
Cloud computing security: the scientific

challenge, and a survey of solutions

Mark D. Ryan
University of Birmingham

January 28, 2013

Abstract

We briefly survey issues in cloud computing security. The fact that
data is shared with the cloud service provider is identified as the core sci-
entific problem that separates cloud computing security from other topics
in computing security. We survey three current research directions, and
evaluate them in terms of a running software-as-a-service example.

1 What is cloud computing security?

Cloud computing is the idea that data and programs can be stored centrally,
in the cloud, and accessed any time from anywhere through thin clients and
lightweight mobile devices. This brings many advantages, including data ubiq-
uity, flexibility of access, and resilience. In many ways, it also enhances security:
the cloud provider may be able to afford to invest in better and more up-to-
date security technologies and practices than the data owner can. However,
since cloud computing necessarily puts data outside of the control of the data
owner, it inevitably introduces security issues too.

Cloud computing security concerns all the aspects of making cloud comput-
ing secure. Many of these aspects are not unique to the cloud setting: data is
vulnerable to attack irrespective of where it is stored. Therefore, cloud com-
puting security encompasses all the topics of computing security, including the
design of security architectures, minimisation of attack surfaces, protection from
malware, and enforcement of access control. But there are some aspects of cloud
computing security that appear to be specific to that domain [1, 2, 3]:

1. The cloud is typically a shared resource, and other sharers (called tenants)
may be attackers.

2. Cloud-based data is usually intentionally widely accessible by potentially
insecure protocols and APIs across public networks.

3. Data in the cloud is vulnerable to being lost (e.g., accidentally deleted) or
incorrectly modified by the cloud provider.

1



4. Data in the cloud can be accessed by the cloud provider, its subcontractors
and employees.

The technologies for addressing points 1, 2 and 3 in the list above have
existed for some time, and they are not specific to cloud computing security.
The multi-tenancy aspect is addressed by deploying strong virtual machine man-
agers and operating systems that ensure separation between processes; that was
always their purpose. Securing data access across public networks, although es-
sential to cloud computing, is in fact a challenge that pre-dates the subject,
and there are already mature solutions including authentication protocols, au-
thorisation frameworks, and encryption. Loss of data is addressed by careful
backup policies, including remote backup. There are several techniques that can
be used to detect incorrect modifications. Although deploying these solutions
may be a significant management and engineering challenge, it is not a scientific
challenge. From a scientific point of view, points 1, 2 and 3 in the list above are
solved problems.

Therefore, the genuinely unique challenge posed by cloud computing secu-
rity boils down to just one thing: the data in the cloud can be accessed by the
cloud provider. The cloud provider as a whole (or its employees individually)
can deliberately or inadvertently disclose customers’ data. Moreover, the cloud
provider may have subcontractors (typically, a “software-as-a-service” provider
will subcontract to an “infrastructure-as-a-service” provider), and the subcon-
tractors may also have access to the data. This paper addresses the question of
how a customer could secure its data from malicious or negligent cloud providers.

If the cloud’s role is confined to storing the data on behalf of the owner,
then the problem can be solved by encrypting the data, with the owner holding
the keys. However, typically one wants the cloud provider to be able to do
non-trivial computations with the data, and therefore the problem is in fact
very hard to solve. Such computations may include searches, transformations,
selections, and access control decisions. For example:

• The data is an email archive, and the cloud is expected to handle email in
a way that depends on its content (e.g., spam filtering, topic classification,
compliance with corporate disclosure policies).

• The data is documents and photographs, and the cloud is expected to
enforce access rules that depend on the content.

• The data may be scientific data obtained by experiment and observation,
and the computation may be to find patterns, or organise the data ac-
cording to rules. Other examples in this category include data-intensive
financial modelling or network traffic modelling.

• The data may be financial data, payroll data, human resource data, bank-
ing data, etc., and the computation is usual business processing.

• The data may be documents to review (job applications, research papers,
business tenders) and the computation may be to support the review pro-
cess (sending to reviewers, collating reviews, etc.).

2



1.1 A running example

To understand the importance of cloud-provider confidentiality, we detail the
issues and considerations surrounding cloud-based conference management sys-
tems, which represent an example of these problems within the academic re-
search community [4]. It is an interesting example, because it is small and
specific, making it easier to explore the exact nature of the confidentiality prob-
lem and to think about solutions. Systems such as EasyChair and EDAS allow
a conference chair or manager to create the conference account “in the cloud”,
and those systems handle all the necessary administration such as distribution
of papers to programme committee (PC) members, collection and distribution
of reviews and discussion, and production of emails to authors and reviewers and
reports such as acceptance statistics and the conference programme. Because a
cloud provider takes responsibility for the data across all conferences, the whole
business of managing the server (including backups and security) is done by a
third party different from the conference organisers or participants, and gains
economy of scale. At the same time, accounts for authors and PC members
exist already, and do not have to be managed on a per-conference basis.

The privacy concerns with cloud-computing-based conference management
systems such as EDAS and EasyChair arise because the system administrators
are custodians of a huge quantity of data about the submission and reviewing
behaviour of thousands of researchers, aggregated across multiple conferences.
This data could be deliberately or accidentally disclosed, with unwelcome con-
sequences:

• Reviewer anonymity could be compromised, as well as the confidentiality
of PC discussions.

• The acceptance success records could be identified, for individual researchers
and groups, over a period of years.

• The aggregated reviewing profile (fair/unfair, thorough/scant, harsh/undiscerning,
prompt/late, and so forth) of researchers could be disclosed.

The data could be abused by hiring or promotions committees, funding and
award committees, and more generally by researchers choosing collaborators
and associates. The mere existence of the data makes the system administrators
vulnerable to bribery, coercion, and/or cracking attempts. If the administrators
are also researchers, the data potentially puts them in situations of conflict of
interest.

It is interesting to note that, as well as the confidentiality issues raised,
there are some potential uses of the centralised data that might be considered
beneficial. The data could be used to help detect or prevent fraud or other kinds
of unwanted behaviour, for example, by identifying:

• researchers who systematically unfairly accept each other’s papers, or ri-
vals who systematically reject each other’s papers, or reviewers who reject
a paper and later submit to another conference a paper with similar ideas;
and

3



• undesirable submission patterns and behaviours by individual researchers
(such as parallel or serial submissions of the same paper; repeated pa-
per withdrawals after acceptance; and recurring content changes between
submitted version and final version).

These examples show that it is desirable if the cloud can process the data
in useful and interesting ways, but data confidentiality from the cloud provider
remains paramount. The challenge of this example is to enable the cloud to
process the data, while keeping the data confidential from the cloud provider.

1.2 Paper structure

In the next section, we review some of the research activities that address the
core problem of cloud computing security, namely, the potential access by the
cloud provider to customers’ data. We briefly consider how well the proposed
solution would work for the running example. (However, it is worth remember-
ing that cloud computing is very diverse, and different examples may have quite
different characteristics.)

2 Approaches to achieving confidentiality from
the cloud provider

At present, this problem is handled mostly by legislation, contract, and good
practice. The cloud provider does its best to have internal processes that restrict
data access to as few employees as possible. Such arrangements rely substan-
tially on data owners trusting the provider. A contract may exist to forbid the
provider from disclosing the data to third parties, and it may be backed up by
legislation that also aims to prevent the provider from acting unfairly. These
approaches are difficult to scale up. If the cloud provider is very large, it will
have subcontracting arrangements with other service providers, and they would
have to be locked into the contract too. Also, the cloud provider may have
numerous employees, and it may be very hard to vet them all to the standards
wished by the data owner. Even cloud providers that have a huge reputation
to protect, like Google, have had to sack employees for illegitimate access to
customer data. It might become difficult for the owner to prove liability in the
case of data breach, and even more difficult to take legal action and obtain com-
pensation. Moreover, the international nature of cloud providers like Amazon
and Google make it difficult to legislate tFheir behaviour effectively.

Researchers are attempting to discover technological solutions which would
give the data owner verifiable guarantees that their data remains confidential.
As explained above, the requirement to perform in-cloud processing makes this
complicated. In the remainder of this section, we describe a few of the ap-
proaches that are currently actively being researched.

4



2.1 Fully homomorphic encryption

As mentioned above, the data owner can encrypt the data before sending it
to the cloud. With ordinary encryption, this prevents the cloud provider from
operating on the data, limiting the cloud’s role to simple storage. Homomorphic
encryption overcomes this limitation: it is an encryption technique that allows
a party that holds ciphertexts to perform certain operations on the ciphertexts,
which mirror the corresponding operations on the plaintexts. In the case of
simple homomorphic encryption, there is just one operation on the plaintext
that has a corresponding operation on the ciphertext. For example, plain RSA
has that property. Suppose ciphertext c1 is the encryption under a public key
pk of plaintext m1, and c2 is the encryption under the same key of m2; that is

c1 = enc(pk ,m1) and c2 = enc(pk ,m2).

Then multiplying the ciphertexts results in something which, when decrypted,
is identical to the result of multiplying the two plaintexts. That is, if sk is the
decryption key corresponding to pk , then

m1 ×m2 = dec(sk , c1 × c2).

This works with plain RSA, which is not used in practice because it is inse-
cure. RSA with OAEP padding, which is secure and is used in practice, does
not have this property. Nevertheless, there are other encryption schemes that
are secure and do have the homomorphic property, such as Pallier encryption,
and Elgamal encryption. In the case of plain RSA and Elgamal, multiplication
of ciphertexts corresponds to multiplication of plaintexts; in Pallier, multipli-
cation of ciphertexts corresponds to addition of plaintexts. Fully homomorphic
encryption [5] goes further: instead of there being just one plaintext operation
that is mirrored by a ciphertext operation, every operation on plaintexts has a
correspondent on ciphertexts, and therefore any program (seen as a sequence
of operations) has a counterpart program that runs on ciphertexts. Suppose
enc/dec is a fully homomorphic encryption scheme, and let p be a program that
takes n inputs and produces an output. Then there exists a program p′ such
that if ci = enc(pk ,mi) are the encryptions of plaintexts mi then

p(m1, . . . ,mn) = dec(sk , p′(pk , c1, . . . , cn)).

In other words, p′ performs the operation on ciphertexts that produces a
result which, when decrypted, is equal to the result of p on the plaintexts. (As
a minor detail, note that, in general, p′ may be given access to the public key
as well.)

2.1.1 Discussion

Fully homomorphic encryption is a powerful idea and undoubtedly has a role
to play in cloud computing. In principle, it means that the cloud provider can

5



run the correspondent of any program the client wishes, while not obtaining
access either to the argument data or the result data. When fully homomorphic
encryption was first created in 2009, it was held up as a magic solution that
would solve the big problem of cloud computing security [6]. Unfortunately,
however, this promise is unlikely to be realised. There are two fundamental
reasons that appear to limit the contribution that fully homomorphic encryption
can make to cloud security.

The first one is that the program p′ necessarily outputs an encryption of
the desired result, not the result itself. This means that the cloud cannot take
action based on the result of the computation—it only has an encryption of the
result, which it cannot decrypt. Naturally, randomised encryption is used (for
otherwise there is no security at all), and therefore even the encryption of a
binary output—true or false—tells the cloud nothing about the output itself.
Suppose one wished to do email spam filtering in the cloud. We suppose that the
cloud has a set of encrypted messages, and a program p which, when applied to
a message, determines whether the message is spam or not. The cloud can run
p′ on a given encrypted message, resulting in an encrypted boolean indicating
whether the message is spam. Because of the mentioned limitation, the cloud
cannot throw away the message if it is spam; instead, it can return the encrypted
boolean to the user, who can decrypt it and herself throw away the offending
message. In other words, the cloud can do spam detection, but cannot do spam
filtering. This may mean that the user is continually called upon as a decryption
oracle, decrypting results to enable the cloud to take actions. Moreover, the user
is required to evaluate each time whether it is appropriate to decrypt or not.
If she decrypts carelessly, she may accidentally disclose confidential data to
the cloud; yet, it may not be easy for her to determine whether a particular
decryption is safe or not. It seems unclear whether a practical application of
cloud computing could work satisfactorily in this way.

The second limitation of fully homomorphic encryption is its inefficiency.
One has to fix in advance a limit on the size of the program p. Moreover, both
the size of the ciphertext and the complexity of the encryption and decryption
operations grow enormously with that limit on the size of p. In any non-trivial
application, key sizes and the encryption of a single bit are measured in giga-
bytes. Storage is of order 1010 larger, and computations take much longer. One
estimate is that Gentry’s 2009 system gives one a 1012 slowdown. There is much
current work to speed this up (e.g., [7]), and orders of magnitude improvements
have been obtained in the last few years. Even so, the inefficiencies of fully-
homomorphic encryption will severely limit its applications. Another, related,
concern is that one is always dealing in encryptions of large quantities of data
under a public key, something that is impractical even with non-homomorphic
schemes. Researchers have shown that symmetric key AES decryption may it-
self be done as a data operation under a fully homomorphic public key scheme,
but the result of such an AES decryption is still an encryption of data under a
public key.

For these two reasons, fully homomorphic encryption is unlikely to gain
widespread adoption. Although it is likely to find niche applications, it doesn’t

6



seem that it will become a solution to the cloud computing problem on a large
scale.

2.1.2 The example

Fully homomorphic encryption can in principle solve the confidentiality problem
of the conference management running example. To achieve this, we imagine
the present situation with EasyChair, with the addition that all data sent to
the cloud server is encrypted by a public key. All authors, reviewers, and chairs
hold the secret key corresponding to this public key. The server performs the
computations as at present (for example, managing and storing papers and
reviews; enforcing access control), but the computations are done under the
encryption. Data that the server sends to authors, reviewers and chairs are
encrypted, and have to be decrypted by the recipient.

This solution is not attractive. As well as the two reasons detailed in the
previous section which characterise fully homomorphic encryption in general,
there are some more specific issues that arise in this example. First, the private
part of the public key is held by a large number of individuals, and it is hard to
keep such a key secret. One could try to address this by having a key for every
conference, but this creates key distribution problems. Moreover, this approach
(whether by global key or per-conference key) requires and relies on preventing
the cloud provider from submitting a paper to the conference (since authors are
entitled to the secret key). Another problem is that the cloud server cannot
send mail to authors and reviewers, since their identities and the contents of the
mail are all held in encrypted form. This might be solved by having a mail agent
that knows the secret key and is able to receive encrypted mailing instructions
and process them. However, the mail agent and the cloud server could conspire
to decrypt everything.

It is quite likely that some of these problem-specific issues can be solved,
but the solution remains unappealing for the bigger reasons.

2.2 Key translation in the browser

With this approach, data is encrypted before being uploaded to the cloud, and
the data owners retain the keys. However, different parts of the data may be
encrypted with different keys, and some of the clients participating in the service
may perform “key translation” in order to allow data items to be forwarded to
intended recipients. This does not allow arbitrary processing in the cloud as
promised by fully homomorphic encryption, but it does allow several kinds of
store-and-forward services. So far, a solution for a particular kind of software-as-
a-service has been developed [8, 9], namely, services that support applications,
evaluations, and decisions. The conference management running example of this
paper is one such service; others include job application management, and public
tender management (e.g., for civil construction). It is assumed that applicants,
evaluators and decision makers interact through their web browsers with the
cloud-based management system, to perform the usual task of uploading and

7



downloading applications and evaluations. The cloud is responsible for fine-
grained routing of information, in order to ensure that the right agents are
equipped with the right data to perform their task. It is also responsible for
enforcing access control, for example concerning conflicts of interest and to
ensure that an evaluator doesn’t see other evaluations of an application before
writing her own. However, all the sensitive data is seen by the cloud only in
encrypted form, and the cloud is not able to tell which applicants are being
reviewed by which evaluators.

The technique relies on there being a process manager who oversees the data
flow and is allowed access to all the data for a particular instance of the service
(e.g., a particular recruitment exercise or conference organisation). When data
is first introduced into the system by applicants when they upload applications,
the data is encrypted with a data key, which is itself encrypted with a public key
published and authenticated by the process manager. Thus, the cloud provider
sees only encrypted data. Later, when the process manager needs to make this
data available to reviewers, s/he downloads the data keys, decrypts them using
the private key, and encrypts them again using a symmetric key that has been
shared by an out-of-band protocol with the evaluators, and then uploads them
again. This downloading, decryption, encryption and uploading can take place
automatically by the web browser being used by the manager.

Not all data is withheld from the cloud provider. The provider needs ac-
cess to some sensitive data, like the identity of the panel member in charge
of evaluating a particular application, in order to implement the functional re-
quirements of the protocol. Care in designing the protocol is needed to prevent
known parties (such as applicants and evaluators) from being associated with
each other by their handling of the same ciphertexts; for example, if an applicant
uploads a particular ciphertext which is later downloaded by an evaluator, the
cloud provider can potentially see an association between the applicant and the
evaluator. To avoid this, the protocol makes use of re-randomised ciphertexts
and randomised mixes.

2.2.1 Discussion

Key translation in the browser is so far restricted to a rather narrow class of
applications, which roughly may be characterised as “store-and-forward”. The
cloud does not do real computation on the data, but still requires some access
to data in order to facilitate information flow and enforce access control. We hy-
pothesise that the class of applications can be expanded, perhaps including cus-
tomer relationship management systems (such as salesforce.com), cloud-based
finance and accounting services, and social networks, in which users share posts
and status updates without enabling data to be mined by the cloud provider
for profiling purposes. This remains a matter for further research.

8



2.2.2 The example

This technique was designed specifically for examples like the conference man-
agement one. Indeed, a prototype called ConfiChair has been implemented,
with encouraging performance results [10].

2.3 Hardware-anchored security

The final approach to achieving confidentiality from the cloud provider is based
on special hardware on the cloud side. The idea is that the cloud provider is able
to decrypt the data, but is able to offer guarantees about the circumstances in
which it does that. Those guarantees will assure the data owners that the data
is handled in accordance with their policy. Conceptually, it works something
like this:

• The cloud provider has special hardware that allows it to store keys in a
way that makes them accessible only to particular programs. We say such
a key is bound to a program.

• The customer and the cloud provider agree a policy about how the data
is to be manipulated. This policy is embodied in a program p.

• The client securely uploads to the cloud a key k, which is bound to p.

• The client uploads data encrypted with the key k to the cloud. The cloud
can now run p, which can access k in order to manipulate the data. But
the cloud cannot use any other program to manipulate the data, because
a program different from p cannot access k.

As mentioned, special hardware is needed to realise this approach; it cannot
be done in software alone. The key k has to be uploaded and stored in encrypted
form, and it must be decrypted only in order to serve it to a running instance of
p. While p is running, its memory and possibly its storage need to be protected
from other programs running on the hardware.

The trusted platform module (TPM; [11]) is a hardware chip designed to
enable this kind of binding between keys and programs, on commodity hard-
ware. The TPM is an industry standard (and an ISO standard). It can work
stand-alone by measuring the loaded software stack from boot time in a proce-
dure called static root of trust. It works better with mechanisms for dynami-
cally launching and measuring protected execution environments, such as Intel’s
trusted execution technology (TXT) or AMD’s secure virtual machine (SVM);
this procedure is called the dynamic root of trust.

2.3.1 Discussion and concrete instances

Putting these hardware components together in order to achieve a situation
in which cloud providers can decrypt data only by programs that embody an
agreed policy has turned out to be quite a challenge. Flicker [12] is a low-level

9



architecture that achieves that, but only for small and short-lived programs run-
ning in impoverished environments (e.g., with basic input-output that excludes
interaction with users or on the network). The main achievement of Flicker is to
reduce the size of the trusted computing base (TCB)—that is, the program that
has to be trusted (in addition to p)—to about 250 lines of code. TrustVisor [13]
is another architecture by the same team, which is much more flexible, allowing
the program p to include a full operating system (and therefore including soft-
ware stacks for networking) running on a virtual machine, albeit at the cost of
a larger TCB.

Excalibur [14] is a solution in this vein, with an even greater TCB but it pro-
vides a considerably richer and more usable platform based on Eucalyptus [15]
which aims to be compatible with Amazon’s EC2. In the Excalibur architecture,
there is a monitor that acts as centralised authority and provides guarantees
to the client. The monitor organises computations across a series of nodes. In
Excalibur,

• The customer decides policy φ, and receives evidence of the monitor status
in the form of key certificates and TPM status certificates called ‘quotes’,
along with a public encryption key ek .

• The customer encrypts its data d and the policy φ, using ciphertext-policy
attribute-based encryption (CPABE) [16]. This encrypted data is avail-
able to nodes too.

• The monitor receives TPM quotes from nodes, and maps them to a set of
attribute-value pairs representing the security status of the node

• The monitor sends to each node the CPABE decryption keys correspond-
ing to ek that match its security status. Because of the mechanism of
CPABE, a monitor will be able to decrypt data only if its security status
satisfies the policy φ specified by the client at encryption time.

Excalibur consists of 22K lines of C code, including the monitor, the client-
side library, the client-side demon for securing CPABE decryption keys, the
management console, and the certificate toolkit. As mentioned, it provides
a powerful and flexible environment for cloud-side processing with guarantees
about confidentiality to the cloud. However, the size of the TCB makes it very
difficult for the client to evaluate its security. To put this another way: the
client needs to evaluate whether the entire software stack properly upholds the
specified policy φ. Even if the software is open-source, it is very difficult to
do that; there are some standard things one can look for, but establishing any
property (such as security) of software is undecidable. The hardware (TPM
and TXT) ensures that the software stack is the one being run, but it does
not establish that it is secure. This phenomenon is sometimes called binary
attestation, meaning that the guarantees are about what software binaries are
running, rather than about the properties that are provided. Efforts at moving
towards property-based attestation are currently being researched [17] and have

10



partly been implemented in Exalibur, but the reliance on binary attestation is
still a significant issue.

2.3.2 The example

There are several ways to leverage hardware-anchored security on the cloud
side to achieve confidentiality for the conference management data. The most
straightforward way is to use something like Excalibur (which provides secure
infrastructure-as-a-service) to spin up a virtual machine (VM) with known soft-
ware. This VM can be securely provisioned with a symmetric key (for disk
storage) and the secret part of a public key (for TLS communication) by a con-
ference chair at the time the conference account is created. The solution works,
but has a few undesirable features. First, attestation is made to a huge software
stack, and it is hard for conference chairs to evaluate it; moreover, the software
stack is required to change frequently, due to security patches. Second, the
two keys are held in memory for a long time, typically months, making them
vulnerable to attacks on the running VM.

A better solution would be architected similarly to ConfiChair (section 2.2),
but with the key translation done by a small security kernel which is attested
by the TPM. In principle, such a small kernel could be made using Flicker [12],
which adds only a few hundred lines of TCB code. The total TCB size is then
only one or two thousand lines of code, which is a manageable size. Keys are
held in memory only for a few seconds, which is much more secure.

2.4 CryptDB: a weaker attacker model

CryptDB [18] is a framework that allows query processing over an encrypted
database. The database is stored and managed by the cloud provider, but data
items are encrypted with keys that are not under the cloud provider’s con-
trol. It works by executing SQL queries over the encrypted database using a
collection of efficient SQL-aware encryption schemes. To achieve database oper-
ations such as equality checks and order comparisons, CryptDB uses encryption
schemes that allow such comparisons to be made on ciphertexts. Such schemes
have weak security, and represent CryptDB’s philosophy of trading security and
functionality with each other in an effort to reach a workable compromise. An-
other instance of this idea is CryptDB’s technique of adjusting an onion-based
encryption methodology according to queries observed at run time. Case studies
for CryptDB include refereeing systems such as those described in section 2.2.

CryptDB represents a weaker attacker model than the previous solutions
discussed, because it assumes the existence of a trusted cloud-based application
server and proxy. Nevertheless, CryptDB represents an interesting position on
the trade-off between functionality and confidentiality from cloud providers.

11



Applicability

S
e
cu

ri
ty Key translation in browser

e.g. ConfiChair

FHE

CryptDB
Hardware anchored security
e.g. Excalibur

Figure 1: The four approaches, impressionistically organised by their security
and their applicability.

3 Conclusions

The four approaches mentioned differ greatly in their applicability and the na-
ture of the security guarantees they offer. The key translation approach offers
perhaps the strongest guarantees, since strong cryptography can be used and the
cloud provider never sees plaintext data. However, it currently supports only a
narrow set of store-and-forward applications, which is rather restricted. It was
created with the conference management example in mind. CryptDB supports
a wider set of applications, although it is still restricted to database searches.
It uses conference management as an example application too. Its security can
be considered a bit weaker than that of the key translation approach, because it
deliberately uses weaker cryptography and trades security for data processabil-
ity. Fully homomorphic encryption also appears to compromise security slightly,
by using malleable encryption schemes, but probably not as much as CryptDB.
However, the question of how applicable it is to real cloud computing problems
is not clear. For example, it is not obvious how the conference management
system could be securely implemented on top of fully homomorphic encryption,
even if one ignores the scalability issues. Hardware-anchored security in the
style of Excalibur is clearly the most versatile of the four approaches, but its se-
curity guarantees are of quite a different nature (and intuitively rather weaker)
than the other three. Also, the nature of binary attestation (that is, attesta-
tion to a software stack rather than a policy) makes it hard to use in practice.
These remarks are summarised in the figure, which is intended to indicate an
impression rather than to say anything very precise.

This space is fast moving, and we can expect to see many developments in
the coming years.

12



References

[1] Yanpei Chen, Vern Paxson, and Randy H. Katz. What’s new about cloud
computing security? Technical Report UCB/EECS-2010-5, Electrical En-
gineering and Computer Sciences, University of California at Berkeley,
2010.

[2] Cloud Security Alliance. Top threats to cloud computing v1.0. https://
cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf, 2010.

[3] Mihai Christodorescu, Reiner Sailer, Douglas Lee Schales, Daniele Sgan-
durra, and Diego Zamboni. Cloud security is not (just) virtualization secu-
rity: a short paper. In Proceedings of the 2009 ACM Workshop on Cloud
Computing Security, pages 97–102, 2009.

[4] Mark D. Ryan. Cloud computing privacy concerns on our doorstep. Com-
munications of the ACM, 54(1):36–38, 2011.

[5] C. Gentry. Fully homomorphic encryption using ideal lattices. In 41st ACM
Symposium on Theory of Computing (STOC), 2009.

[6] IBM researcher solves longstanding cryptographic challenge. Press release.
Discovers method to fully process encrypted data without knowing its con-
tent; could greatly further data rivacy and strengthen cloud computing secu-
rity. http://www-03.ibm.com/press/us/en/pressrelease/27840.wss.

[7] N. P. Smart and F. Vercauteren. Fully homomorphic encryption with rel-
atively small key and ciphertext sizes. In Public Key Cryptography (PKC
2010). Springer, 2010.

[8] Myrto Arapinis, Sergiu Bursuc, and Mark Ryan. Privacy-supporting cloud
computing: ConfiChair, a case study. In Proceedings of the 1st Conference
on Principles of Security and Trust (POST 2012), 2012.

[9] Myrto Arapinis, Sergiu Bursuc, and Mark Ryan. Privacy-supporting cloud
computing by in-browser key translation. Submitted to Journal of Com-
puter Security.

[10] ConfiChair conference management system. http://www.confichair.
org/.

[11] Trusted Computing Group. TPM Specification version 1.2. Parts
1–3. http://www.trustedcomputinggroup.org/resources/tpm_main_
specification, 2007.

[12] Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter, and
Hiroshi Isozaki. Flicker: An execution infrastructure for TCB minimization.
In Proceedings of the ACM European Conference in Computer Systems
(EuroSys), April 2008.

13



[13] Jonathan M. McCune, Ning Qu, Yanlin Li, Anupam Datta, Virgil D.
Gligor, and Adrian Perrig. Trustvisor: Efficient TCB reduction and at-
testation. In Proceedings of the IEEE Symposium on Security and Pri-
vacy, 2010. http://people.csail.mit.edu/costan/readings/oakland_
papers/CMUCylab09003.pdf.

[14] Nuno Santos, Rodrigo Rodrigues, Krishna P. Gummadi, and Stefan Saroiu.
Policy-sealed data: a new abstraction for building trusted cloud services.
In USENIX Security, 2012.

[15] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff,
and D. Zagorodnov. Eucalyptus: a technical report on an elastic utility
computing architecture linking your programs to useful systems. Technical
report.

[16] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy
attribute-based encryption. In IEEE Symposium on Security and Privacy,
pages 321–334, 2007.

[17] Liqun Chen, Rainer Landfermann, Hans Löhr, Markus Rohe, Ahmad-Reza
Sadeghi, and Christian Stüble. A protocol for property-based attestation.
In Proceedings of the First ACM Workshop on Scalable Trusted Computing
(STC’06), pages 7–16. ACM, 2006.

[18] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari
Balakrishnan. CryptDB: processing queries on an encrypted database.
Communications of the ACM, 55(9):103–111, 2012.

14


