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Abstract

Cloud computing means entrusting data to information systems that are managed by
external parties on remote servers, in the “cloud”, raising new privacy and confidentiality
concerns. We propose a general technique for designing cloud services that allows the cloud
to see only encrypted data, while still facilitating some data-dependent computations. The
technique is based on key translations and mixes in web browsers.

We focus on a particular kind of software-as-a-service, namely, services that support
applications, evaluations, and decisions. Such services include job application management,
public tender management (e.g., for civil construction), and conference management. We
identify the specific security and privacy risks that existing systems pose. We propose a
protocol that addresses them, and forms the basis of a system that offers strong security and
privacy guarantees.

We express the protocol and its properties in the language of ProVerif, and prove
that it does provide the intended properties. We describe an implementation of a particu-
lar instance of the protocol called ConfiChair, which is geared to the evaluation of papers
submitted to conferences.

1 Introduction

Cloud computing refers to the idea that data and programs can be stored centrally, in the cloud,
and accessed any time from anywhere through thin clients and lightweight mobile devices. On
one hand, cloud computing brings many advantages, including data ubiquity, flexibility of access,
and resilience; indeed, it also enhances security: the cloud provider may be able to afford to
invest in better and more up-to-date security technologies and practices than the data owner can.
On the other hand, however, since cloud computing necessarily puts data outside of the control
of the data owner, it inevitably introduces security issues too. cloud computing raises privacy
and confidentiality concerns because the service provider has access to all the data, and could
accidentally or deliberately disclose it.

Familiar examples of cloud computing include cloud-based storage (such as Dropbox), on-
line documents (such as Google docs), and customer-relationship management systems (such as
salesforce.com) are familiar examples. These are commonly known as software-as-a-service (SaaS)
applications. SaaS applications are being adopted widely throughout business. For example,
Google Apps currently supports 40 million individual employees from 4 million businesses that pay
US$50 per user per year. Those businesses have outsourced their email, calendar, and documents
to Google. Currently, 5000 business sign up to Google Apps each day. But, for the security reasons
mentioned, many organisations are not willing to use cloud-based services for business-confidential
data. Such organisations typically include lawyers, doctors, insurance companies, banks, engineers,
and government. Solutions are sought that would offer such companies some of the benefits of
cloud computing, without the confidentiality risk.

If the cloud’s role is confined to storing the data on behalf of the owner, then the problem can
be solved by encrypting the data, with the owner holding the keys. However, typically one wants
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the cloud provider to be able to do non-trivial computations with the data, and therefore the
problem is in fact very hard to solve. Such computations may include searches, transformations,
selections, and access control decisions. For example:

• The data is an email archive, and the cloud is expected to handle email in a way that depends
on its content (e.g., spam filtering, topic classification, compliance with corporate disclosure
policies).

• The data is documents and photographs, and the cloud is expected to enforce access rules
that depend on the content.

• The data may be scientific data obtained by experiment and observation, and the compu-
tation may be to find patterns, or organise the data according to rules. Other examples in
this category include data-intensive financial modelling or network traffic modelling.

• The data may be financial data, payroll data, human resource data, banking data, etc., and
the computation is usual business processing.

• The data may be documents to review (job applications, research papers, business tenders)
and the computation may be to support the review process (sending to reviewers, collating
reviews, etc.).

In this paper, we provide a solution for a last-mentioned kind of SaaS application in the list
above, namely, services that support applications, evaluations, and decisions. Such services in-
clude job application management, public tender management (e.g., for civil construction), and
conference management. We identify a set of confidentiality requirements for such SaaS appli-
cations, and we propose a way to construct applications which achieves the requirements. The
confidentiality guarantees ensure that no-one has access to the application data, beyond the access
that is explicitly granted to them by their participation in the service. In particular, this is true
about the cloud provider and managers. We describe a protocol in which applicants, evaluators
and decision makers interact through their web browsers with the cloud-based management sys-
tem, to perform the usual tasks of uploading and downloading applications and evaluations. The
cloud is responsible for fine-grained routing of information, in order to ensure that the right agents
are equipped with the right data to perform their task. It is also responsible for enforcing access
control, for example concerning conflicts of interest and to ensure that an evaluator doesn’t see
other evaluations of an application before writing her own. However, all the sensitive data is seen
by the cloud only in encrypted form, and the cloud is not able to tell which applicants are being
reviewed by which evaluators.

The principal idea behind the protocol is that the cloud provider processes only ciphertexts,
and the keys are manipulated by the browsers of the participants in the system. Since often these
manipulations involve decrypting data with one key and encrypting with another, we call this “key
translation in the browser”.

Our contributions.

1. We identify a class of cloud-based systems for competition management and propose a general
framework to reason about the functionality and privacy of such systems (section 2)

2. We propose a general protocol that provides secrecy and unlinkability properties for cloud-
based competition management, relying on a trusted competition manager and in-browser
key translation (section 3)

3. We show how the desired privacy properties can be formally expressed and automatically
verified with ProVerif (section 4)

4. We present the implementation of a privacy-supporting system for conference management
(ConfiChair), which is based on our general protocol (section 5).

Contributions 1-3 are a generalization of a specific protocol for conference management and of
its verification, that we have proposed in [9].
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2 Description of the problem and related work

As mentioned, our target is any SaaS system that supports applications, evaluations, and decisions.
There are many systems of this kind in the real world, and increasingly they are cloud-based. We
give some examples:

Conference management systems are used to support the reviewing and discussion proce-
dures needed to decide which papers are accepted for presentation at conferences. Authors
submit papers online, and programme committee members download the papers to evaluate
them, and upload their reviews. The conference management system typically also supports
online discussion of the reviews and the acceptance decision. EasyChair and the Editor’s
Assistant (EDAS) are well-known examples of cloud-based conference management systems.
For example, EasyChair currently hosts more than 3000 conferences per year, and has about
600,000 users [43].

Public tender management is the process in which governments and their agencies collect
and evaluate bids (or tenders) to supply services. Bidders submit tenders, and evaluators
review and compare the bids in order to accept one or more of them. There may be a
pre-qualification stage, in which potential tenderers have to prove their eligibility, and there
may be a tender-refinement stage, in which bidders can answer questions and supply more
information about their bid [3]. A plethora of tender management systems exists [1, 4, 2].

Recruitment for employment is the process of attracting, screening, and selecting a qualified
person for a job. Applicants respond to advertisements by making an application; referees
and other evaluators comment on the suitability of the applicants, and a panel makes a
decision about whom to offer the position. WCN is a UK-based e-recruitment provider.

These systems involve a similar workflow, although they use different terminology and the workflow
may differ in small details. We illustrate the terminological differences in the table below:

Generic Conference Procurement Employment

Invitation Call for papers Invitation to tender Job description

Panel Programme committee Evaluation team Panel

Manager Programme chair Manager Recruiter

Panel member PC member Evaluator Referee

Application Paper Tender Application

Applicant Author Bidder Applicant

Evaluation Review Evaluation Evaluation

Outcome Decision Announcement Outcome

In this paper, we use the generic terms in the left-hand column. A panel member will sometimes
be called reviewer or evaluator, and the competition manager will sometimes be called chair.

Competition management workflow. In general, a competition comprises an initialisation phase,
followed by a certain number of rounds. The initialisation consists in the opening of the competi-
tion by the chair, the registration of applicants, and the declaration of conflicts between applicants
and panel members. A round consists in 5 consecutive phases: first the applicants submit the doc-
uments necessary to the current round (Submission phase), then each submission gets assigned to
panel members (Assignment phase) for evaluation (Evaluation phase) and discussion (Discussion
phase). Finally the applicants get notified the outcome of the current round and may also get
instructions for the following round (Notification phase).

Depending on the considered scenario, there may be several rounds to the competition. Each
round consists of five phases (Submission, Assignment, Evaluation, Discussion, and Notification)
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described below. For example, in the context of conference management, in the first round authors
submit papers which get reviewed and discussed by the programme committes. There can also be
a second round, usually called rebuttal, where authors are asked to submit their responses to the
first reviews, which in turn get reviewed and discussed. Similarily, tender bidding processes usually
comprise three rounds, namely the pre-qualification, the bidding and the refinement rounds.

Security concerns. The different kinds of competition management systems share similar se-
curity concerns. In the case of cloud-based conference management systems, these have already
been well-documented [40]. Cloud-based systems such as EasyChair contain a vast quantity of
sensitive data about the authoring and reviewing performance of tens of thousands of researchers
world-wide. This data is in the possession of the system administrators, and could be accidentally
or deliberately disclosed. In the case of tender management systems and employment recruitment
systems, the risks are similar. The centralised existence of sensitive data about individuals and
organisations can create conflicts of interest for the custodians, and also can attract the attention
of hackers and crackers.

Note that the data confidentiality issue concerns the cloud system administrator (who adminis-
trates the system for all competitions), not the individual competition manager (who is concerned
with a single competition). With current systems, the cloud system administrator has access to
all the data on the system, across all of the competitions and all of the applicants and evaluators
An individual competition manager, on the other hand, has access to the data only for the par-
ticular competition of which she is manager. Moreover, an applicant or evaluator that chooses to
participate in the competition can be assumed to be willing to trust the manager (for if he didn’t,
he would not participate); but there is no reason to assume that he trusts or even knows the cloud
management system provider.

This paper proposes a competition management protocol which does not allow the cloud in-
frastructure provider to access any of the data. But solving the problem of data confidentiality
has to be done in a way that allows the service provider to offer useful functionality, and in a way
that results in a system with good usability features. Thus, our problem is determined by three
conflicting sets of requirements, namely functionality, privacy and usability. As we show below,
there is much existing work related to our paper, but it cannot be used to solve our problem either
because of its complexity, or because of its different perspectives on privacy, or because it does
not achieve the required balance between privacy and functionality.

For brevity, we use the term “cloud” to include all roles that are not an explicit part of the
service management; that includes the service management system administrator, the cloud service
provider, the network administrator, etc. The security properties that our system provides may
be summarised as follows:

• Secrecy of applications and evaluations. The cloud does not have access to the content
of applications or of their evaluations.

• Unlinkability of applicant-evaluator. The cloud does have access to the names of ap-
plicants and the names of evaluators. This access is required in order to route information
correctly, to enforce access control, and to allow a logged-in user to see all his data in a
unified way. However, the cloud does not have the ability to tell if a particular applicant
was reviewed by a particular evaluator.

Applicability of the ideas The protocol we propose is limited to a particular class of SaaS
systems, namely those that support applications, evaluations, and decisions. In future work, we
intend to explore wider classes of SaaS systems that might also benefit from the technique of
in-browser key translation and mixing, such as the following:

• Customer relationship management systems (such as salesforce.com);

• Cloud-based finance and accounting services;
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• Social networks, in which users share posts and status updates without wishing that data
to be mined by the cloud provider for profiling purposes.

2.1 Threat model

Cloud service providers such as Google or Dropbox should not be considered fully malicious,
since it is in their interest to attract new customers and keep existing ones, and to protect their
customers from third-party threats. This means that they would not want to launch attacks
on their customers which would damage their reputation as a cloud provider. The appropriate
attacker model for cloud providers lies somewhere in between the assumption that the cloud is
fully trusted (which is the assumption users are obliged to make today) and the assumption that
it is fully malicious.

In the literature, there is already an attacker model in between these two extremes, namely,
the “honest-but-curious” attacker (Figure 1). It says that the attacker launches passive attacks
but not active ones. We don’t believe this is the right attacker model for cloud providers, however.
There is no reason to suppose a cloud provider will refrain from active attacks, if it can get away
from it. We adopt the term “malicious-but-cautious attacker” for our threat model. In this model,
the cloud provider is assumed to be malicious, in the sense of actively trying to mount attacks
against the privacy of cloud users. At the same time, the cloud provider is assumed to be cautious
of not leaving any verifiable evidence of its misbehaviour. The malicious-but-cautious attacker
model is already implicitly used, e.g., in electronic voting. An election manager typically can
cheat, but doing so would be detected by tests that voters use to detect election integrity [33, 19]
or voter coercion [28]. This attacker model is also related to the covert adversary of [10], but it
additionally assumes that the cloud provider acts to protect its users from third-party attacks.

Privacy requirements. In terms of our SaaS competition-management application, this means
that the cloud provider will be willing to act maliciously if it can do so in a way which won’t be
detected by the users. As previously mentioned, we use the term “cloud” to refer to the cloud
service provider, competition management system and its administrators, and the network. The
protocol must protect the secrecy from the cloud of

• the content of submitted applications,

• the content of submitted evaluations,

Further, when data is necessarily known to the cloud in order that it can fulfil the functional
requirements, we require what we call the unlinkability property: the cloud is unable to determine
if a particular applicant is being evaluated by a particular evaluator or not; that is, the cloud
cannot infer

• the link between applicants and evaluators

However, we can assume that the cloud provider will

• Collect and store data relevant to the competition, including names of evaluators and appli-
cants, as well as applications and evaluations.

• To enforce access control in respect of conflicts of interest and ensuring that evaluators see
other evaluations of an application only after they have submitted their own.

• Manage the information flow of the competition: from applicants, to competition manager,
to evaluators and back.

• Notify the applicants of the outcome of their applications.

If it failed to carry out these responsibilities, it would risk that the users would detect it, and
move their custom elsewhere. We assume it is not willing to take this risk.

5



m
al

ic
io

us

m
al

ic
io

us
bu

t

ca
ut

io
us

ho
ne

st
bu

t
cu

ri
ou

s;
se

m
i-
ho

ne
st

ho
ne

st

Figure 1: A malicious provider is assumed to be willing to use any available strategy to attack,
no matter what the consequence. A malicious but cautious provider is assumed to launch no
attacks that would leave readily verifiable evidence of the attack. An honest but curious provider
is assumed to launch no attacks that would leave any trace (whether verifiable or not); he confines
himself to passive attacks. An honest provider is assumed to launch no attacks.

Assumptions. We assume that the cloud provider is not invited to participate as an evaluator
or a manager, and does not collude with any such party. Our properties could not possibly hold
without this assumption, since the provider would necessarily have access to privileged information.
However, we allow the cloud provider to participate as an applicant. It would not be reasonable
to forbid this, since there is no eligibility requirement on being an applicant. To summarise, the
cloud provider does participates in the protocol only as provider of the cloud service or as applicant
corresponding to an application, or both.

We also assume that users are running uncorrupted browsers on malware-free machines. The
HTML, Java, and Javascript code that they download is also assumed to be obtained from a
trustworthy source and properly authenticated (e.g. by digital signatures).

We do not consider timing attacks and other kinds of side-channel attacks. (Proving resistance
to such attacks is quite a specialised topic, and there are emerging some standard defences that
can be deployed.)
Usability requirements. The system should be as easy to use as present-day web-based com-
petition management systems, such as EasyChair, iChair, eTenderer, VHTender, or WCN. The
cost of security should not be unreasonable waiting time (e.g. for encryption, data download),
or software installation on the client-side (e.g. a browser should be sufficient), or complex key
management (e.g. public key infrastructure), etc. We discuss more about usability in section 5
which describes a prototype implementation of an instance of our protocol.

2.2 Related work

Generic solutions. Much work has been done that highlights the confidentiality and security
risks that are inherent in cloud computing (e.g., [20] includes an overview), and there is now
a conference series devoted to that topic [25]. Although the issue is well-known, the solutions
described are mostly based on legislative and procedural approaches. Some generic technological
solutions have appeared in the literature. The first one uses trusted hardware tokens [41], in which
some trusted hardware performs the computations (such as key translations) that involve sensitive
data. Solutions based on trusted hardware tokens may work, but appear to have significant
scalability issues, and require much more research. Other papers advise designing cloud services
to avoid having to store private data, and include measures to limit privacy loss [36].

Fully-homomorphic encryption (FHE) has been suggested as another generic solution to cloud-
computing security. FHE is the idea that data processing can be done through the encryption,
and has recently been shown to be possible in theory [27]. However, the range of functionality
that can be provided through the encryption is not completely general. For example, one cannot
extract from a list the items satisfying a given predicate, but one can return a list of encrypted
truth values that indicate the items that satisfy the predicate, which is less useful. For these
reasons, we think FHE does not solve the problem of confidentiality from the cloud provider for
this kind of SaaS application. Moreover, FHE is currently woefully inefficient in practice, and can
only be considered usable in very specialised circumstances.
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Data confidentiality and access control. Many works consider the problem of restricting
the access of data in the cloud to authorised users only. For example, attribute-based encryption
[13, 11] allows fine-grained control over what groups of users are allowed to decrypt a piece of data.
A different example is work that aims to identify functionally encryptable data, i.e. data that can
be encrypted while preserving the functionality of a system [38]. Such systems, and others, aim to
guarantee that the cloud, or unauthorised third parties, do not access sensitive data. Our problem
requires a different perspective: how to design systems that allow the cloud, i.e. the intruder, to
handle sensitive data, but at the same time ensure that sensitive data value links between them
are not revealed.
Unlinkability. In many applications it is important that links between participants, data, or
transactions are kept hidden. In RFID-based systems [22] or in privacy enhancing identity man-
agement systems [24] for example, an important requirement is that two transactions from the
same agent should not be linkable in order to prevent users from being tracked or profiled. An-
other prominent example of an application that requires unlinkability is electronic voting: a voter
must not be linked to the vote that he has cast [26]. Moreover, like user identities in our case
study, a vote is at the same time functional (to be counted) and sensitive (to be private). Voting
systems achieve unlinkability by relying either on mix nets [32, 31], or on restricted versions of
homomorphic encryption that allow the addition of plaintexts [7, 12]. Our proposed protocol also
relies on mixing, showing how this idea can be adapted to new application areas.

Other systems identify applications where the cloud can be provided with “fake” data without
affecting functionality [29]. In that case, privacy of “real” data may be preserved, without the
cloud being able to detect the substitution. That is a stronger property than what we aim for,
and at the same time the solution proposed in [29] is restricted to very specific applications. In
particular, a conference management system cannot function correctly with “fake” data provided
to the cloud.
Conference management. There has been work exposing particular issues with conference
management systems, related to data secrecy, integrity and access control [34, 39]. These are also
important concerns, but that are orthogonal to ours, where we are interested in a system design
for ensuring confidentiality from the cloud provider.

3 The protocol

The main idea of the protocol is that the cloud provider sees only ciphertexts. When applications
are submitted, they are encrypted with keys that are themselves encrypted with the public key of
the application system; later, those keys are decrypted and encrypted with a symmetric key that is
available to panel members. Since the cloud is not trusted to have the secret keys or the plaintext,
this decryption and encryption is done by the manager’s browser. Later in the protocol, there
are other similar episodes in which the manager’s browser decrypts some ciphertexts and encrypts
some of the data, possibly again with a different key. We call these episodes “key translations in
the browser”.

3.1 Description

The protocol is informally described in Figures 2-4 on the following pages. The protocol roles
are: applicant, manager and evaluator (also called panel member). All the actions are performed
through the cloud, except the transmission of a symmetric key, to be secretly shared among the
panel members, and the transmission of the public key of the conference to applicants, that we
have to assume authentic. The cloud may perfom any actions with the messages that it gets by
running the protocol. What is illustrated in diagrams are some of the actions that are required
from the cloud in order to implement the desired functionality.

Some details of the protocol, such as different tags for messages in each phase of the com-
petition, are left out of the diagrams, but they are present in our formal specification presented
in section 4. The main idea of the protocol is to use a symmetric key KComp that is privately
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shared among the members of the panel. This key will be used to encrypt sensitive data before
uploading it to the cloud. However, the cloud needs access to some sensitive data, like the identity
of the panel member in charge of evaluating a particular application, in order to implement the
functional requirements of the protocol. To reveal that data to the cloud, without compromising
privacy, our protocol makes use of the fact that different types of data are needed by the cloud
at different phases of the competition. Thus, in transitioning from one phase to another, the
manager can hide the links between applicants and panel members. He does so by performing a
random mix on the data stored in the cloud before moving to the next phase. Each competition
has a public key, that applicants use to encrypt symmetric keys, that in turn serve to encrypt
submissions.

Notation. In Figures 2-4 we use the following notations:

• {m}k to represent the encryption of a term m with a key k;

• L ← mix S to denote that L is a random permutation of the elements in S;

• n ∈r M to denote that n is selected among elements in the set M by a process that can either
be random, or depend on some non-deterministic choice of a participant in the protocol;

• L ← {M | φ} to denote that the elements of the L are constructed as specified by an
expression M , whose sub-expressions have been defined in φ. For example, {{s}k | s ∈
M,k ∈r N} represents the set of encryptions of elements of M , with a key that is randomly
chosen for each element of M ;

• “for all T ∈ S; E” means that for all messages of a set S, that should be of the form specified
by T , the actions in E should be executed; similarly, “for several T ∈ S; E” specifies that
the actions E should be executed for a subset of S, chosen non-deterministically;

• the diagrams specify the workflow for a particular panel member P and a particular applicant
A. There is therefore an implicit universal quantification over all panel members and all
applicants for a conference.

3.1.1 Initialisation (Figure 2).

The initialisation phase consists in four steps: opening, registration, key translation and conflicts
declaration.

Opening. The manager of competition Comp generates the symmetric key KComp, a public key
pub(Comp) and a corresponding private key priv(Comp). The symmetric key is then shared among
the members of the panel in a way that does not reveal it to the cloud (see section 3.2.1). Then
the manager requests from the cloud the creation of the competition named Comp, sending along
the names of the chosen panel members P1, . . . ,Pℓ.

Registration. An applicant A should first register his application for the competition, before
submitting any documents for evaluation. A registration consists in the identity of the applicant,
a fresh number λ to identify the application and a fresh symmetric key k. The triple (λ,A, k) is
encrypted with pub(Comp) and is uploaded to the cloud, along with λ and A in clear text. The
first role of the key k will be to encrypt documents submitted by A, and that are part of the
application identified with λ. The second role of k will be to encrypt the outcome of each round,
for the notification that will be sent through the cloud back to the applicant.
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Manager Cloud Panel member (P) Applicant (A)

Opening

create Comp, KComp, pub(Comp), priv(Comp)

Comp,P1, . . . ,Pℓ

DBApp ← ∅
DBCfts ← ∅

KComp

Registration
pub(Comp)

create λ, k

reg ← {λ, A, k}pub(Comp)

λ,A, reg

DBApp ← DBApp ∪ {(λ, A, reg)}

DBApp

Key translation

DBr

App ← mix
˘

(µ, {µ, λ, A, k}KComp
)

˛

˛ (λ, A, {λ, A, k}pub(Comp)) ∈ DBApp, µ ∈r N
¯

DBr
App

Conflict declaration

DBr
App

for all (µ, {µ, λ,A, k}KComp
) ∈ DBr

App

cft ∈r {⊤,⊥}
decl = (µ,P, cft)

decl

DBCfts ← DBCfts ∪ {decl}

Figure 2: Initialisation: opening, registration, and conflicts declaration phases
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Key translation. The role of this step is to re-encrypt the received applications, replacing the
public key of the conference with the symmetric key shared between the panel members. The
manager downloads the database of applications, decrypts the application blob using the private
key priv(Comp) of the competition and creates a new application blob encrypted with the shared
symmetric key KComp. A new identifier µ is introduced for each application, its role being that
of a public and anonymous identifier for that application. Finally, the database of blobs, together
with their identifiers, is mixed, resulting in an anonymised databased DBr

App, that the manager
uploads back to the cloud.

Conflicts declaration. The panel members can download any anonymised application from
DBr

App and decrypt the blob to identify the corresponding author. They can then declare either
the existence if a conflict of interest (represented by the constant ⊤), or the absence of a conflict of
interest (represented by the constant ⊥). The declaration is attached to the anonymous identifier
µ, so that the cloud can subsequently filter out the evaluations that are not to be received by
panel members with conflicts of interest.

3.1.2 A round (Figures 3 and 4).

A competition may have several rounds, each round consisting of five steps: submission, assign-
ment, evaluation, discussion and notification.

Submission. An applicant A creates a document si for submision at round i. The submission
si is uploaded to the cloud encrypted with the key k generated at the registration phase. The
identifier λ is used to link the submission si with a registered application, so that the panel
members can access all submissions that are part of the same application.

Assignment. After applicants have uploaded their submissions for a round i, the panel members
can start bidding for applications. A positive bid is represented by the constant ⊤. The bid and
the identity of the reviewer are encrypted and the resulting blob is associated with the identifier
µ corresponding to the respective application. This information is sent to the manager through
the cloud. The manager can then assign applications to reviewers that have bid for them, by
uploading triples of the form (µ,P, assigned blob) back to the cloud. The public information µ,P
allows the cloud to manage the information flow, by sending only necessary data to reviewers.
The private information contained in assigned blob allows reviewers to verify that the assignment
has been indeed performed by the chair.

Evaluation. In the evaluation step, the panel members obtain from the cloud the applications
that have been assigned to them. They create an evaluation which is attached to the application,
and a corresponding encrypted blob is sent back to the cloud. Note that the cloud is told to
what identifier µ this encrypted evaluation refers. This allows the cloud to manage the data flow,
without being able to link µ with λ, and hence the panel member with the applicant.

Discussion. The evaluations of each application can be downloaded by panel members (except
those in conflict) for further discussion. Each member of the panel can read a submitted evaluation
and the ongoing discussion D and add a comment d to it. This is implemented through the cloud
and through decryptions/encryptions exactly as in the evaluation step. The discussion is iterative:
the panel members can add several comments for an application within a single round.

Notification. For each application, the manager creates a notification including the outcome
of the current round i and the evaluations written by the panel members. It can also include
instructions for the next round. The outcome is encrypted with the applicant’s symmetric key
k (chosen at registration time). The encrypted notifications along with the submission identifier
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Manager Cloud Panel member (P) Applicant (A)

Submissioni

DBi
Subm ← ∅ create si

submi ← (λ, A, {λ, A, si}k)

submi

DBi

Subm ← DBi

Subm ∪ {submi}

Assignmenti

DBi
Bids ← ∅DBi

Asgn ← ∅

DBi
Subm

DBP,i
Bids ← ∅

for all (µ, {µ, λ,A, k}KComp
) ∈ DBr

App

bid ∈r {⊤,⊥}

DBP,i
Bids ← DBP,i

Bids ∪ {P, {bid,P, µ}KComp
}

DBP,i
Bids

DBi
Bids ← DBi

Bids ∪ DBP,i
Bids

DBi
Bids

for all (µ, {(µ, λ,A, k)}KComp
) ∈ DBr

App

for several (P, {(⊤,P, µ)}KComp
) ∈ DBi

Bids

assigned blob ← {µ, λ,P, A, k}KComp

DBi
Asgn ← DBi

Asgn ∪ (µ,P, assigned blob)

DBi
Asgn

Evaluationi

DBi
Eval ← ∅

for all (µ,P, blob) ∈ DBi
Asgn

µ,P, blob

create evaliµ
get λ, k from blob
eval blob ← {µ, λ, k, evaliµ, ∅}KComp

µ,P, eval blob

DBi
Eval ← DBi

Eval ∪ {(µ,P, eval blob)}

Figure 3: Round i: submission, assignment, and evaluation phases
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Manager Cloud Panel member (P) Applicant (A)
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Notificationi
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Eval
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Notf ← mix




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(λ, {λ, decλ, eval}k)

∣

∣
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(µ,P, {µ, λ, k, eval, d}KComp
) ∈ DBi

Eval

(λ,A, subm) ∈ DBi
Subm

decλ ∈R {acc, rej}







DBi
Notf

for all (λ,A, subm) ∈ DBi
Subm and (λ, notf) ∈ DBi

Notf

(λ, notf)

Figure 4: Round i: discussion and notification phases
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λ are mixed and uploaded to the cloud. This allows the cloud to manage the information flow
without compromising the privacy of the applicants.

3.2 Discussion

3.2.1 Distribution of the competition symmetric key.

The privacy properties of our protocol rely on the sharing of a symmetric key KComp among the
members of the panel in such a way that the cloud does not get hold of KComp. Here we suggest
a few possible solutions in the context of our applications, reflecting different trade-offs between
security and usability. Our protocol is independent of which of the three solutions is adopted:

(1) Public keys. Each member of the panel may be expected to have a public key. Then,
the symmetric key can be encrypted with each of the chosen panel member’s public key and
uploaded to the cloud. The distribution can be made more flexible and efficient by relying on
key distribution protocols like [17]. An important issue in this setting is the authentication of
public keys of members invited to participate in the competition panel. This may be done either
relying on a hierarchical certification model such as PKI or, what is more probable in the case of
competition management, on a distributed web of trust, such as that of PGP.

(2) Token. In this solution, each member of the panel generates a symmetric key kP and
uploads {kP}pub(Comp) to the cloud. Then, the manager sends {KComp}kP

to the panel member
using a channel that is outside the control of the cloud. He does this by checking the evaluator’s
authenticated email address and sends {KComp}kP

to that address. The panel member then
decrypts this token to obtain KComp. In this case, even if the cloud has access later to a panel
member’s email, it cannot compromise the privacy properties that our protocol ensures.

(3) Email. If we assume that email infrastructure is not in the control of the cloud service
provider that hosts the competition management system (as is most probably the case), the key
KComp could be sent to panel members directly by email. In that case, if the email of a panel
member is compromised later on, its privacy for the competition Comp is also compromised. Note
that it is only the key KComp that must be sent by email, all the rest of the protocol being executed
through the cloud.

3.2.2 Computation in the cloud.

We stress that non-trivial computation takes place in the cloud, namely routing of messages, and
optionally collection of statistics. It is essential for usability and take-up of the proposed system
that these computations are done by the cloud. The difficulties in designing the protocol thus lie
in releasing the necessary information for the cloud to perform these operations without compro-
mising the user privacy. In particular, the link between the sender of a message (e.g. the applicant
behind a submission) and the end receiver of this message (e.g. the panel member evaluating this
submission) should remain private and this although it is the cloud that is responsible for routing
messages.

Optionally, the protocol can be extended to allow the cloud to collect statisticts or other
anonymised data about the competition, its applicants, submissions, and panel members. This can
be achieved by adding code which extracts this information during the manipulations performed
by the manager’s browser. For example, along with the computation of DBr

Notf in Figure 4, the
manager could also compute the average score asµ = (s1 + · · · + snµ

)/nµ for each submission
and return the vector (asµ)µ to the cloud. (Such optional features must be carefully designed to
avoid breaking the security properties, as those features are not considered in our formal model
in Section 4.)

3.2.3 Efficiency and usability

It may seem that there is a considerable amount of work to be done by the manager, especially
in the transition between phases. As we discuss in section 5, this does not have to be evident to
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the manager. Our experiments with our prototype implementation of a competition management
system following this protocol show that the browser can transparently execute the protocol.

4 Formal model and verification

It is difficult to ascertain whether or not a cryptographic protocol satisfies its security requirements.
Numerous deployed protocols have subsequently been found to be flawed, e.g. the Needham-
Schroeder public-key protocol [35], the public-key Kerberos protocol [21], the PKCS#11 API [18],
or the BAC protocol in e-Passports [23]. In this section, we formally show that our protocol
satisfies the claimed security properties. The formal verification of the protocol has been done
automatically using the ProVerif tool [14, 16], and the corresponding ProVerif scripts are available
online [37]. The verification requires a rigorous description of the protocol in a process calculus
as well as formal definitions of the desired properties, each discussed in detail in the following
sections.

4.1 The process calculus

The ProVerif calculus [14, 16] is a language for modelling distributed systems and their interactions.
It is a dialect of the applied pi calculus [6]. In this section, we briefly review the basic ideas and
concepts of the ProVerif calculus.

4.1.1 Terms

The calculus assumes an infinite set of names, a, b, c, . . ., an infinite set of variables, x, y, z, . . . and
a finite signature Σ, that is, a finite set of function symbols each with an associated arity. Function
symbols are divided in two categories, namely constructors and destructors. Constructors are used
for building messages from other messages, while destructors are used for analysing messages and
obtaining parts of the messages they are applied to. Names and variables are messages. A new
message M may be built by applying a constructor f ∈ Σ, to names, variables and other messages,
M1, . . . ,Mn, and denoted as usual f(M1, . . . ,Mn). A term evaluation D is built by applying any
function symbol g ∈ Σ (constructor or destructor) to variables, messages or term evaluations,
D1, . . . ,Dn, denoted g(D1, . . . ,Dn). The semantics of a destructor g of arity n is given by a
finite set of rewrite rules of the form g(M1, . . . ,Mn) → M0, where M0,M1, . . . ,Mn are messages
that only contain constructors and variables. The ProVerif calculus also uses tuples of messages
(M1, . . . ,Mn), keeping the obvious projection rules implicit.

We use constructors and destructors to model the cryptographic primitives of symmetric-key
and public-key encryption. Specifically, we consider the signature

Σciph = {senc/3, sdec/2, pub/1, aenc/3, adec/2}

where senc (resp. aenc) is a constructor of arity 3 that models the randomised shared-key (resp.
randomised public-key) encryption primitive, sdec (resp. adec) is the corresponding destructor of
arity 2, and pub is a constructor of arity 1 that models the public key associated to the private
key given in argument.

The semantics of destructors in Σciph is given by the following rules

sdec(x, senc(x, y, z)) → z
adec(x, aenc(pub(x), y, z)) → z

We model the probabilistic shared-key encryption of the message m with the key k by senc(k, r,m),
where r models the random input for the encryption algorithm. The probabilistic public-key en-
cryption of the message m with the pubic key pub(k) is modeled by aenc(pub(k), r,m).

We will write D ⇓ M if the term evaluation D can be reduced to the message M by applying
some destructor rules. For example, if we consider the following term evaluation E and message
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N
E = senc(k, r, sdec(k′, senc(k′, r′, s)))
N = senc(k, r, s),

by application of the first rewrite rule given above, we have E ⇓ N .

4.1.2 Processes

Processes are built according to the grammar given below, where M,N are terms, D is a term
evaluation and n is a name.

P,Q,R ::= processes
0 null process
P | Q parallel composition
!P replication
new n;P name restriction
let M = D in P else Q term evaluation
in(N,M);P message input
out(N,M);P message output

Replication handles the creation of an unbounded number of instances of a process. The process
let M = D in P else Q tries to evaluate D and matches the result with M ; if this succeeds, then
the variables in M are instantiated accordingly and P is executed; otherwise Q is executed. We
will omit the else branch of a let when the process Q is 0. Names that are introduced by a new
construct are bound in the subsequent process, and they represent the creation of fresh data.
Variables that are introduced in the term M of an input or of a let construct are bound in the
subsequent process, and they represent the reception or computation of fresh data. Names and
variables that are not bound are called free. We denote by fn(P ), respectively fv(P ), the free
names, respectively free variables, that occur in P .

We also adopt a syntactic sugar of ProVerif that allows pattern matching. In the atomic action
in(M,N), the term N can have subterms preceded by =, which implies a matching constraint on
the input. For example, the input action in(c, (= a, y))) expects a pair whose first element must
be equal to the name a, and whose second one is assigned to the variable y.

Semantics. The possible actions of the environment are captured by evaluation contexts. A
context is a process with a hole. For a context C[ ], we denote by C[A] the process obtained by
filling its hole with the process A. An evaluation context is a context whose hole is not under a
replication, a conditional, an input, or an output.

We define the operational semantics of the process calculus by the means of two relations: struc-
tural equivalence and internal reductions. Structural equivalence (≡) is the smallest equivalence
relation on processes closed under α-conversion of bound names and bound variables, applica-
tion of evaluation contexts and of standard rules (see [16] for full definition) that capture the
associativity, the commutativity and the interplay of | and ν.

Internal reduction (−→) is the smallest relation closed under structural equivalence, application
of evaluation contexts and such that

out(N,M ′).P | in(N,M).Q −→ P | Qσ, if ∃σ s.t. Mσ = M ′

let M = D in P else Q −→ Pσ, if ∃M ′ ∃σ s.t. D ⇓ M ′ & Mσ = M ′

let M = D in P else Q −→ Q, otherwise

We write →∗ for an arbitrary (possibly zero) number of internal reductions.

4.1.3 Observational equivalence

For a process A and a name c, we write A ⇓ c when A can evolve into a process that can send a
message on c, that is, when A →∗ C[out(c,M).P ] for some term M , some evaluation context C[ ]
that does not bind c (i.e. c /∈ bn(C[ ])), and some process P .
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Definition 1 [6] Observational equivalence (≈) is the largest symmetric relation R between pro-
cesses such that A R B implies:

1. if A ⇓ c, then B ⇓ c, for any channel c;

2. for any process A′, if A −→∗ A′ then, for some process B′, we have B −→∗ B′ and A′ R B′;

3. C[A] R C[B] for all closing evaluation contexts C[ ].

We will express secrecy and unlinkability as the observational equivalence of two processes,
that share the same operational structure and differ only on data that they handle.

4.2 The protocol in the process calculus

Syntactic sugars. To improve readability, we sometimes replace the construct “ let U = V in P else Q”
with “ if U = V then P else Q”. Furthermore, we will occasionally combine several instructions
if U = V then P else Q into a single instruction, by gathering the tests into a single disjunctive
formula.

We will also make use of the following syntactic sugar of ProVerif: in the term M from the
expressions “let M = D in P else Q” and “in(c,M)” one is allowed to have subterms of the
form “=N”, for some term N . This emphasises the fact that the term N has been previously
defined in the process, and therefore the instantiation of M has to be consistent with the previous
instantiation of N . Formally, this semantics can be expressed by a combination of fresh variables
and equality tests. For instance, the process in(c, x); in(c,= x);P means that the second input
on the channel c must be equal to the first input. Relying on the original syntax, this becomes:
in(c, x); in(c, y); if x = y then P .

4.2.1 Message tags and communication channels

We introduce the set of constants Σtags ∪ Σnums, where

Σtags = {reg, subm, initround, cft, bid, assigned, evl, dsc, ntf}
Σnums = {zero, one, two}

The constants in Σtags correspond to tags used to label messages in different phases of the
protocol. The constants in Σnums represent small numbers, used for instance to declare bids or
conflicts. The initial round of the protocol is represented by the constant zero. Then, if a round
is represented by the term t, the next round is represented by the term succ(t), where succ is an
unary function symbol.

Puting all the function symbols together, we obtain the signature

ΣCC = Σciph ∪ Σtags ∪ Σnums ∪ {succ}

where Σciph has been introduced in section 4.1.1. We also consider the rewrite rules for sym-
metric and public-key encryption that are introduced in section 4.1.1.

To model communication channels, we consider the following names:

• c - a public name that represents the communication channel with the cloud

• cshk - a private name that represents a private channel that is used to distribute the symmetric
key shared by the panel members

• cpbk - a private name that represents an authenticated channel where the applicants can
obtain the public key of the competition

• cround - a private name for a channel used by the manager to announce the current round

Communication through the cloud. Several points are worthy of mention about our
modeling of the cloud channel:
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1. The name c is public, which corresponds to the fact that the attacker can intercept and
inject any messages that pass through the cloud.

2. The specification of the protocol requires sets of ciphertexts, e.g. S = {s1, . . . , sn}, to be
communicated through the cloud. For instance, in the key translation phase of diagram 1,
the chair has to download a list of ciphertexts and upload another list. Since the formal
model has to take into account all the possible values of n ≥ 1, we represent the transmission
of S by a several separate transmissions of s1, . . . , sn. The message tags will ensure that,
upon reception, each ciphertext s1, . . . , sn will be handled consistently as belonging to the
set S.

3. The semantics of ProVerif (i.e. internal reduction in section 4.1.2) does not specify how any
non-determinism that results from multiple inputs and outputs on the channel c is resolved.
In fact, ProVerif explores all the possible ways of scheduling the input and output actions,
as long as they are allowed by the tests performed by the receiving agents. Therefore, if
the protocol is secure in the ProVerif model, an implementation is secure in presence of
any particular scheduler that cannot control the actions of the honest agents (the chair in
particular).

4.2.2 The applicant process

We model the role of an applicant by the following process:

Applicant = new idA; ! AppReg

AppReg = (* Create applicant data *)
new λ; new k; new r1;
(* Obtain the public key of the conference *)
in(cpbk, xpbk);
(* Upload registration data *)
out(c, (λ, idA, aenc(xpbk, r1, (reg, λ, idA, k))));
! Submission

Submission = (* Wait for the next round, create submission data *)
in(cround, xround); new s; new r2;
(* Upload an encrypted submission *)
let submission = (λ, idA, senc(k, r2, ((subm, xround), λ, idA, s))) in
out(c, submission)

An applicant can register to several competitions (the process !AppReg). During registration,
the applicant generates an identifier λ and a submission key k, and obtains from the authenti-
cated channel cpbk the public key xpbk of the conference. The ciphertext aenc(xpbk, r, k) is then
uploaded to the cloud, using the public cloud channel c. After registration, the applicant can
submit any number of applications (the process !Submission). For each submission, the applicant
first determines the current round of the competition (stored in xround), creates a new submis-
sion s, and then uploads to the cloud the corresponding ciphertext for this submission, that is
senc(k, r2, ((subm, xround), λ, idA, s)). Note that we attach a tag (subm, xround) to the plaintext in
order to specify that it corresponds to a submission made in round xround.

4.2.3 The manager process

We model the manager of the competition by the following process:

Manager = Init | !Round

where Init models the actions of the manager in the initialisation phase (figure 2 from section
3) and Round models the actions of the manager in each round of the competition (figures 3 and
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4 from section 3). In the initialisation phase, the manager creates the new keys kshk, kconf for that
conference, shares the symmetric key kshk with the panel members over the private channel cshk,
and communicates the public key of the conference pub(kconf) to applicants and to the cloud:

Init = new kshk; new kconf ; (!out(cshk, kshk) | !out(cpbk, pub(kconf)) | out(c, pub(kconf)) | KeyTrans)

In addition, the process KeyTrans models the key translation step, that is performed after the
registration phase is completed:

KeyTrans = (* Download registration data from the cloud *)
in(c, (xλ, xidA, key blob));
let (= reg,= xλ,= xidA, xkey) = adec(kconf , key blob) in
(* Create an anonymous identifier µ *)
new µ; new r;
(* Upload the key translation to the cloud *)
let key tran = (µ, senc(kshk, r, ((initround, zero), µ, xλ, xidA, xkey))) in
out(c, key tran);

In KeyTrans, the manager downloads a registration tuple from the cloud, creates a new nonce
µ to anonymously identify this tuple and re-encrypts the key blob with the key kshk. The resulting
anonymized key translation, assigned to the variable key tran, is uploaded to the cloud.

Note that the specification of the protocol also postulates that the manager should mix the
ciphertexts before uploading the key translations back to the cloud. We do not explicitly model
the mix as an action of the chair, but its semantics is realized by the non-deterministic nature of
outputs and parallel composition in ProVerif.

Each round of the procotol, described in diagrams 2 and 3, consists of several phases: sub-
mission, assignement, evaluation, discussion, notification. The manager only participates in the
assignement phase and in the notification phase, and also manages the transition from one round
to another. This is modeled by the processes RoundTr,Assign and Notify described below:

Round = RoundTr | !Assign | !Notify

RoundTr = out(cround, zero) | !in(cround, x); out(cround, x) | !in(cround, x); out(cround, succ(x))
Assign = (* Download an application blob and a bid blob from the cloud*)

in(c, (xµ, app blob)); in(c, (xidR, bid blob));
(* Decrypt and check that the bid corresponds to the application *)
let ((= initround,= xround),= xµ, xλ, xidA, xkey) = sdec(kshk, subm blob) in
let ((= bid,= xround),= one,= xidR,= xµ) = sdec(kshk, bid blob) in
(* Construct an assignement blob and upload it to the cloud *)
new r;
let assigned blob = senc(kshk, r, ((assigned, xround), xµ, xλ, xidR, xidA, xkey)) in
let assignement = (xµ, xidR, assigned blob) in out(c, assignement)

Notify = (* Download a reviewed submission and make a notification decision *)
in(c, (yµ, yblob)); in(c, yntf); new r;
let ((= dsc,= xround),= yµ, yλ, ykey, yeval, ydisc) = sdec(kshk, yblob) in
(* Send the notification to the author through the cloud *)
let notification = (yλ, senc(ykey, r, ((ntf, xround), yλ, yntf , yeval)) in out(c, notification)

In the Assign process, the chair downloads an encrypted application and an encrypted bid
from the cloud, verifies if the bid corresponds to the considered application and creates a new blob
(stored in assigned blob) that assigns the reviewer to the desired application. The assignment blob
is uploaded to the cloud, annotated with the pair (xµ, xidR), so that the cloud can forward the
assigned blob to the corresponding reviewer xidR. In the Notify process, the manager obtains the
evaluations and discussions from the application blob, makes a decision about the application, and
sends the notification to the author. The notification is sent through the cloud and it is encrypted
with the submission key that is associated to the considered application.
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4.2.4 The evaluator process

For every conference, an evaluator first registers its identity with the cloud and obtains the shared
symmetric key of the conference from the chair. Next, the evaluator can obtain applications from
the cloud and participate in a number of evaluation rounds, as specified in the Evaluator process
below.

Evaluator = new idR; ! RevReg

RevReg = (* Register to the cloud and obtain kshk from the chair *)
out(c, idR); in(cshk, xshk);
(* Declare conflicts and execute several rounds of reviewing *)
!Conflicts | ! ( in(cround, xround); (! Bids | ! Review | ! Discussion))

Conflicts = (* Download encrypted applications and determine conflicts *)
in(c, (xµ, xblob));
let ((= initround,= zero),= xµ, xλ, xidA, xkey) = sdec(xshk, xblob) in in(c, xcft);
(* Upload declared conflicts to the cloud *)
out(c, (xµ, idR, xcft))

Bids = (* Download encrypted applicatons *)
in(c, (xµ, xblob));
let ((= initround,= xround),= xµ, xλ, xidA, xkey) = sdec(xshk, xblob) in
(* Upload an encrypted bid *)
in(c, xbid); new r;
let bid blob = (idR, senc(xshk, r, ((bid, xround), xbid, idR, xµ))) in out(c, bid blob)

Evaluate = (* Download an assigned application *)
in(c, (xµ,= idR, xblob));
let ((= assigned,= xround),= xµ, xλ,= idR, xidA, xkey) = sdec(xshk, xblob) in
(* Create an evaluation for the submission ...*)
new eval; new r;
(* ... and upload it encrypted to the cloud *)
let eval blob = (xµ, idR, senc(xshk, r, ((evl, xround), xµ, xλ, xkey, eval, zero))) in
out(c, eval blob)

Discussion = (* Download any application *)
in(c, (yµ, yblob));
let ((= evl,= xround),= yµ, yλ, yk, yr, ys, yd) = sdec(xshk, yblob) in
(* Extend the discussion and upload the revised application *)
new disc; new r;
let disc blob = (yµ, idR, senc(xshk, r, ((dsc, xround), yµ, yλ, yk, ye, (yd, d)))) in
out(c, disc blob).

In the process Bid, the evaluator obtains an application blob from the cloud, decrypts it using
the shared key of evaluators, makes a decision whether to bid or not for the paper, and uploads
the encrypted bid back to the cloud. Similarly, in the process Evaluate, the evaluator downloads
an encrypted application, verifies that it has been assigned to him, and uploads back to the cloud
an encrypted evaluation. Finally, the Discussion process models the fact that any evaluator can
discuss any paper, even if it has not been assigned to him.

4.2.5 Model of the protocol

The protocol is modeled by the process CC (Confidentiality in the Cloud), where we put together
all the elements that have been previously described:

CC = new cshk; new cpbk; new cround; (! Manager | ! Evaluator | ! Applicant)

Note that we do not fix the number of competitions, managers, evaluators or applicants: our
results hold for any number of instances of the protocol. We declare cshk to be private, because the
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corresponding channel is assumed to be private. The construct new cpbk ensures that the data sent
over cpbk is authentic (the intruder cannot write data on cpbk), which allows applicants to obtain
the correct public key of the competition from Manager. In addition to sending the public key
on cpbk, the manager uploads the public key to the cloud (on the public channel of the cloud c),
thus making it public. We do not model explicitly the actions of the cloud, because all its possible
actions, including those that are required for the functionality of our protocol, are considered by
the universally quantified evaluation, that is implicit in the definition of our properties (cf sections
4.1.3 and 4.3).

4.3 The properties in the process calculus

In this section we explain how the desired secrecy and unlinkability properties are formally de-
fined in the process calculus. We define both secrecy and unlinkability in terms of observational
equivalence, extending the classical approach of [42, 5, 26], and adapting it to our context.

When we prove an equivalence, we prove that a certain behaviour of the left process can be
indistinguishably mimicked by the right process, and vice versa. A concern when using equivalence
to model security properties arises if there is more non-determinism in our model than is permitted
in reality. If this happens, it might be that some of the behaviours on one side required to mimic
behaviours on the other side are possible in the model but not possible in reality; this could
imply that the equivalence holds in the model but not in reality. This is an instance of the more
general problem that there is a gap between the model and reality. We try to minimise that
gap. Specifically, we ensure that we don’t introduce any spurious non-determinism for the witness
applications and the witness reviews in our model. We ensure that the only non-determinism
is the communication of messages within each phase, which is also non-determinism allowed in
reality.

To express the desired security properties, we will need to consider particular applicants and
evaluators in interaction with the rest of the system. For this, we consider a hole in the process
CC, where we can plug any process, i.e. we consider the context:

CC[ ] = new cshk; new cpbk; new cround; (! Manager |! Evaluator |!Applicant | )

To express particular applicants, evaluators or actions of the manager, we will define so-
called witness processes, which are instances of the corresponding general processes. To be able
to define various instances in a generic way, we will consider parametrized processes, denoted
by P (a1, . . . , an), where a1, . . . , an are free names. The idea is that from the specification of
P (a1, . . . , an), we can derive several instances of P , by replacing a1, . . . , an with desired para-
maters. The process obtained from P (a1, . . . , an) by replacing a1, . . . , an with b1, . . . , bn is denoted
by P (b1, . . . , bn).

4.3.1 Submission secrecy

Our protocol ensures the secrecy of submissions made by applicants. To express this property for-
mally, we consider a witness applicant process where the identity of the applicant and the content
of one of the submissions is fixed. We denote this (parametrized) process by Applicants(idAw, sw),
and it is defined as follows, where we present in bold font the parts of the process that differ from
the general Applicant process:
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Applicants(idAw, sw) = (* We fix the identity of the author *)
let idA = idAwtn in ! AppRegs

AppRegs = new λ; new k; new r1; in(cpbk, xpbk);
out(c, (λ, idA, aenc(xpbk, r1, (reg, λ, idA, k))));
(* General submissions and one witness submission *)
(!Submission) | Submissions

Submissions = in(cround, xround); new r2;
(* Uploading the witness submission *)
let submission = (λ, idA, senc(k, r2, ((subm, xround), λ, idA, sw))) in
out(c, submission)

Then, following [15], we say that a competition management protocol satisfies secrecy of ap-
plications if, even if the cloud initially knows the content of two particular submissions s1

w and
s2
w, the cloud cannot make a distinction between an execution of the protocol where an applicant

submitted an application containing s1
w and an execution where the same applicant has submitted

s2
w. To formally capture this for our specification, we construct from CC[ ] two processes: in the

first one the hole is filled with a witness applicant process with identity idAw that submits s1
w, and

in the second one the hole is filled with an applicant process with identity idAw that submits s2
w.

Both s1
w and s2

w are modeled as free names, capturing the fact that the two submissions are known
to the cloud.

Submission secrecy

CC[Applicants(idAw, s1
w)] ≈ CC[Applicants(idAw, s2

w)]

4.3.2 Evaluation secrecy

Our protocol ensures the secrecy of evaluations that are assigned by an evaluator to a given
submission. Accordingly, we will have a process for a witness evaluator process that will allow us
to consider a particular evaluation that is being produced by an evaluator for a given application.
Furthermore, since evaluations are sent back to applicants at the notification phase, we also need
to assume an honest applicant in our definitions. Otherwise, the attacker would trivially know
the content of an evaluation (one given to one of his own submissions). To model that honest
applicant, we define a witness applicant process, that we denote by Applicanta(idAw, λw, kw), and
that allows us to express that one of the applications from idAw has identifier λw and submission
key kw:

Applicanta(idAw, λw, kw) = (* General applications and one witness application *)
let idA = idAw in (!AppReg) | AppRega

AppRega = new r1; in(cpbk, xpbk);
(* Registering the witness application *)
out(c, (λ, idA, aenc(xpbk, r1, (reg, λw, idA,kw))));
! Submission

To define a particular evaluator, we consider the process Evaluatore(idRw, λw, kw, evalw), that
specifies an evaluator whose identity is idRw and behaves like a regular evaluator, with the single
difference that among general applications, idRw also evaluates the withness application whose
identifier is λw and whose key is kw, to which it assigns the evaluation evalw:
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Evaluatore(idRw, λw, kw, evalw) = let idR = idRw in ! RevRege

RevRege = out(c, idR); in(cshk, xshk);
(* The only difference to RevReg is the Evaluatee process *)
!Conflicts | ! ( in(cround, xround); (! Bids | Evaluatee | ! Discussion))

Evaluatee = in(c, (xµ,= idR, xblob));
let ((= assigned,= xround),= xµ, xλ,= idR, xidA, xkey) = sdec(xshk, xblob) in
if (xλ, xkey) = (λw, kw) then
( (* Evaluation of the witness submission *)

new r;
(* The value of the evaluation is specific *)

let rev = (xµ, idR, senc(xshk, r, ((evl, xround), xµ, λw, kw, evalw, zero))) in
out(c, rev) )

else
( (* Evaluation of a general submission *)

new eval; new r;
(* The value of the evaluation is generic *)

let rev = (xµ, idR, senc(xshk, r, ((evl, xround), xµ, xλ, xkey, eval, zero))) in
out(c, rev) )

Then, we say that a competition management protocol satisfies evaluation secrecy, if the cloud
cannot make a distinction between the case when the witness evaluator idRw has evaluated an
application with eval1w or with eval2w. To make this property even stronger, we assume that the
evaluations eval1w and eval2w are public. Relying on the witness processes that we have defined so
far, we can express evaluation secrecy as the following equivalence:

Evaluation secrecy

new λw; new kw; CC[Applicanta(idAw, λw, kw) | Evaluatore(idRw, λw, kw, eval1w)] ≈
new λw; new kw; CC[Applicanta(idAw, λw, kw) | Evaluatore(idRw, λw, kw, eval2w)]

4.3.3 Applicant-evaluator unlinkability

Applicant-evaluator unlinkability means that the cloud cannot link a given applicant to the eval-
uators of his application. For the property to hold, it must be the case that the competition has
at least two applicants, whose identities we denote by idA1

w and idA2
w, and two evaluators, whose

identities we denote by idR1
w and idR2

w. Then, to express unlinkability, we require that the two
executions where

• idA1
w submits an application that is evaluated by idR1

w and idA2
w submits an application that

is evaluated by idR2
w

• idA1
w submits an application that is evaluated by idR2

w and idA2
w submits an application that

is evaluated by idR1
w

are indistinguishable from the point of view of the cloud. In order to specify such two executions
formally, we refine the manager process Manager such that certain applications can be assigned
to certain evaluators determined apriori. Specifically, we refine the process Assign, by defining
a parametrized process Assignae(idA1

w, idA2
w, idR1

w, idR2
w). This process ensures that some submis-

sions from idA1
w are evaluated by idR1

w and some submissions from idA2
w are evaluated by idR2

w.
Furthermore, this process also ensures that no submission from idA1

w is evaluated by idR2
w and

no submission from idA2
w is evaluated by idR1

w. Both the former and the latter properties are
important to ensure that there is indeed a significant link between idAi

w and idRi
w, for i ∈ {1, 2}.
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Assignae(idA1
w, idA2

w, idR1
w, idR2

w) =
(* Download an application and a bid from the cloud *)
in(c, (xµ, app blob)); in(c, (xidR, bid blob));
let ((= initround,= xround),= xµ, xλ, xidA, xkey) = sdec(kshk, subm blob) in
let ((= bid,= xround),= one,= xidR,= xµ) = sdec(kshk, bid blob) in
(* Restrictions on applications assigned to evaluators: *)

if xidR /∈ {idR1
w, idR2

w} ∨ (* Either xidR is not a witness evaluator *)

xidA /∈ {idA1
w, idA2

w} ∨ (* or xidA is not a witness applicant *)

(xidR, xidA) = (idR1
w, idA1

w) ∨ (* or an app. of idA1
w is assigned to idR1

w *)

(xidR, xidA) = (idR2
w, idA2

w) ∨ (* or an app. of idA2
w is assigned to idR2

w *)
then new r;
let assigned blob = senc(kshk, r, ((assigned, xround), xµ, xλ, xidR, xidA, xkey)) in
let assignement = (xµ, xidR, assigned blob) in out(c, assignement)

Let us discuss the tests that are part of the specification Assignae. First, if the test xidR /∈
{idR1

w, idR2
w} is true, it means that the evaluator whose bid is considered is not a witness evaluator,

and therefore there is no restriction that needs to be imposed on the applications that are assigned
to xidR. Similarly, if the test xidA /∈ {idA1

w, idA2
w} is true, there is not further restriction to be

imposed on this assignement. Otherwise, it must be the case that xidR is a witness evaluator
and xidA is a witness applicant. In that case, we allow the assignement to go through only if an
application from idA1

w is assigned to idR1
w, or if an application from idA2

w is assigned to idR2
w.

Now, we consider the process Managerae(idA1
w, idA2

w, idR1
w, idR2

w), that is obtained from the pro-
cess Manager by replacing the sub-process Assign with the process Assignae(idA1

w, idA2
w, idR1

w, idR2
w).

Additionally, we consider the processes Applicantid(idA) and Evaluatorid(idR), that allow to fix the
identity of an applicant and respectively of an evaluator. Then, we can express applicant-evaluator
unlinkability by the following observational equivalence:

Applicant-evaluator unlinkability

CC







Applicantid(idA1
w) | Applicantid(idA2

w) |

Evaluatorid(idR1
w) | Evaluatorid(idR2

w) |

Managerae(idA1
w, idA2

w, idR1
w, idR2

w )






≈CC







Applicantid(idA1
w) | Applicantid(idA2

w) |

Evaluatorid(idR1
w) | Evaluatorid(idR2

w) |

Managerae(idA1
w, idA2

w, idR2
w, idR1

w )







Automated analysis. We use the ProVerif tool to prove that all three eqivalence properties
defined above are true in our model. The complete specification of these properties in ProVerif is
available online [37].

5 Implementation of ConfiChair

In order to evaluate the performance and usability of the protocol, we have implemented it for
conference management systems in a system we call ConfiChair. The ideal implementation of our
protocol would look and feel very similar to existing cloud-based conference management systems
such as OpenConf, EDAS and EasyChair, and should require no additional software beyond a web
browser.

We constructed a prototype implementation [37], in order to discover any potential problems
with a practical implementation and to find how much time and memory such a system may
require, both on server-side and on client-side.
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Figure 5: Performance evaluation. The time taken for transitioning to the review stage is about
25s for 500 papers. The time for transitioning to the notification phase is about 350s for 500
papers. These figures average over several runs.

5.1 Overview

We implemented the ConfiChair prototype so that only a browser is necessary for participating
as an author, a reviewer, or a chair. Overall, our prototype of ConfiChair feels very similar to
current web-based management systems. A user of the system can perform his usual tasks by
simply clicking a few buttons.

For example, to submit a paper an author logs to his ConfiChair account, selects the link for
the conference to which he wants to submit, clicks the new submission button, selects the PDF file
of his paper and clicks the submit button to complete his submission. All the key generation and
the secure storing, as well as the encryption dictated by our protocol is transparently performed
by the browser. The only aspect not currently performed by the browser is the retrieval of the
conference public-key pub(Comp); this key must be manually input by the author (by copy-paste
from the call for papers for example).

Similarily, the chair of a conference wanting to create a ConfiChair page for his conference
Comp, logs into his ConfiChair account and clicks the create new conference button. His browser
will transparently generate and securely store the keys KComp, pub(Comp), and priv(Comp).

5.2 Performance

The system is expected to handle hundreds of papers without overhead on the chair. In particular,
browser-side re-encryption and mixing while transitioning between phases should not take more
than a few minutes. From that perspective, the results of our experiments with the prototype
implementation are promising. They are presented in figure 5. Also, experiments with any number
of random files can be easily re-run on [37]. The tables show the waiting time for a corresponding
number of papers when transiting between phases: always within a few minutes. The submissions
in our experiments are PDF files of scientific papers, thus reflecting a real-case situation.

These performance figures are of course worse than EasyChair, where no cryptography is used
other than the usual session encryption using TLS, and in particular the phase transitions take
negligible time. Using ConfiChair involves a small performance hit, which is noticed only by the
chair during the phase transitions (figure 5). Users and reviewers don’t notice any performance
hit, because the cryptography time is negligible compared with the time the users themselves take.

5.3 Transparency of key management

To hide the complexity of the encryption keys from the user, these are managed and retrieved by
the browser transparently when logging to ConfiChair. The login procedure implemented relies on
each user having an identity id and a secret password pswid from which the browser derives two

24



keys: the ConfiChair account key Kdf1(pswid) to authenticate the user to the the cloud provider,
and a second key Kdf2(pswid) used to encrypt the key purse of the user. This key purse contains
the set of keys generated by the browser in previous accesses to the ConfiChair system, for example
submission keys if the user has used ConfiChair as an author in the past, or conference keys if he
has used it as a programme committee member.

When submitting a paper, the author’s browser generates a symmetric key k which it uses
to automatically encrypt the paper before sending it to the cloud. This key k is in turn added
to the key purse of the user, which is uploaded encrypted with Kdf2(pswauthorid) to the cloud.
To the submitter, this does not look like anything other than a normal file upload. Similarly,
when the chair moves the conference to the review stage, it appears to be just like clicking on a
normal link, since the chair’s browser has already retrieved from the cloud the chair’s key purse,
and decrypted it with Kdf2(pswchairid), and can then transparently decrypt and reencrypt the
submissions according to the protocol.

In this way, the only key that needs to be securely backed up by a user id is his ConfiChair
password pswid. All the other keys are stored in encrypted form in the cloud, and retrieved when
needed by his browser.

Currently, the authors need to copy and paste from the call for papers the public key of the
conference pub(Comp) to which they want to submit, and the reviewers need to copy and paste
from their email the shared-key of the conference KComp for which they are reviewers.

5.4 Future improvements

In contrast to the ideal system that we envisage, our prototype requires the use of a Java plug-
in for the users’ browsers, since a Java applet is used to provide cryptographic routines. These
routines are called from the JavaScript code using LiveConnect. An alternative to Java would
be to use HTML5 which, unlike previous versions of HTML, provides the necessary features
to implement ConfiChair, such as the possibility to program on-the-fly stream encryption and
decryption. However, as the experiences of [7, 8, 30] suggest, Java applets are not necessarily an
impediment in the usability and the take-up of the system. Moreover, while the use of the Java
plug-in may look unattractive to some, it presents the following two advantages over HTML5:

• HTML5 is not yet widely adopted. Only the Chrome browser currently supports all the
necessary features of HTML5 that an implementation of ConfiChair would require.

• In order for the user to trust the code that their web browser runs, the code should be
reviewed, certified and signed by one or more trusted parties. The user’s web browser would
then verify the certificates without the user’s intervention. Currently Java applets are the
only way to achieve this.

All these implementation platform related issues will be further investigated in the future, for a
real implementation and deployment of the ConfiChair protocol.

6 Conclusion

The accumulation of sensitive data on servers around the world is a major problem for society,
and will be considerably exacerbated by the anticipated take-up of cloud-computing technology.
Confidential data about the applications and evaluations of different types of bids and tenders is
currently stored on a relatively small set of cloud-based competition management systems. For
example, in the case of conference management, the authoring and reviewing performance of tens
of thousands of researchers across thousands of conferences is stored by one or two well-known
cloud-based systems [40].

We have introduced a general technique that can be used to address this problem in a wide
variety of circumstances, namely, the technique of translating between keys and mixing data in a
trustworthy browser. We have proposed a protocol underlying a competition management system
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that uses this technique to obtain strong privacy properties while having all the advantages of cloud
computing. In this system, the cloud sees sensitive data only in encrypted form, with no single
person holding all the encryption keys (our protocol uses a different key for each competition).
The competition manager’s browser decrypts data with one key and encrypts it with possibly
another one, while mixing and re-randomising to ensure unlinkability properties.

We are able to state and prove strong secrecy and unlinkability properties for the protocol.
It still enables the cloud provider to route information to the necessary managers, evaluators
and applicants, to enforce access control, and optionally to perform statistics collection. In our
implementation of ConfiChair, we have demonstrated that the cryptography and key management
can be handled by a regular web browser [37] (specifically, we used LiveConnect). We plan to
continue developing our prototype into a complete system.

An important design decision in our protocol and in ConfiChair is the fact that a single key
KComp is used to encrypt all the information for the competition. Stronger secrecy properties
could be obtained if a different key were used for different subsets of evaluators and applicants,
but this would be at the cost of simplicity. Using a single key per competition seems to strike a
good balance between usability and security. Finer-grained access control is implemented (as on
current systems) by the cloud, e.g. for managing the conflicts of interest.

In further work, we intend to apply the ideas to work with other cloud-computing applications
(such as those mentioned in the introduction), and to provide a framework for expressing secrecy
and unlinkability properties in a more systematic way.
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