
Reduction of equational theories for verification
of trace equivalence: re-encryption, associativity

and commutativity ?

Myrto Arapinis, Sergiu Bursuc, and Mark D. Ryan

School of Computer Science, University of Birmingham??

{m.d.arapinis,s.bursuc,m.d.ryan}@cs.bham.ac.uk

Abstract. Verification of trace equivalence is difficult to automate in
general because it requires relating two infinite sets of traces. The prob-
lem becomes even more complex when algebraic properties of crypto-
graphic primitives are taken in account in the formal model. For exam-
ple, no verification tool or technique can currently handle automatically
a realistic model of re-encryption or associative-commutative operators.
In this setting, we propose a general technique for reducing the set of
traces that have to be analyzed to a set of local traces. A local trace
restricts the way in which some function symbols are used, and this
allows us to perform a second reduction, by showing that some algebraic
properties can be safely ignored in local traces.
In particular, local traces for re-encryption will contain only a bounded
number of re-encryptions for any given ciphertext, leading to a sound
elimination of equations that model re-encryption. For associativity and
commutativity, local traces will determine a canonical use of the associative-
commutative operator, where reasoning modulo AC is no stronger than
reasoning without AC.
We illustrate these results by considering a non-disjoint combination of
equational theories for the verification of vote privacy in Prêt à Voter.
ProVerif can not handle the input theory as it is, but it does terminate
with success on the theory obtained using our reduction result.

1 Introduction

Equivalence of formal processes, typically under the form of observational equiv-
alence or trace equivalence, is fundamental in modeling security properties re-
lated to privacy. Some examples are strong secrecy [7], resistance against guess-
ing attacks [14], authentication [3], unlinkability and anonymity [4], etc. Process
equivalence can also be used to verify that a system implementation conforms to
a given system specification [3]. Another example is ballot secrecy in electronic
voting [20], which is of particular relevance for this paper.

? A long version of the paper and the ProVerif code are available online
?? We gratefully acknowledge financial support from EPSRC via the projects Trust

Domains (TS/I002529/1) and Trustworthy Voting Systems (EP/G02684X/1).

In order to not miss attacks, and sometimes even to be able to execute the
protocols, the formal model has to take into account relevant algebraic properties
of cryptographic primitives that are used [17]. The integration of algebraic prop-
erties in models and tools for automated verification of reachability properties,
like secrecy, has been quite successful. However, only few results are known for
verification of process equivalence. They are in general restricted to a bounded
number of sessions and a basic Dolev-Yao theory [22, 29, 9, 10], and do not go
further than subterm-convergent theories [5, 15], where the right-hand side of
each equation is either a constant or a subterm of the left-hand side. ProVerif
can handle an unbounded number of sessions and a broad class of equational
theories [8], but may not terminate and may discover false attacks. None of the
above-mentioned techniques can handle associative-commutative properties, like
those of XOR, abelian groups, Diffie-Hellman, etc.

The starting point of our work is a case study that can not be handled by
ProVerif, namely analysis of vote privacy in Prêt à Voter (PaV) [28]. Privacy in
many electronic voting systems, not only in PaV, is based on a re-encryption
mixnet, whose role is to break the link between ballots that are cast and bal-
lots that are decrypted. A realistic model for such protocols has to contain not
only equations that model re-encryption, but also at least equations for the
associative-commutative properties of the underlying group and for the zero-
knowledge proofs output by the mixnet. However, ProVerif does not terminate
for PaV even when only the single re-encryption equation renc(enc(x, y, z), z′) =
enc(x, y, f(z, z′)) is considered along with the standard Dolev-Yao theory for
public-key encryption.

Our contributions. We show how, in general, trace equivalence modulo a non-
disjoint combination E ∪ Erenc ∪AC, can be reduced to trace equivalence modulo
E ′ - a slightly augmented version of E . If E is subterm-convergent, then E ′ is
subterm-convergent as well. In particular, ProVerif terminates with success for
E ′PaV - the result of applying our reduction to the combination of theories sug-
gested above. The main idea in the construction of E ′ is to anticipate in advance
the maximal number of re-encryptions that are necessary to apply for any given
ciphertext. We only prove the soundness of the given reduction in this paper.
This means that our reduction may fail to prove that some processes are equiv-
alent, but the value of the proposed approach is shown by our ability to carry
an automated proof of privacy for PaV. This is a first automated proof of trace
equivalence for protocols relying on re-encryption and AC symbols.

Related work. The idea of bounding the number of application of rewrite rules
is similar to the finite variant property [13] and has already been helpful to
make ProVerif work modulo XOR [25]. Less like [13], and more like [25], our
bound is not intrinsic to the theory, but comes from a restriction on the class
of protocols. Another similarity with [25] is in our way of removing AC, but
we will show that there is a fundamental difference when one considers equiv-
alence properties. The reduction of [25], and also the one for Diffie-Hellman in
[24], have also been proven to be complete. On the other hand, these reductions
are restricted to reachability properties, and do not cover equivalence proper-

ties. Furthermore, they consider a representation of protocols in terms of Horn
clauses, which limits the aplicability of their results to ProVerif (or other tools
based on Horn clauses) and is less general than the applied pi-calculus [2], that
we use. [27, 26] also consider abstractions of Diffie-Hellman and show that they
are sound for reachability properties. Diffie-Hellman has some similarities with
re-encryption, but the interaction of re-encryption with encryption is making it
significantly different.

If results for process equivalence are limited to subterm-convergent theories
[22, 29, 9, 10, 5, 15], results for static equivalence go further than that. [1] shows
decidability in presence of blind signatures and homomorphic encryption (with-
out AC), and there is also a tool available [6]. Furthermore, the theory and im-
plementation of [11] cover also trapdoor bit-commitment and malleable encryp-
tion. Malleable encryption is similar to re-encryption, but it is not associative-
commutative: the value of the random can be changed, but it does not depend on
its previous value. There are also results showing that algorithms for static equiv-
alence can be combined for disjoint theories [16], and that a function symbol can
be eliminated from the theory if it respects a hierarchy of sorts [23]. Our theory is
a non-disjoint combination of encryption, re-encryption and other cryptographic
primitives. Furthermore, [23] can not be applied to separate re-encryption from
encryption, because a strict hierarchy of sorts can not be established due to the
presence of the equation renc(enc(x, y, z), z′) = enc(x, y, f(z, z′)).

2 Preliminaries

1.1 Terms and equational theories. We start with an infinite set of constants
N , called names, and an infinite set of variables X . Given a finite signature F ,
N ′ ⊆ N and X ′ ⊆ X , we denote by T (F ,N ′,X ′) the set of terms obtained by
recursively applying symbols from F to elements from N ′ ∪ X ′. Terms will be
denoted by u, v, s, t, . . ., variables by x, y, z, . . ., and names by n,m, r, . . . We let
F0 be the set of constants in F .

For a term t, we will denote by var(t) the set of its variables, by st(t) the
set of its subterms and by sig(t) the set of function symbols that occur in t. We
say that a term is ground if var(t) = ∅. A term context C[] is a term that has a
special symbol , called hole, in place of a subterm. The application of C[] to a
term t is the term C[t], i.e. the result of replacing the hole with t.

Given three terms t, u, v, we denote by t{u 7→ v} the term obtained from t by
replacing every occurence of u with v. A replacement ρ is a partial function from
terms to terms: if ρ = {u1 7→ v1, . . . , un 7→ vn}, we have dom(ρ) = {u1, . . . , un}
and ran(ρ) = {v1, . . . , vn}. We assume that u1, . . . , un are ordered such that
ui ∈ st(uj) =⇒ j < i. Then, for any term t, the application of ρ to t is
tρ = t{u1 7→ v1} . . . {un 7→ vn}.

A substitution σ is a replacement with dom(σ) ⊆ X . Substitutions will be
denoted by σ, θ, τ . . ., whereas replacements will be denoted by (annotations of)
ρ. The composition of two substitutions σ and θ is a substitution σ◦θ defined by
the set {x 7→ (xσ)θ | x ∈ dom(σ)} ∪ {x 7→ xθ | x ∈ dom(θ) r dom(σ)}. Given a

substitution σ, if the composition σ ◦ . . .◦σ has a finite least fix point we denote
it by σ∗, i.e. we have σ∗ = σ ◦ . . . ◦σ and σ∗ ◦σ = σ∗. Note that, if the variables
in dom(σ) can be ordered as x1, . . . , xn such that i < j =⇒ xj /∈ var(xiσ), then
σ∗ exists. The restriction of a substitution σ to a set V ⊆ dom(σ) is denoted by
σ|V .

An equational theory is given by a pair E = (R,ACS), where ACS is a set
of equations modeling the associativity and commutativity of symbols in S ⊆ F
and R is a rewrite system convergent modulo ACS . The rules of R are written as
l → r, with l, r ∈ T (F ,X) and var(r) ⊆ var(l). Given a rewrite system R, there
is a rewriting step (resp. rewriting step modulo ACS) from u to v if u = C[w],
w = lσ (resp. w =ACS lσ) and v = C[rσ], for some context C, rewrite rule
l → r ∈ R and substitution σ. The term w is called a redex. The normal form
of a term t with respect to R (resp. modulo ACS) will be denoted by t↓ (resp.
t↓AC), or by t↓R (resp. t↓R,AC) when R is not clear from the context. Then, we
have by definition u =E v if and only if u↓R,AC =AC v↓R,AC. The existence of a
rewriting step (resp. modulo AC) from u to v will be denoted by u → v (resp.
u→AC v). Relying on the convergence of R, we can restrict ourselves to bottom-
up rewriting steps, i.e. all the strict subterms of a redex are in normal form.
For two terms u, v, we write u = v to denote their syntactic equality, u =E v to
denote their equality modulo E , and u =AC v to denote their equality modulo
ACS .

An equational theory (R, ∅) is subterm-convergent if for every rule l→ r ∈ R,
we have r ∈ st(l) ∪ F0. To avoid confusion, when the equational theory is not
clear from the context, we annotate all our symbols by the theory to which they
refer to.

Example 1. The classical Dolev-Yao theory for public-key encryption is modeled
by the signature FDY = {enc, dec, pub, 〈, 〉, π1, π2} and the subterm-convergent
equational theory EDY = (RDY, ∅), where

RDY =
{

dec(enc(x, pub(y), z), y)→ x, π1(〈x, y〉) = x, π2(〈x, y〉) = y
}

The re-encryption property of public-key encryption schemes like El-Gamal
can be modeled by the signature Frenc = {enc, renc, f} and the equational theory
Erenc = (Rrenc,ACf), where

Rrenc =
{

renc(enc(x, y, z), z′)→ enc(x, y, f(z, z′))
renc(renc(x, z), z′)→ renc(x, f(z, z′))

1.2 Processes and operational semantics. To model communication chan-
nels we consider a distinct set of constants Ch such that Ch∩ (N ∪F) = ∅. Ele-
ments of Ch are called channel names and will be typically denoted by a, b, c, . . .
Processes of our calculus are defined by the following grammar [2]:

A,B := 0 plain processes P,Q := processes
A | B c〈u〉.A c(x).A νn.A A νx.P νn.P
!A if u = v then A else B P | Q {x 7→ u}

A name n that occurs in a process P is bound if it occurs under a νn, otherwise
it is free. A variable x that occurs in P is bound if it occurs under a νx or under
a c(x), otherwise it is free. We will denote by bn(P), bv(P), bv(P), resp. fv(P)
the bound names (including channel names), free names, bound variables and
resp. free variables of P . By α-conversion of bound names and variables we will
always assume that bn(P)∩ fn(P) = ∅, bv(P)∩ fv(P) = ∅, and there are no two
distinct binders for the same name or the same variable. We denote by Pα the
process obtained by substituting every bound name and variable in P with a
fresh one. A process P is closed if any variable in P is either bound or occurs in
a subprocess of the form {x 7→ u}. A process context C[] is a process that has a
special symbol , called hole, in the place of a sub-process. The application of C[]
to a process P is C[P], i.e. the result of replacing the hole with P . An evaluation
context is a process context whose hole is not in the scope of a replication, a
conditional, an input, or an output. We let sp(P) = {Q | ∃C[]. P = C[Q]} be
the set of sub-processes, st(P) be the set of terms (and their subterms) and
sig(P) = sig(st(P)) be the set of function symbols that occur in P .

Structural equivalence is the smallest equivalence relation ≡ on processes
that is closed under the application of evaluation contexts and the application
of the following equations:

P | 0 ≡ P ; νu.0 ≡ 0; !P ≡ Pα |!P ; P | Q ≡ Q | P ; νu.νw.P ≡ νw.νu.P
P | (Q | R) ≡ (P | Q) | R; P | νu.Q ≡ νu.(P | Q), if u /∈ fn(P) ∪ fv(P)

A frame φ is a (static) process of the form νñ.νx̃.σ, where ñ is a sequence
of names in N , x̃ is a sequence of variables and σ is a substitution such that
σ∗ exists. We have bn(φ) = ñ and dom(φ) = dom(σ) r x̃. The set of recipes
for φ is defined as <(φ) = T (F ,N r bn(φ), dom(φ)). Recipes will sometimes be
denoted by ζ, χ, . . . For a term u (in particular, u can be a recipe), we define
the application of the frame φ = νñ.νx̃.σ to u as the application of σ∗ to u,
i.e. we let u[φ] = uσ∗. For a frame φ = νñ.νx̃.σ and a substitution θ, we let
φ ∪ θ = νñ.νx̃.(σ ∪ θ).

For a process P , we let fr(P) be the frame associated to P , defined as fr(P) =
νñ.νx̃.σ, where ñ = bn(P) ∩ N , x̃ = bv(P) and σ is the substitution obtained
by the union of all the sub-processes of P of the form {x 7→ u}. Our transition
relation will ensure that all variable x has a single occurence as {x 7→ u} in P ,
thus σ is well-defined. Furthermore, for all processes P , it will be the case that
the variables in dom(σ) can be ordered as x1, . . . , xn such that i < j =⇒ xj /∈
var(xiσ). Therefore, σ∗ always exists and fr(P) is indeed a frame.

Labeled reduction is a relation between closed processes defined by the
following rules, modulo structural equivalence: for any evaluation context C[]
with φC = fr(C[]),

COMM C[c〈u〉.A | c(x).B] τ−→ C[νx.(A | B | {x 7→ u})]
THEN C[if u = v then A else B] τ−→ C[A] if u[φC] =E v[φC]
ELSE C[if u = v then A else B] τ−→ C[B] if u[φC] 6=E v[φC]

IN C[c(x).A]
c(ζ)−−→ C[νx.(A | {x 7→ ζ})] if c /∈ bn(C[]) & ζ ∈ <(φC)

OUT C[c〈u〉.A]
νx.c〈x〉−−−−→ C[A | {x 7→ u}] if c /∈ bn(C[]) & x /∈ var(C[c〈u〉.A])

The semantics is very similar to the one in [2], with superficial differences that
help in our proofs. The most notable difference is that we never apply the frame
to the process, but only use the frame where it makes a difference, i.e. in tests.
Similarly, equational reasoning is not part of structural equivalence, but is only
used in tests. A trace is a sequence of labeled reductions P1

α1−→ P2
α2−→ . . .

αn−−→
Pn. We will denote such a trace by P1

w−→ Pn, where w = α1 . . . αn. We let obs(w)
be the sequence of labels obtained by erasing all occurence of τ in w.

Example 2. Consider the theory E = EDY ∪ Erenc from Example 1, and
P = νk.c〈enc(a, pub(k), r)〉.c(x).c〈〈x, x〉〉.c(y).if x 6= enc(a, pub(k), r) &

y 6= enc(a, pub(k), r) & dec(x, k) = dec(y, k) then c〈dec(y, k)〉

We have P
νz1.c〈z1〉−−−−−−→ c(renc(z1,n1))−−−−−−−−→ νz2.c〈z2〉−−−−−−→ c(renc(π1(z2),n2))−−−−−−−−−−−→ τ−→ P0, where

P0 ≡ νk.νx.νy.(c〈dec(y, k)〉 | {z1 7→ enc(a, pub(k), r)} | {x 7→ renc(z1, n1)} |
{z2 7→ 〈x, x〉)} | {y 7→ renc(π1(z2), n2)})

and y[fr(P0)] = renc(π1(〈renc(z1[φ], n1), x[φ]〉), n2) =E enc(a, pub(k), f(f(r, n1), n2)).

Furthermore, P0
νz3.c〈z3〉−−−−−−→ P1 for some process P1 = νk.νx.νy.fr(P1) such that

fr(P1) = fr(P0) ∪ {z3 7→ dec(y, k)}. Then, we have z3[fr(P1)] =E a.

1.3 Trace equivalence and secrecy.

Definition 1 (static equivalence). We say that two frames φ, ψ are in static
equivalence modulo an equational theory E, denoted by φ

s∼ ψ, if dom(φ) =
dom(ψ) and ∀ζ1, ζ2 ∈ <(φ) ∩ <(ψ). ζ1[φ] =E ζ2[φ]⇔ ζ1[ψ] =E ζ2[ψ]

When E is not clear from the context, we use the notation φ
s∼E ψ. We say

that two traces P w1−−→ P ′ and Q
w2−−→ Q′ are in static equivalence if obs(w1) =

obs(w2) and fr(P ′) s∼ fr(Q′).

Definition 2 (trace equivalence). We say that two plain processes P,Q are
in trace equivalence, denoted by P ∼ Q, if for every trace P w1−−→ P ′, there exists
a trace Q w2−−→ Q′ such that obs(w1) = obs(w2) and fr(P ′) s∼ fr(Q′). Moreover,
each trace of Q must have a corresponding statically equivalent trace of P .

Example 3. Continuing example 2, let us consider the process Q = P{a 7→ b}
and let P w1−−→ P1 be the exhibited trace. Then, we have P 6∼ Q, because

– for z3, a ∈ <(fr(P1)), we have z3[fr(P1)] =E a[fr(P1)]
– for every corresponding trace Q w2−−→ Q1 with obs(w1) = obs(w2), we have
z3[fr(Q1)] 6=E a[fr(Q1)], and thus fr(P1) 6 s∼ fr(Q1). In fact, we have z3[fr(Q1)] =E
b[fr(Q1)].

Definition 3 (intruder knowledge and secrecy). Let E be an equational
theory. For a frame φ, we let I(φ, E) = {u | ∃ζ ∈ <(φ). ζ[φ] =E u}. For all
processes P , we let I(P, E) = {u | ∃Q,w. P w−→ Q & u ∈ I(fr(Q), E)} and
S(P, E) = bn(P) r I(P, E).

3 Motivation and statement of the reduction result

3.1 Starting point: the case study

In this paper and in the corresponding ProVerif code, we only perform the anal-
ysis of PaV for the case of two eligible voters idA, idB and two candidates a, b.
This is mainly for simplicity of presentation, but also because we believe that a
result like the one in [12] could be translated to privacy properties.

In addition to El-Gamal encryption and re-encryption, modeled by EDY and
Erenc from example 1, PaV relies on zero-knowledge proofs to provide universal
verifiability of the election result. We have to model these proofs in our anal-
ysis, to ensure that we do not miss any attacks on privacy that may be made
possible by the additional information that is published. In particular, PaV re-
lies on mixnet proofs and on proofs of correct decryption, that we model by
the signature Fver = {mixPf/6, checkMix/5, decPf/3, checkDec/4, ok/0} and the
equational theories EdecP = (RdecP, ∅), EmixP = (RmixP, ∅), where:

RdecP =
{

checkDec(decPf(enc(x, pub(y), z), x, y),
enc(x, pub(y), z), x, pub(y))→ ok

RmixP =

checkMix(mixPf(x, y, renc(x, zx), renc(y, zy), zx, zy),

x, y, renc(x, zx), renc(y, zy))→ ok
checkMix(mixPf(x, y, renc(y, zy), renc(x, zx), zy, zx),

x, y, renc(y, zy), renc(x, zx))→ ok

The main idea of PaV is that an election authority A creates ballots that
contain the names of the candidates in a random order on the left-hand side
and their corresponding encryption in the same order on the right-hand side.
This allows the voter to mark a vote for the desired candidate and scan only the
encrypted part of the ballot, the right-hand side, to be posted on the bulletin
board. Because the random order of candidates in the ballot and the decryp-
tion key are assumed to be secret, this ensures vote privacy, and even coercion-
resistance, if care is taken to destroy the left-hand side. We use the follow-
ing equational theory to model the actions of the voter during voting: Fvote =
{vote, 〈, 〉} and Evote = {Rvote, ∅}, where Rvote = {vote(〈x, y〉, 〈xe, ye〉), x) →
xe, vote(〈x, y〉, 〈xe, ye〉), y)→ ye}.

After the encrypted votes get to the bulletin board, the design of PaV is simi-
lar to other voting systems like JCJ/Civitas or Helios: ballots are anonymized by
a re-encryption mixnet and decrypted by the holders of the secret key. Putting
it all together, the equational theory and the process that model PaV are given
by EPaV and PPaV in figure 1. V is the process for a voter, A is the process for
the election authority that constructs the ballots, B is the process for the public
bulletin board, M is the process for a mix server and T is the process for a trustee
holding the decryption key.

In process M, we have {i, j} = {1, 2} and mixProof = mixPf(x1, x2,
renc(πi(xballots), n1), renc(πj(xballots), n2), n1, n2). In process T, we have decPi =
decPf(πi(xballots), dec(πi(xballots), sk), sk), for all i ∈ {1, 2}. The channel cprinter is

EPaV = EDY ∪ Erenc ∪ EdecP ∪ EmixP ∪ Evote

PPaV = νsk.νcprinter.νcver.νctrustee. (V(idA, v1) | V(idB, v2) | A | B | M | T)

A = νcauth.(cauth〈a, b〉 | cauth〈b, a〉 | cauth(xcan).νr1.νr2.
cprinter〈xcan, 〈enc(π1(xcan), pub(sk), r1), enc(π2(xcan), pub(sk), r2)〉〉

V(id, v) = cprinter(xballot).cscanner〈id, vote(xballot, v)〉.cver〈id, vote(xballot, v)〉
B = cscanner(ballot1).cscanner(ballot2).cmix〈ballot1, ballot2〉
M = cver(y).cver(z).cmix(xballots).if 〈π1(y), π1(z), 〈π2(y), π2(z)〉〉 = 〈idA, idB, xballots〉

then νn1.νn2.ctrustee〈renc(πi(xballots), n1), renc(πj(xballots), n2)〉.
cboard〈renc(πi(xballots), n1), renc(πj(xballots), n2),mixProof〉

T = cboard〈pub(sk)〉.ctrustee(xballots).cboard〈π1(xballots), dec(π1(xballots), sk), decP1〉.
cboard〈π2(xballots), dec(π2(xballots), sk), decP2〉

Fig. 1. Formal model of Prêt à Voter

where V gets the ballots - it is private because the order of candidates should be
kept secret. cver is a private channel whose role is to enforce eligibility: exactly the
ballots of idA and idB go into the mix. Without this, the intruder could mount
an attack against the privacy of idA by replacing the ballot of idB with a copy of
the ballot of idA in one of the public channels cscanner or cmix, as in e.g. [19]. The
channel ctrustee has to be private to ensure that the ballots that are decrypted
are indeed the ones that are mixed, and are not supplied by the intruder. Note
that the channels cscanner, cboard and cmix are public, and all information that goes
on private channels is also published on cboard.

To verify that PPaV satisfies vote-privacy we check that PPaV{v1 7→ a}{v2 7→
b} ∼EPaV

PPaV{v1 7→ b}{v2 7→ a} [20]. The motivation of our work is that, when
given as input this task (even without ACf , EmixP and EdecP), ProVerif does not
terminate. The non-termination is certainly due to Erenc, because EDY ∪ EdecP ∪
EmixP ∪ Evote is a subterm-convergent theory and is easily handled by ProVerif.

3.2 General setting for the reduction

For a term t and process P , we let:
re(t) = {u ∈ st(t) | top(u) ∈ {enc, renc}}; re(P) = {u ∈ st(P) | top(u) ∈ {enc, renc}}
ran(t) = v, if t = enc(t1, t2, v) ∨ t = renc(t1, v); ran(P) = {ran(u) | u ∈ re(P)}
Assumptions about the equational theory. In general, we consider a signa-
ture F such that {enc, renc, f} ⊆ F and a class of equational theories InpTh
such that for all E ∈ InpTh, we have E = E ′ ∪ Erenc, for some equational
theory E ′ = (R′, ∅). We assume furthermore that for each rule l → r ∈ R′:
(ae1) top(l) /∈ {enc, renc} and f /∈ sig(l)
(ae2) sig(r) ∩ {renc, enc, f} = ∅

(ae3) for all t, t′ ∈ re(l), we have:
· ran(t) ∈ var(l) r var(r)
· ran(t) = ran(t′) =⇒ t = t′

It is easy to see that EPaV satisfies (ae1)-(ae3).

Assumptions about the class of processes. We define the weak symbols of
E = (R,ACf) by W(E) = {g ∈ F | l → r ∈ R & g ∈ sig(l) =⇒ r ∈ F0}. For
example, we have W(EPaV) = Fver ∪ {f}. For all term u, we define:

stp(u) = {t ∈ st(u) | u = C[t] =⇒ ∃C1,C2. C[] = C1[C2[]] &
(top(C2) ∈W(E) ∨ C2 = renc(t1,C′2[]) ∨ C2 = enc(t1, t2,C′2[]))}

Intuitively, stp(t) are the subterms of t whose every occurence is ”protected”
by a weak symbol or by {enc, renc}. For example, stp(〈a, c, renc(b, c), renc(b, d)〉) =
{d}. We assume the following properties about every process P that we consider:
(ap1) f /∈ sig(P)
(ap2) ran(P) ⊆ bn(P)

(ap3) · u, u′ ∈ re(P) & ran(u) = ran(u′) =⇒ u = u′

· t ∈ ran(P) & u ∈ st(P) & t ∈ st(u) =⇒ t ∈ stp(u)
(ap4) !Q ∈ sp(P) =⇒ {renc, enc} ∩ sig(Q) = ∅

The main goal of assumptions (ap2),(ap3) is to ensure that the elements of ran(P)
are kept secret by the process. It is easy to see that PPaV satisfies (ap1)-(ap4).
The reduced theory. Given an input theory E = (R′∪Rrenc,ACf) ∈ InpTh, let

R−1
renc be the inverse ofRrenc, that is:R−1

renc =
{

enc(x, y, f(z, z′))→ renc(enc(x, y, z), z′)
renc(x, f(z, z′))→ renc(renc(x, z), z′)

Note that R−1
renc is convergent modulo AC. Given a term t, we let varf (t) =

{s ∈ var(t) | enc(u, v, s) ∈ st(t) ∨ renc(u, s) ∈ st(t)}. Then, for all m ≥ 1, an
(f,m)-substitution for t is a substitution σ such that dom(σ) ⊆ varf (t) and
∀x ∈ dom(σ). xσ = f(. . . f(x0, x1) . . . , xk), where 1 ≤ k ≤ m & x0, . . . , xk /∈
var(t) & ∀x′ 6= x.x0, . . . , xk /∈ var(x′σ). We denote by Θf,m(t) the set of (f,m)-
substitutions for t. Now, we consider a particular case of narrowing [21] with re-
spect to R−1

renc to define a set of variants [13] of a term: V renc
m (t) = {(tσ)↓R−1

renc
| σ ∈

Θf,m(t)}.
Example 4. We have V renc

2 (enc(a, b, x)) = {enc(a, b, x), renc(enc(a, b, x0), x1),
renc(renc(enc(a, b, x0), x1), x2)} and V renc

2 (renc(a, x)) = {renc(a, x), renc(renc(a, x0), x1),
renc(renc(renc(a, x0), x1), x2)}

Finally, we can define the reduced theory that corresponds to E and m:

Em = (Rm, ∅) Rm = {l′ → r | ∃l→ r ∈ R′. l′ ∈ V renc
m (l)}

We let OutTh be the set of all reduced theories that correspond to some
E ∈ InpTh and some m ≥ 1.

Example 5. Let us consider the theory EPaV and m = 1. We have EPaV,m =
(EPaV r Erenc) ∪ (S, ∅), where

S =

dec(renc(enc(x, pub(y), z0), z1), y)→ x
checkDec(decPf(renc(enc(x, pub(y), z0), z1), x, y),

renc(enc(x, pub(y), z0), z1), x, pub(y))→ ok
checkMix(mixPf(x, x, renc(renc(x, z0

x), z1
x), renc(y, zy), f(z0

x, z
1
x), zy),

x, y, renc(renc(x, z0
x), z1

x), renc(y, zy))→ ok
plus rules for checkMix corresponding to other permutations and
to substitutions {zy 7→ f(z0

y , z
1
y)} and {zx 7→ f(z0

x, z
1
x), zy 7→ f(z0

y , z
1
y)}

Lemma 1. For all E = E ′ ∪ Erenc ∈ InpTh such that E ′ is subterm-convergent,
Em is subterm-convergent.

We let ranr(P) = {t | renc(u, t) ∈ st(P)}. Our main result is a reduction
of trace equivalence modulo any E ∈ InpTh to trace equivalence modulo Em ∈
OutTh, for a well-chosen m:

Theorem 1 (Main theorem). For all processes P,Q that satisfy (ap1)-(ap4)
let m = 2 ∗ max(|ranr(P)|, |ranr(Q)|) + 1. Then, for all equational theory E ∈
InpTh, we have

P ∼Em
Q =⇒ P ∼E Q

where Em ∈ OutTh is the reduced theory that corresponds to E and m.

4 Reduction of the set of traces

As a first step in the proof of theorem 1, we introduce a restricted notion of
trace equivalence, P ' Q, that depends only on so-called local traces of P and
Q. We show that P ∼Em

Q =⇒ P 'Em
Q and P 'E Q =⇒ P ∼E Q.

4.1 Occurence order for a frame.

In the following, we assume that for all frame φ we are given a partial order
≺ on variables in var(φ). For all P,Q such that P w−→ Q, we associate such an
order ≺ to fr(Q): for all x, y ∈ var(fr(Q)) we have x ≺ y iff w = w1w2 and
there is a P1 such that P w1−−→ P1

w2−−→ Q, x ∈ var(φ(P1)) and y /∈ var(fr(P1)).
We let x � y if x ≺ y ∨ x = y. The orders ≺ and � are extended to sets of
variables from var(φ) by: S1 � S2 ⇔ ∀x ∈ S1∃y ∈ S2.x � y and S1 ≺ S2 ⇔
S1 � S2 & ∃y ∈ S2∀x ∈ S1.x ≺ y. Finally, we extend ≺ (and �) to a pre-
order on terms in T (F ,N , var(φ)) by letting u ≺ v ⇔ var(u) ≺ var(v) (and
u � v ⇔ var(u) � var(v)).

Example 6. Let P = c〈a〉.c〈b〉.c〈renc(a, b)〉. Then, we have

P
νx1.c〈x1〉−−−−−−→ νx2.c〈x2〉−−−−−−→ νx3.c〈x3〉−−−−−−→ {x1 7→ a} | {x2 7→ b} | {x3 7→ renc(a, b)} = Q

and x1 ≺ x2 � renc(x1, x2) ≺ x3 and renc(x1, x2)[fr(Q)] = x3[fr(Q)].
For the trace P w−→ P1 of example 2, we have z1 � renc(z1, n1) ≺ x ≺ z2 �

renc(π2(z2), n2) ≺ y.

4.2 Local traces in general

The definitions and results from this section stand for any equational theory E ,
with no restriction on E and no restriction on the class of processes.

In the following, we consider given a locality function L, that associates to
each frame φ a subset of its recipes, i.e. L(φ) ⊆ <(φ).

Definition 4 (local static equivalence). Let L be a locality function. We
say that two frames φ, ψ are in L-local static equivalence, denoted by φ

s' ψ, if
dom(φ) = dom(ψ) and ∀ζ1, ζ2 ∈ L(φ) ∩ L(ψ). ζ1[φ] =E ζ2[φ]⇔ ζ1[ψ] =E ζ2[ψ].

When L or E is not clear from the context, we use the notation φ
s'L,E ψ. We

say that two traces P w1−−→ P ′ and Q
w2−−→ Q′ are in L-local static equivalence if

obs(w1) = obs(w2) and fr(P ′)
s'L fr(Q′). For a sequence of labels w, we let inp(w)

be the set of recipes that occur as inputs in w, i.e. inp(w) = {ζ | ∃w1, w2, c. w =
w1c(ζ)w2}. A trace P w−→ Q is L-local if inp(w) ⊆ L(fr(Q)).

Definition 5 (local trace equivalence). Let L be a locality function. We say
that two processes P,Q are in L-local trace equivalence, denoted by P ' Q, if
for all L-local trace P

w1−−→ P ′ there exists a L-local trace Q
w2−−→ Q′ such that

obs(w1) = obs(w2) and fr(P ′)
s' fr(Q′). Moreover, for all L-local trace of Q there

must exist a corresponding L-local statically equivalent L-local trace of P .

When L is not clear from the context, we use the notation P 'L,E Q.
The idea of L-locality is to restrict the set of traces that have to be considered.

A locality function is especially useful if it admits a normalization function that
assigns to each recipe an equivalent local recipe:

Definition 6 (Normalization function). Given two locality functions L1,L2

and a frame φ, a normalization function from L1 to L2 associates to each recipe
ζ ∈ L1(φ) an equivalent L2-local recipe N(ζ) that is smaller wrt � than ζ, i.e.
we have ∀ζ ∈ L1(φ). N(ζ) ∈ L2(φ) & N(ζ)[φ] =E ζ[φ] & N(ζ) � ζ.

We denote by normL1,L2(φ) the set of normalization functions from L1 to L2

for φ. When L1 = <, we may use the notation normL2(φ) for this set.

We say that a frame φ is issued from a (L-local) trace if there is a process P
and a (L-local) trace P w−→ P ′ such that φ = fr(P ′). The following two proposi-
tions show under which conditions trace equivalence and local trace equivalence
coincide.

Proposition 1. Let L be a locality function such that, for all frames φ, ψ that
are issued from two statically equivalent traces, we have L(φ) = L(ψ). Then, for
all plain processes P,Q, we have P ∼ Q =⇒ P 'L Q.

Proposition 2. Let L be a locality function such that, for all frames φ, ψ that
are issued from two L-statically equivalent and L-local traces, there exists a nor-
malization function N ∈ normL(φ) ∩ normL(ψ). Then, for all processes P,Q, we
have P 'L Q =⇒ P ∼ Q.

To ease the construction of a normalization function for a locality function
L2, we can introduce an intermediary locality function L1, with L2(φ) ⊆ L1(φ) ⊆
<(φ), and provide two normalization functions: one from < to L1, and one from
L1 to L2. This is the role of the following corollary:

Corollary 1. Let L1,L2 be two locality functions such that,

– for all frames φ, ψ that are issued from two L2-statically equivalent and
L2-local traces, there exists a normalization function N2 ∈ normL1,L2(φ) ∩
normL1,L2(ψ).

– for all frames φ, ψ that are issued from two L1-statically equivalent and
L1-local traces, there exists a normalization function N1 ∈ norm<,L1(φ) ∩
norm<,L1(ψ).

– for all frames φ, ψ that are issued from two statically equivalent traces, we
have L1(φ) = L1(ψ)

Then, for all processes P,Q, we have P 'L2 Q =⇒ P 'L1 Q =⇒ P ∼ Q

4.3 Local traces for re-encryption

We define a locality function Lrenc that will allow us to infer a bound on the
number of re-encryptions applied to any given ciphertext. The main idea of
Lrenc is to disalow nested applications of the function renc in recipes. In spite of
this strong restriction, Lrenc will admit a normalization function, because nested
applications of renc can be replaced with equivalent terms that are somehow
smaller, e.g. renc(π1(〈renc(ζ1, ζ2), χ〉, ζ3) can be replaced with renc(ζ1, f(ζ2, ζ3)).

Let φ be a frame and ≺ be an occurence order on recipes associated to φ.
For two recipes ζ1, ζ2 ∈ <(φ), we define

ζ1 � ζ2 ⇔ ζ2 = renc(χ1, χ2) & ζ1[φ] =E χ1[φ] & (ζ1 ∈ st(χ1) ∨ ζ1 ≺ χ1)

Intuitively, we have ζ1 � ζ2 if ζ2 is a re-encryption of ζ1. The role of the inter-
mediary recipe χ1 in the definition of � is to take into account the case where
ζ2 is not a direct re-encryption of ζ1, but there exists a context inbetween ζ2 and
ζ1 that may dissapear by rewriting. This context may be entirely contained in
χ1, and then we have ζ1 ∈ st(χ1), or it may descent into the substitution part
of χ1[φ], and then we have ζ1 ≺ χ1 (note that we require ≺, and not simply �).

Example 7. Let us consider the trace P w−→ P1 of example 2. Let φ = fr(P1)
and ≺ be the corresponding occurence order. Then, we have renc(z1, n1) �
renc(π2(z2), n2), because π2(z2)[φ] = π2(〈x[φ], x[φ]〉) =E x[φ] = renc(z1, n1)[φ]
and renc(z1, n1) ≺ x ≺ z2 � π2(z2).

Now, given a frame φ, we can define the sets of recipes RR(φ) and respectively
RE(φ) that represent a nested application of re-encryptions and respectively the
re-encryption of an encryption. Local traces will avoid the use of such recipes.
Formally, we have:
RR(φ) = {ζ0 ∈ <(φ) | ∃ζ1 ∈ <(φ). ζ1 � ζ0 & top(ζ1) = renc}
RE(φ) = {ζ0 ∈ <(φ) | ∃ζ1 ∈ <(φ). ζ1 � ζ0 & top(ζ1) = enc}

Definition 7 (Locality function Lrenc). For all frame φ, we let

Lrenc(φ) = {ζ ∈ <(φ) | st(ζ) ∩ (RR(φ) ∪ RE(φ)) = ∅}

Example 8. Continuing example 7, we have renc(π2(z2), n2) /∈ Lrenc(φ), because
renc(z1, n1)� renc(π2(z2), n2) and top(renc(z1, n1)) = renc.

Lemma 2. For all equational theory E and all frames φ, ψ that are issued from
two statically equivalent traces, we have Lrenc(φ) = Lrenc(ψ).

Lemma 3 (Normalization function Nrenc). Consider the locality function
Lrenc and an equational theory E ∈ InpTh. For all frames φ, ψ that are issued from
two Lrenc-statically equivalent and Lrenc-local traces, there exists a normalization
function Nrenc ⊆ normLrenc(φ) ∩ normLrenc(ψ).

We prove lemma 3 by replacing every recipe renc(ζ0, χ0) ∈ st(ζ) ∩ (RR(φ) ∪
RR(ψ)), such that renc(ζ1, χ1) � renc(ζ0, χ0), with renc(ζ1, f(χ0, χ1)). We rely
on φ

s' ψ and on a well-chosen ordering of replacements to ensure that their
application is consistent in both frames. None of assumptions (ae1)-(ae3) or
(ap1)-(ap4) are used in the proof.

Example 9. Continuing example 8, we have Nrenc(renc(π2(z2), n2)) = renc(z1, f(n1, n2)).
Indeed, we have renc(z1, f(n1, n2)) ∈ Lrenc(φ), renc(z1, f(n1, n2))[φ] = renc(π2(z2), n2)[φ]
and renc(z1, f(n1, n2)) ≺ renc(π2(z2), n2).

4.4 Local traces for associativity-commutativity

We define a locality function Lf that will ensure a canonical use of the AC
symbol f : the nested application of f -symbols always follows the same pattern
and arguments of f always respect a well-chosen order.

We consider multi-hole term contexts: C[, . . . ,]n is a context with n holes,
and the subscript n will be dropped when n is clear from the context. For all
n ≥ 1, we let Cnf be the n-hole context f(. . . f(f(,),) . . . ,).

Definition 8. Assume that t is a term such that t = C[t1, . . . , tn], with sig(C) =
{f} and top(t1) 6= f, . . . , top(tn) 6= f . Then, we define Factf (t) = (t1, . . . , tn)
and Cf (t) = C[, . . . ,]. Sometimes we use the notation Factf (t) to also denote
the set {t1, . . . , tn}.

For example, Cf (f(f(a, b), f(a, b))) = f(f(,), f(,)) and Factf (f(f(a, b), f(a, b))) =
(a, b, a, b).

Let φ be a frame and≺ be the associated occurence ordering. We consider any
total extension of ≺, denoted by ≺f , that is compatible with the subterm order-
ing, i.e. u ∈ st(v)r{v} =⇒ u ≺f v. For all ζ ∈ <(φ), we define minφf (ζ) to be the
minimal wrt ≺f recipe that is equivalent to ζ in φ, i.e. we have minφf (ζ)[φ] =E ζ[φ]
and ∀ζ ′ ∈ <(φ). ζ ′[φ] =E ζ[φ] =⇒ minφf (ζ) ≺f ζ ′.

Now, given a frame φ, we can define the set of terms GF(φ) that will determine
the restricted use of the symbol f :
GF(φ) = {t | Factf (t) = (t1, . . . , tn) =⇒ Cf (t) = Cnf & ∃ζ1, . . . , ζn ∈ <(φ).

ζ1[φ]↓ = t1, . . . , ζn[φ]↓ = tn & minφf (ζ1) �f . . . �f minφf (ζn)}
Intuitively, GF(φ) requires that its members are in canonical form wrt asso-

ciativity of f , via Cf (t) = Cnf , and in canonical form wrt commutativity of f ,
via minφf (ζ1) �f . . . �f minφf (ζn). Recall that, for all term u, u↓ represents the
normalization of u wrt to R only, not considering ACf :

Definition 9 (Locality function Lf). For all frame φ, we let

Lf (φ) = {ζ ∈ <(φ) | ∀ζ ′ ∈ st(ζ). ζ ′[φ]↓ ∈ GF(φ)}

One may wonder why, in the definition of GF(φ), we compare the minimal recipes
minφf (ζi) and not simply the terms ti, like in [25], or the recipes ζi. We do not
compare the terms ti, because they may contain information that is irrelevant
to observations that can be made in a frame, in particular they may contain
secret names. We want to abstract away from such details, especially since we
want to relate two frames that may well be distinct on their non-observable
parts. Furthermore, we do not compare the recipes ζi because that would not
be sufficient to eliminate AC properties in a Lf -local trace: we may have ζ1 ≺f
ζ2, χ1 ≺f χ2, f(ζ1[φ]↓, ζ2[φ]↓) =AC f(χ1[φ]↓, χ2[φ↓]) and f(ζ1[φ]↓, ζ2[φ]↓) 6=
f(χ1[φ]↓, χ2[φ]↓). On the other hand, comparing minφf (ζi) ensures an ordering
on equivalence classes, and not merely an ordering on recipes.

Example 10. Consider the frames φ = νa.νb. {x1 7→ a, x2 7→ b, x3 7→ 〈b, a〉}
and ψ = νa.νb. {x1 7→ b, x2 7→ a, x3 7→ 〈a, b〉}, such that x1 ≺ x2 ≺ x3. Then,
minφf (π1(x3)) = x1 and minφf (π2(x3)) = x2. The recipes f(x1, f(x1, x1)), f(x2, x1)
and f(π1(x3), π2(x3)) are not in Lf (φ) and not in Lf (ψ).

In example 9, if we assume n2 ≺f n1, the recipe renc(z1, f(n1, n2)) is in
Lrenc(φ) r Lf (φ).

Definition 10 (Locality function Lrf). For all frame φ, we let

Lrf(φ) = Lrenc(φ) ∩ Lf (φ)

The following lemma is crucial in defining a normalization function for Lf ,
because it will allow us to obtain recipes of terms in Factf (ζ[φ]↓), that we can
re-arrange to transform a non-local recipe into a local one:

Lemma 4. Let P,Q be processes such that P w−→ Q and let φ = fr(Q). Then,
for all recipe ζ ∈ <(φ) such that ζ[φ]↓ = f(t1, t2) there exist f(ζ1, ζ2) ∈ <(φ)
such that

– f(ζ1, ζ2) ∈ st(ζ) or f(ζ1, ζ2) ∈ st(inp(w)) & f(ζ1, ζ2) ≺ ζ
– and f(ζ1, ζ2)[φ]↓ = f(t1, t2)

Note that f(ζ1, ζ2) ∈ <(φ) ⇔ {ζ1, ζ2} ⊆ <(φ). The proof of lemma 4 relies on
assumptions (ae2),(ae3) and (ap1) to deduce that, whenever f(t1, t2) is deducible
in a trace, it must be the case that both t1 and t2 are deducible.

Lemma 5. For all equational theory E = (R, ∅) ∈ OutTh and all frames φ, ψ
that are issued from two statically equivalent traces, we have Lf (φ) = Lf (ψ).

The proof of lemma 5 is eased by the absence of AC symbols, and it relies on
lemma 4 and φ

s∼ ψ to transfer the Lf -locality of a recipe from φ to ψ.

Lemma 6 (Normalization function Nf). Consider the locality functions Lrenc,Lrf

and an equational theory E ∈ InpTh. For all frames φ, ψ that are issued from two
Lrf-statically equivalent and Lrf-local traces, there exists a normalization function
Nf ⊆ normLrenc,Lrf

(φ) ∩ normLrenc,Lrf
(ψ).

We prove lemma 6 by replacing all ζ ′ ∈ st(ζ) such that ζ ′[φ]↓ /∈ GF(φ) and
Factf (ζ ′[φ]↓) = (t1, . . . , tn) with an equivalent ζ ′′ such that ζ ′′[φ]↓ ∈ GF(φ), to
obtain an Lf -local recipe. To construct ζ ′′, we start with a sequence of recipes
ζ1, . . . , ζn such that ζ1[φ]↓ = t1, . . . , ζn[φ]↓ = tn, whose existence is ensured
by lemma 4. Then, we consider ζ ′′ = Cnf [ζi1 , . . . , ζin], where ζi1 , . . . , ζin is a re-

ordering of ζ1, . . . , ζn such that minφf (ζi1) ≺f . . . ≺f minφf (ζin). We rely on φ
s' ψ

to ensure that these replacements are consistent in both frames φ and ψ.

Example 11. Continuing example 10, we have Nf (f(x1, f(x1, x1)) = f(f(x1, x1), x1),
Nf (f(x2, x1)) = f(x1, x2) and Nf (f(π1(x3), π2(x3))) = f(x1, x2).

4.5 Main results of this section

From proposition 1, lemma 2 and lemma 5, we have

Corollary 2. Consider the locality function Lrf and any equational theory Em ∈
OutTh. Then, for all plain processes P,Q, we have P ∼ Q =⇒ P 'Lrf

Q.

From corollary 1 (applied to Lrenc and Lrf) and lemmas 6, 3 and 2, we have:

Corollary 3. Consider the locality function Lrf and any equational theory E ∈
InpTh. Then, for all plain processes P,Q, we have P 'Lrf

Q =⇒ P ∼ Q.

To bridge the gap between P ∼Em
Q and P ∼E Q it is sufficient now to show

that P 'Lrf ,Em
Q =⇒ P 'Lrf ,E Q. This is the subject of the next section.

5 Reduction of equational theories

In this section, we use R for a rewrite system corresponding to a theory in InpTh,
and Rm for a corresponding rewrite system of a theory in OutTh. Lemma 7
simplifies reasoning modulo AC, by showing that ACf does not interfere with
rewriting. The proof relies on assumption (ae1), in particular on the fact that f
does not occur on the left-hand side of rewrite rules:

Lemma 7. For any equational theory E ∈ InpTh and for all terms u, v, we have
u→∗AC v if and only if u→∗ v′, for some term v′ such that v′ =AC v.

Lemma 8 simplifies reasoning modulo re-encryption, by showing that nonces
from the protocol always stay secret:

Lemma 8. For all process P that satisfies (ap1)-(ap4) and all equational theory
E that satisfies (ae1)-(ae3), we have ran(P) ⊆ S(P, E).

The proof relies on assumptions (ap2) and (ap3), to ensure that elements of
ran(P) are handled in a restricted way. Then, assumption (ae3) and the defini-
tions of stp,W(E) ensure that this indeed guarantees secrecy.

We will show that Lrf -local traces have a bounded re-encryption depth. To
define it, we must identify the chain of re-encryptions that have been applied to
obtain a given ciphertext. This chain will be the limit of recursively identifying
re-encryption witnesses:

Definition 11 (Re-encryption witness). Assume u →∗R v. Then, for all
term t ∈ st(v) with top(t↓) ∈ {enc, renc}, a re-encryption witness for t in u is a
term rwu(t) ∈ st(u), such that rwu(t)→∗R t↓ and top(rwu(t)) ∈ {enc, renc}.

For intuition, note that u = C′[rwu(t)]→∗R C[t] = v, for some contexts C and C′.

Example 12. Let u = π1(〈renc(π1(〈enc(a, b, r1), c〉), r2), c〉). We have u→ v1 →∗
v2 where v1 = π1(〈renc(enc(a, b, r1), r2), c〉) and v2 = enc(a, b, f(r1, r2)). Then,
for t = enc(a, b, r1) ∈ st(v1), we have rwu(t) = t. For t = enc(a, b, f(r1, r2)) ∈
st(v2), we have rwv1(t) = renc(enc(a, b, r1), r2) and rwu(t) = renc(π1(〈enc(a, b, r1), c〉), r2).

Lemma 9. Assume u →∗R v. Then, for all term t ∈ st(v) with top(t↓) ∈
{enc, renc}, there always exists a re-encryption witness rwu(t).

In particular, the previous lemma shows that for all term t with top(t↓) ∈
{enc, renc} there exists a re-encryption witness of t↓ in t, that is rwt(t↓).

Definition 12 (Re-encryption depth). For all term t, we define its re-encryption
depth rd(t) as follows:

– rd(t) = 0, if top(t↓R) /∈ {enc, renc}
– rd(t) = 1, if top(t↓R) = enc and top(rwt(t↓)) = enc
– rd(t) = rd(t′) + 1, if top(t↓R) ∈ {enc, renc} and rwt(t↓) = renc(t′, t′′)

Example 13. We have rd(renc(π1(〈renc(enc(a, b, r1), r2), renc(a, r0)〉, r3)) = 3. Con-
tinuing example 12, we have rd(u) = 2.

Next we show that for all term u with a re-encryption depth bounded by m,
its normal form modulo Rm is the normal form modulo Rm of its re-encryption
witness modulo R:

Lemma 10. Let u be a term such that, for all t ∈ st(u), rd(t) ≤ m + 1. Then,
for all term v such that u →∗R v following a bottom-up rewriting sequence, we
have u→∗Rm

vρ where

ρ = {t 7→ rwu(t)↓Rm | t ∈ st(v) & top(t) ∈ {enc, renc} & t = t↓R}

Example 14. Consider the terms u = renc(π1〈enc(a, pub(k), r1), a〉, r2) and u1 =
dec(u, k). Then, rwu(u↓R) = u, and we obviously have u↓Rm

= (u↓R)ρ =
rwu(u↓R)↓Rm

= renc(enc(a, pub(k), r1), r2). On the other hand, we have u1 →Rm

dec(u↓Rm
, k)→Rm

a = u1↓R = u1↓Rρ, where we have used the rule
dec(renc(enc(x, pub(y), z0), z1), y)→ x for the last rewriting step.

The following lemma bridges the gap backwards, from →∗Rm
to →∗R, and is

an easy consequence of assumption (ae3):

Lemma 11. For all terms u, v such that u→∗Rm
v, we have u→∗R v.

Relying on (ap2)-(ap4) and lemma 8, we can show that for all trace P w−→ Q
and all nonce t ∈ ran(P), there exists a unique term ciph(t) such that t =
ran(ciph(t)) and ciph(t) = u[fr(Q)], for some term u ∈ st(P) ∪ Lrf(fr(Q)).

Lemma 12. Let P w−→RQ be a Lrf-local trace and φ = fr(Q). Let T be a term in
st(P) ∪ Lrf(fr(Q)). Then, for all t ∈ st(T [φ]), we have:

(a) rd(t) ≤ 2 ∗ |ranr(P)|+ 2
(b) rd(t) > 1 =⇒ Factf (ran(t↓)) ∩ ran(P) 6= ∅
(c) rwt(t↓) = renc(u, v) =⇒

– either v ∈ ran(P) and renc(u, v) = ciph(v)
– or else Factf (v↓) ∩ ran(P) = ∅ and
• either top(u↓) /∈ {enc, renc}
• or else ∃t′ ∈ ran(P). rwu(u↓) = ciph(t′)

The point (a) is obviously useful because it bounds the re-encryption depth
of all term t that occurs in Lrf -local traces. It is proved by considering any
chain of re-encryption witnesses starting from rwt(t↓) and showing that each
re-encryption performed by the environment (i.e. in recipes) must be followed
by a re-encryption performed in P . Because ciph(t) is unique for all t ∈ ranr(P),
we can deduce from assumption (ap4) that the total number of re-encryptions
performed by P for every single ciphertext is bounded by |ranr(P)|, thus we
deduce a bound of 2 ∗ |ranr(P)| + 1 for the length of any re-encryption chain.
The points (b) and (c) will be useful to show that equalities of terms with pos-
itive re-encryption depth transfer to equalities of their respective re-encryption
witnesses. In conjunction with lemma 10, this will allow us to transfer equalities
modulo E to equalities modulo Em.

Finally, we prove a lemma showing that equivalence classes of E and Em are
the same in local traces:

Lemma 13. Let E ∈ InpTh and P
w−→EQ be a LErf-local trace. Let φ = fr(Q),

m = 2 ∗ |ranr(P)|+ 1 and Em ∈ OutTh be the reduced theory that corresponds to
E and m. Then,

A. for all terms u1, u2 ∈ st(P) ∪ Lrf(fr(Q)), we have u1[φ] =E u2[φ] =⇒
u1[φ] =Em

u2[φ]
B. for all terms u1, u2, we have u1[φ] =Em

u2[φ] =⇒ u1[φ] =E u2[φ]

To prove A, we first eliminate the AC equations, relying on lemma 7, the point
(c) of lemma 12, lemma 8 and the definition of Lf . This gives us u1[φ] =E
u2[φ] =⇒ u1[φ]↓R = u2[φ]↓R. To complete the reduction, we first use the
point (a) of lemma 12 and lemma 10 to show that u1[φ]↓Rm

= u1[φ]↓Rρ1 and
u2[φ]↓Rm

= u2[φ]↓Rρ2, for some replacements ρ1, ρ2. Then, we use the points
(b),(c) of lemma 12 to show that we must have ρ1 = ρ2. Therefore, we have
u1[φ]↓R = u2[φ]↓R =⇒ u1[φ]↓Rm

= u2[φ]↓Rm
. As a consequence of lemma 13,

we have:

Proposition 3. Consider given the locality function Lrf and E ∈ InpTh. Then,
for all plain processes P,Q, we have P 'Em

Q ⇔ P 'E Q, where m = 2 ∗
max(|ranr(P)|, |ranr(Q)|) + 1.

We conclude the proof of theorem 1 as a consequence of corollary 2, propo-
sition 3 and corollary 3.

Application to vote privacy in Prêt à Voter. We have EPaV = (RPaV,ACf), with
RPaV = RDY ∪Rrenc ∪RdecP ∪RmixP ∪Rvote. Each of these five rewrite systems
is AC-convergent, and so is the system RPaV rRmixP. However, RPaV is not AC-
confluent (and therefore not AC-convergent) due to critical pairs between rules
in Rrenc and rules in RmixP. The system RPaV can be made AC-convergent by
completion, but this introduces other problems, notably violation of conditions
(ae1)-(ae3) and the addition of a significant number of new rules, that may
pose problems for ProVerif. That is why our current analisys does not cover the
mixnet proofs in RmixP - we leave it as a subject for future work.

Note that |ranr(PPaV{v1 7→ a}{v2 7→ b})| = |ranr(PPaV{v1 7→ b}{v2 7→ a})| =
2, corresponding to the re-encryption of ballots from idA and idB, and we deduce
a bound m = 5 in the application of Theorem 1. Therefore, from Theorem 1 and
the result returned by the ProVerif code available online, we conclude

Corollary 4. Prêt à Voter (without mixnet proofs) satisfies vote privacy for two
eligible voters and two candidates.

6 Conclusion and future work

Note that proposition 3 shows that abstracting E with Em is not only sound, but
also complete in local traces. This means that, to derive the completeness of our
reduction for the full set of traces, we only have to extend lemma 5 to theories
in InpTh and lemma 3 to theories in OutTh. In conjunction with lemma 1 and [5,
15, 10], this would lead to a first decision procedure for trace equivalence outside
the class of subterm-convergent systems.

To be really faithul to algebraic properties of ElGamal re-encryption, ACf
should probably be extended to AGf , unless e.g. it is computationally sound to
consider only ACf [18].

It would be nice to see how some of our restrictions can be lifted, in particular
the quite strong restrictions on the occurence of the AC symbol in the proto-
col and in the theory. The restriction not to have re-encryptions in replicated
processes, (ap4), looks natural for the reduction that we have in mind, but is it
really necessary in order to be able to handle re-encryption automatically?

Observational equivalence is stronger than trace equivalence, but it is un-
clear whether it is more appropriate for definitions of security. In any case, our
reduction could also be used for verification of observational equivalence, and
we would have to consider a notion of local trees instead of local traces for the
correctness proof.

This paper shows that there exists an interesting relation between restric-
tions of the set of traces and restrictions of the equational theory. We have
exhibited this relation only for two particular algebraic properties, and it would
be interesting to see how it can be formulated in general.

References

1. Mart́ın Abadi and Véronique Cortier. Deciding knowledge in security protocols
under equational theories. Theoretical Computer Science, 367(1–2):2–32, 2006.

2. Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure communi-
cation. In Proceedings of the 28th ACM Symposium on Principles of Programming
Languages (POPL’01), pages 104–115, January 2001.

3. Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: the
spi calculus. Information and Computation, 148(1), 1999.

4. Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Analysing unlinka-
bility and anonymity using the applied pi calculus. In CSF, pages 107–121. IEEE
Computer Society, 2010.

5. Mathieu Baudet. Deciding security of protocols against off-line guessing attacks.
In Proceedings of the 12th ACM Conference on Computer and Communications
Security (CCS’05), pages 16–25, Alexandria, Virginia, USA, November 2005. ACM
Press.

6. Mathieu Baudet, Véronique Cortier, and Stéphanie Delaune. YAPA: A generic tool
for computing intruder knowledge. In Ralf Treinen, editor, Proceedings of the 20th
International Conference on Rewriting Techniques and Applications (RTA’09), vol-
ume 5595 of Lecture Notes in Computer Science, pages 148–163, Braśılia, Brazil,
June-July 2009. Springer.

7. Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In IEEE
Symposium on Security and Privacy, pages 86–, 2004.

8. Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated verification of
selected equivalences for security protocols. Journal of Logic and Algebraic Pro-
gramming, 75(1):3–51, 2008.

9. Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune. Automating se-
curity analysis: symbolic equivalence of constraint systems. In Jürgen Giesl and
Reiner Haehnle, editors, Proceedings of the 5th International Joint Conference on
Automated Reasoning (IJCAR’10), volume 6173 of Lecture Notes in Artificial In-
telligence, pages 412–426, Edinburgh, Scotland, UK, July 2010. Springer-Verlag.

10. Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune. Trace equiva-
lence decision: Negative tests and non-determinism. In Proceedings of the 18th
ACM Conference on Computer and Communications Security (CCS’11), Chicago,
Illinois, USA, October 2011. ACM Press. To appear.

11. Ştefan Ciobâcă, Stéphanie Delaune, and Steve Kremer. Computing knowledge in
security protocols under convergent equational theories. Journal of Automated
Reasoning, 2011. To appear.

12. Hubert Comon-Lundh and Véronique Cortier. Security properties: Two agents are
sufficient. In Pierpaolo Degano, editor, ESOP, volume 2618 of Lecture Notes in
Computer Science, pages 99–113. Springer, 2003.

13. Hubert Comon-Lundh and Stéphanie Delaune. The finite variant property: How to
get rid of some algebraic properties. In Jürgen Giesl, editor, Proceedings of the 16th

International Conference on Rewriting Techniques and Applications (RTA’05), vol-
ume 3467 of Lecture Notes in Computer Science, pages 294–307, Nara, Japan, April
2005. Springer.

14. Ricardo Corin, Jeroen Doumen, and Sandro Etalle. Analysing password protocol
security against off-line dictionary attacks. Electr. Notes Theor. Comput. Sci.,
121:47–63, 2005.

15. Véronique Cortier and Stéphanie Delaune. A method for proving observational
equivalence. In Proceedings of the 22nd IEEE Computer Security Foundations
Symposium (CSF’09), pages 266–276, Port Jefferson, NY, USA, July 2009. IEEE
Computer Society Press.

16. Véronique Cortier and Stéphanie Delaune. Decidability and combination results for
two notions of knowledge in security protocols. Journal of Automated Reasoning,
2011. To appear.

17. Véronique Cortier, Stéphanie Delaune, and Pascal Lafourcade. A survey of alge-
braic properties used in cryptographic protocols. Journal of Computer Security,
14(1):1–43, 2006.

18. Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of symbolic
methods in computational analysis of cryptographic systems. Journal of Automated
Reasoning, 46(3-4):225–259, April 2010.

19. Véronique Cortier and Ben Smyth. Attacking and fixing helios: An analysis of bal-
lot secrecy. In Proc. of the 24th IEEE Computer Security Foundations Symposium,
pages 297–311, 2011.

20. Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type
properties of electronic voting protocols. Journal of Computer Security, 17(4):435–
487, July 2009.

21. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, pages 243–
309. North-Holland, 1990.

22. Luca Durante, Riccardo Sisto, and Adriano Valenzano. Automatic testing equiva-
lence verification of spi calculus specifications. ACM Trans. Softw. Eng. Methodol.,
12(2):222–284, 2003.

23. Steve Kremer, Antoine Mercier, and Ralf Treinen. Reducing equational theories
for the decision of static equivalence. Journal of Automated Reasoning, 2011. To
appear.

24. Ralf Küsters and Tomasz Truderung. Using proverif to analyze protocols with
Diffie-Hellman exponentiation. In CSF, pages 157–171. IEEE Computer Society,
2009.

25. Ralf Küsters and Tomasz Truderung. Reducing protocol analysis with XOR to
the XOR-free case in the horn theory based approach. J. Autom. Reasoning, 46(3-
4):325–352, 2011.

26. Christopher Lynch and Catherine Meadows. Sound approximations to diffie-
hellman using rewrite rules. In Javier Lopez, Sihan Qing, and Eiji Okamoto,
editors, ICICS, volume 3269 of Lecture Notes in Computer Science, pages 262–
277. Springer, 2004.

27. Sebastian Mödersheim. Diffie-Hellman without difficulty. In FAST, 2011.
28. Peter Y. A. Ryan and Steve A. Schneider. Prêt à voter with re-encryption mixes.

In Dieter Gollmann, Jan Meier, and Andrei Sabelfeld, editors, ESORICS, volume
4189 of Lecture Notes in Computer Science, pages 313–326. Springer, 2006.

29. Alwen Tiu and Jeremy E. Dawson. Automating open bisimulation checking for the
spi calculus. In Proc. of the 23rd IEEE Computer Security Foundations Symposium,
pages 307–321, 2010.

