiple
devices, it is unlikely that she loses it completely.

5 Conclusions

5.1 Summary

We have extended certificate transparency to handle re-
vocation efficiently, resulting in a system we call certificate

11



New device Old device Server

(pw)x

(pw)x

enc((pw)xy, k), (pw)y

enc((pw)xy, k), (pw)y

Fig. 10. Protocol to allow migration of the encryption key k from one device to another, based on SPEKE [48]. The user creates a request on her new device
(pw′)x based on a randomly chosen x; here we assume pw′ is a representation of a human-memorable password in a suitable Schnorr group. (pw′ should
not be the same password as pw in the main protocol, because the server should have no knowledge of pw′.) Next, the user’s application on her old device
retrieves the request from the server, checks it is within a suitable range, and creates an encryption key ((pw′)x)y by selecting another random y. The key k is
encrypted with (pw′)xy and sent to the server along with (pw′)y . Then the user returns to the new device, which retrieves that information, checks its range,
decrypts k, and installs it on the device.

issuance and revocation transparency. This contributes to its
usefulness on the web. We apply this certificated transparency
to email, allowing an email provider to certify keys for its
users without requiring them to trust it. This yields a system
for email which is secure (mail is end-to-end encrypted and
there are no third parties required to be trusted), and also
appears to be usable (there should be no confusing warn-
ing messages about keys and certificates). In contrast with
S/MIME, PGP, IBE and certificateless encryption, the CA (or
identity provider) is prevented from launching attacks on its
users.

5.2 Discussion: cloud

Underlying these ideas is an attacker model appropriate
for cloud computing. In most cloud-based applications today,
users are required to fully trust the cloud provider. “Fully
trusted” is unacceptably optimistic; researchers are attempting
to change that, for example with fully homomorphic encryp-
tion, so that, on the contrary, the cloud provider could be
considered fully malicious. But that is unduly pessimistic.
Cloud providers are large organisations with reputations to
preserve, and they compete to attract customers. Therefore,
they will not attack their users at any cost; they will not
launch attacks that leave verifiable evidence. Thus, they are
in reality somewhere between the extremes of “malicious”
and “trustworthy” (Figure 9). “Honest-but-curious” already lies
between these extremes; it says that the attacker launches
passive attacks but not active ones. However, there is no reason
to suppose a cloud provider will refrain from active attacks. We
adopt the term “malicious-but-cautious”; the cloud provider is
assumed to be malicious if he can get away with it, but cautious
in not leaving any verifiable evidence of its misbehaviour. This
attacker model is related to the covert adversary of [49], but
it additionally assumes that the cloud provider acts to protect
its users from third-party attacks. The malicious-but-cautious
attacker model is already implicitly used, e.g., in electronic
voting. An election manager typically can cheat, but doing so

would be detected by tests that voters use to detect election
integrity [50], [51] or voter coercion [52].

Systems based on this model (such as the email system
we detailed) deny the possibility of monetising users’ data,
e.g. for content-related advertising, as pioneered by Google
and now done by other providers. One might ask whether
providers would be willing to go on providing hosting services
for free, without this revenue opportunity. That question is
beyond the scope of the paper, but nevertheless we can’t resist
speculating about it. The most successful internet companies
today offered services long before they had any idea how they
could be monetised, so we don’t expect that to be an obstacle in
practice. Moreover, user applications may be willing to leak
some data to the provider, such as the fact that a particular
message mentions “hotel” and “Paris”, allowing the provider
to serve adverts for hotels in Paris without having the whole
plaintext message. Finally, we expect that when users fully
realise the consequences of paying for services with their data,
they will prefer to pay modest amounts of money and keep
their data private.

A more serious obstacle to take-up of such an email system
may appear to be spam. If mail is decrypted by the receiver,
it prevents the server from deleting messages after applying
spam detection. This requires spam handling on the client side,
which is less convenient than handling it on the server. Spam
can also be mitigated if users configure their mail browsers
not to accept encrypted mail unless it is also signed by users
they are already in contact with.

5.3 Future work

In future work, we intend to perform rigorous security anal-
ysis of certificate issuance and transparency, in the malicious-
but-cautious model. That involves defining the model formally.
We will also analyse the email protocol in that model.

12



Acknowledgments

I am grateful to Joshua Phillips, Jiangshan Yu, and Vincent
Cheval for interesting discussions.

References

[1] A. K. Lenstra, J. P. Hughes, M. Augier, J. W.
Bos, T. Kleinjung, and C. Wachter, “Public keys,” in
CRYPTO’12, 2012, pp. 626–642.

[2] N. J. AlFardan and K. G. Paterson, “Lucky thirteen:
Breaking the TLS and DTLS record protocols,” IEEE
Symposium on Security and Privacy, 2013.

[3] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Po-
ettering, and J. C. Schuldt, “On the security of RC4 in
TLS and WPA,” 2013.

[4] P. Eckersley, “Iranian hackers obtain fraudulent HTTPS
certificates: How close to a web security meltdown
did we get?” Electronic Frontier Foundation, 2011.
[Online]. Available: https://www.eff.org/deeplinks/2011/
03/iranian-hackers-obtain-fraudulent-https

[5] J. Leyden, “Trustwave admits crafting SSL snooping
certificate: Allowing bosses to spy on staff was
wrong, says security biz,” The Register, 2012.
[Online]. Available: www.theregister.co.uk/2012/02/09/
tustwave disavows mitm digital cert

[6] “MS01-017: Erroneous verisign-issued digital certificates
pose spoofing hazard,” Microsoft support. [Online].
Available: http://support.microsoft.com/kb/293818

[7] P. Roberts, “Phony SSL certificates issued for Google,
Yahoo, Skype, others,” Threat Post, March 2011,
threatpost.com/phony-ssl-certificates-issued-google-
yahoo-skype-others-032311.

[8] T. Sterling, “Second firm warns of concern
after dutch hack,” Yahoo! News, September
2011. [Online]. Available: http://news.yahoo.com/
second-firm-warns-concern-dutch-hack-215940770.html

[9] N. Falliere, L. O. Murchu, , and E. Chien, “W32.stuxnet
dossier. technical report, symantec corporation,” 2011.

[10] J. Appelbaum, “Detecting certificate authority compro-
mises and web browser collusion,” Tor Blog, 2011.

[11] “Black tulip report of the investigation into the diginotar
certificate authority breach,” Fox-IT (Tech. Report), 2012.

[12] C. Arthur, “Rogue web certificate could have been used
to attack iran dissidents,” The Guardian, 2011.

[13] J. Clark and P. C. van Oorschot, “SSL and
HTTPS:revisiting past challenges and evaluating
certificate trust model enhancements,” in IEEE
Symposium on Security and Privacy, 2013.

[14] A. Langley, “Public-key pinning,” ImperialViolet (blog),
2011.

[15] M. Marlinspike and T. Perrin, “Trust assertions for cer-
tificate keys (TACK),” Internet draft, 2012.

[16] D. Wendlandt, D. G. Andersen, and A. Perrig, “Per-
spectives: improving SSH-style host authentication with
multi-path probing,” in USENIX Annual Technical Con-
ference, 2008, pp. 321–334.

[17] P. Eckersley and J. Burns, “Is the SSLiverse a safe
place?” Chaos Communication Congress, 2010.

[18] M. Alicherry and A. D. Keromytis, “Doublecheck: Multi-
path verification against man-in-the-middle attacks,” in
ISCC, 2009, pp. 557–563.

[19] B. Amann, M. Vallentin, S. Hall, and R. Sommer, “Re-
visiting SSL: A large-scale study of the internet’s most
trusted protocol,” Technical report, ICSI, 2012.

[20] B. Laurie, E. Kasper, and A. Langley, “Certificate trans-
parency,” Internet Draft 09, March 2013.

[21] R. L. Rivest, “Can we eliminate certificate revocation
lists?” in Financial Cryptography. Springer, 1998, pp.
178–183.

[22] A. Langley, “Revocation checking and Chrome’s CRL,”
ImperialViolet (blog), 2012.

[23] B. Laurie and E. Kasper, “Revocation transparency,”
Google Research, September 2012. [Online]. Available:
www.links.org/files/RevocationTransparency.pdf

[24] A. Whitten and J. D. Tygar, “Why johnny cant encrypt:
A usability evaluation of pgp 5.0,” in Proceedings of the
8th USENIX Security Symposium, vol. 99. McGraw-Hill,
1999.

[25] Certificate transparency. [Online]. Available: www.
certificate-transparency.org

[26] B. Laurie, A. Langley, and E. Kasper, “Certificate Trans-
parency,” RFC 6962 (Experimental), Internet Engineering
Task Force, 2013.

[27] T. Dierks and E. Rescorla, “The transport layer security
(TLS) protocol version 1.2,” RFC 5246 (Proposed
Standard), Internet Engineering Task Force, Aug. 2008,
updated by RFCs 5746, 5878, 6176. [Online]. Available:
http://www.ietf.org/rfc/rfc5246.txt

[28] S. Turner and T. Polk, “Prohibiting secure sockets layer
(SSL) version 2.0,” RFC 6176 (Proposed Standard),
Internet Engineering Task Force, Mar. 2011. [Online].
Available: http://www.ietf.org/rfc/rfc6176.txt

[29] D. Cooper, S. Santesson, S. Farrell, S. Boeyen,
R. Housley, and W. Polk, “Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile,” RFC 5280 (Proposed Standard),
Internet Engineering Task Force, May 2008, updated by
RFC 6818. [Online]. Available: http://www.ietf.org/rfc/
rfc5280.txt

[30] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec,
and M. Van Steen, “Gossip-based peer sampling,” ACM
Transactions on Computer Systems (TOCS), vol. 25,
no. 3, p. 8, 2007.

[31] “The EFF SSL Observatory,” www.eff.org/observatory.

[32] “Certificate patrol,” http://patrol.psyced.org.

13



[33] D. Wendlandt, D. G. Andersen, and A. Perrig, “Per-
spectives: improving SSH-style host authentication with
multi-path probing,” in USENIX Annual Technical Con-
ference, 2008, pp. 321–334.

[34] M. Alicherry and A. D. Keromytis, “Doublecheck: Multi-
path verification against man-in-the-middle attacks,” in
ISCC, 2009, pp. 557–563.

[35] C. Soghoian and S. Stamm, “Certified lies: Detecting and
defeating government interception attacks against SSL,”
in Financial Cryptography, 2011, pp. 250–259.

[36] M. Marlinspike, “SSL and the future of authenticity,” in
Black Hat, USA, 2011.

[37] M. Marlinspike and T. Perrin, “Internet-draft: Trust as-
sertions for certificate keys (TACK),” 2012.

[38] P. Hoffman and J. Schlyter, “The DNS-Based Authen-
tication of Named Entities (DANE) Transport Layer
Security (TLS) Protocol: TLSA,” RFC 6698 (Proposed
Standard), Internet Engineering Task Force, Aug. 2012.
[Online]. Available: http://www.ietf.org/rfc/rfc6698.txt

[39] J. Kasten, E. Wustrow, and J. A. Halderman, “CAge:
Taming certificate authorities by inferring restricted
scopes,” in Financial Cryptography, 2013.

[40] P. Eckersley, “Internet-draft: Sovereign key cryptography
for internet domains,” 2012.

[41] T. H.-J. Kim, L.-S. Huang, A. Perrig, C. Jackson, and
V. Gligor, “Accountable key infrastructure (AKI): A
proposal for a public-key validation infrastructure,” in
22nd International World Wide Web Conference, 2013.

[42] A. Shamir, “Identity-based cryptosystems and signature
schemes,” in CRYPTO, 1984, pp. 47–53.

[43] D. Boneh and M. K. Franklin, “Identity-based encryption
from the weil pairing,” in CRYPTO, 2001, pp. 213–229.

[44] S. S. Al-Riyami and K. G. Paterson, “Certificateless
public key cryptography,” in ASIACRYPT, 2003, pp. 452–
473.

[45] S. Ruoti, N. Kim, B. Burgon, T. W. van der Horst,
and K. E. Seamons, “Confused Johnny: when automatic
encryption leads to confusion and mistakes,” in SOUPS,
L. Bauer, K. Beznosov, and L. F. Cranor, Eds. ACM,
2013, p. 5.

[46] “Wuala, an encrypted cloud-based store in which users’
encryption keys are not disclosed to the cloud provider.”
[Online]. Available: http://www.wuala.com

[47] M. Arapinis, S. Bursuc, and M. Ryan, “Privacy sup-
porting cloud computing: Confichair, a case study,” in
Principles of Security and Trust. Springer, 2012, pp.
89–108.

[48] D. P. Jablon, “Extended password key exchange protocols
immune to dictionary attack,” in Proceedings Sixth IEEE
Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 1997, pp. 248–255.

[49] Y. Aumann and Y. Lindell, “Security against covert
adversaries: Efficient protocols for realistic adversaries,”
in Theory of Cryptography. Springer, 2007, pp. 137–
156.

[50] S. Kremer, M. Ryan, and B. Smyth, “Election verifiability
in electronic voting protocols,” in ESORICS, 2010, pp.
389–404.

[51] S. Bursuc, G. S. Grewal, and M. D. Ryan, “Trivitas:
Voters directly verifying votes,” in VOTE-ID, 2011, pp.
190–207.

[52] G. S. Grewal, M. D. Ryan, S. Bursuc, and P. Y. A.
Ryan, “Caveat coercitor: Coercion-evidence in electronic
voting,” in IEEE Symposium on Security and Privacy,
2013, pp. 367–381.

14


