Trivitas: Voters directly verifying votes

Sergiu Bursuc, Gurchetan S. Grewal, and Mark D. Ryan

School of Computer Science, University of Birmingham, UK
s.bursuc@cs.bham.ac.uk,research@gurchetan.com,m.d.ryan@cs.bham.ac.uk

Abstract. Individual verifiability is the ability of an electronic voting
system to convince a voter that his vote has been correctly counted in
the tally. Unfortunately, in most electronic voting systems the proofs for
individual verifiability are non-intuitive and, moreover, need trusted de-
vices to be checked. Based on the remote voting system JCJ/Civitas, we
propose Trivitas, a protocol that achieves direct and end-to-end individ-
ual verifiability, while at the same time preserving coercion-resistance.

Our technical contributions rely on two main ideas, both related
to the notion of credentials already present in JCJ/Civitas. Firstly, we
propose the use of trial credentials, as a way to track and audit the
handling of a ballot from one end of the election system to the other
end, without increased complexity on the voter end. Secondly, due to
indistinguishability of credentials from random values, we observe that
the association between any credential and its corresponding vote can
be made public at the end of the election process, without compromising
coercion-resistance. The voter has more intuitive and direct evidence that
her intended vote has not been changed and will be counted in the final
tally.

Keywords. Electronic voting, Individual verifiability, Trial votes, Intuitive veri-
fiability

1 Introduction

The concept of election outcome verifiability has emerged as a vital ingredient in
electronic voting systems. This has arisen partly because some implementations
have been shown vulnerable to outcome manipulation, e.g. [8,5]. Another reason
is that, in contrast with electronic banking and social networking, it is not easy
to put mistakes right if they are uncovered after the results of the election have
been declared. A third reason is that it is notoriously difficult to prove that the
software which might be running behind the scenes has the expected properties;
it is more practical to verify the results produced by the software, than the soft-
ware itself. For this reason, election outcome verifiability is sometimes referred
to as software independence.

Election verifiability in presence of a bulletin board may be conveniently split
in three notions [19]:
Individual verifiability [9,21,10,2-4,1]. To any voter, individual verifiabil-
ity should offer the possibility to verify that her cast ballot has been correctly

recorded and tallied by the system. Ideally, the voter should also have an assur-
ance that her cast ballot correctly encodes her cast vote. In some systems this
additional assurance is offered by an option to audit a ballot [3,4, 1] or a ballot
form [10] before casting a vote.

Universal verifiability [17,20, 14, 15]. To any external observer, universal ver-
ifiability should offer the possibility to verify that all recorded votes have been
correctly tallied.

Eligibility verifiability [18,11,19]. To any external observer, eligibility verifia-
bility should offer the possibility to verify that the set of tallied votes corresponds
to votes cast by eligible voters. Eligibility may be enforced at any stage in the
system: either during the casting of a vote [10], or during its recording [1], or
during its tallying [18, 11]. Accordingly, eligibility verifiability will pertain to the
corresponding stage.

One problem with the way individual verifiability is usually achieved is that
the voter does not see her vote at the time she visits the bulletin board. This
is the case in Helios [1], Pret-a-Voter [10], JCJ/Civitas [18,11], and others. The
reason is in order to achieve the property of coercion-resistance, which asserts
that the voter shouldn’t be able to prove to a potential coercer how she voted.
Therefore, individual verifiability is achieved by indirect means; the voter can
check that the encrypted ballot is present, and has some other evidence (perhaps
based on auditing) that the encrypted ballot really represents her vote. Moreover,
after the ballots are anonymized, the voter looses track even of her encrypted
ballot.

Voters are likely to find this indirect achievement of individual verifiability
unsatisfactory. This feeling has arisen in the focus groups that were held as part
of the EPSRC project Trustworthy Voting Systems [23]. Four hour-long managed
discussions among groups of about 10 citizens were arranged by a professional
facilitator, with the aim of soliciting people’s opinions about Pret-a-Voter. In
at least two of the discussions, participants questioned the worthwhileness of
checking the presence of their ballot on the bulletin board, given that they did
not have any direct evidence that the ballot really contained their vote. The
issue has also been mentioned by Adida and Neff [2], where the requirement
that verifiability should be direct and end to end has been highlighted.

Our contribution. We introduce Trivitas, an adaptation of JCJ/Civitas. We
show how the credentials of JCJ/Civitas can be adapted to improve individual
verifiability. In particular, we show how voters can see their own vote in plaintext,
making the verification experience more direct, and more intuitive.

Our first idea is the notion of trial votes. A trial vote is a vote that is cast
along with real votes, but will not be counted. It will be decrypted and exposed
along the way, in a way that is traceable by the voter that cast it. Since most
of the system components are not able to distinguish trial and real votes, it
gives confidence in the correct handling of all votes. This is an extension of the
ideas of auditing in [10, 1], with the crucial difference that the auditing process
is performed not only in the phase of casting a ballot, but is spread throughout
the whole election process. In other words, a trial credential will function as a

marker whose sign is that the handling of this ballot should be made transparent,
by e.g. decrypting and publishing its contents at every stage. There are a few
technical difficulties with that, because trial ballots can fulfill their role only as
long as they are not identified as such by possibly corrupted agents in the voting
system. To avoid this problem, we make use of the fact that the decryption key
is distributed among a set of trustees and propose to decrypt trial ballots by
running a decryption mix [9, 10] among the trustees.

Our second idea is based on the following observation: real credentials are
indistinguishable for anyone (exept for the voter) from trial credentials and
fake credentials (an element that JCJ/Civitas introduces to enable coercion-
resistance). Therefore, without compromising coercion-resistance, for each bal-
lot (be it real, trial or fake) we can publish after anonymization (done by a
re-encryption mixnet [17]) its corresponding credential and the decrypted vote.
This allows a voter to verify that all its votes have made it into the final tally:
its real vote, its trial vote and its possible fake votes. There is again a technical
difficulty, related to eligibility verifiability and coercion-resistance: trial votes
and fake votes have to be eliminated from the final tally in a publicly verifiable
way, hence a coercer could observe that the credential obtained from the voter
is fake. To avoid this problem we make use again of a decrytion mix run by the
trustees: there is no way to link the decrypted contents of a ballot to ballots that
will be eliminated to enforce eligibility.

Outline of the paper. In section 2 we describe the cryptographic primitives
used in JCJ/Civitas and in section 3 we review its design and its solutions for
election verifiability. Then, we make specific our critique of individual verifia-
bility, that can be extended to systems like Pret a Voter [10] and Helios [1]. In
section 4, we describe our proposal. In section 5, we show initial ideas about how
trial credentials could be used to improve universal verifiability and recoverabil-
ity. Finally, in section 6 we argue that changing JCJ/Civitas in the way that we
propose does not compromise the coercion-resistance guarantees of the original
system, and we give a hint of how the proof of [18] could be adapted to prove
coercion-resistance for the new system.

2 Cryptographic primitives

JCJ/Civitas relies on the following cryptographic primitives. We do not detail
the structure of zero-knowledge proofs, because it is not relevant for our pur-
poses.

Distributed El-Gamal [7]. The encryption scheme being used is El-Gamal
over a multiplicative group of integers modulo a prime p = 2kq+1, where ¢ is also
prime. The plaintext space and the ciphertext space M is the order ¢ subgroup
of Zy, (actually, some encoding has to be done when one wants the plaintext
space to be Z,, but we can ignore such details here). Let g be the generator of
M. Then, a private key is a number z € Z; and the corresponding public key
is k = ¢g® mod p. The encryption of a message m with a public key k is a pair

(¢9" mod p,m - k" mod p) where r is a fresh random number in Zy. To decrypt a
ciphertext (a,b) the holder of the private key « computes a% mod p.

JCJ/Civitas distributes the secret key (relying on e.g. [22]) among a set of
trustees T1,...,T,. In that case, the private key is split as ¢ = 21 + ... + z,
and each of T; holds a secret share x;. To decrypt a ciphertext (a,b), each of T;
publishes a partial decryption share a; = a® mod p. The final decryption can
then be publicly computed as a1~.{).~an'

The El-Gamal encryption of a plaintext m with a public key k£ and random
r will be denoted in the following by {m}},, or simply by {m}, when r is not
important or is clear from the context. The private part of a public key k& will
be denoted by priv(k). The decryption of a ciphertext m with a private key
will be denoted by dec(m, z), or simply by dec(m) when the key is clear from
the context.

Decryption proof. Along with partial decryption shares a; the holders of
private key shares can send a zero-knowledge proof (equality of discrete loga-
rithms) of the fact that they have used the correct key share to construct a;. This
allows any observer to check that the final result of the decryption is correctly
computed, i.e. that decryption of {m}, is performed with the key priv(k) and
gives the result m.

Re-encryption and mix nets. Given a ciphertext (a,b) constructed using
the public key k any party can compute another ciphertext (a’,d’) such that
(a’,b') encrypts the same plaintext as (a,b) using the same key k: choose a
random r € Z; and let (a’,b") = (a- g" mod p,b- k" mod p). We will denote the
re-encryption of a ciphertext m with a random r by renc(m,r).

A re-encryption mix net M takes as input a sequence of ciphertexts S =
mi,...,my and outputs a sequence of ciphertexts &’ = mj,...,mj, that is a
re-encryption mix of §. That is, S’ is a formed by re-encryption of elements in a
permutation of S. Formally, there is a permutation o of {1, ..., k} and a sequence
of randoms 71, ..., 7% such that mj = renc(my(1),71), ..., M), = renc(My(r), x)-
Moreover, if at least one member of M is trusted not to be controlled by an
intruder, he is unable to discover the permutation o.

Mix proof, e.g. [17]. Given two sequences of ciphertexts S = my,...,my
and &' = mf,...,m}, a zero-knowledge mix proof shows that S’ is a correct
re-encryption mix of &, but without revealing (a non-negligible part of) o.

Plaintext equivalence test [16]. Consider two ciphertexts (aj,b;) and
respectively (ag,bq), encrypted with the same key k, whose plaintexts are t;
and respectively to. Assume that the private part priv(k) is distributed among

T1,...,T,. Then Ty,...,T, can run a protocol to determine if ¢; = ¢ without
them being able to learn ¢1 or ts: roughly, they compute (a,b) = (&, Z—;) and

perform a distributed decryption of (a,b); if the result of the decryption is 1,
then t; = to; otherwise, t1 # ts.

For two ciphertexts m; and mqy, we will denote by PET (mq,ms) = true if the
plaintext equivalence test holds for m; and ms.

PET proof [16]. Decryption proofs for the distributed decryption performed
in a plaintext equivalence test can be used to attest that the test has been cor-

rectly performed, i.e. that PET(mq,mgy) = true if and only if dec(my, priv(k)) =
dec(ma, priv(k)).

3 Individual verifiability in JCJ/Civitas

3.1 Overview of JCJ/Civitas

The main idea in JCJ/Civitas is the notion of credentials (with a private and
a public part), that allow eligible voters to authenticate their ballots. To allow
coercion-resistance, JCJ/Civitas distributes credential generation among a set
of parties called registrars. It is assumed that at least one of the registrars will
not be corrupted by the coercer and that the voter can communicate with this
registrar using an untappable channel. To evade coercion, the voter has the
ability to generate a fake credential, that is indistinguishable from a real one for
the coercer. The participants of the protocol are

R - the set of registrars, whose role is to authenticate eligible voters and help
generate their credentials.

T - the set of trustees, whose role is to generate and publish the public key of
the election. Each of them holds a secret share of the corresponding private
key, that will be used for ditributed decryption and plaintext equivalence
tests.

Vi,..., Vs - the set of eligible voters.

M - a re-encryption mix net, whose role is to anonymize the set of cast ballots
before verification of their eligibility and their decryption.

B - the bulletin board, whose role is to record the manipulation of ballots at all
stages of the election, from their recording to their tallying. It also records
proofs of correct ballot handling submitted by R,7 and M, that can be
checked by external auditors.

A coercer may control some of Vi,...,V,, some of R, some of 7 and some
of M but not all. To achieve coercion-resistance, at least one of R, one of 7
and one of M has to be outside the control of the coercer. A summary of the
protocol is as follows, complemented by solid lines in figures 1 and 2. There are
three phases: registration, voting and tabulation.

Registration. Election starts with trustees generating the public key KT
of the election in a distributed manner, such that no minority of trustees can
recover the private key priv(KT) [22] and the decryption is distributed [7]. The
public part of the key is published on the bulletin board. By running a separate
protocol with each of the registrars, the voter V; obtains the private part ¢; of
her credential, together with a non-transferable proof P; of the fact that the
public part {c;}«T, that is published in the electoral roll ER, correctly encodes
the private part.

Voting. The ballot contains the encryption of the private credential ¢; (with
the key KT and with a different random than in ER) and the encryption of the
intended vote v; (with the key KT). To prevent the re-use of the same credential

by a party that does not hold the private part, the ballot contains additionally
a proof P, of the fact that its creator knows both ¢; and v;. Additionally, Peo,
proves that v; is a valid vote, according to the specification decided by election
authorities.

Tabulation. Before tabulation starts, the proofs of cast ballots are verified
and ballots with invalid proofs are discarded. The valid ballots and the electoral
roll are then sent to a re-encryption mix net for anonymization. Credentials from
anonymized ballots are compared to credentials from the anonymized electoral
roll, to ensure that votes to be counted are cast by eligible voters only. If multiple
ballots are submitted with the same credentials, only one copy is kept accord-
ing to a predefined policy, e.g. only the last vote counts. Duplicate elimination
is done by plaintext equivalence tests and can be performed either before, or
after the mix. Finally, the decided set of countable votes is decrypted, and the
corresponding decryption proofs are posted on the bulletin board.

3.2 Election verifiability

Universal verifiability and eligibility verifiability are achieved by proofs
posted on the bulletin board:

— Mix proofs allow auditors A to verify that all ballot coming out of the mix
net M (i.e. belonging to the set MixedBallots) corresponds to a recorded
ballot (i.e. belonging to the set CastBallots), and also that no recorded ballot
has been discarded.

— PET proofs and proofs P, allow A to verify that only votes coming from
eligible voters are kept on the bulletin board for final decryption (i.e. in the
set CountableVotes).

— Decryption proofs allow A to verify that all countable votes have been cor-
rectly decrypted.

Individual verifiability is achieved as follows:

1. V must trust her voting machine that her cast ballot correctly encodes her
vote.

2. V can check the bulletin board to see that the cast ballot has been correctly
recorded.

3. Universal verifiability of mix nets ensures that all the recorded votes are
correctly mixed, and therefore the vote cast by V is included in the set of
mixed ballots.

4. Universal verifiability of PETSs ensures that at least one copy of V’s ballot is
kept after the elimination of duplicates. Moreover, the proof P; that the voter
obtains during registration ensures that her private credential corresponds
to a public credential in the electoral roll ER. Universal verifiability of mix
nets ensures that a re-encryption of her public credential is also present in
the anonymized electoral roll MER. Universal verifiability of PETSs ensures
that valid ballots are not eliminated when credentials are checked against
the electoral roll MER. Altogether, these give to V an assurance that her

Fig.1. JCJ/Civitas (solid lines) and additions of Trivitas (dotted lines):
Registration and Voting phases

R B Vi T
Registration
create KT, priv(KT)
KT
create c1,...,Cp
ER :== Vi, {ci}kr) - Vn, {en}kT)
...................... L
. createci,...,c} :
TR := Vi, {ci}kr)s- - r Vns {cn}kr)
..................................... cn
TR
............................... >
ci, P;
ci, Pi
.. >

Verify (Civ {Ci}KT7 Pl)

CastBallots := 0

Bi = ({Ci}KTy {U’i}KT7 Pcorh Pcv)

................... Lo
BI = ({Cﬁ}KTv{'Uz?}KTv Piorr: Pf:v) :

CastBallots := CastBallots U {B; }
e o _
. CastBallots := CastBallots U {B;} :
.................... | e e

Fig. 2. JCJ/Civitas (solid lines) and additions of Trivitas (dotted lines):
Tabulation phase

B M T
o CastBallots
Validation
for all (ec, ev, Pcorr, Pcy) in CastBallots
if verify(Pcorr, Pev) = true
ValidBallots := ValidBallots U {(ec,ev)}
TrialsA := PETDecryptUnlink(ValidBallots, TR)
ValidBallots
TrialsA
I e
____________ ValidBallots, ER | [
Mixing andbaross,
MixedBallots := ReencryptMix(ValidBallots)
MER := ReencryptMix(ER)
MixedBallots, MER, Mix proofs
___________________ MixedBallots MER |
Tallying ixedBallots,
. DecBallots := DecryptUnlink(MixedBallots)
DeCBa.‘IlotS N
(...
for all (ec,ev) € MixedBallots
if Jec’ € MER. PET (ec,ec’) = true
CountableVotes := CountableVotes U {ev}
Outcome := Outcome U {dec(ev)}
© for all (ec, ev) € MixedBallots
if Jec’ € TR. PET(ec,ec’) = true
TrialsB := TrialsB U {(dec(ec), dec(ev))}
CountableVotes, PET proofs
Outcome, Decryption proofs
TrialsB
(...
Final tally: count Outcome
|

ballot is identified as coming from an eligible voter and is not eliminated
during the enforcement of eligibility.

5. Finally, universal verifiability of distributed decryption ensures that V’s bal-
lot is correctly decrypted and tallied.

Some systems, e.g Pret a Voter [10] and Helios [1], improve the first point
with a cut-and-choose mechanism, that allows the voter to audit a ballot before
casting a vote.

Our critique of individual verifiability in JCJ/Civitas, Pret a Voter
and Helios refers more generally to systems that rely on universal verifiability to
achieve end-to-end individual verifiability. The points 3-5 above require complex
mathematical operations and the corresponding verification algorithms must
be run on trusted devices. Moreover, even if the corresponding zero-knowledge
proofs are rigorously tailored to ensure the desired properties, the ordinary voter
may be left wondering if her vote has actually been counted in the final tally.
While auditors may be expected to have access to trusted devices and to un-
derstand the concepts behind zero-knowledge proofs, we do not consider these
assumptions satisfactory when individual verifiability is considered.

Let us also note the following limiting aspect of the cut-and-choose mecha-
nism in [3,10] and [1]. In all these systems, the audited ballot is handled as a real
ballot, but only up to the point when the voter decides to audit it, after which
it is discarded. Only one ballot gets to be cast and submitted to the bulletin
board. In our proposal, the audited ballot, that we call a trial ballot, will be
handled in the same way as a real ballot at each phase of the protocol, while
additionally playing its role as an audit ballot. In particular, it will be posted
on the bulletin board before mixing and handled subsequently in the mix and in
the decryption. The traditional cut-and-choose guarantees are recovered in this
setting by tracking the trial ballot and the corresponding decrypted vote on the
bulletin board before the mix.

4 Trivitas: trial credentials and universal decryption

The first proposal of Trivitas is the notion of trial credentials. A trial credential
is a credential that allows a voter to cast a vote that will not be counted in
the final tally, but will appear on the bulletin board at several stages of the
tabulation phase. Its purpose is to allow the voter to gain confidence in the
correct operation of the system. Trial ballots are identifiable as such only by a
threshold set of trustees, thus any component of the system has to treat the set
of all ballots in the same way. We show how trial credentials can be implemented
in the context of JCJ/Civitas and show their immediate benefit for individual
verifiability.

Moreover, we propose another addition to JCJ/Civitas, independent of trial
credentials, that brings a further improvement to individual verifiability: we de-
crypt and publish the content of all ballots after the mix. Therefore, for every
ballot that a voter has cast (real, trial or fake), she can verify that the corre-
sponding credential and vote occur on the bulletin board after the mix. This

gives a direct evidence to the voter that her ballots, and most importantly her
real ballot, have been correctly constructed and processed by the mix network.

4.1 Overview of proposed additions

The additions that we propose in each phase are the following. They are also
sketched in dotted lines in figures 1 and 2.

Registration. Mirroring the set of real credentials ¢y, ..., ¢, we assume that

registrars generate a set of trial credentials ci,...,ct. The set c¢t,..., ¢l is con-

rnt) n
structed and distributed to voters following the same protocols as for ¢y, ..., ¢y,
thus we can assume the same security properties: in particular, trial credentials
are indistinguishable from real credentials and fake credentials, for anyone but
for the voter that receives its shares. In addition to the electoral roll ER, now
we have a trial roll TR, that contains the public parts of the trial credentials
{cﬁ}KT7 e {CZ}KT'

Voting. In addition to B; as in JCJ/Civitas, V; constructs a trial ballot
B = ({ctturs {v! ers Plons PL,) and uploads both B; and B! to the bulletin
board (at implementation level, it has to be decided if a ballot construction
form would be used twice or if the system would allow the construction of both
ballots at the same time).

Tabulation. At the time of ballot validation (i.e. just after the voting phase
ends), the trustees 7 additionally perfom a PET test of each recorded ballot
against the trial roll. For all ballots for which this PET returns true, the trustees
decrypt the corresponding credential and the corresponding vote and publish
them on the bulletin board: this is the set TrialsA in figure 2. Formally, trustees
publish on the bulletin board the result of PETDecryptUnlink(CastBallots, TR),
where the motivation, specification and the algorithm for PETDecryptUnlink are
discussed in section 4.3.

The set of all the cast ballots (that includes the trial ballots) are sent to the
mixnet M for anonymization. Just after the mix and before the PET tests for
eligibility enforcement, we propose for all ballots to be decrypted and their corre-
sponding decrypted credentials and decrypted votes to be posted on the bulletin
board: this is the set DecBallots in figure 2. To preserve coercion-resistance of the
system, this has to be done in a way that does not link the published credentials
and votes to the corresponding ballot. We propose the use of a decryption mix
DecryptUnlink(MixedBallots), whose idea is discussed in section 4.3.

At the time of eligibility enforcement, credentials in ballots are additionally
tested against the trial roll TR. If a ballot is identified as trial, it is not discarded
but is labeled as such on the bulletin board. Finally, all ballots that remain on
the bulletin board after eligibility enforcement are decrypted and only votes that
do not correspond to trial ballots are tallied. If a ballot is labeled as a trial ballot,
the corresponding credential is also decrypted. The decrypted trial ballots after
the tabulation form the set TrialsB in figure 2.

4.2 Individual verifiabiliy in Trivitas

A voter can trace his trial vote in each phase of the system: it should be present
on the bulletin board in the set TrialsA, after the voting phase, and in the set
TrialsB, after the tabulation phase. Moreover, relying on the decryption of all
the ballots after the mix, the result of which is the set DecBallots on the bulletin
board, the voter can check that the encryption and the mix has been correct for
all of his cast ballots: the one with a real credential, the one with a trial credential
and possibly the ones with fake credentials. Hence, fake credentials can also be
used for the purpose of end-to-end individual verifiability. In summary, the voter
V; can check that:

Verifiability test Assured property
TV, |The pair (c},v}) occurs in the set|The machine has correctly encoded V;’s
TrialsA on the bulletin board votes and V;’s ballots have been cor-

rectly recorded on the bulletin board
IVs [The pairs (c;,v;), (ch,vf) and|All of V;’s submitted ballots have been

17 71

all (c{ 7vlf) occur in the set input in the mixnet M and have been

DecBallots on the bulletin board |correctly processed and output by M

ZVs5 |The pair (¢}, v}) occurs in the set|V;’s intended vote occurs in the final

17 7

TrialsB on the bulletin board outcome

Let us argue why all these tests are valid, in the sense that, if they are satisfied
for the voter V;, then the claimed properties hold with high probability for all of
V;’s ballots: trial, real and fake. We leave rigorous proofs along the lines of [18,
19] as future work, and perform only an informal analysis in the following. As
in JCJ/Civitas, we assume that either one member of 7 is honest or else that
auditors check decryption proofs (*). However, this is transparent for the voter,
who performs her own verification.

ZV;. Assumption (*) ensures that the decryption of trials is correct: the
published trial pair is indeed the content of V;’s trial ballot, that is present on
the bulletin board. Then, the fact that a trial credential is indistinguishable from
a real credential ensures that a cheating voting machine or a cheating bulletin
board has to make a random guess, thus having at least a 50% probability of
being detected.

IVs. Assumption (*) ensures that the set of published pairs (DecBallots)
corresponds to the decryption of ballots output by M (MixedBallots). Therefore,
TVs assures that all of V;’s ballots are correctly output by the mix. Moreover,
note that ZVs increases the assurance offered by ZV;, because V; can check the
correct construction and transmission of all her ballots. Still, ZV; is useful to
detect a potential problem as early as possible and also to identify more precisely
the elements of the system that have caused the problem. For instance, we will
see in the next section how ZV; allows for recoverability when a problem is
detected before the mix.

IV3. The parallel decryption of trial votes gives some evidence for the voter
that votes are not arbitrarily eliminated during eligibility enforcement. This is
formally ensured by assumption (*).

4.3 Anonymous PETs and distributed decryption with
ciphertext-plaintext unlinkability

We now come back to two cryptographic components of the proposed system
that have been left out in section 4.1: PETDecryptUnlink and DecryptUnlink.
PETDecryptUnlink is used to decrypt trial ballots while keeping them indistin-
guishable from other ballots. This is necessary for being able to rely on trial
ballots to audit the system even after they are decrypted. DecryptUnlink is used
to decrypt all ballots, without revealing the link between individual ballots and
their content. This is necessary to preserve coercion-resistance: otherwise, a co-
ercer could detect that a ballot cast with a fake credential has been eliminated
before the final tally.

Recall that votes and credentials are encrypted with a public key KT, whose
corresponding private part priv(KT) is distributed among 7. In the follow-
ing, we assume 7 = {Ty,...,T,}. The specification for PETDecryptUnlink and
DecryptUnlink is as follows:

PETDecryptUnlink
Input: S = (ecq,evi), ..., (ecm,evy,) and TR =eci, ..., ec)
Output: O = {(c,v) | Jis € {1,...,m}, Jitr € {1,...,k},
dec(ec;) = dec(ec]) = ¢ & dec(ev;y) = v}
Unlinkability: for all (c,v) € O, the index is of ({c}yt,{v}xr) in S is
indistinguishable from a random number in {1,...,m}.

DecryptUnlink
Input: S = (ecy,evy), ..., (€Cm,evpm)
Output: O = {(c,v) | Jis € {1,...,m}. dec(ec;s) = ¢ & dec(ev;,) = v}
Unlinkability: for all (c,v) € O, the index is of ({c}yt,{v}xr) in S is

indistinguishable from a random number in {1,...,m}.

Our proposed implementation for PETDecryptUnlink and DecryptUnlink is an
adaptation of the decryption mix idea present in [9, 10] to the case of distributed
El-Gamal. This setting has already been studied in e.g. [13,12], that show more-
over how the shuffle can be made verifiable. However, since we do not require a
verifiable shuffle for our application (a misbehavior during decryption would be
detected by the voter by simply observing the trial credentials) our algorithms
are more straightforward and do not provide zero-knowledge proofs. We only de-
scribe the algorithm for PETDecryptUnlink, the second algorithm being similar
and more simple.

PETDecryptUnlink. For all et in TR, the parties 17, ..., T, (holding pri-
vate key shares x1,...,x,) run the following protocol:
Initial phase (can be run publicly by any party).
Assume et = (a, b% and, for all 1 < ib§ m, assume ec; = (a4, b;). Compute and
ai 1 Am m

publish p; = (%4, 34), ..., pp = (=, %=). The input for 77 in the next phase is

a’b
(p1,ec1,evi), ..., (Pm,€Cm, V).

PET phase (being run privately and consequently by each of T3, ..., T},).

Let (p1,eci,evi),...,(pP,,eCm,evy,) be the input for T;. Create new random
» . ,
numbers 1y, ..., 1h € Zy,ri, ..., vy, € Zg, 1y, ...,y € Z; and compute
_ » _
— (e1,dr) =renc(pr,r]), ..., (Cmydm) = renc(pm, 1))
— ec) =renc(ecy, r§),...,ec, = renc(ecy,,rs,)
— ev) =renc(evy,7}),...,ev], = renc(ev,,,ry,)
Partially decrypt (c1,dy1),. .., (¢m,dn), i.e. compute dj = iTli, cond = f;;; .
Choose a permutation o of {1,...,m} and publish

((coqr), d;(1)), eC;(l)v eV;u))a oo ((eo(my, dfy(m)), eC;(m)v ery(m))

This is the input for T;1.

Decryption phase (run jointly by Ti,...,T,). For all (p,ec,ev) in the
output of T,: if p = 1, perform a distributed decryption of ec and of ev and make
the result part of the output set: O := O U {(dec(ec), dec(ev))}.

If at least one of T7, ..., T, behaves honestly, PETDecryptUnlink satisfies also
the unlinkability requirement, as formalized and proved in [12].

5 Other properties

In this section we discuss other possible applications of trial credentials.

5.1 Universal verifiability.

We propose the following universal verifiability test for Trivitas:

Verifiability test Assured property

UV |All the trials published before|The mixnet M is correctly processing
the mix are in the set of de-|all the ballots

crypted ballots after the mix, i.e.
TrialsA C DecBallots, and they
have the same number of oc-
curences

We propose this test as an addition to the current universal verifiability
proofs, not as a replacement: it is more efficient, but probably offers less assur-
ance than traditional zero-knowledge proofs. On the other hand, this test could
also be combined with other tests that offer as well lesser guarantees of cor-
rectness but better performance [6], in order to improve their assurance while
preserving their efficiency.

Let us argue about the validity of /). Because PETDecryptUnlink(CastBallots, TR)
does not give away what ballots among CastBallots are trials, M has to treat
all the ballots in CastBallots uniformly. In particular, if it chooses to cheat on
a subset of ballots in CastBallots, this subset is random. Therefore, if there are

enough trial ballots (this could be ensured for instance by letting observers insert
any number of trials), a dishonest behaviour of M would be detected with high
probability by the test U)V.

These arguments hold only when the voting machines are not corrupted.
Otherwise, a possibly corrupted M could differentiate trial ballots from other
ballots when they are decrypted. We address this problem by a variation of
Trivitas that does not let the machine learn which ballots are trials, even when
they are decrypted (section 5.3).

5.2 Recoverability from failed verification

What happens when individual verifiability fails, e.g. an incorrect trial vote is
published along his trial credential? In general, this issue is quite complex, be-
cause it requires procedures to determine who is telling the truth: the voter or the
voting system. For Trivitas, our proposed recoverability technique is straightfor-
ward and requires only a slight modification to the system: trials are decrypted
and published in short time after the ballots are cast and the voter does not have
to wait for the end of the voting phase to verify a trial. Then, if a voter observes
a problem with her trial vote on the bulletin board, she should simply re-vote,
using a potentially safer machine. The policy for handling duplicate votes would
then be to consider only the last vote as being valid, because it is the vote in
which the voter has the highest confidence.

However, like in the case of universal verifiability, this solution is not ideal,
because a compromised machine could make a distinction between trial cre-
dentials and valid credentials, after trial ballots are decrypted. The variant of
Trivitas in the next section addresses this isue.

5.3 The case of a compromised voting machine

We propose a variant of Trivitas whose aim is to allow universal verifiability
and recoverability as discussed above, even in presence of compromised voting
machines. The main property of this variant is that it preserves the secrecy of the
trial credential, while still allowing the voter to verify a trial vote relying on that
credential. The cost is a slightly more complicated voting and vote verification
experience:

— along with ¢ and ¢, the voter additionally receives (or constructs) two num-
bers: one corresponding to a random r and one to {r}, . We may assume
that the same protocol is run for obtaining ¢, c; and r and hence that the
value of r is secret and known only to the voter.

— when constructing a ballot, the voter inputs not only the credential and the
vote, but also {r}r.

— when decrypting trial ballots, the trustees 7 do not decrypt directly the
credential {¢;}xr but instead multiply it with {r},t, to obtain {c; - 7}t
(relying on the homomorphic properties of El-Gamal) and decrypt it to ¢; - r.
Hence, instead of looking for a pair (¢, v¢) on the bulletin board (like in the

basic version of Trivitas), the voter would look for (¢; - r,v;) (for usability,
one can see that an additive homomorphism, also possible with El-Gamal,
would be better here).

In this variation of Trivitas, even if the voting machine is compromised, it
can not be used to identify which ballots are trials. Hence, trial ballots can also
be used for universal verifiability. For recoverability, a trial credential could be
used multiple times and the machine would still be forced to take a 50% chance
of getting caught each time when it is cheating.

6 Coercion-resistance

In this section we discuss why Trivitas offers the same coercion-resistance guar-
antees as JCJ/Civitas. Coercion-resistance in JCJ/Civitas relies on the ability
of the voter to create a fake credential c; and a fake proof Py that satisfy the
following properties:

— given a pair (¢/,P’), a coercer can not determine if the pair represents a
voter’s real credential and proof (¢, Py) or if it represents a fake pair (cs, Py).
This is due to the fact that at least one registrar is assumed to be honest
and the communication channel used with that registrar is assumed to be
untappable.

— if a ballot with a fake credential is submitted, it will be eliminated from the
final tally in the tabulation phase, during eligibility enforcement. Crucially,
all ballots have been mixed and re-encrypted and at least one member of
the mix network is assumed to be honest. This ensures that a coercer can
not observe to what credentials correspond the ballots that have not been
included in the final tally.

As usual, we also have to assume that there are enough votes for each can-
didate, so that the coercer can not observe that the voter did not follow his
instructions from the mere outcome of the election.

The first addition of Trivitas, trial credentials, does not affect the way in
which real ballots and fake ballots are handled by the election system. The only
observable difference for the coercer is the presence of decrypted trial ballots
at every phase and this does not give any information about real ballots or
fake ballots. In particular, the two properties mentioned above remain true in
presence of trial ballots.

The second addition of Trivitas, universal decryption, is potentially more
problematic for coercion-resistance, since it concerns all the recorded ballots.
However, coercion-resistance is preserved by two crucial points:

— all ballots are decrypted, without making a difference between real creden-
tials, fake credentials and trial credentials. This ensures that, in Trivitas as
in JCJ/Civitas, the coercer can not determine if a credential is valid or not.

— the algorithm applied to decrypt all ballots is a decryption mix, i.e. we apply
DecryptUnlink(MixedBallots). It may be surprising that a set of anonymized
ballots is decrypted with a decryption mix. However, this is needed because
trustees must eliminate fake ballots in a publicly verifiable way. In that case,
if the coercer could additionally see the contents of all ballots, he could
determine what credentials were invalid.

Towards a formal proof. Let us sketch how coercion-resistance proof
for JCJ/Civitas [18] could be extended to cover Trivitas. To define coercion-
resistance for an election system E in a computational model, [18] considers an
ideal system Ez where the outcome of the election is “magically” computed: the
adversary can observe only the final outcome and is not able to influence any-
thing more than vote choices for the compromised voters. Then, a system is said
to satisfy coercion-resistance if the probability of a polynomial time adversary
being able to determine if it has been cheated is roughly the same when the
election is run by E as in the case when the election is run by Ez.

The proof of coercion-resistance is a reduction to (a variant of) the Decision-
Diffie Hellman (DDH) assumption: no polynomial time algorithm can distinguish
between a Diffie-Hellman tuple (g1, ¢7,92,95) and a random tuple (a,b,c,d).
Then, the proof relies on a simulator S that behaves either as E or as Ez,
depending on whether its input is a Diffie-Hellman tuple or not. If there would
be a polynomial time adversary that breaks coercion-resistance, i.e. it has better
chances of coercion when E is used instead of Ez, then that adversary could be
used by the simulator & to determine if its input is a Diffie-Hellman tuple in
polynomial time. This would break the DDH assumption.

To extend this proof to Trivitas all we have to do is to show that the simulator
S of [18] can also execute the additional operations, i.e. the management of
trial credentials and the universal decryption of all ballots after the mix. This
is possible because the simulator of [18] holds the private key priv(7) and can
therefore decrypt ballots at any time. This makes it possible to simulate both the
audit of trial ballots and the universal decryption. Moreover, the same simulator
can easily create trial credentials and trial ballots, this process being similar to
the creation of real credentials and ballots.

7 Conclusion and future work

We have proposed several additions to JCJ/Civitas that improve its individual
verifiability. We introduce trial credentials that offer to voters the ability to au-
dit the election process at any stage: creation of ballots, their transmission to
the bulletin board, their processing by the mixnet and their final decryption.
Moreover, we observe that we can rely on the presence of fake ballots and trial
ballots on the bulletin board after the mix to decrypt all ballots without com-
promising coercion-resistance. This certainly improves individual verifiability: to
our knowledge, this is the first mixnet based system where a voter can directly
verify that her actual vote is correctly recorded in the system after the mix. Not

only that, but she can also cast as many votes as she likes with fake credentials
and check that they are all correctly output after the mix.

The idea of trial ballots is not necessarily specific to JCJ/Civitas. We believe
it could be implemented in other electronic voting systems as well, although
this requires further research. The universal decryption of ballots after the mix
relies on the notion of credentials, to allow voters to identify their votes, and
of fake credentials, to allow coercion-resistance. Credentials are also interesting
for eligibility verifiability, possible in JCJ/Civitas but generally not possible in
other systems. Hence, it would be interesting to investigate the possibility of
adding a credential infrastructure on top of other E-voting protocols.

We also plan to develop ideas and variations sketched in section 5. In partic-
ular, putting the mechanism for recoverability in the hands of the voter, instead
of third party organizations, looks more appealing both from the perspective of
the voter and from the perspective of election authorities. Finally, the sketch
of coercion-resistance proof from section 6 has to be completed, and this may
open other research directions, relating iterative protocol development and the
corresponding security proofs.

Acknowledgments. Thanks to Jeremy Clark, Aleksander Essex and anony-
mous referees for useful comments and interaction on the ideas of the paper.
We gratefully acknowledge financial support from EPSRC, through the projects
EP/G02684X/1 “Trustworthy Voting Systems” and EP/H005501/1 “Analysing
Security and Privacy Properties”.

References

1. Ben Adida. Helios: Web-based open-audit voting. In Paul C. van Oorschot, editor,
USENIX Security Symposium, pages 335-348. USENIX Association, 2008.

2. Ben Adida and Andrew C. Neff. Ballot casting assurance. In Useniz/ACCURATE
Electronic Voting Technology Workshop, Vancouver, BC,Canada, 2006.

3. Josh Benaloh. Simple verifiable elections. In Proceedings of the USENIX/Accurate
Electronic Voting Technology Workshop 2006 on Electronic Voting Technology
Workshop, pages 5-5, Berkeley, CA, USA, 2006. USENIX Association.

4. Josh Benaloh. Ballot casting assurance via voter-initiated poll station auditing. In
Proceedings of the USENIX Workshop on Accurate Electronic Voting Technology,
pages 14-14, Berkeley, CA, USA, 2007. USENIX Association.

5. Matt Blaze, Arel Cordero, Sophie Engle, Chris Karlof, Naveen Sastry, Micah Sherr,
Till Stegers, and Ka-Ping Yee. Source code review of the Sequoia voting system. In
Report commissioned as part of the California Secretary of State’s Top-To-Bottom
Review of California voting systems, July 20, 2007.

6. Dan Boneh and Philippe Golle. Almost entirely correct mixing with applications
to voting. In Vijayalakshmi Atluri, editor, ACM Conference on Computer and
Communications Security, pages 68-77. ACM, 2002.

7. Felix Brandt. Efficient cryptographic protocol design based on distributed El
Gamal encryption. In Dongho Won and Seungjoo Kim, editors, ICISC, volume
3935 of Lecture Notes in Computer Science, pages 32—47. Springer, 2005.

8. Joseph A. Calandrino, Ariel J. Feldman, J. Alex Halderman, David Wagner, Harlan
Yu, and William P. Zeller. Source code review of the Diebold voting system. In

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Report commissioned as part of the California Secretary of State’s Top-To-Bottom
Review of California voting systems, July 20, 2007.

David Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE Security
& Privacy, 2(1):38-47, 2004.

David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practical voter-
verifiable election scheme. In Sabrina De Capitani di Vimercati, Paul F. Syverson,
and Dieter Gollmann, editors, ESORICS, volume 3679 of Lecture Notes in Com-
puter Science, pages 118-139. Springer, 2005.

Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward a
secure voting system. In IEEE Symposium on Security and Privacy, pages 354—368.
IEEE Computer Society, 2008.

Jun Furukawa. Efficient, verifiable shuffle decryption and its requirement of un-
linkability. In Feng Bao, Robert H. Deng, and Jianying Zhou, editors, Public Key
Cryptography, volume 2947 of Lecture Notes in Computer Science, pages 319-332.
Springer, 2004.

Jun Furukawa, Hiroshi Miyauchi, Kengo Mori, Satoshi Obana, and Kazue Sako.
An implementation of a universally verifiable electronic voting scheme based on
shuffling. In Matt Blaze, editor, Financial Cryptography, volume 2357 of Lec-
ture Notes in Computer Science, pages 16-30. Springer Berlin / Heidelberg, 2003.
10.1007/3-540-36504-4_2.

Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle. In Joe
Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages
368-387. Springer, 2001.

Martin Hirt and Kazue Sako. Efficient receipt-free voting based on homomorphic
encryption. In Bart Preneel, editor, EUROCRYPT, volume 1807 of Lecture Notes
in Computer Science, pages 539—-556. Springer, 2000.

Markus Jakobsson and Ari Juels. Mix and match: Secure function evaluation via
ciphertexts. In Tatsuaki Okamoto, editor, ASITACRYPT, volume 1976 of Lecture
Notes in Computer Science, pages 162-177. Springer, 2000.

Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix nets robust for
electronic voting by randomized partial checking. In Dan Boneh, editor, USENIX
Security Symposium, pages 339-353. USENIX, 2002.

Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In Vijay Atluri, Sabrina De Capitani di Vimercati, and Roger Dingledine,
editors, WPES, pages 61-70. ACM, 2005.

Steve Kremer, Mark Ryan, and Ben Smyth. Election verifiability in electronic
voting protocols. In Dimitris Gritzalis, Bart Preneel, and Marianthi Theoharidou,
editors, ESORICS, volume 6345 of Lecture Notes in Computer Science, pages 389—
404. Springer, 2010.

C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In ACM
Conference on Computer and Communications Security, pages 116—125, 2001.

C. Andrew Neff. Practical high certainty intent verification for encrypted votes,
2004.

Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Joan Feigenbaum, editor, CRYPTO, volume 576 of Lecture
Notes in Computer Science, pages 129-140. Springer, 1991.

Steve Schneider, Morgan Llewellyn, Chris Culnane, James Heather, Sriramkrish-
nan Srinivasan, and Zhe Xia. Focus group views on Pret a Voter 1.0. In REVOTE,
International Workshop on Requirements Engineering for Electronic Voting Sys-
tems, 2011.

