
Verification of agent knowledge in
dynamic access control policies∗

Masoud Koleini, Eike Ritter and Mark Ryan

School of Computer Science
The University of Birmingham

Birmingham, B15 2TT, UK

Abstract. We develop a modeling technique based on interpreted systems in or-
der to verify temporal-epistemic properties over access control policies. This ap-
proach enables us to detect information flow vulnerabilities in dynamic policies
by verifying the knowledge of the agents gained by both reading and reason-
ing about system information. To overcome the practical limitations of state ex-
plosion in model-checking temporal-epistemic properties, we introduce a novel
abstraction and refinement technique for temporal-epistemic safety properties in
ACTLK (ACTL with knowledge modality K) and a class of interesting properties
that does fall in this category.

1 Introduction

Assume a conference paper review system in which all the PC members have access to
the number of the papers assigned to each reviewer. Further assume that a PC member
Alice can see the list of the papers that are assigned to another PC member and that are
not authored by Alice. Then if Alice is the author of a submitted paper, she can find
who the reviewer of her paper is by comparing the number of papers assigned to each
reviewer (shown by the system) with the number of the assigned papers of that reviewer
which she has access to.

The above is an example of a potential information leakage in content management
systems, which are collaborative environments that allow users to create, store and man-
age data. They also allow controlling access to the data based on the user roles. In such
multi-agent systems, access to the data is regulated by dynamic access control policies,
which are a class of authorization rules that the permissions for an agent depend on
the state of the system and change when agents interact with the system [1–3]. In com-
plicated access control scenarios, there is always a risk that some required properties
do not hold in the system. For instance and for a conference paper review system, the
following properties need to hold in the policy:

– It should be impossible for the author of a paper to be assigned as the reviewer of
his own paper (temporal safety property).

– There must be no way for the author of a paper to find out who is the reviewer of
his paper (epistemic safety property).

* The original version of this paper appeared in Lecture Notes in Computer Science (LNCS),
Volume 7795, 2013, pp 448–462.

Epistemic properties take knowledge of the agents into account. The knowledge
can be gained by directly accessing the information, which complies with one of the
meanings of the knowledge in ordinary language, that means the agent sees the truth.
But agent also knows the truth when he indirectly reasons about it [4].

Information flow as a result of reasoning is a critical vulnerability in many collab-
orative systems like conference paper review systems, social networks and document
management systems, and is difficult to detect. The complication of access control poli-
cies in multi-agent collaborative frameworks makes finding such weaknesses more dif-
ficult using non-automated mechanisms. Moreover, the state of art dynamic access con-
trol verification tools are unable to find such properties as they do not handle epistemic
property verification in general. Therefore as the first contribution of this paper, we
propose a policy authorization language and express how to use the interpreted systems
framework [5] in order to model the related access control system. Using interpreted
systems enables us to address misconfiguration in the policy and information disclo-
sure to unauthorized agents by verifying temporal-epistemic properties expressed in
the logic CTLK (CTL with knowledge modality K). The knowledge of an agent in our
modelling covers both the knowledge gained by reasoning and by reading information
when access permission is granted.

The practical limitation of interpreted systems is the state explosion for the sys-
tems of medium to large state space. There is also a limited number of research on
the automated abstraction and refinement of the models defined in interpreted systems
framework. As the second contribution, we develop an novel fully automated abstrac-
tion and refinement technique for verifying safety properties in ACTLK (which is a
subset of CTLK) over an access control system modelled in the framework of inter-
preted systems. We extend counterexample guided abstraction refinement [6] to cover
the counterexamples generated by the verification of temporal-epistemic properties and
when the counterexample is tree-like [7]. In this paper, we only discuss the counterex-
amples with finite length paths, but this approach can be extended to the paths of infi-
nite length using an unfolding mechanism [6]. We use a model-checker for multi-agent
systems [8] and build the abstract model in its modelling language. The refinement is
guided using the counterexample generated by the model-checker. The counterexample
checking algorithm is provably sound and complete. We also introduce an interactive
refinement for a class of epistemic properties that does not fall in ACTLK, but can
specify interesting security properties.

The reminder of the technical report is organized as follows: Related works are dis-
cussed in section 2, interpreted systems are introduced in section 3, formal syntax and
semantics of access control policies are provided in section 4, deriving an interpreted
system from a policy is described in section 5, abstraction and refinement technique is
given in sections 6 and 7. Case studies and experimental results are included in section
8.

2 Related work

In the area of knowledge-based policy verification, Aucher et al. [9] define privacy
policies in terms of permitted or forbidden knowledge. The dynamic part of their logic

deals with sending or broadcasting data. Their approach is limited in modeling knowl-
edge gained by the interaction of the agents in a multi-agent system. RW framework [2]
has the most similar approach with ours. The transition system in RW is build over the
knowledge of the active coalition of agents. In each state, the knowledge of the coali-
tion is the accumulation of the knowledge obtained by performing actions or sampling
system variables in previous transitions together with the initial knowledge. In the other
words, knowledge in RW is gained by reading or altering system variables, not by rea-
soning about them. This is similar to PoliVer [10], which approximates knowledge by
readability. Such verification tools are not able to detect information flow as a result of
reasoning.

In the field of abstraction and refinement for temporal-epistemic logic, Cohen et
al. [11] introduce the theory of simulation relation and existential abstraction for in-
terpreted systems. Their approach is not automated and they have not provided how to
refine the abstract model if the property does not hold and the counterexample is spu-
rious. A recent research on abstraction and refinement for interpreted systems is done
by Zhou et al. [12]. Although their work is about abstraction and refinement of inter-
preted systems, their paper is abstract and mainly discusses the technique to build up a
tree-like counterexample when verifying ACTLK properties.

3 Background

3.1 Interpreted systems

Fagin et al. [13] introduced interpreted systems as the framework to model multi-agent
systems in games scenarios. They introduced a detailed transition system which con-
tains agents, local states and actions. Such a framework enables reasoning about both
temporal and epistemic properties of the system. Lomuscio et al [14] have used a vari-
ant of interpreted systems to verify ATLK (alternating time temporal logic [15] with
knowledge) properties over the interpreted systems. They have also developed a model-
checker for interpreted systems called MCMAS [8] which we will use as the model-
checking engine in our implementation.

The multi-agent system formalism known as interpreted systems (IS) [5, 13] con-
tains a set Ω = {e, 1, . . . , n} of agents including the environment e with the same
specification as the other agents. Interpreted systems contain the following elements:

– Local states: Each agent in a multi-agent framework has its own local state. The
set of local states for the agent i is denoted by Li. The local state of an agent
represents the information the agent has direct access to. The environment can be
seen as the agent which is capable of capturing or holding the information that is
inaccessible to the other agents. For example, the communication channel in a bit
transmission protocol can be modelled as the environment. The set of global states
is S = Le ×L1 × · · · ×Ln, representing the system at a specific time. The system
evolves as a function over the time. We also use the notation of Li as the function
that accepts a set of global states and returns the corresponding set of local states
for agent i. For each s ∈ S, li(s) denotes the local state of agent i in s.

– Actions: State transitions are the result of performing actions by different agents.
If i ∈ Ω, then ACTi is the set of actions accessible for the agent i. The set of joint
actions is defined as ACT = ACTe × ACT1 × · · · × ACTn. We also use ACTi
as the function that accepts a joint action and returns the action of agent i.

– Protocols: Protocols are defined as mappings from the set of local states to the
set of local actions and define the actions each agent can perform according to
its local state (Pi : Li → 2ACTi\{∅}, i ∈ Ω). In general, action performance is
non-deterministic.

Definition 1 (Interpreted system). Let Φ be a set of atomic propositions and Ω =
{e, 1, . . . , n} be a set of agents. An interpreted system I is a tuple:

I = 〈(Li)i∈Ω , (Pi)i∈Ω , (ACTi)i∈Ω , S0, τ, γ〉

where (1) Li is the set of local states of agent i, and the set of global states is defined
as S = Le × L1 × · · · × Ln (2) ACTi is the set of actions that agent i can perform,
and ACT = ACTe × ACT1 × · · · × ACTn is defined as the set of joint actions (3)
S0 ⊆ S is the set of initial states (4) γ : S × Φ → {>,⊥} is called the interpretation
function (5) Pi : Li → 2ACTi\{∅} is the protocol for agent i (6) τ : ACT × S → S is
called the partial transition function with the property that if τ(α, s) is defined, then for
all i ∈ Ω : ACTi(α) ∈ Pi(li(s)). We also write s1

α−→ s2 if τ(α, s1) = s2.

Definition 2 (Reachability). A global state s ∈ S is reachable in the interpreted system
I if there exists s0 ∈ S0, s1, . . . , sn ∈ S and α1, . . . , αn ∈ ACT such that for all
1 ≤ i ≤ n : si = τ(αi, si−1) and s = sn. In this paper, we use G to denote the set of
reachable states.

For an interpreted system I and each agent i we define an epistemic accessibility
relation on the global states as follows:

Definition 3 (Epistemic accessibility relation). Let I be an interpreted system and i
be an agent. We define the Epistemic accessibility relation for agent i, written ∼i, on
the global states of I by s ∼i s′ iff li(s) = li(s

′) and s and s′ are reachable.

3.2 CTLK logic

We specify our properties in CTLK [16]. CTL (Computational Tree Logic) is a branching-
time temporal logic which has tree-like time model structure and allows quantification
over paths, and CTLK adds the epistemic modality K to the CTL. CTLK is defined as
follows:

Definition 4. Let Φ be a set of atomic propositions and Ω be a set of agents. If p ∈ Φ
and i ∈ Ω, then CTLK formulae are defined by:

φ ::= p | ¬φ | φ ∨ φ |Kiφ | EXφ | EGφ | E(φUφ)

The symbol E is existential path quantifier which means “there exists at least one
path”’. Temporal connectives X , G and U mean “neXt state”, “all future states (Glob-
ally)” and “Until”’. EX , EG and EU provide the adequate set of CTLK connectives.
For instance, safety properties defined by AG(φ) (all future states (Globally)) where
A is the universal path quantifier, can be written as ¬E(>U¬φ), or the equivalence
for liveness properties AF (φ) (always for some future state) is ¬EG(¬φ). Epistemic
connective Ki means “agent i knows that”.

Example 1. Consider a conference paper review system. Assume that a1 is the author
of the paper p1. Then the safety property that says if all the papers are assigned to the
reviewers and a2 is the reviewer of p1, then a1 does not know the fact that a2 is the re-
viewer of his paper can be defined as: AG(reviewer(p1, a2)→ ¬Ka1 reviewer(p1, a2)).

In an student information system, the property that states no two students can be as-
signed as the demonstrator of each other is specified by:AG(¬(demonstratorOf(a2, a3)∧
demonstratorOf(a3, a2))).

Definition 5 (Satisfaction relation). Let I be an interpreted system, s ∈ G where G
is the set of reachable states and p ∈ Φ where Φ is the set of atomic propositions. For
any CTLK-formula φ, the notation (I, s) |= φ means φ holds at state s in interpreted
system I . The relation |= is defined inductively as follows:

(I, s) |= p ⇔ γ(s, p) = >
(I, s) |= ¬φ ⇔ (I, s) 6|= φ

(I, s) |= φ1 ∨ φ2 ⇔ (I, s) |= φ1 or (I, s) |= φ2

(I, s) |= Kiφ ⇔ (I, s′) |= φ for all s′ ∈ G such that s ∼i s′

(I, s) |= EXφ ⇔ for some s′ such that s α−→ s′ : (I, s′) |= φ

(I, s) |= EGφ ⇔ there exists a path s1
α−→ . . . such that s = s0 and for all

i ≥ 0 : (I, si) |= φ

(I, s) |= E(φ1Uφ2) ⇔ there exists a path s1
α−→ . . . such that s = s1, there is

some i ≥ 1 such that (I, si) |= φ2 and for all j < i we have (I, sj) |= φ1

We use the notation I |= φ if for all s0 ∈ S0 : (I, s0) |= φ.

4 Policy syntax

Multi-agent access control systems grant or deny user access to the resources and ser-
vices depending on the access rights defined in the policy. Access to the resources is
divided into write access, which when granted, allows updating some system variables
(in the context of this work, Boolean variables) and read access, that returns the value
of some variables when granted. In this section, we present a simple policy syntax to
define actions, permissions and evolutions. In the following section, we give semantics
of the policy language by constructing an interpreted system from it.

Technical preliminaries Let V be a finite set of variables and Pred a finite set of
predicates. The notation v is used to specify a sequence of distinct variables. An atomic
formula or simply an atom is a predicate that is applied to a sequence of variables with
the appropriate length. An access control policy is a finite set of rules defined as follows:

L ::= > | ⊥ | w(v) | L ∨ L | L ∧ L | L→ L | ¬L | ∀v [L] | ∃v [L]

W ::= +w(v) | − w(v) | ∀v. W
Ws ::=W |Ws,W

AR ::= id(v) : {Ws} ← L Action rule
RR ::= id(v) : w(u)← L Read permission rule

In the above, w ∈ Pred, and w(v) is an atom. L denotes a logical formula over atoms,
which is the condition for performing an action or reading information. {Ws} is the
effect of the action that include the updates. +w(v) in the effect means executing the
action will set the value of w(v) to true and −w(v) means setting the value to false.
In the case of ∀v.W in the effect, the action updates the signed atom in W for all
possible values of v. In the case that an atom appears with different signs in multiple
quantifications in the effect (for instance, w(c, d) in ∀x. + w(c, x),∀y. − w(y, d)),
then only the sign of the last quantification is considered for the atom. id indicates the
identifier of the rule.

Let a(v) : E ← L be an action rule. The free variables of the logical formula
L are denoted by fv(L) and are defined in the standard way. We also define fv(E) =⋃
e∈E fv(e) where fv(±w(x)) = x and fv(∀x.W)=fv(W)\x. We stipulate: fv(E)∪fv(L) ⊆

v. If r(v) : w(u)← L is a read rule, then fv(u)∪fv(L) ⊆ v.
Let Σ be a finite set objects. A ground atom is a variable-free atom; i.e. atoms with

the variables substituted with the objects in Σ. For instance, if reviewer∈ Pred and
Bob,Paper∈ Σ, then reviewer(Bob,Paper) is a ground atom. In the context of this paper,
we call the ground atoms as (atomic) propositions, since they only evaluate to true and
false.

An action α : ε← ` contains an identifier α together with the evolution rule ε← `,
which is constructed by instantiating all the arguments in an action rule a(v) : E ← L
with the objects in Σ. We refer to the whole action by its identifier α. In an asyn-
chronous multi-agent system, it is crucial to know the agent that performs an action.
As the convention and for the rest of this article, we consider the first argument of
the action to be the agent performing that action. Therefore, in the action assignRe-
viewer(Alice,Bob,Paper), Alice is the one that assigns Bob as the reviewer of Paper. If α
is an action, then Ag(α) denotes the agent that performs α.

A read permission ρ : p ← ` is constructed by substituting the arguments in read
permission rule r(v) : w(u) ← L with the objects in Σ. ρ is the identifier, p is the
proposition and ` is the condition for reading p. As for the actions, we assume the first
argument in ρ to be the agent that reads the proposition p, which is denoted by Ag(ρ).

Definition 6 (Policy). An access control policy is a finite set of actions and read per-
missions derived by instantiating a set of rules with a finite set of objects.

5 Building an interpreted system from a policy

In access control systems, we deal with read and write access procedures. Write proce-
dures, which update a set of variables, are contained in interpreted systems as actions.
In interpreted systems, a principal knows a fact if it is included in his local state or he
can deduce it by applying logical reasoning. In access control systems and in addition to
the local information, agents may obtain permission to directly access some resources
in the system. This permission may be granted by the system or other agents (delegation
of authority). For instance, in a web application users always have access to their own
profile, but they cannot access other users’ profile unless the permission is granted by
the owners. When a read permission to a resource is granted, the resource will become
a part of agent’s local state. When the permission is denied, it will be removed from
agent’s directly accessible information. This behaviour is similar to a system which
uses dynamically changing local states to model permissions.

Interpreted systems formally contain local states which cannot change during execu-
tion of the system. In order to model temporary read permissions, we need to introduce
some locally accessible information, which simulates the temporary read access. In
this section, we explain how to introduce temporary read permissions when modelling
access control systems. Moreover, we model access control systems in asynchronous
manner using interpreted systems framework. An interpreted system is asynchronous if
all joint actions contain at most one non-Λ agent action where Λ denotes no-operation.

Given a policy, we build an access control system based on interpreted systems
framework by considering the requirements above. Incorporating temporary read per-
missions requires introducing some information into the local states. We say the propo-
sition p is local to the agent i if its value only depends on the local state of i. In the other
words, for all s, s′ ∈ S where s ∼i s′ we have γ(s, p) = γ(s′, p).

Definition 7 (Local interpretation). Let Li be the set of local states of agent i in inter-
preted system I and Φi be the set of local propositions. We define the local interpretation
for agent i as a function γi : Li × Φi → {>,⊥} such that γi(l, p) = γ(s, p) where
li(s) = l for some global state s. We require the set of local propositions to be pairwise
disjoint.

The following lemma provides the theoretical background of modelling knowledge
by readability in an interpreted system.

Lemma 1. Let I be an interpreted system, G the set of reachable states, i an agent, Φ
the set of propositions and p ∈ Φ. Suppose that p′, p′′ ∈ Φi. If for all s ∈ G:

if γi(li(s), p′′) = > then (I, s) |= p ⇔ γi(li(s), p
′) = > (1)

Then we have:

γi(li(s), p
′′) = > ⇒ (I, s) |= Kip ∨Ki¬p

Proof. We first prove that

γi(li(s), p
′′) = > and (I, s) |= p ⇒ (I, s) |= Kip (2)

Let us assume that γi(li(s), p′′) = > and (I, s) |= p. By (1) we have γi(li(s), p′) = >.
Consider any state s1 ∈ G such that s1 ∼i s. By the definition of ∼i, we have li(s1) =
li(s). Therefore, γi(li(s1), p

′) = > and γi(li(s1), p
′′) = > which implies (I, s1) |= p.

Hence, by the definition of Ki we are able to conclude that (I, s) |= Kip. The proof for
the second case:

γi(li(s), p
′′) = > and (I, s) |= ¬p⇒ (I, s) |= Ki¬p (3)

is similar to the first proof. Therefore, by (2) and (3) we have γi(li(s), p′′) = > ⇒
(I, s) |= Kip ∨Ki¬p.

To model knowledge by readability, we incorporate all the atomic propositions that
appear in the policy into the environment. We call those propositions policy proposi-
tions. Now for each policy proposition p and for each agent, we introduce two local
atomic propositions: pread (p′′ in Lemma 1) as the read permission of proposition p, and
ploc (p′ in Lemma 1) as the local copy of p. We modify the transition function in order
to satisfy the following property: for all reachable states, if pread is true (agent has read
access to p) in a state, then ploc is assigned the same value as p. This property guarantees
agent’s knowledge of proposition p whenever his access to p is granted.

Building the interpreted system Given a policy C with ΣAg as the set of agents, we
build up an interpreted system that models the access control system in the following
way:

Let ΦC be the set of propositions that appear in C (policy propositions), andAC and
RC the set of actions and read permissions in C respectively. For an interpreted system
that corresponds to the policy C, the knowledge gained by reading system information
need to be incorporated into the local states of the agents.

Procedure 1 adopts Lemma 1 which describes a method to model temporary read
permissions. The function INCKNOWLEDGE in procedure 1 acceptsAC ,RC , ΦC andΣAg
as the input. For each agent i in ΣAg , Procedure 1 generates a set of local propositions
Φi. The local state of agent i consists of all valuations of Φi. For each proposition
p ∈ ΦC , the set Φi contains two propositions ploc, pread where ploc is the copy of p and
gets updated whenever pread as the access permission for p is true (refer to Lemma 1
for the details). The procedure modifies the actions and corresponding evolutions inAC
into the setAuC in order to update the propositions in Φi in the appropriate way. For each
action and for each agent, if p appears in the effect (if-conditions in lines 12 and 18),
then the action will replace with two freshly created actions: one sets pread to true and
ploc to the same value as p if the read permission of p evaluates to true in the next state
(lines 13 and 19). Otherwise (read permission of p evaluates to false in the next state),
pread will set to false and ploc remains unchanged (lines 15 and 21). If p does not appear
in the effect (line 24), ploc and pread will only get updated whenever the read permission
of p is affected by the action.

Calculating the symbolic transition function: We provide the details for calculating
the symbolic transition function we use for traversing over a path in our system. The
symbolic transition function accepts a set of states as input and returns the result of
performing an action over the states of that set.

Procedure 1 Incorporating read permissions into evolution rules
1: function INCKNOWLEDGE(AC ,RC , ΦC , ΣAg)
2: . Input: AC is the set of actions, RC is the set of read permissions, ΦC the set of policy

propositions and ΣAg the set of agents
3: . Output: returns the updated set of actions and the set of local propositions
4: AuC := AC
5: for all i ∈ ΣAg do
6: Φi := ∅
7: for all p ∈ ΦC do
8: determine r : p← `r ∈ RC where Ag(r) = i
9: Φi := Φi ∪ {ploc, pread}

10: ÂuC := ∅
11: for all α : ε← ` ∈ AuC do
12: if +p ∈ ε then
13: construct α1 : ε ∪ {+ploc,+pread} ←
14: ` ∧ (`r[>/v |+ v ∈ ε][⊥/v′ | − v′ ∈ ε]) where Ag(α1) = Ag(α)
15: construct α2 : ε ∪ {−pread} ←
16: `∧¬(`r[>/v |+ v ∈ ε][⊥/v′ |− v′ ∈ ε]) where Ag(α2) = Ag(α)
17: ÂuC := ÂuC ∪ {α1, α2}
18: else if −p ∈ ε then
19: construct α1 : ε ∪ {−ploc,+pread} ←
20: ` ∧ (`r[>/v |+ v ∈ ε][⊥/v′ | − v′ ∈ ε]) where Ag(α1) = Ag(α)
21: construct α2 : ε ∪ {−pread} ←
22: `∧¬(`r[>/v |+ v ∈ ε][⊥/v′ |− v′ ∈ ε]) where Ag(α2) = Ag(α)
23: ÂuC := ÂuC ∪ {α1, α2}
24: else
25: if for all q ∈ fv(`r) : +q 6∈ ε and −q 6∈ ε then
26: ÂuC := ÂuC ∪ {α}
27: else
28: construct α1 : ε ∪ {+ploc,+pread} ← `∧
29: (`r[>/v |+ v ∈ ε][⊥/v′ | − v′ ∈ ε])∧ p where Ag(α1) = Ag(α)
30: construct α2 : ε ∪ {−ploc,+pread} ← `∧
31: (`r[>/v |+v ∈ ε][⊥/v′ |−v′ ∈ ε])∧¬p where Ag(α2) = Ag(α)
32: construct α3 : ε ∪ {−pread} ← `∧
33: ¬(`r[>/v |+ v ∈ ε][⊥/v′ | − v′ ∈ ε]) where Ag(α3) = Ag(α)
34: ÂuC := ÂuC ∪ {α1, α2, α3}
35: end if
36: end if
37: end for
38: AuC := ÂuC
39: end for
40: end for
41: return {Φi | i ∈ ΣAg}, AuC
42: end function

As a convention, we use s[p 7→ m] where s ∈ S to denote the state that is like s
except that it maps the proposition p to the valuem. Let st ⊆ S be a set of states. When
performing the action α : ε ← ` in the states of st, the transition is only performed in
the states that satisfy the permission `. In the resulting states, the propositions that do
not appear in ε remain the same as in the states that the transition begins. Therefore, we
define:

Θα(st) =
{
s[p 7→ > | +p ∈ ε][p 7→ ⊥ | −p ∈ ε]

∣∣ s ∈ st, (I, s) |= `
}

Definition 8 (Derived interpreted system). Let C be a policy with ΣAg as the set of
agents, ΦC the set of policy propositions, and AuC and Φi, i ∈ ΣAg derived from proce-
dure 1. Let Ω = {e} ∪ ΣAg and Φ =

⋃
i∈Ω Φi where Φe = ΦC . Then the interpreted

system derived from policy C is:

IC = 〈(Li)i∈Ω , (Pi)i∈Ω , (ACTi)i∈Ω , S0, τ, γ〉

where

1. Li is the set of local states of agent i, where each local state is a valuation of the
propositions in Φi. The set of global states is defined as S = Le × L1 × · · · × Ln

2. ACTi = {α ∈ AuC | Ag(α) = i} ∪ {Λ} where Λ denotes no operation, and a joint
action is a |Ω|-tuple such that at most one of the elements is non-Λ (asynchronous
interpreted system). For simplicity, we denote a joint action with its non-Λ element

3. S0 ⊆ S is the set of initial states
4. γ is the interpretation function over S and Φ. If p ∈ Φi then we have γ(s, p) =
γi(li(s), p)

5. Pi is the protocol for agent i where for all l ∈ Li: Pi(l) = ACTi
6. τ is the transition function that is defined as follows: if α is a joint action (or simply,

an action) and s ∈ S, then τ(α, s) = s′ if Θα({s}) = {s′}.

The system that we derive from policy C is a special case of interpreted systems
where the local states are the valuation of local propositions that are generated by the
procedure INCKNOWLEDGE.

6 Abstraction technique

In an interpreted system, the state space exponentially increases when extra proposi-
tions are added into the system. Considering a fragment of CTLK properties known
as ACTLK as the specification language, we are able to verify the properties over an
over-approximated abstract model instead of the concrete one. ACTLK is defined as
follows:

Definition 9. Let Φ be the set of atomic propositions and Ω set of agents. If p ∈ Φ and
i ∈ Ω, then ACTLK formulae are defined by:

φ ::= p | ¬p | φ ∧ φ | φ ∨ φ |Kiφ | AXφ | A(φUφ) | A(φRφ)

where the symbol A is universal path quantifier which means “for all the paths”.
To provide a relation between the concrete model and the abstract one, we extend

the simulation relation introduced in [17] to cover the epistemic relation between states.
Using the abstraction technique that preserves simulation relation between the concrete
model and the abstract one, we are able to verify ACTLK specification formulas over the
model. In this paper and for abstraction and refinement, we focus on safety properties
expressed in ACLK. The advantages of safety properties are first, they are capable of
expressing policy invariants, and second, the generated counterexample contains finite
sequence of actions (or transitions). We can extend the abstraction refinement method
to the full ACTLK by unfolding the loops in the counterexamples into finite transitions
as described in [6], which is outside the scope of this paper.

6.1 Existential abstraction

The general framework of existential abstraction was first introduced by Clark et. al in
[17]. Existential abstraction partitions the states of a model into clusters, or equivalence
classes. The clusters form the states of the abstract model. The transitions between the
clusters in the abstract model give rise to an over-approximation of the original (or
concrete) model that simulates the original one. So, when a specification in ACTL (or
in the context of this paper, ACTLK) logic is true in the over-approximated model, it
will be true in the concrete one. Otherwise, a counterexample will be generated which
needs to be verified over the concrete model.

Notation 1 For simplicity, we use the same notation (∼i) for the epistemic accessibility
relation in both the concrete and abstract interpreted systems.

Definition 10 (Simulation). Let I and Ĩ be two interpreted systems, Ω be the set of
agents in both systems, andΦ and Φ̃ the corresponding set of propositions where Φ̃ ⊆ Φ.
The relation H ⊆ S × S̃ is simulation relation between I and Ĩ if and only if:

1. For all s0 ∈ S0, there exists s̃0 ∈ S̃0 st. (s0, s̃0) ∈ H .

and for all (s, s̃) ∈ H:

2. For all p ∈ Φ̃ : γ(s, p) = γ̃(s̃, p)
3. For each state s′ ∈ S such that τ(s, α) = s′ for some α ∈ ACT , there exists
s̃′ ∈ S̃ and α̃ ∈ ÃCT such that τ̃(s̃, α̃) = s̃′ and (s′, s̃′) ∈ H .

4. For each state s′ ∈ S such that s ∼i s′, there exists s̃′ ∈ S̃ such that s̃ ∼i s̃′ and
(s′, s̃′) ∈ H .

The above definition for simulation relation over the interpreted systems is similar
to the one for Kripke model [6], except that the relation for the epistemic relation is
introduced. If such simulation relation exists, we say that Ĩ simulates I (denoted by
I � Ĩ).

If H is a function, that is, for each s ∈ S there is a unique s̃ ∈ S̃ such that (s, s̃) ∈
H , we write h(s) = s̃ instead of (s, s̃) ∈ H .

Lemma 2. Let I � Ĩ , s1 ∈ S, s̃1 ∈ S̃ and (s1, s̃1) ∈ H where H is the simulation
relation between I and Ĩ . Then for each path s1

α2−→ . . . in I , there exists a path
s̃1

α̃2−→ . . . in Ĩ such that for all i ≥ 1, (si, s̃i) ∈ H holds.

Proof. The proof is trivial by item 3 in definition 10 and induction over the state tran-
sitions.

Proposition 1. For every ACTLK formula ϕ over propositions Φ̃, if I � Ĩ and Ĩ |= ϕ,
then I |= ϕ.

Proof. To prove the proposition, we first prove if I � Ĩ andH is the simulation relation,
then for all s̃ ∈ S̃ and s ∈ S where (s, s̃) ∈ H , (Ĩ , s̃) |= ϕ implies (I, s) |= ϕ. We
assume ϕ is in NNF. The proof proceeds by induction over the structure of ϕ. Let s ∈ S,
s̃ ∈ S̃ and (s, s̃) ∈ H .

– If (Ĩ , s̃) |= p where p an atomic formula, then γ(s̃, p) = >. By item 2 in definition
10 we have γ(s, p) = > which implies (I, s) |= p. The case is similar for ϕ = ¬p.

– If (Ĩ , s̃) |= ϕ1 ∧ ϕ2, then (Ĩ , s̃) |= ϕ1 and (Ĩ , s̃) |= ϕ2. By induction hypothesis
we have (I, s) |= ϕ1 and (I, s) |= ϕ2. Therefore, (I, s) |= ϕ1 ∧ ϕ2. The case is
similar for ϕ = ϕ1 ∨ ϕ2.

– Assume (Ĩ , s̃) |= AXϕ1. If s α−→ s′ is a path in I , then by Lemma 2 there exists

a path s̃ α̃−→ s̃′ in Ĩ where (s′, s̃′) ∈ H . By the assumption we have (Ĩ , s̃′) |= ϕ1.
Then the induction hypothesis implies (I, s′) |= ϕ1. Thus we can conclude that
(I, s) |= AXϕ1.

– Assume (Ĩ , s̃) |= A(ϕ1Uϕ2). Let s1
α2−→ . . . be a path in I where s1 = s and

s̃1
α̃2−→ . . . the corresponding path in Ĩ where s̃1 = s̃. By the assumption, there

exists some i ≥ 1 where (Ĩ , s̃i) |= ϕ2 and (Ĩ , s̃i) |= ϕ1 for all j < i. By induction
hypothesis and Lemma 2, (I, s) |= ϕ1Uϕ2. As this property holds for all the path
starting at s, we can conclude (I, s) |= A(ϕ1Uϕ2).

– Assume (Ĩ , s̃) |= A(ϕ1Rϕ2). The proof is similar to the case for (Ĩ , s̃) |= A(ϕ1Uϕ2).
– Assume (Ĩ , s̃) |= Kiϕ. We pick a state s′ ∈ S where s′ ∼i s. By item 4 in defi-

nition 10, there exists s̃′ ∈ S̃ where s̃′ ∼i s̃ and (s′, s̃′) ∈ H . By the assumption,
(Ĩ , s̃′) |= ϕ. Induction hypothesis implies that (I, s′) |= ϕ. As this property holds
for all the states with accessibility relation ∼i to s, we have (I, s′) |= Kiϕ.

Now, if Ĩ |= ϕ or in the other words, for all s̃0 ∈ S̃0: (Ĩ , s̃) |= ϕ, then by item 1 in
definition 10 and the above proof we have for all s0 ∈ S0: (I, s) |= ϕ or equivalently
I |= ϕ.

6.2 Variable hiding abstraction

Variable hiding is a popular technique in the category of existential abstraction. In our
methodology, we consider factorizing the concrete state space into equivalence classes
that act as abstract states by abstracting away a set of system propositions. In our ap-
proach, the states in each equivalence class are only different in the valuation of the

hidden propositions. Also the transitions between the states of the abstract model are
defined in such a way that the abstract model simulates the concrete one. Our refine-
ment procedure will be splitting the abstract states by putting back some of the atomic
proportions that were hidden in the abstract model. We refine the model by analysing
the counterexample generated when verifying safety properties described in ACTLK
logic. The model checker will output a counterexample if the property does not hold.

Definition 11. (Local state relation) Let IC be an interpreted system derived from pol-
icy C, Li and Φi be the set of local states and local propositions for the agent i, and
Φ̃i ⊆ Φi. The local relation <i is defined as:

for all l1, l2 ∈ Li : l1<il2 iff for all p ∈ Φ̃i : γi(l1, p) = γi(l2, p)

where γi is the local interpretation for the agent i. The function hi : Li → Li/<i is the
surjection which maps elements of Li into equivalence classes of <i.

Definition 12 (Action classification). Let α : ε ← ` ∈ ACT and Φ̃ ⊆ Φ. We define
α′ : ε′ ← `′ ∈ [α] iff {±p ∈ ε′ | p ∈ Φ̃} = {±p ∈ ε | p ∈ Φ̃}, ∃(Φ\Φ̃).`′ ≡ ∃(Φ\Φ̃).`
and Ag(α′) = Ag(α).

In the above definition, the infix notation ≡ denotes the semantically equivalence
relation. Formally ∃x.f for a Boolean function f is defined as f [0/x] ∨ f [1/x] which
means f could be made to true by putting x to 0 or to 1. If X = {x1, . . . , xn}, then
∃X.f = ∃x1 . . . ∃xn.f .

Definition 13 (Abstract interpreted system). Given a policy C, let Ω,Φ and AuC be
deduced as described in section 5 and IC be the derived interpreted system. Let Φ̃ ⊆ Φ
and Ω̃ = Ω. We define Interpreted system ĨC as:

ĨC = 〈(L̃i)i∈Ω̃ , (P̃i)i∈Ω̃ , (ÃCT i)i∈Ω̃ , S̃0, τ̃ , γ̃〉

where

1. L̃i = Li/<i where <i is defined in definition 11 over Li, and S̃ = L̃e× L̃1×· · ·×
L̃n

2. ÃCT i = {[α] | α ∈ AuC and Ag(α) = i} and a joint action is a |Ω̃|-tuple such that
at most one of the elements is non-Λ - i.e. the system is asynchronous. As before,
each joint action is shown by its non-Λ element. If α̃ = [α], then the evolution rule
for α̃ is ε̃← ˜̀where ε̃ = {±p ∈ ε | p ∈ Φ̃} and ˜̀= ∃(Φ\Φ̃).`

3. S̃0 = {(hi(li(s)))i∈Ω̃ | s ∈ S0} where hi as in definition 11 maps the elements of
Li to L̃i

4. For all l̃ ∈ L̃i and for all p ∈ Φ̃i we have γ̃i(l̃, p) = γi(l, p) where l̃ = hi(l)

5. P̃i is the protocol for agent i where for all l̃ ∈ L̃i: P̃i(l̃) = ÃCT i
6. τ̃ is the transition function defined as follows: If α̃ is a joint action, s̃ ∈ S̃ and
Θ̃α̃ is the symbolic transition function for interpreted system ĨC and action α̃, then
τ̃(α̃, s̃) = s̃′ if Θ̃α̃({s̃}) = {s̃′}

α11 αn1

α12
αn2

α̃1 α̃n

Fig. 1. The counterexample provided by the abstract model may not be valid on the concrete one.
The labels represent the actions that result in the transitions.

Proposition 2. If IC is the interpreted system derived from policy C and ĨC is defined
as in definition 13, then IC � ĨC .

Proof. Let h : S → S̃ be a function where h(s) = (hi(li(s)))i∈Ω̃ and hi is defined as
in definition 11. We show that ĨC simulates IC under h. Item 1 in definition 10 trivially
holds by property (3). Item 2 holds by property (4) and the fact that if p ∈ Φ̃, then there
is an agent i where p ∈ Φ̃i and we have γ̃(s̃, p) = γ̃i(l̃i(s̃), p).

Now assume that h(s) = s̃ and τ(α, s) = s′, which is equivalent to Θα({s}) =
{s′}. If α : ε ← ` can be performed in s, then we have (I, s) |= `. It is trivial to
show that (I, s) |= ∃(Φ\Φ̃).` using structural induction. Since the formula ∃(Φ\Φ̃).`
only contains the propositions in Φ̃, then by item 2 in definition 10 we have (Ĩ , s̃) |=
∃(Φ\Φ̃).`. Let α̃ = [α]. By definition 12, α̃ can be performed in s̃. From ε̃ ⊆ ε we infer
that the performance of α̃ on s̃ results in a state s̃′ where all the propositions in Φ̃ have
the same value in s̃′ as in s′. Hence, h(s′) = s̃′ as required for item 3 in definition 10.

Let us assume that h(s) = s̃ and s ∼i s′. Therefore li(s) = li(s
′) which means

that for all p ∈ Φi : γ(s, p) = γ(s′, p). Since Φ̃ ⊆ Φ, then Φ̃i ⊆ Φi. By item 2 in
definition 10, for all p ∈ Φ̃i : γ(s, p) = γ̃(s̃, p). Let us assume that h(s′) = s̃′. Then
for all p ∈ Φ̃i : γ(s′, p) = γ̃(s̃′, p). Hence we have for all p ∈ Φ̃i : γ̃(s̃, p) = γ̃(s̃′, p).
Therefore s̃ ∼i s̃′ as required for item 4.

Definition 14. We define hA : ACT → ÃCT as the surjection that maps the actions
in the concrete model to the actions in the abstract one.

Given a policy, by using Proposition 2 we can build up an abstract access control
system by hiding a set of propositions and abstracting the evolution rules. Now by
proposition 1, it is possible to verify ACTLK properties over the abstract model, and
refine the abstraction, if the property does not hold and the counterexample is found to
be spurious.

7 Automated refinement

Our counterexample based abstraction refinement method consists of three steps:

– Generating the initial abstraction: It is done by examining transition blocks corre-
sponding to the variables and constructing clusters of variables which interfere with
each other via transition conditions. In our approach, we build the simplest possible
initial abstract model by only retaining only the propositions appear in specification
ϕ that we aim to verify.

– Model-checking the abstract structure: Model-checking will be performed on the
abstract model for a specification ϕ. If the abstract model satisfies ϕ, then it can be
concluded that the concrete model also satisfies ϕ. If the abstract model checking
generates a counterexample, it should be checked if the counterexample is an actual
counterexample for the concrete model. If it is a spurious counterexample in the
concrete model as in figure 1, the abstract system should be refined by proceeding
to the next step.

– Refining the abstraction: The counterexample guided framework refines the ab-
stract model by partitioning the states in abstract model in such a way that the re-
fined model does not admit the same counterexample. For the refinement, we turn
some of the invisible variables into visible. After refinement of the abstract model,
step 2 will be proceeded.

The process of abstraction and refinement will eventually terminate, as in the worst
case, the refined model becomes the same as the concrete one, which is a finite state
model. Therefore in the worst case, the verification will turn into the verification of the
concretised model.

7.1 Generating the initial abstraction

For automatic abstraction refinement, we build the initial model as simple as possible.
For an ACTLK formula ϕ, we keep all the atomic propositions that appear in ϕ visible
in the abstract model and hide the rest. The abstract model is built up by definition 13.

7.2 Validation of counterexamples

The structure of a counterexample created by the verification of an ACTLK formula
is different from the counterexample generated in the absence of knowledge modality.
In an ACTLK counterexample, we have epistemic relations as well as temporal ones.
Analysis of such counterexamples is more complicated than the counterexamples for
temporal properties.

A counterexample for a safety property in ACTLK is a loop-free tree-like graph
with states as vertices, and temporal and epistemic transitions as edges. Every coun-
terexample has an initial state as the root. A temporal transition in the graph is labelled
with its corresponding action and epistemic transition is labelled with the corresponding
epistemic relation. We define a temporal path as a path that contains only temporal tran-
sitions. An epistemic path contains at least one epistemic transition. Every state in the
counterexample is reachable from an initial state in the model, which may differ from
the root. For any state s, we write also s for the empty path which starts and finishes in
s.

s̃0

α̃1

s̃1

α̃2

s̃3

s̃′0
α̃′1

s̃′1

α̃′2 s̃′2

α̃′3

s̃′3

∼a

Fig. 2. A tree-like counterexample generated by the verification of an ACTLK safety property
over the abstract model. In the diagram, s̃0, s̃

′
0 ∈ S0 and s̃1 ∼a s̃′2. As reachability is a require-

ment for s̃1 ∼a s̃′2 and s̃1 is already reachable, the temporal path s̃′0
α̃′
1−−→ s̃′1

α̃′
2−−→ s̃′2 provides

the witness for the reachability of s̃′2. Considering this witness is required in counterexample
checking.

Counterexample formalism: A tree is a finite set of temporal and epistemic paths
with an initial state as the root. Each path begins from the root and finishes at a leaf. For
an epistemic transition over a path, we use the same notation as the epistemic relation
while we consider the transition to be from left to the right. For instance, the tree in the
figure 2 is formally presented by:

{s̃0
α̃1−→ s̃1

α̃2−→ s̃3, s̃0
α̃1−→ s̃1 ∼a s̃′2

α̃′
3−→ s̃′3}

To verify a tree-like counterexample, we traverse the tree in a depth-first manner.
An abstract counterexample is valid in the concrete model if a real counterexample in
the concrete model corresponds to it.

We use the notation s→ s′ when the type of the transition from s to s′ is not known.

Definition 15 (Vertices, root). Let c̃e be a counterexample. Then Vert(c̃e) denotes the
set of all the states that appear in c̃e. Root(c̃e) denotes the root of c̃e. For a path π̃,
Root(π̃) denotes the state that π̃ starts with.

Definition 16 (Corresponding paths). Let Ĩ be an abstract model of the interpreted
system I , h be the abstraction function, and hA be the function that maps the actions
in I to the ones in Ĩ . The concrete path π = s1 → · · · → sn in the concrete model
corresponds to the path π̃ = s̃1 → · · · → s̃n in the abstract model, if

– For all 1 ≤ i ≤ n : s̃i = h(si)

– If s̃i
α̃i+1−−−→ s̃i+1 is a temporal transition, we have si

αi+1−−−→ si+1 where hA(αi+1) =
α̃i+1.

– If s̃i ∼a s̃i+1 is an epistemic transition, then si ∼a si+1 and si+1 is reachable in
the concrete model.

TEMPORALCHECK
h−1
A (α̃) = {α1, . . . , αn}

(s̃
α̃−→ s̃′ ||π, st)⇒t (π,

n⋃
i=1

Θαi(st) ∩ h
−1(s̃′))

EPISTEMICCHECK

π′ = s̃′0
α̃′
1−−→ . . .

α̃′
m−−→ s̃′ is a temporal path to s̃′ where s̃′0 ∈ S̃0

(π′, S0 ∩ h−1(s̃′0))⇒∗t (s̃′, st′) ŝt = {s ∈ st′ | la(s) ∈ La(st)}
(s̃ ∼a s̃′ ||π, st)⇒e (π, ŝt)

Fig. 3. Temporal and epistemic transition rules. In EPISTEMICCHECK rule, π′ is the witness for
the reachability of s̃′ in the abstract model, and st′ is the concrete states that are reachable through
the concrete paths corresponding to π′. In the case that the model-checker returns all the abstract
paths to s̃′, let us say Π̃ ′, then st′ will be calculated as st′ =

⋃
{st | π′ = s̃′0 → · · · → s̃′ ∈

Π̃ ′, s̃′0 ∈ S̃0 and (π′, S0 ∩ h−1(s̃′0))⇒∗t (s̃′, st)}.

Definition 17 (Concrete counterexample). Let c̃e be a tree-like counterexample in the
abstract model where Root(c̃e) ∈ S̃0. A concrete counterexample ce corresponds to c̃e
if Root(ce) ∈ S0 and there exists a one-to-one correspondence between the states and
the paths of the counterexamples ce and c̃e according to the definition 16.

To verify a path in the counterexample, we define two transition rules TEMPORALCHECK

and EPISTEMICCHECK denoted by⇒t and⇒e as in figure 3. For a path with the transi-
tion s̃ α̃−→ s̃′ as the head and for the concrete states st, the rule⇒t finds all the succes-
sors of the states in st which reside in h−1(s̃′). If the head of the path is the epistemic
transition s̃ ∼a s̃′, then the rule⇒e extracts all the reachable states in h−1(s̃′) corre-
sponding to π′ as the witness of reachability of s̃′, which has common local states with
some states in st ⊆ h−1(s̃). Both the temporal and epistemic rules are deterministic.

Definition 18. We write⇒∗t to denote a sequence of temporal transitions⇒t. We use
⇒∗ to denote a sequence of the transitions⇒t or⇒e.

Proposition 3 (Soundness of ⇒∗t). Let π̃ be a temporal path in the abstract model
which starts at s̃1 and ends in s̃n. If st1 ⊆ h−1(s̃1) and (π̃, st1)⇒∗t (s̃n, stn) for some
∅ ⊂ stn ⊆ S, then there exists a concrete path that starts from a state in st1 and ends
in a state in stn.

Proof. We use induction over the length of the path.
Base case: π̃ = s̃1. Then there is no transition from (s̃1, st1) and therefore, the

concrete path is a state in st1.

Inductive case: Assume by inductive hypothesis that for all π̃ = s̃i
α̃i+1−−−→ . . .

α̃i+k−−−→
s̃i+k of length k, if (π̃, sti)⇒∗t (s̃i+k, sti+k) for some sti, sti+k ⊆ S, then there exists
a concrete path which begins at a state in sti and ends in a state in sti+k. Consider that

π̃′ = s̃i−1
α̃i−→ s̃i || π̃ is a path of the length k + 1 where (s̃i−1

α̃i−→ s̃i || π̃, sti−1) ⇒t

(π̃, sti) ⇒∗t (s̃i+k, sti+k). By induction hypothesis, there exists a concrete path that
begins at some state si ∈ sti and ends in si+k ∈ sti+k. By the definition of⇒t, every

state in sti is the successor of some states in sti−1. Therefore, there exists si−1 ∈ sti−1

and αi ∈ h−1
A (α̃i) such that {si} = Θαi

({si−1}). So we select the corresponding
transition in the concrete model to be si−1

αi−→ si which allows si−1 to reach si+k by
the existence of a concrete path from si to si+k.

By proposition 3 and definition 17, if π̃ = s̃0
α̃1−→ . . .

α̃n−−→ s̃n is a path in the coun-
terexample where (π̃, S0 ∩ h−1(s̃0)) ⇒∗t (s̃n, stn), then there exists a corresponding
concrete path beginning at an initial state s0 ∈ S0 ∩ h−1(s̃0) which ends at some state
sn ∈ stn.

Proposition 4 (Soundness of⇒∗). Let π̃ = s̃1 → · · · → s̃n be a path in the abstract
model. If st1 ⊆ h−1(s̃1) and (π̃, st1) ⇒∗ (s̃n, stn) for some ∅ ⊂ stn ⊆ S, then there
exists a concrete path that starts from a state in st1 and ends in a state in stn.

Proof. For the general form of a path that contains both temporal and epistemic transi-
tions, we use the similar approach as in proposition 3.

Base case: π̃ = s̃1. Then there is no transition from (s̃1, st1) and therefore, the
concrete path is a state in st1.

Inductive case: Assume by inductive hypothesis that for all π̃ = s̃i → · · · →
s̃i+k of length k, if (π̃, sti) ⇒∗ (s̃i+k, sti+k) for some sti, sti+k ⊆ S, then π̃ has a
corresponding concrete path which begins at a state in sti and ends in a state in sti+k.

– Consider that π̃′ = s̃i−1
α̃i−→ s̃i || π̃ is a path of length k + 1 where (s̃i−1

α̃i−→
s̃i || π̃, sti−1) ⇒t (π̃, sti) ⇒∗ (s̃i+k, sti+k). By induction hypothesis, there exists
a concrete path that begins at some state si ∈ sti and ends in si+k ∈ sti+k. By
the same analysis as in the proof of proposition 3, there exists si−1 ∈ sti−1 and
αi ∈ h−1

A (α̃i) such that si−1
αi−→ si. Hence, there exists a concrete path from si−1

to si+k.
– Consider that π̃′ = s̃i−1 ∼a s̃i || π̃ is a path of length k + 1 where (s̃i−1 ∼a
s̃i || π̃, sti−1) ⇒e (π̃, sti) ⇒∗ (s̃i+k, sti+k). By induction hypothesis, there exists
a concrete path that begins at some state si ∈ sti and ends in si+k ∈ sti+k. By the
definition of ⇒e and proposition 3, si is reachable from some initial states in the
concrete model, which is a requirement by definition 16. From la(si) ∈ La(sti−1)
we conclude that there exists si−1 ∈ sti−1 such that la(si) = la(si−1). Hence we
select si−1 ∼a si as the corresponding epistemic transition in the concrete model.
Therefore, there exists a concrete path from si−1 to si+k.

In the case that π̃ = s̃0 → · · · → s̃n is a path in the counterexample and (π̃, S0 ∩
h−1(s̃0)) ⇒∗ (s̃n, stn), then there exists a corresponding concrete path beginning at
some initial state s0 ∈ S0 ∩ h−1(s̃0) which ends at some state sn ∈ stn.

Proposition 5 (Completeness of ⇒∗). Let π̃ = s̃1 → · · · → s̃n be a path in the
abstract model. If there exists a concrete path π = s1 → · · · → sn corresponding to π̃
and s1 ∈ st1 ⊆ h−1(s̃1), then (π̃, st1)⇒∗ (s̃n, stn) for some ∅ ⊂ stn ⊆ S.

Proof. For the completeness proof, we use induction over the length of the counterex-
amples.

(sp̄ql, srt̄)
(spql, srt) (spq̄l, srt)

(spql̄, sr̄t)

(sp̄q̄l, sr̄t̄)

(sp̄ql, sr̄t)

S0

α11

α12

α2

α3

∼a

(sp̄q, st̄) (spq, st) (spq̄, st)

(sp̄q̄, st̄)

(sp̄q, st)

S̃0

α̃1 α̃2

α̃3

∼a

Fig. 4. The transition system on the top is the concrete model and on the bottom is the abstract
one obtained by making the propositions l and r invisible.

Base case: π̃ = s̃1 and π = s1. Then we will have no transition and the proposition
automatically holds.

Inductive case: Assume by inductive hypothesis that for all π̃ = s̃i → · · · → s̃i+k
of length k, if there exists a path π = si → · · · → si+k which corresponds to π̃ and
si ∈ sti ⊆ h−1(s̃i), then (π̃, sti)⇒∗ (s̃i+k, sti+k) for some ∅ ⊂ sti+k ⊆ S.

– Consider that s̃i−1
α̃i−→ s̃i || π̃ is a path of length k+1 which has the corresponding

concrete path si−1
αi−→ si ||π. Let sti−1 ∈ h−1(s̃i−1) be a set of states where

si−1 ∈ sti−1. Then the transition (s̃i−1
α̃i−→ s̃i || π̃, sti−1) ⇒t (π̃, sti) leads to

the set sti as the successors of the states in sti−1 with respect to the actions in
h−1
A (α̃i). As αi ∈ h−1

A (α̃i), we have si ∈ sti. Therefore by inductive hypothesis,

we have (s̃i−1
α̃i−→ s̃i || π̃, sti−1) ⇒t (π̃, sti) ⇒∗ (s̃i+k, sti+k) or equivalently

(s̃i−1
α̃i−→ s̃i || π̃, sti−1)⇒∗ (s̃i+k, sti+k).

– Consider that s̃i−1 ∼a s̃i || π̃ is a path of length k + 1 which has the corre-
sponding concrete path si−1 ∼a si ||π. Let sti−1 ∈ h−1(s̃i−1) be a set of states
where si−1 ∈ sti−1. Then the transition (s̃i−1 ∼a s̃i || π̃, sti−1) ⇒e (π̃, sti)
leads to the set sti which contains the reachable states with the same local states
as the states in sti−1. Therefore, si ∈ sti and by inductive hypothesis we have
(s̃i−1 ∼a s̃i || π̃, sti−1) ⇒e (π̃, sti) ⇒∗ (s̃i+k, sti+k) or equivalently (s̃i−1 ∼a
s̃i || π̃, sti−1)⇒∗ (s̃i+k, sti+k).

Forward transition rules in figure 3 are sufficient to check linear counterexamples
or equivalently, paths. To extend the counterexample checking to tree-like counterex-
ample, extra procedures are required. We show the problem in the following example:

Example 2. Figure 4 demonstrates the transition system for a concrete interpreted sys-
tem on top, and the abstract system on the bottom. The model contains two agents, e

BACKWARDTCHECK

(π, S0 ∩ h−1(Root(π)))⇒∗ (s̃, st′)

h−1
A (α̃) = {α1, . . . , αn} rs =

n⋃
i=1

Θ−1
αi

(st) ∩ st′

(π || s̃ α̃−→ s̃′, st)⇐t (π, rs) rs̃ := rs

BACKWARDECHECK

(π, S0 ∩ h−1(Root(π)))⇒∗ (s̃, st′′)

π′ = s̃′0
α̃′
1−−→ . . .

α̃′
m−−→ s̃′ is the temporal path to s̃′ where s̃′0 ∈ S̃0

(π′, S0 ∩ h−1(s̃′0))⇒∗ (s̃′, st′)
ŝt = {s ∈ st′′ | la(s) ∈ La(st ∩ st′)}

(π || s̃ ∼a s̃′, st)⇐e (π, ŝt) rs̃ := ŝt

Fig. 5. Backward temporal and epistemic transition traversal. Θ−1
α (st) computes the set of pre-

decessors of the states in st with respect to the transitions made by action α.

as the environment and a as regular agent. States are shown as tuples where the first
element is the local state of e and the second is the local state of a. The diagram distin-
guishes the states by using the value of local propositions as the subscript. The abstract
model is generated by making the local proposition l of environment and r of agent a
invisible.

We aim to verify AG(p → (Kap ∨ AGq)) over the concrete model. This property
holds for the original model, while it does not hold for the abstract one. The counterex-
ample generated is:

c̃e = {(sp̄q, st̄)
α̃1−→ (spq, st)

α̃2−→ (spq̄, st), (sp̄q, st̄)
α̃1−→ (spq, st) ∼a (sp̄q, st)}

To find out if there exists any concrete counterexample that corresponds to c̃e, we
check the paths in c̃e one by one. We show the paths in c̃e by π̃1 and π̃2. The paths π̃1

and π̃2 correspond to the concrete paths π1 = (sp̄ql, srt̄)
α11−−→ (spql, srt)

α2−→ (spq̄l, srt)

and π2 = (sp̄ql, srt̄)
α12−−→ (spql̄, sr̄t) ∼a (sp̄ql, sr̄t). Although all the paths in the

counterexample have corresponding concrete paths, the tree does not correspond to a
concrete tree. This is because if we select (spql, srt) as the corresponding state for
(spq, st), then the leaf (sp̄ql, sr̄t) is not reachable from it. A similar situation happens
when we select (spql̄, sr̄t). Therefore, the tree-like counterexample is spurious.

To verify a tree-like counterexample, we introduce two transition rules BACKWARDTCHECK

and BACKWARDECHECK denoted by⇐t and⇐e. The transition rules find all the prede-
cessors of the states in st (figure 5) with respect to the temporal or epistemic transitions
in a backward manner which reside in the set of reachable states through the path. We
write⇐∗ to denote a sequence of backward transitions⇐t and⇐e.

Assume that π̃ = s̃0 → · · · → s̃n is a path in the counterexample c̃e which (π̃, S0∩
h−1(s̃0))⇒∗ (s̃n, stn) for some ∅ ⊂ stn ⊆ S. stn contains all the states in the leaves
of the concrete paths corresponding to π̃. The point is not all the concrete states that are
traveresed in⇒∗ can reach the states in stn. If s̃ ∈ Vert(π̃), then (π̃, stn)⇐∗ (s̃0, st0)
finds the set of states rs̃ which contains the reachable states in h−1(s̃) that lead to some

states in stn along the concrete paths corresponding to π̃. st0 contains the initial states
that lead to the states in stn. We use the notation rπ̃s̃ to relate rs̃ with the path π̃. Note
that to find rπ̃s̃ , we first need to find stn through⇒∗ transition.

Assume that Π̃ ⊆ c̃e. If s̃ ∈ Vert(c̃e) then we define rΠ̃s̃ = ∩π̃∈Π̃r
π̃
s̃ . If s̃ 6∈

Vert(π̃), then we stipulate rπ̃s̃ = h−1(s̃). We also stipulate r∅s̃0 = S0 ∩ h−1(s̃0) where
s̃0 = Root(c̃e) and r∅s̃ = h−1(s̃) for all s̃ ∈ Vert(c̃e) where s̃ 6= s̃0.

Proposition 6 (Soundness of counterexample checking). A counterexample c̃e in the
abstract model has a corresponding concrete one if:

1. for each path π̃ ∈ c̃e, there exists ∅ ⊂ st ⊆ S such that (π̃, S0 ∩ h−1(s̃0)) ⇒∗
(s̃′, st) where s̃0 = Root(c̃e) and π̃ ends in s̃′.

2. for all s̃ ∈ Vert(c̃e) : rc̃es̃ 6= ∅.

Proof. By the soundness of⇒∗, all the paths in π̃ correspond to some concrete paths
which satisfy the requirements in the definitions 16 and 17. Now for each s̃ ∈ Vert(c̃e),
we pick a state s ∈ rc̃es̃ as the corresponding state. For each path in c̃e and between all
the corresponding concrete paths, we pick the one which contains the selected states
as its vertices. The union of the selected paths builds a concrete counterexample that
satisfies the requirements in definition 17.

Proposition 7 (Completeness of counterexample checking). Assume that c̃e corre-
sponds to a concrete counterexample ce. Then both the items 1 and 2 in proposition 6
hold.

Proof. By definition 17, there is a one-to-one correspondence between the paths of the
two counterexamples. By completeness of⇒∗, item 1 holds for all the paths in c̃e. Now
Assume that s̃ ∈ Vert(c̃e) and s is the corresponding state in ce. Then for all π̃ ∈ c̃e,
we have s ∈ rπ̃s̃ , and therefore s ∈ rc̃es̃ . Hence we have rc̃es̃ 6= ∅, as required for item 2.

Procedure 2 expresses the tree-like counterexample checking method in a more re-
fined manner. CHECKCE iterates over the paths in c̃e and checks if they corresponds
to some paths in the concrete model by using proposition 4 and the transition rule⇒∗.
If π̃ corresponds to some concrete paths, then for each state s̃ in π̃, the algorithm finds
all the concrete states rπ̃s̃ in h−1(s̃) that lead to the leaf states of the concrete paths by
applying⇐∗ over π̃. In each loop iteration, Π̃ stores the paths in c̃e that are processed
in previous iterations. The set rΠ̃s̃ stores the concrete states that are common between
the paths in Π̃ and should remain non-empty during the process of counterexample
checking. The procedure returns false if no corresponding tree-like counterexample for
c̃e exists. Otherwise it returns true.

Example 3. We recall the transition system in example 2. As also discovered in the
example, the paths π̃1 and π̃2 correspond to the concrete paths π1 = (sp̄ql, srt̄)

α11−−→
(spql, srt)

α2−→ (spq̄l, srt) and π2 = (sp̄ql, srt̄)
α12−−→ (spql̄, sr̄t) ∼a (sp̄ql, sr̄t). By back-

ward traversing through the first path and for the states in h−1((spq, st)), we find that
only the state (spql, srt) leads to the final state on π1 and so, rπ̃1

(spq,st)
= {(spql, srt)}.

Procedure 2 Counterexample checking algorithm
function CHECKCE(c̃e, I, h)

. Input: c̃e is the counterexample, I is the concrete model and h is the abstraction function

. Output: returns true if a concrete counterexample exists. Returns false otherwise.
{s̃0, . . . , s̃n} = Vert(c̃e) . s̃0 = Root(c̃e)
Π̃ = ∅
rΠ̃s̃0 = S0 ∩ h−1(s̃0), r

Π̃
s̃1

= h−1(s̃1), . . . , r
Π̃
s̃n

= h−1(s̃n)
for all π̃ ∈ c̃e do

if (π̃, rΠ̃s̃0)⇒
∗ (s̃′, st) and st 6= ∅ then . π̃ ends at the state s̃′

. there exists some concrete path corresponding to π̃
for all s̃ ∈ Vert(c̃e) do

determine r̂π̃s̃ from (π̃, st)⇐∗ (s̃0, st
′)

. determine the concrete states corresponding to s̃
r
Π̃∪{π̃}
s̃ := rΠ̃s̃ ∩ rπ̃s̃

if rΠ̃∪{π̃}s̃ = ∅ then
. no common concrete state for s̃ between concrete paths exists
return false

end if
end for
Π̃ := Π̃ ∪ {π̃}

else
return false

end if
end for
return true

end function

TEMPORALTREE
h−1
A (α̃) = {α1, . . . , αn}

(s̃
α̃−→ s̃′ ||π, st)⇒Π̃

t (π,

n⋃
i=1

Θαi(st) ∩ r
Π̃
s̃′)

EPISTEMICTREE

π′ = s̃′0
α̃′
1−−→ . . .

α̃′
m−−→ s̃′ is a temporal path to s̃′ where s̃′0 ∈ S̃0

(π′, S0 ∩ h−1(s̃′0))⇒∗t (s̃′, st′) ŝt = {s ∈ st′ ∩ rΠ̃s̃′ | la(s) ∈ La(st)}

(s̃ ∼a s̃′ ||π, st)⇒Π̃
e (π, ŝt)

Fig. 6. Transition rules for finding failure state in a tree-like counterexample.

The same approach for π2 results in rπ̃2

(spq,st)
= {(spql̄, sr̄t)}. As rπ̃1

(spq,st)
∩rπ̃2

(spq,st)
= ∅,

the state (spq, st) can not be assigned to a concrete single state. Therefore, c̃e is spuri-
ous.

7.3 Refinement of the abstraction

If the counterexample is found to be spurious, then the abstraction should be refined.
The abstract model is generated by making some propositions in the concrete model
invisible. For the refinement, we split some states in the abstract model by putting some
of the invisible propositions back into the model. These propositions should be selected
in such a way that when verifying the refined model, the same counterexample does not
appear again. In this section, we provide the mechanism for refining the abstraction.

Let c̃e be a spurious counterexample. We define two transition rules TEMPORALTREE

which is denoted by⇒Π̃
t and EPISTEMICTREE denoted by⇒Π̃

e where Π̃ ⊆ c̃e in figure
6. As before,⇒Π̃

∗ denotes a sequence of temporal and epistemic transitions of the type
⇒Π̃
t and⇒Π̃

e . We use the following technique in order to find the state in the spurious
counterexample which needs to be split:

The state s̃i ∈ Vert(c̃e) is a failure state if there exists Π̃ ⊆ c̃e and π̃ ∈ c̃e\Π̃ such
that:

1. For all s̃ ∈ Vert(Π̃) : rΠ̃s̃ 6= ∅
2. π̃ = π̃1 || s̃i(

α̃i+1−−−→ | ∼a)s̃i+1 || π̃2 such that (π̃, rΠ̃s̃0)⇒
Π̃
∗ (π̃1, std)⇒Π̃

(t|e) (π̃2, ∅)
for some std 6= ∅.

For a spurious counterexample, such Π̃ and π̃ exists. Otherwise, we will have rc̃es̃ 6=
∅ for all s̃ ∈ Vert(c̃e), which contradicts proposition 6.

Based on Item 1), the sub-tree Π̃ has a corresponding counterexample in the con-
crete model. In item 2), π̃ traverses over the concrete states that belong to the set of
concrete trees corresponding to Π̃ and gets to the set of states std ⊆ h−1(s̃i) with no
transition to a state in rΠ̃s̃i+1

. In the standard terminology as in [6], s̃i is called failure
state. We use the term dead end state for the states in std which the concrete paths
end up with and can not go further. Bad states are the states in h−1(s̃i) that have

transition to some states in rΠ̃s̃i+1
. Note that in a path counterexample, we have that

rΠ̃s̃i+1
= h−1(s̃i+1).

The process of finding a failure state in the counterexample c̃e proceeds as follows:

1. Set Π̃ to empty set at the beginning
2. Find rΠ̃s̃ for all s̃ ∈ Vert(c̃e) (as also mentioned in section 7.2, r∅s̃0 = S0∩h−1(s̃0)

where s̃0 = Root(c̃e) and r∅s̃ = h−1(s̃) for all s̃ ∈ Vert(c̃e) where s̃ 6= s̃0)
3. Pick a path π̃ ∈ c̃e that does not exist in Π̃
4. Apply ⇒Π̃

∗ over (π̃, rΠ̃s̃0) to find failure state. If a failure state exists over π̃, then
exit and refine the model

5. Add π̃ to Π̃ and return to step 2. Note that we are considering that the counterex-
ample is found to be spurious (by the procedure 2) and therefore, such failure state
will be found before all the paths in c̃e are added to Π̃ .

For the implementation, the above process can be easily incorporated into the pro-
cedure 2.

To refine the model, we find the propositions that having them invisible results in
generating spurious counterexample. First assume that the transition from s̃i to s̃i+1 is

temporal, say s̃i
α̃i+1−−−→ s̃i+1. Two situations can result in a transition of type⇒Π̃

t from
std to an empty set of states:

– There exists no αi+1 ∈ h−1(α̃i+1) such that Θαi+1
(std) 6= ∅. Therefore, no action

has the permission to be performed on the states of std. Assume that φd is the
formula that represents the set of states std. As the state space is finite, the formula
representing the states always exists. Therefore, for all αi+1 ∈ h−1

A (α̃i+1) with
`i+1 as the permission, we have φd ∧ `i+1 ≡ ⊥. We call `i+1 conflict formula and
φd base formula.

– For some αi+1 ∈ h−1(α̃i+1) we have Θαi+1
(std) 6= ∅. By the definition of ⇒t

we have Θαi+1
(std) ∩ rΠ̃s̃′i+1

= ∅ where rΠ̃s̃′i+1
6= ∅. If φ is the formula representing

Θαi+1
(std) and ψ the formula representing rΠ̃s̃′i+1

, then we have ψ ∧ φ ≡ ⊥. We
call φ conflict formula and ψ base formula.

The other situation is when the transition s̃i and s̃i+1 is epistemic, say s̃i ∼a s̃i+1.
Three situations can result in the epistemic transition⇒Π̃

e to an empty set of states:

– π′ as the witness of the reachability of s̃i+1 in⇒Π̃
e is spurious. Then the refinement

should be guided by analysing π′ instead of the main spurious path.
– Suppose that π′ has corresponding concrete paths, i.e. (π′, S0 ∩ h−1(s̃′0)) ⇒∗t
(s̃i+1, st

′) where st′ 6= ∅. By the definition of ⇒e, the epistemic transition re-
sults in an empty set of states if st′ ∩ rΠ̃s̃′i+1

= ∅. If φ is the formula representing st′

and ψ the formula representing rΠ̃s̃′i+1
, then we call φ conflict formula and ψ base

formula.

– The third reason for the epistemic transition to an empty set is when no shared local
state exists between the states of std and st′∩rΠ̃s̃′i+1

where st′ is the set of reachable
states according to the previous item and both the sets are non-empty. In the other
words, La(std)∩La(st′ ∩ rΠ̃s̃′i+1

) = ∅. The formula representing the local states in
std with respect to the agent a is called base formula, and the formula representing
the local states of st′ ∩ rΠ̃s̃′i+1

is the conflict formula.

To refine the model, we return some hidden propositions to separate the set of dead
end states from the rest of the states. This can simply be done by adding all the propo-
sitions occurring in conflict clauses to the abstract model.

Definition 19. (conflict clause) Let φ be the base formula and ψ the conflict formula.
Let cnf(ψ) denote the set containing all the conjuncts appear in conjunctive normal
form of ψ. Then c ∈ cnf(ψ) is a conflict clause if c ∧ φ ≡ ⊥.

If the propositions that occur in one of the conflict clauses become visible, then the
spurious strategy will not happen in the refined model again. In the case of temporal
transition, we add the propositions in the conflict clauses for all the conflicting actions.
To have the smallest possible refinement, we should look for the conflict classes with
the smallest number of literals.

7.4 Going beyond ACTLK

While this section develops a fully automated abstraction refinement method for the
verification of temporal-epistemic properties that reside the category of ACTLK over
an access control system which is modelled by an interpreted system, some important
epistemic safety properties does not reside in this category. For instance and in a con-
ference paper review system, it is valuable for policy designers to verify that for all
reachable states, an author of a paper cannot find out (¬K) who is the reviewer of his
own paper (see the first property in example 1). Although we are able to verify such
properties in the concrete model, we cannot apply automated counterexample-guided
abstraction and refinement for such properties.

Let us explore the problem. Assume that for the abstract system Ĩ , abstract state s̃
and agent a, (Ĩ , s̃) |= ¬Kaϕ. That means there exists a state s̃′ such that s̃′ ∼a s̃ and
(Ĩ , s̃′) |= ¬ϕ. If s is a state in the concrete model where h(s) = s̃, then the satisfaction
relation (Ĩ , s̃) |= ¬Kaϕ implies (I, s) |= ¬Kaϕ if it guarantees the existence of a
reachable state s′ ∈ h−1(s̃′) such that s′ ∼a s and (I, s′) |= ¬ϕ.

First of all, if such s′ exists, the satisfaction relation (Ĩ , s̃′) |= ¬ϕ still does not
imply (I, s′) |= ¬ϕ when ϕ is ACTLK except if ϕ is simply a propositional formula
which is the case for many of the properties that we are interested in. Second, the re-
lation s̃′ ∼a s̃ in the abstract model does not imply s′ ∼a s in the concrete model for
some reachable state s′ ∈ h−1(s̃′). In the case that (Ĩ , s̃′) 6|= ¬ϕ, the model-checker
produces a counterexample that can be checked using the method that is developed in
this section and then the abstract model can be refined. In the case that the satisfaction
relation holds, the model-checker does not produce any witness.

To complete our work for the properties that deal with the negation of knowledge
operator, we restrict the formula in scope of the knowledge operators to propositional
formulas. Then we use an interactive refinement procedure in the following way: we
abstract the interpreted system in the standard way that we described. If the property
does not hold in the abstract model, the counterexample will be checked in the concrete
model and the abstract model will be refined if it is required. If the property turned to
be true in the abstract model as a result of the satisfaction of ¬Ka (which we would
not have any witness in the abstract model), then we refine the local state of the agent
a in an interactive manner. In this way, the tool asks the user to selects a set of invisible
local propositions to be added in the next round if required. This process will continue
until a valid counterexample is found, or the local state becomes concretized. In the
case that the safety property does not hold in the concrete model (where information
leakage vulnerability exists), then there is a chance to find it out with the abstract model
when the local states are still abstract.

8 Experimental results

We have implemented a tool in F# functional programming language. The font end is a
parser that accepts a set of action and read permission rules, a set of objects and a query
in the form of ι : ϕ where ι is the formula representing the initial states and ϕ is the
property we aim to verify. Given the above information, the tool derives an interpreted
system based on definition 8 where the initial states of the system are determined by
parameter ι in the query. On the back end, we use MCMAS [8] as the model-checking
engine. In the presence of abstraction and refinement, the tool feeds MCMAS with
the abstracted version of the original interpreted system together with the property ϕ.
If model-checker returns true for an ACTLK property, then the tool returns true to
the user. Otherwise, the tool automatically checks the generated counterexample based
on proposition 6, and reports if it is a real counterexample, which will be returned
to the user, or verification needs a refinement round. The tool performs an automated
refinement if it is required. For the properties that are discussed in section 7.4, the tool
asks user to select a set of invisible local variables to be added to the abstract model for
the refinement when model-checker returns true. This will continue until all the related
invisible local variables turn to visible, or a valid counterexample is found.

For this section, we choose one temporal and three epistemic properties for the case
study of conference paper review system (CRS) with the information leakage vulnera-
bility described in the introduction. We first verify the query (Query 1) “author(p1, a1)∧
¬reviewer(p1, a1) : AG(¬reviewer(p1, a1))” which states that if in the initial states,
agent a1 is the author of paper p1 and not the reviewer of his own paper, then it is not
possible for a1 to be assigned as the reviewer of his paper p1. Query 2 “¬submittedreview
(p1, a1)∧ reviewer(p1, a2) : AG(Ka1

review(p1, a2)→ AG(¬submittedreview(p1, a1))
checks if in the initial states, a1 and a2 are the reviewers of paper p1, and a1 has not
submitted his own review of p1, then a1 cannot submit her review if he reads the review
of a2 (knowledge by readability). Query 3 author(p1, a1) : AG(AllPapersAssigned ∧
reviewer(p1, a2) → ¬Ka1

reviewer(p1, a2)) asks if a1 is the author of p1, then it is not
possible for a1 to find the reviewer of his paper when his paper is assigned to a2, which

3 Papers, 7 Agents 2 Papers, 4 Agents

Query 1 Query 2

Fig. 7. Comparison of the verification time
for the queries 1 and 2 between our tool
which uses MCMAS as the model-checking
engine, PoliVer and RW.

Concrete model Abstraction and refinement
time(s) BDD vars time(s) Max BDD vars last ref time num of ref

Query 3 6576.5 180 148.3 80 3.28 7
Query 4 6546.4 180 174.1 98 21 12

Fig. 8. A comparison of query verification time (in second) and runtime memory usage (in MB)
between the concrete model and automated abstraction refinement method.

is not ACTLK. Query 4 author(p1, a1) : AG(AllPapersAssigned ∧ reviewer(p1, a2) →
Ka1 reviewer(p1, a2)) has ACTLK property, which checks if a1 can always find who the
reviewer of his paper is whenever all the papers are assigned.

Queries 1 and 2 can be verified in access control policy verification tools like RW
and PoliVer, which model knowledge by readability. We compare our tool in the pres-
ence of abstraction and refinement with RW and PoliVer from the point of verification
time in figure 7. It is important to note that when applying abstraction and refinement, a
high percentage of evaluation time is spent on generating the whole concrete model at
the beginning, invoking executable MCMAS which also invokes Cygwin library, gen-
erating abstract model and verifying the counterexample. In most of our experiments,
verification of the final abstract model by MCMAS takes less than 10ms.

The novel outcome of our research is the verification of the queries 3 and 4 where
PoliVer and RW are unable to detect information leakage in CRS policy. In PoliVer and
RW models, the author never finds a chance to see who the reviewer of his paper is and
therefore safety property holds in the system. Modeling in interpreted systems reveals
that the author can reason who is the reviewer of his paper when all the papers are as-
signed. For Query 3, the tool also outputs the counterexample which demonstrates the
sequence of actions that allows the author to reason about the reviewer of his paper. Fig-
ure 8 shows the practical importance of our abstraction method (interactive refinement
for Query 3 and fully automated for Query 4).

9 Conclusion

In this research, we introduced a framework for verifying temporal and epistemic prop-
erties over access control policies. In order to verify knowledge by reasoning, we used
interpreted systems as the basic framework and to make the verification practical for
medium to large systems, we extended counterexample-guided refinement known as
CEGAR to cover safety properties in ACTLK. Case studies and experimental results

show a considerable reduction in time and space when abstraction and refinement are
in use. We also applied an interactive refinement for some useful properties that does
not reside in ACTLK like the ones that contain the negation of knowledge modality.
As future work, we would like to use these technique to detect information-flow in real
world systems such as electronic voting systems [18–20] and social networks.

Acknowledgement: We would like to acknowledge Microsoft Research and EPSRC
project TS/I002529/1 “Trust Domains” for funding this research.

References

1. Becker, M.Y.: Specification and analysis of dynamic authorisation policies. In: Proc. IEEE
Computer Security Foundations Symposium. (July 2009) 203–217

2. Zhang, N., Ryan, M., Guelev, D.P.: Synthesising verified access control systems through
model checking. Journal of Computer Security 16(1) (2008) 1–61

3. Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Specifying and reasoning about dynamic
access-control policies. In: Proc. International Joint Conference on Automated Reasoning.
(August 2006) 632–646

4. Mardare, R., Priami, C.: Dynamic epistemic spatial logics. Technical report, The Microsoft
Research-University of Trento Centre for Computational and Systems Biology (2006)

5. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press,
Cambridge (1995)

6. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement. In: Proc. Computer Aided Verification. (July 2000) 154–169

7. Clarke, E.M., Lu, Y., Com, B., Veith, H., Jha, S.: Tree-like counterexamples in model check-
ing. In: Proc. IEEE Symposium on Logic in Computer Science. (July 2002) 19–29

8. Lomuscio, A., Raimondi, F.: MCMAS: A model checker for multi-agent systems. In: proc.
Tools and Algorithms for the Construction and Analysis of Systems. (April 2006) 450–454

9. Aucher, G., Boella, G., van der Torre, L.: Privacy policies with modal logic: The dynamic
turn. In: Deontic Logic in Computer Science. (2010) 196–213

10. Koleini, M., Ryan, M.: A knowledge-based verification method for dynamic access control
policies. In: Proc. International Conference on Formal Engineering Methods. (2011)

11. Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in model checking multi-
agent systems. In: AAMAS 2009: Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems. (2009) 945–952

12. Zhou, C., Sun, B., Liu, Z.: Abstraction for model checking multi-agent systems. Frontiers
of Computer Science in China 5 (2011) 14–25

13. Fagin, R., Halpern, J.Y., Moses, Y., Vardis, M.Y.: Knowledge-based programs. Distributed
Computing 10(4) (1997) 199–225

14. Lomuscio, A., Raimondi, F.: Model checking knowledge, strategies, and games in multi-
agent systems. In: Proc. International Conference on Autonomous Agents and Multiagent
Systems. (May 2006) 161–168

15. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the
ACM 49(5) (2002) 672–713

16. Lomuscio, A., Raimondi, F.: The complexity of model checking concurrent programs against
CTLK specifications. In: Proc. International Conference on Autonomous Agents and Multi-
agent Systems. (May 2006) 548–550

17. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Transac-
tions on Programming Languages and Systems 16(5) (1994) 1512–1542

18. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system. In: Proc.
IEEE Symposium on Security and Privacy. (May 2008) 354–368

19. Bursuc, S., Grewal, G.S., Ryan, M.D.: Trivitas: Voters directly verifying votes. In: Proc.
E-Voting and Identity. (September 2011) 190–207

20. Grewal, G.S., Ryan, M.D., Bursuc, S., Ryan, P.Y.A.: Caveat coercitor: Coercion-evidence in
electronic voting. In: Proc. IEEE Symposium on Security and Privacy. (May 2013) 367–381

