
Model checking agent knowledge in

dynamic access control policies

Masoud Koleini, Eike Ritter and Mark Ryan

University of Birmingham,
Birmingham, B15 2TT, UK

Abstract. In this paper, we develop a modeling technique based on interpreted
systems in order to verify temporal-epistemic properties over access control poli-
cies. This approach enables us to detect information flow vulnerabilities in dy-
namic policies by verifying the knowledge of the agents gained by both reading
and reasoning about system information. To overcome the practical limitations of
state explosion in model-checking temporal-epistemic properties, we introduce a
novel abstraction and refinement technique for temporal-epistemic safety prop-
erties in ACTLK (ACTL with knowledge modality K) and a class of interesting
properties that does fall in this category.

1 Introduction

Assume a conference paper review system in which all the PC members have access to
the number of the papers assigned to each reviewer. Further assume that a PC member
Alice can see the list of the papers that are assigned to another PC member and that are
not authored by Alice. Then if Alice is the author of a submitted paper, she can find
who the reviewer of her paper is by comparing the number of papers assigned to each
reviewer (shown by the system) with the number of the assigned papers of that reviewer
which she has access to.

The above is an example of a potential information leakage in content management

systems, which are collaborative environments that allow users to create, store and man-
age data. They also allow controlling access to the data based on the user roles. In such
multi-agent systems, access to the data is regulated by dynamic access control policies,
which are a class of authorization rules that the permissions for an agent depend on
the state of the system and change when agents interact with the system [1–3]. In com-
plicated access control scenarios, there is always a risk that some required properties
do not hold in the system. For instance and for a conference paper review system, the
following properties need to hold in the policy:

– It should be impossible for the author of a paper to be assigned as the reviewer of
his own paper (temporal safety property).

– There must be no way for the author of a paper to find out who is the reviewer of
his paper (epistemic safety property).

Epistemic properties take knowledge of the agents into account. The knowledge
can be gained by directly accessing the information, which complies with one of the



meanings of the knowledge in ordinary language, that means the agent sees the truth.
But agent also knows the truth when he indirectly reasons about it [4].

Information flow as a result of reasoning is a critical vulnerability in many collab-
orative systems like conference paper review systems, social networks and document
management systems, and is difficult to detect. The complication of access control poli-
cies in multi-agent collaborative frameworks makes finding such weaknesses more dif-
ficult using non-automated mechanisms. Moreover, the state of art dynamic access con-
trol verification tools are unable to find such properties as they do not handle epistemic
property verification in general. Therefore as the first contribution of this paper, we
propose a policy authorization language and express how to use the interpreted systems

framework [5, 6] in order to model the related access control system. Using interpreted
systems enables us to address misconfiguration in the policy and information disclo-
sure to unauthorized agents by verifying temporal-epistemic properties expressed in
the logic CTLK (CTL with knowledge modality K). The knowledge of an agent in our
modelling covers both the knowledge gained by reasoning and by reading information
when access permission is granted.

The practical limitation of interpreted systems is the state explosion for the sys-
tems of medium to large state space. There is also a limited number of research on
the automated abstraction and refinement of the models defined in interpreted systems
framework. As the second contribution, we develop an novel fully automated abstrac-
tion and refinement technique for verifying safety properties in ACTLK (which is a
subset of CTLK) over an access control system modelled in the framework of inter-
preted systems. We extend counterexample guided abstraction refinement [7] to cover
the counterexamples generated by the verification of temporal-epistemic properties and
when the counterexample is tree-like [8]. In this paper, we only discuss the counterex-
amples with finite length paths, but this approach can be extended to the paths of infi-
nite length using an unfolding mechanism [7]. We use a model-checker for multi-agent
systems [9] and build the abstract model in its modelling language. The refinement is
guided using the counterexample generated by the model-checker. The counterexample
checking algorithm is provably sound and complete. We also introduce an interactive
refinement for a class of epistemic properties that does not fall in ACTLK, but can
specify interesting security properties.

We provide the details of the algorithms and proofs of the propositions in a technical
report [10].

2 Related work

In the area of knowledge-based policy verification, Aucher et al. [11] define privacy

policies in terms of permitted or forbidden knowledge. The dynamic part of their logic
deals with sending or broadcasting data. Their approach is limited in modeling knowl-
edge gained by the interaction of agents in a multi-agent system. RW framework [2]
has the most similar approach with ours. The transition system in RW is build over the
knowledge of the active coalition of agents. In each state, the knowledge of the coali-
tion is the accumulation of the knowledge obtained by performing actions or sampling
system variables in previous transitions together with the initial knowledge. In the other



words, knowledge in RW is gained by reading or altering system variables, not by rea-
soning about them. This is similar to PoliVer [12], which approximates knowledge by
readability. Such verification tools are not able to detect information flow as a result of
reasoning.

In the field of abstraction and refinement for temporal-epistemic logic, Cohen et al.
[13] introduced the theory of simulation relation and existential abstraction for inter-
preted systems. Their approach is not automated and they have not provided how to
refine the abstract model if the property does not hold and the counterexample is spu-
rious. A recent research on abstraction and refinement for interpreted systems is done
by Zhou et al. [14]. Although their work is about abstraction and refinement of inter-
preted systems, their paper is abstract and mainly discusses the technique to build up a
tree-like counterexample when verifying ACTLK properties.

3 Interpreted systems

Fagin et al. [6] introduced interpreted systems as the framework to model multi-agent
systems in games scenarios. They introduced a detailed transition system which con-
tains agents, local states and actions. Such a framework enables reasoning about both
temporal and epistemic properties of the system.

Definition 1 (Interpreted system). Let � be a set of atomic propositions and ⌦ =
{e, 1, . . . , n} be a set of agents. An interpreted system I is a tuple:

I = h(Li)i2⌦ , (Pi)i2⌦ , (ACTi)i2⌦ , S0, ⌧, �i

where (1) Li is the set of local states of agent i, and the set of global states is defined

as S = Le⇥L1⇥ · · ·⇥Ln. We also use the notation of Li as the function that accepts

a set of global states and returns the corresponding set of local states for agent i. For

each s 2 S, li(s) denotes the local state of agent i in s (2) ACTi is the set of actions

that agent i can perform, and ACT = ACTe⇥ACT1⇥ · · ·⇥ACTn is the set of joint

actions. We also use ACTi as the function that accepts a joint action and returns the

action of agent i (3) S0 ✓ S is the set of initial states (4) � : S⇥�! {>,?} is called

the interpretation function (5) Pi : Li ! 2ACTi\{;} is the protocol for agent i which

defines the set of possible actions for agent i in a specific local state (6) ⌧ : ACT⇥S !
S is called the partial transition function with the property that if ⌧(↵, s) is defined, then

for all i 2 ⌦ : ACTi(↵) 2 Pi(li(s)). We also write s1
↵�! s2 if ⌧(↵, s1) = s2.

Definition 2 (Reachability). A global state s 2 S is reachable in the interpreted system

I if there exists s0 2 S0, s1, . . . , sn 2 S and ↵1, . . . ,↵n 2 ACT such that for all

1  i  n : si = ⌧(↵i, si�1) and s = sn. In this paper, we use G to denote the set of

reachable states.

For an interpreted system I and each agent i we define an epistemic accessibility
relation on the global states as follows:

Definition 3 (Epistemic accessibility relation). Let I be an interpreted system and i
be an agent. We define the Epistemic accessibility relation for agent i, written ⇠i, on

the global states of I by s ⇠i s
0

iff li(s) = li(s0) and s and s0 are reachable.



4 CTLK logic

We specify our properties in CTLK [15], which adds the epistemic modality K to the
CTL (Computational Tree Logic). CTLK is defined as follows:

Definition 4. Let � be a set of atomic propositions and ⌦ be a set of agents. If p 2 �
and i 2 ⌦, then CTLK formulae are defined by:

� ::= p | ¬� | � _ � | Ki� | EX� | EG� | E(�U�)

The symbol E is existential path quantifier and X , G and U are the standard CTL
symbols. All CTLK temporal connectives including the pairs of symbols starting with
universal path quantifier A can be written in terms of EX , EG and EU . For example,
AG� can be written as ¬EF¬�. Epistemic connective Ki means “agent i knows that”.

Example 1. Consider a conference paper review system. Then the safety property that
says if a2 is the reviewer of paper p1 (the proposition reviewer(p1, a2) is true), then a1

does not know the fact that a2 is the reviewer of p1 can be written as AG(reviewer(p1, a2)
! ¬Ka1 reviewer(p1, a2)). In an student information system where lecturers can assign
one student as the demonstrator of another student, the property that states no two stu-
dents, let us say a2 and a3, can be assigned as the demonstrator of each other is specified
by the formula AG(¬(demOf(a2, a3) ^ demOf(a3, a2))).

Definition 5 (Satisfaction relation). For any CTLK-formula �, the notation (I, s) |= �
means � holds at state s in interpreted system I . The relation |= is defined inductively

in [16]. Given G as the set of reachable states in I , we have

(I, s) |= Ki� , (I, s0) |= � for all s0 2 G such that s ⇠i s
0

We use the notation I |= � if for all s0 2 S0 : (I, s0) |= �.

5 Policy syntax

Multi-agent access control systems grant or deny user access to the resources and ser-
vices depending on the access rights defined in the policy. Access to the resources is
divided into write access, which when granted, allows updating some system variables
(in the context of this work, Boolean variables) and read access, that returns the value
of some variables when granted. In this section, we present a policy syntax to define
actions, permissions and evolutions. In the following section, we give semantics of the
policy language by constructing an interpreted system from it.
Technical preliminaries: Let V be a finite set of variables and Pred a finite set of
predicates. The notation v is used to specify a sequence of distinct variables. An atomic

formula or simply an atom is a predicate that is applied to a sequence of variables with
the appropriate length. An access control policy is a finite set of rules defined as follows:

L ::= > | ? | w(v) | L _ L | L ^ L | L! L | ¬L | 8v [L] | 9v [L]

W ::= +w(v) | � w(v) | 8v. W
Ws ::= W | Ws,W

AR ::= id(v) : {Ws} L Action rule
RR ::= id(v) : w(u) L Read permission rule



In the above, w 2 Pred, and w(v) is an atom. L denotes a logical formula over atoms,
which is the condition for performing an action or reading information. {Ws} is the
effect of the action that include the updates. +w(v) in the effect means executing the
action will set the value of w(v) to true and �w(v) means setting the value to false.
In the case of 8v.W in the effect, the action updates the signed atom in W for all
possible values of v. In the case that an atom appears with different signs in multiple
quantifications in the effect (for instance, w(c, d) in 8x. + w(c, x), 8y. � w(y, d)),
then only the sign of the last quantification is considered for the atom. id indicates the
identifier of the rule.

Let a(v) : E  L be an action rule. The free variables of the logical formula
L are denoted by fv(L) and are defined in the standard way. We also define fv(E) =
S

e2E fv(e) where fv(±w(x)) = x and fv(8x.W )=fv(W )\x. We stipulate: fv(E)[fv(L)
✓ v. If r(v) : w(u) L is a read rule, then fv(u)[fv(L) ✓ v.

Let ⌃ be a finite set of objects. A ground atom is a variable-free atom; i.e. atoms
with the variables substituted with the objects in ⌃. For instance, if reviewer2 Pred
and Bob,Paper2 ⌃, then reviewer(Bob,Paper) is a ground atom. In the context of this
paper, we call the ground atoms as (atomic) propositions, since they only evaluate to
true and false.

An action ↵ : " ` contains an identifier ↵ together with the evolution rule " `,
which is constructed by instantiating all the arguments in an action rule a(v) : E  L
with the objects in ⌃. We refer to the whole action by its identifier ↵.

In an asynchronous multi-agent system, it is crucial to know the agent that performs
an action. As the convention and for the rest of this paper, we consider the first argument
of the action to be the agent performing that action. Therefore, in the action assignRe-
viewer(Alice,Bob,Paper), Alice is the one that assigns Bob as the reviewer of Paper. If ↵
is an action, then Ag(↵) denotes the agent that performs ↵.

A read permission ⇢ : p  ` is constructed by substituting the arguments in read
permission rule r(v) : w(u)  L with the objects in ⌃. ⇢ is the identifier, p is the
proposition and ` is the condition for reading p. As for the actions, we assume the first
argument in ⇢ to be the agent that reads the proposition p, which is denoted by Ag(⇢).

Definition 6 (Policy). An access control policy is a finite set of actions and read per-

missions derived by instantiating a set of rules with a finite set of objects.

6 Building an interpreted system from a policy

In access control systems, when a read permission to a resource is granted, the re-
source will become a part of agent’s local state which means agents knows the infor-
mation. When the permission is denied, it will be removed from agent’s directly acces-
sible information. Therefore, we need to simulate this dynamic behaviour of the local
states (temporary read permissions) by introducing extra variables into the model. This
knowledge is called knowledge by readability of information. Moreover, it is a realistic
approach to model access control systems in asynchronous manner. This is because in
general and in real systems, different requests are held in a queue and processed one at a
time asynchronously. An interpreted system is asynchronous if all joint actions contain
at most one non-⇤ agent action where ⇤ denotes no-operation.



Given a policy, we build an access control system based on interpreted systems
framework by considering the requirements above. Incorporating temporary read per-
missions requires introducing some information into the local states. We say the propo-
sition p is local to the agent i if its value only depends on the local state of i. In the other
words, for all s, s0 2 S where s ⇠i s

0 we have �(s, p) = �(s0, p).

Definition 7 (Local interpretation). Let Li be the set of local states of agent i in inter-

preted system I and �i be the set of local propositions. We define the local interpretation
for agent i as a function �i : Li ⇥ �i ! {>,?} such that �i(l, p) = �(s, p) where

li(s) = l for some global state s. We require the set of local propositions to be pairwise

disjoint.

The following lemma provides the theoretical background of modelling knowledge
by readability in an interpreted system.

Lemma 1. Let I be an interpreted system, G the set of reachable states, i an agent, �
the set of propositions and p 2 �. Suppose that p0, p00 2 �i. If for all s 2 G:

if �i(li(s), p
00) = > then (I, s) |= p , �i(li(s), p

0) = >

Then we have: �i(li(s), p00) = > ) (I, s) |= Kip _Ki¬p.

We extend the interpreted systems to model knowledge by readability by incorpo-
rating all the atomic propositions that appear in the policy into the environment e. We
call those propositions policy propositions. Now for each policy proposition p and for
each agent, we introduce two local atomic propositions: p

read

(p00 in Lemma 1) as the
read permission of proposition p, and p

loc

(p0 in Lemma 1) as the local copy of p. We
modify the transition function in order to satisfy the following property: for all reach-
able states, if p

read

is true (agent has read access to p) in a state, then p
loc

is assigned the
same value as p. This property guarantees agent’s knowledge of proposition p whenever
his access to p is granted. The procedure to build the set of local propositions �i and
upgrading the set of actions in policy C into a new set Au

C which allows updating local
propositions according to the Lemma 1 is presented in [10].

Symbolic transition function Given a policy which contains a set of actions, we provide
the details for calculating the symbolic transition function we use for traversing over a
path in our system. Symbolic transition function applies on a set of states and returns
the result of performing an action over the states of that set.

As a convention, we use s[p 7! m] where s 2 S to denote the state that is like s
except that it maps the proposition p to the value m. Let st ✓ S be a set of states. When
performing the action ↵ : "  ` in the states of st, the transition is only performed in
the states that satisfy the permission `. In the resulting states, the propositions that do
not appear in " remain the same as in the states that the transition begins. Therefore, we
define:

⇥↵(st) =
n

s[p 7! > | +p 2 "][p 7! ? | �p 2 "]
�

� s 2 st, (I, s) |= `
o



Definition 8 (Derived interpreted system). Let C be a policy with ⌃Ag as the set of

agents, �C the set of policy propositions, �i, i 2 ⌃Ag and Au
C the local propositions and

updated set of actions in C constructed to modify local propositions based on Lemma

1. Let ⌦ = {e} [⌃Ag and � =
S

i2⌦ �i where �e = �C . Then the interpreted system

derived from policy C is:

IC = h(Li)i2⌦ , (Pi)i2⌦ , (ACTi)i2⌦ , S0, ⌧, �i

where (1) Li is the set of local states of agent i, where each local state is a valuation

of the propositions in �i. The set of global states is defined as S = Le⇥L1⇥ · · ·⇥Ln

(2) ACTi = {↵ 2 Au
C | Ag(↵) = i} [ {⇤} where ⇤ denotes no operation, and a

joint action is a |⌦|-tuple such that at most one of the elements is non-⇤ (asynchronous

interpreted system). For simplicity, we denote a joint action with its non-⇤ element (3)

S0 ✓ S is the set of initial states (4) � is the interpretation function over S and �. If

p 2 �i then we have �(s, p) = �i(li(s), p) (5) Pi is the protocol for agent i where for

all l 2 Li: Pi(l) = ACTi (6) ⌧ is the transition function that is defined as follows: if ↵
is a joint action (or simply, an action) and s 2 S, then ⌧(↵, s) = s0 if ⇥↵({s}) = {s0}.

The system derived from policy C is a special case of interpreted systems where the
local states are the valuation of local propositions. In the derived model, the state of the
system that is specified by policy C is simulated in environment e and local states store
the information that are accessible to the agents.

7 Abstraction technique

In an interpreted system, the state space exponentially increases when extra proposi-
tions are added into the system. Considering a fragment of CTLK properties known
as ACTLK as the specification language, we are able to verify the properties over an
over-approximated abstract model instead of the concrete one. ACTLK is defined as
follows:

Definition 9. Let � be the set of atomic propositions and ⌦ set of agents. If p 2 � and

i 2 ⌦, then ACTLK formulae are defined by:

� ::= p | ¬p | � ^ � | � _ � | Ki� | AX� | A(�U�) | A(�R�)

where the symbol A is universal path quantifier which means “for all the paths”.
To provide a relation between the concrete model and the abstract one, we extend

the simulation relation introduced in [17] to cover the epistemic relation between states.
Using the abstraction technique that preserves simulation relation between the concrete
model and the abstract one, we are able to verify ACTLK specification formulas over
the model. In this paper and for abstraction and refinement, we focus on safety proper-
ties expressed in ACLK. The advantages of safety properties are first, they are capable
of expressing policy invariants, and second, the generated counterexample contains fi-
nite sequence of actions (or transitions). We can extend the abstraction and refinement
method to the full ACTLK by unfolding the loops in the counterexamples into finite
transitions as described in [7], which is outside the scope of this paper.



7.1 Existential abstraction

The general framework of existential abstraction is first introduced by Clark et. al in
[17]. Existential abstraction partitions the states of a model into clusters, or equivalence
classes. The clusters form the states of the abstract model. The transitions between the
clusters in the abstract model give rise to an over-approximation of the original (or
concrete) model that simulates the original one. So, when a specification in ACTL (or
in the context of this paper, ACTLK) logic is true in the over-approximated model, it
will be true in the concrete one. Otherwise, a counterexample will be generated which
needs to be verified over the concrete model.

Notation 1 For simplicity, we use the same notation (⇠i) for the epistemic accessibility

relation in both the concrete and abstract interpreted systems.

Definition 10 (Simulation). Let I and

eI be two interpreted systems, ⌦ be the set of

agents in both systems, and � and

e� the corresponding set of propositions where

e� ✓ �.

The relation H ✓ S ⇥ eS is simulation relation between I and

eI if and only if:

1. For all s0 2 S0, there exists es0 2 fS0 st. (s0, es0) 2 H .

and for all (s, es) 2 H:

2. For all p 2 e� : �(s, p) = e�(es, p)
3. For each state s0 2 S such that ⌧(s,↵) = s0 for some ↵ 2 ACT , there exists

es0 2 eS and e↵ 2 ]ACT such that e⌧(es, e↵) = es0 and (s0, es0) 2 H .

4. For each state s0 2 S such that s ⇠i s
0
, there exists es0 2 eS such that es ⇠i es

0
and

(s0, es0) 2 H .

The above definition for simulation relation over the interpreted systems is very
similar to the one for Kripke model [7], except that the relation for the epistemic relation
is introduced. If such simulation relation exists, we say that eI simulates I (denoted by
I � eI). If H is a function, that is, for each s 2 S there is a unique es 2 eS such that
(s, es) 2 H , we write h(s) = es instead of (s, es) 2 H .

Proposition 1. For every ACTLK formula ' over propositions

e�, if I � eI and

eI |= ',

then I |= ' [14].

Variable hiding abstraction Variable hiding is a popular technique in the category of
existential abstraction. In our methodology, we consider factorizing the concrete state
space into equivalence classes that act as abstract states by abstracting away a set of
system propositions. In our approach, the states in each equivalence class are only dif-
ferent in the valuation of the hidden propositions. The actions in the abstract model are
the equivalence classes of the actions in the concrete model. All the actions in each
equivalence class have the visible propositions with the same sign in the effect of the
evolution rule, and the semantically equivalent permissions when invisible propositions
are existentially quantified. The abstract system simulates the concrete one (see [10] for
technical details).

Definition 11. We define hA : ACT ! ]ACT as the surjection that maps the actions

in the concrete model to the actions in the abstract one.



8 Automated refinement

Our counterexample based abstraction refinement method consists of three steps: (1)
Generating the initial abstraction by building the simplest possible initial abstract model
by retaining only the propositions that appear in specification ' which we aim to verify
(2) Model-checking the abstract structure. If the abstract model satisfies ', then it can
be concluded that the concrete model also satisfies '. If the abstract model checking
generates a counterexample, it should be checked if the counterexample is an actual
counterexample for the concrete model. If it is spurious, the abstract model should be
refined (3) Refining the abstraction by partitioning the states in the abstract model in
such a way that the refined model does not admit the same counterexample. For the
refinement, we turn some of invisible variables into visible. After each refinement, step
2 will be proceeded.

The process of abstraction and refinement will eventually terminate, as in the worst
case, the refined model becomes the same as the finite state concrete one.

8.1 Generating the initial abstraction

For automatic abstraction refinement, we build the initial model as simple as possible.
For an ACTLK formula ', we keep all the atomic propositions that appear in ' visible
in the abstract model and hide the rest.

8.2 Validation of counterexamples

The structure of a counterexample created by the verification of an ACTLK formula
is different from the counterexample generated in the absence of knowledge modality.
In an ACTLK counterexample, we have epistemic relations as well as temporal ones.
Analysis of such counterexamples is more complicated than the counterexamples for
temporal properties.

A counterexample for a safety property in ACTLK is a loop-free tree-like graph
with states as vertices, and temporal and epistemic transitions as edges (figure 1). Every
counterexample has an initial state as the root. A temporal transition in the graph is
labelled with its corresponding action and epistemic transition is labelled with the cor-
responding epistemic relation. We define a temporal path as a path that contains only
temporal transitions. An epistemic path contains at least one epistemic transition. Every
state in the counterexample is reachable from an initial state, which may differ from
the root. For any state s, we write s for the empty path which starts and finishes in s.
Counterexample formalism: A tree is a finite set of temporal and epistemic paths with
an initial state as the root. Each path begins from the root and finishes at a leaf. For
an epistemic transition over a path, we use the same notation as the epistemic relation
while we consider the transition to be from left to the right. For instance, the tree in the

figure 1 is formally presented by {es0
e↵1�! es1

e↵2�! es3, es0
e↵1�! es1 ⇠a es02

e↵0
3�! es03}.

To verify a tree-like counterexample, we traverse the tree in a depth-first manner.
An abstract counterexample is valid in the concrete model if a real counterexample in
the concrete model corresponds to it. We use the notation s ! s0 when the type of the
transition from s to s0 is not known.



Fig. 1. A tree-like counterexample generated by the verifica-
tion of an ACTLK safety property over the abstract model.
In the diagram, es0, es00 2 S0 and es1 ⇠a es02. As reachability
is a requirement for es1 ⇠a es02 and es1 is already reachable,

the temporal path es00
e↵0
1��! es01

e↵0
2��! es02 provides the witness for

the reachability of es02. Considering this witness is required in
counterexample checking.

es0

e↵1

es1
e↵2

es3

es00
e↵0
1

es01
e↵0
2

es02
e↵0
3

es03

⇠a

Definition 12 (Vertices, root). Let ece be a counterexample. Then Vert( ece) denotes the

set of all the states that appear in ece. Root( ece) denotes the root of ece. For a path e⇡,

Root(e⇡) denotes the state that e⇡ starts with.

Definition 13 (Corresponding paths). Let

eI be an abstract model of the interpreted

system I , h be the abstraction function, and hA be the function that maps the actions

in I to the ones in

eI . The concrete path ⇡ = s1 ! · · · ! sn in the concrete model

corresponds to the path e⇡ = es1 ! · · ·! esn in the abstract model, if

– For all 1  i  n : esi = h(si)

– If esi
e↵i+1���! esi+1 is a temporal transition, we have si

↵i+1���! si+1 where hA(↵i+1) =
e↵i+1.

– If esi ⇠a esi+1 is an epistemic transition, then si ⇠a si+1 and si+1 is reachable in

the concrete model.

Definition 14 (Concrete counterexample). Let ece be a tree-like counterexample in the

abstract model where Root( ece) 2 eS0. A concrete counterexample ce corresponds to ece
if Root(ce) 2 S0 and there exists a one-to-one correspondence between the states and

the paths of the counterexamples ce and ece according to the definition 13.

To verify a path in a counterexample, we define two transition rules TEMPORALCHECK

and EPISTEMICCHECK denoted by)t and)e as in figure 2. For a path with the transi-
tion es

e↵�! es0 as the head and for the concrete states st, the rule)t finds all the succes-
sors of the states in st which reside in h�1(es0). If the head of the path is the epistemic
transition es ⇠a es0, then the rule)e extracts all the reachable states in h�1(es0) corre-
sponding to ⇡0 as the witness of reachability of es0, which has common local states with
some states in st ✓ h�1(es). Both the temporal and epistemic rules are deterministic.
We write)⇤

t to denote a sequence of temporal transitions)t. We use)⇤ to denote a
sequence of the transitions)t or)e.

Proposition 2 (Soundness of)⇤
). Let e⇡ = es1 ! · · · ! esn be a path in the abstract

model. If st1 ✓ h�1(es1) and (e⇡, st1) )⇤ (esn, stn) for some ; ⇢ stn ✓ S, then there

exists a concrete path that starts from a state in st1 and ends in a state in stn.

In the case that e⇡ = es0 ! · · · ! esn is a path in the counterexample and (e⇡, S0 \
h�1(es0)))⇤ (esn, stn), then there exists a corresponding concrete path starting at some
initial state s0 2 S0 \ h�1(es0) which ends at some state sn 2 stn.



TEMPORALCHECK
h�1
A (e↵) = {↵1, . . . ,↵n}

(es e↵�! es0 ||⇡, st) )t (⇡,
n[

i=1

⇥↵i(st) \ h�1(es0))

EPISTEMICCHECK

⇡0 = es00
e↵0
1��! . . .

e↵0
m��! es0 is a temporal path to es0 where es00 2 eS0

(⇡0, S0 \ h�1(es00)) )⇤
t (es0, st0) ŝt = {s 2 st0 | la(s) 2 La(st)}

(es ⇠a es0 ||⇡, st) )e (⇡, ŝt)

Fig. 2. Temporal and epistemic transition rules. In EPISTEMICCHECK rule, ⇡0 is the witness for
the reachability of es0 in the abstract model, and st0 is the concrete states that are reachable through
the concrete paths corresponding to ⇡0. In the case that the model-checker returns all the abstract
paths to es0, let us say e⇧ 0, then st0 will be calculated as st0 =

S
{st | ⇡0 = es00 ! · · · ! es0 2

e⇧ 0, es00 2 eS0 and (⇡0, S0 \ h�1(es00)) )⇤
t (es0, st)}.

Proposition 3 (Completeness of )⇤
). Let e⇡ = es1 ! · · · ! esn be a path in the

abstract model. If there exists a concrete path ⇡ = s1 ! · · ·! sn corresponding to e⇡
and s1 2 st1 ✓ h�1(es1), then (e⇡, st1))⇤ (esn, stn) for some ; ⇢ stn ✓ S.

Forward transition rules in figure 2 are sufficient to check linear counterexamples

or equivalently, paths. To extend the counterexample checking to tree-like counterex-
ample, extra procedures are required.

To verify a tree-like counterexample, we introduce two transition rules BACKWARDTCHECK

and BACKWARDECHECK denoted by(t and(e. The transition rules find all the prede-
cessors of the states in st (figure 3) with respect to the temporal or epistemic transitions
in a backward manner which reside in the set of reachable states through the path. We
write(⇤ to denote a sequence of backward transitions(t and(e.

Assume that e⇡ = es0 ! · · ·! esn is a path in the counterexample ece which (e⇡, S0\
h�1(es0)))⇤ (esn, stn) for some ; ⇢ stn ✓ S. stn contains all the states in the leaves
of the concrete paths corresponding to e⇡. The point is that not all the concrete states
that are traversed in)⇤ can reach the states in stn. If es 2 Vert(e⇡), then (e⇡, stn) (⇤

(es0, st0) finds the set of states res which contains the reachable states in h�1(es) that
lead to some states in stn along the concrete paths corresponding to e⇡. st0 contains the
initial states that lead to the states in stn. We use the notation re⇡es to relate res with the
path e⇡. Note that to find re⇡es , we first need to find stn through)⇤ transition.

Assume that e⇧ ✓ ece. If es 2 Vert( ece) then we define r
e⇧
es = \e⇡2 e⇧re⇡es . If es 62

Vert(e⇡), then we stipulate re⇡es = h�1(es). We also stipulate r;es0 = S0 \ h�1(es0) where
es0 = Root( ece) and r;es = h�1(es) for all es 2 Vert( ece) where es 6= es0.

Proposition 4. A counterexample ece in the abstract model has a corresponding con-

crete one if:

1. for each path e⇡ 2 ece, there exists ; ⇢ st ✓ S such that (e⇡, S0 \ h�1(es0)) )⇤

(es0, st) where es0 = Root( ece) and e⇡ ends in es0.
2. for all es 2 Vert( ece) : r ece

es 6= ;.



BACKWARDTCHECK

(⇡, S0 \ h�1(Root(⇡))) )⇤ (es, st0)

h�1
A (e↵) = {↵1, . . . ,↵n} rs =

n[

i=1

⇥�1
↵i

(st) \ st0

(⇡ || es e↵�! es0, st) (t (⇡, rs) res := rs

BACKWARDECHECK

(⇡, S0 \ h�1(Root(⇡))) )⇤ (es, st00)

⇡0 = es00
e↵0
1��! . . .

e↵0
m��! es0 is the temporal path to es0 where es00 2 eS0

(⇡0, S0 \ h�1(es00)) )⇤ (es0, st0)
ŝt = {s 2 st00 | la(s) 2 La(st \ st0)}

(⇡ || es ⇠a es0, st) (e (⇡, ŝt) res := ŝt

Fig. 3. Backward temporal and epistemic transition traversal. ⇥�1
↵ (st) computes the set of pre-

decessors of the states in st with respect to the transitions made by action ↵.

Let ece be a counterexample. The process of counterexample checking iterates over
the paths in ece and checks if they corresponds to some paths in the concrete model
by using proposition 2 and the transition rule )⇤. If e⇡ 2 ece corresponds to some
concrete paths, then for each state es in e⇡, the algorithm finds all the concrete states re⇡es
in h�1(es) that lead to the leaf states of the concrete paths, by applying(⇤ over e⇡. In
each loop iteration, the paths in ece that are processed in previous iterations are stored in
the set e⇧ . The set r e⇧

es stores the concrete states that are common between the paths in
e⇧ and should remain non-empty during the process of counterexample checking. The
procedure returns false if one of the paths in ece does not have corresponding concrete
path or r e⇧

es = ; for some es 2 Vert( ece) and e⇧ ✓ ece. Otherwise it returns true [10].

8.3 Refinement of the abstraction

For the refinement, we find the failure state in the counterexample as a standard ter-
minology [7] by simulating the counterexample in the concrete model. A failure state
esf is a state along the tree-like counterexample where the concrete transitions cannot
follow the transitions from esf . The concrete states that follow the counterexample and
then stop following are dead-end states. To refine the abstract model, we split up the
dead-end states from the rest of the states in h�1(esf ) by turning a set of invisible vari-
ables into visible so that the same counterexample does not occur in the refined model
by finding conflict clauses. See [10] for the full technical details.

8.4 Going beyond ACTLK

While this section develops a fully automated abstraction refinement method for the
verification of temporal-epistemic properties that reside the category of ACTLK, some
important epistemic safety properties does not fall into this category. For instance and in
a conference paper review system, it is valuable for policy designers to verify that for all
reachable states, an author of a paper, say a, cannot find out (¬Ka) who is the reviewer



of his own paper (see the first property in example 1). Although we are able to verify
such properties in the concrete model, we cannot apply automated counterexample-
guided abstraction and refinement for such properties.

For the abstraction and refinement, we restrict the formula in scope of the knowl-
edge operators to propositional formulas (see [10] for the technical discussion). Then
we use an interactive refinement procedure in the following way: we abstract the inter-
preted system in the standard way that we described. If the property does not hold in
the abstract model, the counterexample will be checked in the concrete model and the
abstract model will be refined if it is required. If the property turned to be true in the
abstract model as a result of the satisfaction of ¬Ka (for which there is no witness in the
abstract model), then we refine the local state of the agent a in an interactive manner.
In this way, the tool asks the user to selects a set of invisible local propositions, with
possibly higher correlation to the agent’s knowledge, to be added in the next round if
required. This process will continue until a valid counterexample appear while the local
state is still abstract, or the local state becomes concretized.

9 Experimental results

We have implemented a tool in F# functional programming language. The front end
is a parser that accepts a set of action and read permission rules, a set of objects and
a query in the form of ◆ : ' where ◆ is the formula representing the initial states and
' is the property we aim to verify. Given the above information, the tool derives an
interpreted system based on definition 8 where the initial states of the system are de-
termined by parameter ◆ in the query. On the back end, we use MCMAS [9] as the
model-checking engine. In the presence of abstraction and refinement, the tool feeds
MCMAS with the abstract model together with the property '. If model-checker re-
turns true for an ACTLK property, then the tool returns true to the user. Otherwise,
the tool automatically checks the generated counterexample based on proposition 4,
and reports if it is a real counterexample, which will be returned to the user, or veri-
fication needs a refinement round. The tool performs an automated refinement if it is
required. For the properties that are discussed in section 8.4, the tool asks user to select
a set of invisible local variables to be added to the abstract model for the refinement
when model-checker returns true. This will continue until all the related invisible local
variables turn to visible, or a valid counterexample is found.

For this section, we choose one temporal and three epistemic properties for the case
study of conference paper review system (CRS) with the information leakage vulnera-
bility described in the introduction. We first verify the query (Query 1) “author(p1, a1)^
¬reviewer(p1, a1) : AG(¬reviewer(p1, a1))” which states that if in the initial states,
agent a1 is the author of paper p1 and not the reviewer of his own paper, then it is not
possible for a1 to be assigned as the reviewer of his paper p1. Query 2 “¬submittedreview
(p1, a1)^reviewer(p1, a2) : AG(Ka1 review(p1, a2)! AG(¬submittedreview(p1, a1))”
checks if in the initial states, a2 is the reviewer of paper p1 and a1 has not submitted
a review for p1, then a1 cannot submit a review for p1 later if he reads the review
of a2 (knowledge by readability). Query 3 “author(p1, a1) : AG(AllPapersAssigned ^
reviewer(p1, a2)! ¬Ka1 reviewer(p1, a2))” asks if a1 is the author of p1, then it is not



Fig. 4. Comparison of the verification time
for the queries 1 and 2 between our tool
which uses MCMAS as the model-checking
engine, PoliVer and RW.

3 Papers, 7 Agents 2 Papers, 4 Agents

Query 1 Query 2

Concrete model Abstraction and refinement
time(s) BDD vars time(s) Max BDD vars last ref time

Query 3 6576.5 180 148.3 80 3.28
Query 4 6546.4 180 174.1 98 21

Fig. 5. A comparison of query verification time (in second) and runtime memory usage (in MB)
between the concrete model and automated abstraction refinement method.

possible for a1 to find the reviewer of his paper when his paper is assigned to a2, which
is not ACTLK. Query 4 “author(p1, a1) : AG(AllPapersAssigned^ reviewer(p1, a2)!
Ka1 reviewer(p1, a2))” has ACTLK property, which checks if a1 can always find who
the reviewer of his paper is when all the papers are assigned.

Queries 1 and 2 can be verified in access control policy verification tools like RW
and PoliVer, which model knowledge by readability. We compare our tool in the pres-
ence of abstraction and refinement with RW and PoliVer from the point of verification
time in figure 4. It is important to note that when applying abstraction and refinement,
a high percentage of evaluation time is spent on generating abstract models, invoking
executable MCMAS which also invokes Cygwin library, and verifying the counterex-
amples. In most of our experiments, verification of the final abstract model by MCMAS
takes less than 10ms.

The novel outcome of our research is the verification of the queries 3 (interactive
refinement) and 4 (fully automated refinement) where PoliVer and RW are unable to
detect information leakage in CRS policy. In PoliVer and RW, the author never finds a
chance to see who the reviewer of his paper is and therefore safety property holds in
the system. Modelling in interpreted systems reveals that the author can reason who is
the reviewer of his paper. For query 3, the tool also outputs the counterexample which
demonstrates the sequence of actions that allows the author to reason about the reviewer
of his paper. Figure 5 shows the practical importance of our abstraction method.

10 Conclusion

In this research, we introduced a framework for verifying temporal and epistemic prop-
erties over access control policies. In order to verify knowledge by reasoning, we used
interpreted systems as the basic framework, and to make the verification practical for
medium to large systems, we extended counterexample-guided refinement known as
CEGAR to cover safety properties in ACTLK. Case studies and experimental results



show a considerable reduction in time and space when abstraction and refinement are
in use. We also apply an interactive refinement for some useful properties that does not
reside in ACTLK like the ones that contain the negation of knowledge modality.
Acknowledgement: We would like to acknowledge Microsoft Research and EPSRC
project TS/I002529/1 “Trust Domains” for funding this research.

References

1. Becker, M.Y.: Specification and analysis of dynamic authorisation policies. In: Proceedings
of 22nd IEEE Computer Security Foundations Symposium (CSF). (2009)

2. Zhang, N., Ryan, M., Guelev, D.P.: Synthesising verified access control systems through
model checking. Journal of Computer Security 16(1) (2008) 1–61

3. Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Specifying and reasoning about dynamic
access-control policies. In: LNCS. Volume 4130., Springer (2006) 632–646

4. Mardare, R., Priami, C.: Dynamic epistemic spatial logics. Technical report, The Microsoft
Research-University of Trento Centre for Computational and Systems Biology (2006)

5. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press,
Cambridge (1995)

6. Fagin, R., Halpern, J.Y., Moses, Y., Vardis, M.Y.: Knowledge-based programs. Distributed
Computing 10(4) (1997) 199–225

7. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement. In: Computer Aided Verification. (2000) 154–169

8. Clarke, E.M., Lu, Y., Com, B., Veith, H., Jha, S.: Tree-like counterexamples in model check-
ing. In: LICS 2002: Proceedings of the 17 th Annual IEEE Symposium on Logic in Computer
Science, IEEE Computer Society (2002)

9. Lomuscio, A., Raimondi, F.: MCMAS: A model checker for multi-agent systems. In:
TACAS 2006: Tools and Algorithms for the Construction and Analysis of Systems, Springer-
Verlag (2006) 450–454

10. Koleini, M., Ritter, E., Ryan, M.: Reasoning about knowledge in dynamic policies.
Technical report, University of Birmingham, School of Computer Science, Available at:
http://www.cs.bham.ac.uk/ mdr/research/papers/pdf/13-mc-knowledge.pdf (2012)

11. Aucher, G., Boella, G., van der Torre, L.: Privacy policies with modal logic: The dynamic
turn. In: Deontic Logic in Computer Science. (2010) 196–213

12. Koleini, M., Ryan, M.: A knowledge-based verification method for dynamic access control
policies. In: ICFEM 2011: Proceedings of 13th International Conference on Formal Engi-
neering Methods. (2011)

13. Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in model checking multi-
agent systems. In: AAMAS 2009: Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems. (2009) 945–952

14. Zhou, C., Sun, B., Liu, Z.: Abstraction for model checking multi-agent systems. Frontiers
of Computer Science in China 5 (2011) 14–25

15. Lomuscio, A., Raimondi, F.: The complexity of model checking concurrent programs against
CTLK specifications. In: AAMAS 2006: Proceedings of the fifth international joint confer-
ence on Autonomous agents and multiagent systems, ACM Press (2006) 548–550

16. Cohen, M., Dam, M., Lomuscio, A., Qu, H.: A symmetry reduction technique for model
checking temporal-epistemic logic. In: Proceedings of the 21st international jont conference
on Artifical intelligence. IJCAI’09 (2009)

17. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans.
Program. Lang. Syst. 16(5) (1994) 1512–1542


