
A knowledge-based verification method for
dynamic access control policies

Masoud Koleini and Mark Ryan

University of Birmingham,
Birmingham, B15 2TT, UK

{m.koleini,m.d.ryan}@cs.bham.ac.uk

Abstract. We present a new approach for automated knowledge-based
verification of access control policies. The verification method not only
discovers if a vulnerability exists, but also produces the strategies that
can be used by the attacker to exploit the vulnerability. It investigates
the information needed by the attacker to achieve the goal and whether
he acquires that information when he proceeds through the strategy or
not. We provide a policy language for specifying access control rules
and the corresponding query language that is suited for expressing the
properties we aim to verify. The policy language is expressive enough to
handle integrity constraints and policy invariants. Finally, we compare
the results and enhancements of the current method - implemented as a
policy verification tool called PoliVer - over similar works in the context
of dynamic access control policy verification.

1 Introduction

Social networks like Facebook and LinkedIn, cloud computing networks like
Salesforce and Google docs, conference paper review systems like Easychair and
HotCRP are examples of the applications that huge numbers of users deal with
every day. In such systems, a group of agents interact with each other to access
resources and services. Access control policies in such multi-agent systems are
dynamic (state-based) [1–4], meaning that the permissions for an agent depend
on the state of the system. As a consequence, permissions for an agent can be
changed by the actions of other agents.

For complex systems, reasoning by hand about access control policies is not
feasible. Automated verification is a solution and enables policy designers to
verify their policies against properties needed. For instance, in Google docs, we
need to verify “if Alice shares a document with Bob, it is not possible for Bob to
share it with Charlie unless Alice agrees”, or in HotCRP, “if Bob is not chair, it
is not possible for him to promote himself to be a reviewer of a paper submitted
to the conference”. If such properties do not hold, it can imply a security hole
in the system and needs to be investigated and fixed by policy designers.

Knowledge - the information that an agent or group of agents has gained
about the system - plays an important role in exploiting vulnerabilities by the
attacker. For instance in Facebook, consider a situation in which Alice is a friend

of Bob, and she has excluded non-friends from seeing her photos and her list of
friends. Bob has tagged Alice on some photos of him, which are publicly available.
Eve is interested in finding some photos of Alice. If Eve knows that Alice and
Bob are friends, then the pseudocode below demonstrates how she can proceed:

foreach (photo ∈ Bob.photos)
if (photo.isAccessibleBy(Eve) and Alice ∈ photo.tags)

Output photo;

Although this vulnerability exists, Eve still needs to find some of Alice’s
friends to exploit it. The required information may be a prior knowledge, or
gained by exploring the system. In both cases, a verification method that in-
vestigates how the agents can gain information about the system, share it with
other agents and use the information to achieve the goal is valuable in debugging
access control policies.

This paper proposes a dynamic access control model supporting knowledge-
based verification through reasoning about readability. In this context, an agent
knows the value of a proposition1 (for instance, areFriends(Alice, Bob)) if he
has previously read the proposition, or performed an action that has altered its
value. This abstraction of knowledge results in a simpler model, which makes
the verification efficient, and is powerful enough to model knowledge in access
control systems. Using this definition of knowledge, we are able to efficiently
verify a property - as a vulnerability - over access control systems, and if the
property is satisfied, produce an output which demonstrates how an agent can
execute a sequence of actions to achieve the goal, what information he requires
to safely proceed through the strategy and what are the risky situations where
he needs to guess what action to perform.

As an important feature in this paper, we are interested in finding the system
propositions in which the strategy for the attacker to achieve the goal is different
according to whether the proposition is true or false. We call those propositions
effective. The values of effective propositions are needed by the attacker to de-
termine the appropriate strategy. If the attacker does not know the value of
the effective proposition, he could still guess the value. In the case of wrong
guess, he may be able to backtrack to the guessing state and select the right
strategy. However, backtracking has two main disadvantages: firstly, it may not
be possible to backtrack or undo the actions already performed and secondly,
unauthorized actions may be logged by the system. So, the attacker needs to
minimize guessing to get the goal.

The proposed algorithm is able to:

– Verify a property (or equivalently, goal) over an access control system which
is characterised by a dynamic policy.

– Provide the strategy together with the information required for an attacker
to achieve the goal, if the goal is found to be achievable.

1 In the context of this paper, a proposition refers to a boolean variable in the system,
and a state is a valuation of all system propositions.

– Find out if the attacker can gain the required knowledge while he traverses
through the strategy.

Our contribution: We propose a policy language with corresponding verifica-
tion algorithm that handles integrity constraints - rules that must remain true
to preserve integrity of data. The policy language enables users to define action
rules and also read permission rules to represent agent knowledge in the system.
We provide a verification algorithm (with respect to effective propositions) which
is able to find the strategy in a more efficient way than the guessing approach
in a similar knowledge based verification framework [1]. The algorithm verifies
knowledge by reasoning about readability. This approach approximates knowl-
edge, finds errors efficiently and is easier to automate. Finally, we present case
studies for strategy finding and knowledge verification algorithm and compare
the performance with similar methods.

The rest of this paper is organized as follows. Related work is discussed in
Section 2. Formal definitions of access control policy, access control system and
query language are introduced in Section 3. Model-checking strategy is explained
in Section 4. Knowledge-based verification of the strategies is presented in Sec-
tion 5. Experimental results are provided in section 6 and conclusions and future
work are explained in Section 7.

Notation 1 To enhance readability, for the rest of this paper, letters with no
index such as u and a used as the arguments will represent variables. indexed
letters such as u1 and a1 will be used for objects (instantiated variables).

2 Related work

Although there is lots of research in the area of stateless access control sys-
tem verification [5–7], we only mention several important related papers in the
context of dynamic policy verification.

One of the first works is the security model of Bell and LaPadula designed in
1976 [8]. This model is a state transition framework for access control policies in
a multi-level security structure and is based on security classification of objects
and subjects. In general, the model is not fine-grained, not all access control
policies can be modelled and also contains several weaknesses [9].

Dougherty et al. [3] define a datalog-based verification of access control poli-
cies. They have separated static access control policy from the dynamic be-
haviour and defined a framework to represent the dynamic behaviour of access
control policies. They consider an environment consisting of the facts in the sys-
tem. Performing each action adds some facts or removes some other from the
environment. They perform formal analysis for safety and availability properties
on their access control model.

In terms of verifying knowledge, RW [1] is the most similar framework to
ours2. “Read” and “write” rules in RW define the permissions for read/write
2 RW is implemented as a tool named AcPeg (Access Control Policy Evaluator and

Generator).

access to the system propositions. RW considers agent knowledge propositions
in state space. So, an agent can perform an action if he knows he is able to
perform it. RW suffers from the restriction that only one proposition can be
updated at a time in every write action. Our policy language allows defining
actions with bulk variable update. As a practical limitation, the state space in
RW grows in a greater context than conventional model-checkers, which makes
the verification of complex policies difficult. Our method is more efficient as it
abstracts knowledge states and and uses a fast post-processing algorithm for
knowledge verification.

SMP [10] is a logic for state-modifying policies based on transaction logic.
Although SMP provides an algorithm that finds the optimal sequence of tran-
sitions to the goal, it suffers from restricted use of negation in preconditions,
which is not the case in our proposed algorithm.

Becker [2] has designed a policy language (DynPAL) that is able to verify
safety properties over dynamic access control policies with an unbounded num-
ber of objects. The paper proposes two methods for reasoning about reachability
and policy invariants. For reachability, the policy can be translated into PDDL
syntax [11] and verified using a planner. Safety properties can be verified using
a first order logic theorem prover and by translating the policy and invariance
hypothesis into the first order logic validity problem. According to the experi-
mental results [2], the planner may not be successful in finding if a property is
an invariant in a reasonable time. Also initial states are not considered in safety
property verification.

3 Definitions

3.1 Access control policy

In a multi-agent system, the agents authenticate themselves by using the pro-
vided authentication mechanisms, such as login by username and password, and
it is assumed that the mechanism is secure and reliable. Each agent is autho-
rized to perform actions, which can change the system state by changing the
values of several system variables (in our case, atomic propositions). Perform-
ing actions in the system encapsulates three aspects: the agent request for the
action, allowance by the system and system transition to another state. In this
research, we consider agents performing different actions asynchronously; a real-
istic approach in computer systems. We present a simple policy language that is
expressive enough to model an asynchronous multi-agent access control system.

Syntax definition: Let T be the set of types which includes a special type
“Agent” for agents and Pred be a set of predicates such that each n-ary predicate
has a type t1 × · · · × tn → {>,⊥}, for some ti ∈ T . Let V be a set of variables.
Every variable in set V has a type. Consider v as a sequence of distinct variables.
If w ∈ Pred, then w(v) is called an atomic formula. L is a logical formula and
consists of atomic formulas combined by logical connectives and existential and
universal quantifiers. In the following syntax, id represents the identifier for the
rules, and u is a variable of type Agent.

The syntax of access control policy language is as follows:

L ::= > | ⊥ | w(v) | L ∨ L | L ∧ L | L→ L | ¬L | ∀v : t [L] | ∃v : t [L]
W ::= +w(v) | − w(v) | ∀v : t. W
Ws ::= W | Ws,W

ActionRule ::= id(v) : {Ws} ← L

ReadRule ::= id(u,v) : w(v)← L

Given a logical formula L, we define fv(L) ⊆ V to be the set of all variables
in atomic formulas in L, which occur as free variables in L. We extend fv to the
set {Ws} in the natural way.

An action rule has the form “α(v) : E ← L” such that logical formula L
represents the condition under which the action is permitted to be performed.
The set of signed atomic formulas E represents the effect of the action. +w(v)
in the effect means executing the action will set the value of w(v) to true and
−w(v) means setting the value to false. In the case of ∀v : t.W in the effect, the
action updates the signed atom in W for all possible values of v. α(v) represents
the name of the action rule. We can refer to the whole action rule as α(v).

We also stipulate for each action rule α(v) : E ← L where v = (v1, . . . , vn):

– v1 is of type Agent and presents the agent performing the action.
– fv(E) ∪ fv(L) ⊆ v.
– {+w(x),−w(x)} 6⊆ E where x is a sequence of variables.

A read permission rule has the form “ρ(u,v) : w(v)← L” such that the logi-
cal formula L represents the condition under which the atomic proposition w(v)
is permitted to be read and ρ(u,v) represents the name of the read permission
rule. We can refer to the whole read permission rule as ρ(u,v).

We also stipulate for each read permission rule ρ(u,v) : w(v) ← L where
v = (v1, . . . , vn):

– u is of type Agent and presents the agent reading w(v).
– fv(L) ⊆ {u, v1, . . . , vn}.

Definition 1. (Access control policy). An access control policy is a tuple
(T, Pred,A,R) where T is the set of types, Pred is the set of predicates, A is
the set of action rules and R is the set of read permission rules.

Example 1. A conference paper review system policy contains the following
properties for unassigning a reviewer from a paper:

– A chair is permitted to unassign the reviewers.
– If a reviewer is removed, all the corresponding subreviewers (subRev) should

be removed from the system at the same time.

The unassignment action can be formalized as follows:

delRev(u, p, a) : {-rev(p, a),∀b : Agent. -subRev(p, a, b)} ← chair(u) ∧ rev(p, a)

Example 1 shows how updating several variables synchronously can preserve
integrity constraints. The RW framework is unable to handle such integrity con-
straint as it can only update one proposition at a time.

3.2 Access control system

Access control policy is a framework representing authorizations, actions and
their effect in a system. Access control systems can be presented by a policy, a
set of objects and corresponding substitutions.

We define Σ as a finite set of objects such that each object in Σ has a type.
Σt ⊆ Σ is the set of objects of type t. If V is the set of variables, then a
substitution σ is a function V → Σ that respects types.

Definition 2. (Atomic propositions). The set of atomic propositions P is de-
fined as the set of predicates instantiated with the objects in Σ:

P = {w(v)σ | w ∈ Pred,v ∈ V ∗ and σ is a substitution}

A system state is a valuation of atomic propositions in P . A state s can be
defined as a function P → {>,⊥}. We use s[p 7→ m] to denote the state that is
like s except that it maps the proposition p to value m.

Instantiation of the rules: When a substitution applies to an action rule
in the policy, it will extend to the variables in arguments, effects and logical
formula in the natural way. If a : e ← f is the instantiation of α(v) : E ← L
under the substitution σ, then a = α(v)σ, e = Eσ and f = Lσ.

This is the same for applying a substitution to the read permission rules in
the policy. If r : p ← f is the instantiation of ρ(u,v) : w(v) ← L under the
substitution σ, then r = ρ(u,v)σ, p = w(v)σ and f = Lσ.

Definition 3. (Action, read permission). An action is an instantiation of a
policy action rule. A read permission is an instantiated read permission rule.

Since the number of objects is finite, each quantified logical formula will be
expanded to a finite number of conjunctions (for ∀ quantifier) or disjunctions
(for ∃ quantifier) of logical formulas during the instantiation phase. The universal
quantifiers in the effect of actions will be expanded into a finite number of signed
atomic propositions.

Definition 4. (Access control system). An access control system is an access
control policy instantiated with the objects in Σ.

Definition 5. (Action effect). Let a : e ← f be an action in the access control
system. Action a is permitted to be performed in state s if f evaluates to true
in s. We also define:

effect+(a) = {p | + p ∈ e} effect−(a) = {p | − p ∈ e}
effect(a) = effect+(a) ∪ effect−(a)

3.3 Query language

Verification of the policy deals with the reachability problem, one of the most
common properties arising in temporal logic verification. A state s is reachable
if it can be reached in a finite number of transitions from the initial states.

In multi-agent access control systems, the transitions are made by the agents
performing actions.

The query language determines the initial states and the specification. The
syntax of the policy query is:

L ::= > | ⊥ | w(v) | 〈w(v)〉 | L ∨ L | L ∧ L | L→ L | ¬L | ∀v : t [L] | ∃v : t [L]
W ::= w(v) | w(v) ∗ | w(v)! | w(v)∗! | ¬W
Ws ::= null | Ws,W

G ::= C : (L) | C : (L THEN G)
Query ::= {Ws} → G

where w(v) is an atomic formula and C is a set of variables of type Agent.
In the above definition, G is called a nested goal if it contains the keyword

THEN, otherwise it is called a simple goal. C is a coalition of agents interacting
together to achieve the goal in the system. Also the agents in a coalition share
the knowledge gained by reading system propositions or performing actions. The
specification 〈w(v)〉 means w(v) is readable by at least one of the agents in the
coalition. Initial states are the states that satisfy the literals in {Ws}. Every
literal W is optionally tagged with * when the value of atomic formula is fixed
during verification, and/or tagged with ! when the value is initially known by at
least one of the agents in the outermost coalition.

Example 2. One of the properties for a proper conference paper review system
policy is that the reviewers (rev) of a paper should not be able to read other
submitted reviews (submittedR) before they submit their own reviews. Consider
the following query:

{chair(c)∗!,¬author(p, a)∗, submittedR(p, b), rev(p, a),¬submittedR(p, a)} →
{a} : (〈review(p, b)〉 ∧ ¬submittedR(p, a) THEN {a, c} : (submittedR(p, a)))

The query says “starting from the initial states provided, is there any reachable
state that agent a can promote himself in such a way that he will be able to read
the review of the agent b for paper p while he has not submitted his own review
and after that, agent a and c collaborate together so that agent a can submit his
review of paper p?”. If the specification is satisfiable, then there exists a security
hole in the policy and should be fixed by policy designers. In the above query,
the value of chair(c) and author(p, a) is fixed and chair(c) is known to be true
by the agent a at the beginning.

Instantiation of the policy query: An instantiated query or simply query
is the policy query instantiated with a substitution. The query i → g is the
instantiation of policy query I → G with substitution σ if i = Iσ and g = Gσ.

For the query i → g, we say g is satisfiable in an access control system
if there exists a conditional sequence of actions called strategy (defined below)
that makes the agents in the coalitions achieve the goal beginning from the initial
states. The strategy is presented formally by the following syntax:

strategy ::=null | a; strategy | if(p) {strategy} else {strategy}

In the above syntax, p is an atomic proposition and a is an action. If a strategy
contains a condition over the proposition p, it means the value of p determines
the next required action to achieve the goal. p is known as an effective proposition
in our methodology.

Definition 6. (Transition relation). Let s1, s2 ∈ S where S is the set of states,
and ξ be a strategy. We use s1 →ξ s2 to denote “strategy ξ can be run in state
s1 and result in s2”, which is defined inductively as follows:

– s→null s.
– s→a;ξ1 s

′ if
• a is permitted to be performed in state s and
• s′′ →ξ1 s

′ where s′′ is the result of performing a in s.
– s→if(p){ξ1} else {ξ2} s

′ if:
• If s(p) = > then s→ξ1 s

′ else s→ξ2 s
′.

A set of states st2 is reachable from set of states st1 through strategy ξ
(st1 →ξ st2) if for all s1 ∈ st1 there exists s2 ∈ st2 such that s1 →ξ s2.

Definition 7. (State formula). If S is the set of states and st ⊆ S then:

– fst is a formula satisfying exactly the states in st: s ∈ st↔ s |= fst.
– stf is the set of states satisfying f : s ∈ stf ↔ s |= f .

4 Model-checking and strategy synthesis

Our method uses backward search to find a strategy. The algorithm begins from
the goal states stg and finds all the states with transition to the current state,
called pre-states. The algorithm continues finding pre-states over all found states
until it gets all the initial states (success) or no new state could be found (fail).

The model-checking problem in this research is not a simple reachability
question. As illustrated in Figure 1, the strategy is successful only if it works
for all the outcomes of reading or guessing a proposition in the model. Thus,
reading/guessing behaviour produces the need for a universal quantifier, while
actions are existentially quantified. The resulting requirement has an alternation
of universal and existential quantifiers of arbitrary length, and this cannot be
expressed using standard temporal logics such as CTL, LTL or ATL.

Notation 2 Assume f is a propositional formula. Then p ∈ prop(f) if proposi-
tion p occurs in all formulas equivalent to f .

Definition 8. (Transition system). If action a is defined as a : e← f and st is
a set of states, PRE∃a (st) is the set of states in which action a is permitted to
perform and performing the action will make a transition to one of the states in
st by changing the values of the propositions in the effect of the action. Let Lit∗

be the set of literals that are tagged by ∗ in the query. Then:

PRE∃a (st) =
{
s ∈ S | s |= f, ∀l ∈ Lit∗ : s |= l, s[p 7→ > | +p ∈ e][p 7→ ⊥ | −p ∈ e] ∈ st

}

st0 ∃a

∀p

states with p = >

st1

states with p = ⊥

st2

∃a

∃a

∃a

∃a

∃a
stg

Fig. 1. Strategy finding method. Ovals represent sets of states. Solid lines show the
existence of an action that makes a transition between two sets of states. Dashed
lines are universally quantified over the outcome of reading or guessing the value of
proposition p.

4.1 Finding effective propositions

Definition 9. (Effective proposition). Atomic proposition p is effective with re-
spect to st0 as the set of initial states and stg as the set of goal states if there
exist a set of states st and strategies ξ0, ξ1 and ξ2 such that ξ1 6= ξ2 and:

– st0 →ξ0 st,
– st ∩ {s | s(p) = >} →ξ1 stg,
– st ∩ {s | s(p) = ⊥} →ξ2 stg and
– st ∩ {s | s(p) = >} 6= ∅, st ∩ {s | s(p) = ⊥} 6= ∅.

Effective propositions are important for the following reason:
The value of proposition p is not specified in the query and is not known by

the agents at the beginning. The agents need to know the value of p to select
the appropriate strategy to achieve the goal. In the states of st, if the agent (or
coalition of agents) knows the value of p, he will perform the next action without
taking any risk. Otherwise, he needs to guess the value of p. This situation is
risky and in the case of a wrong decision and may not be repeatable.

The algorithm provided in this paper is capable of finding effective proposi-
tions while searching for strategies, and then, is able to verify the knowledge of
the agents about effective propositions in the decision states.

Proposition 1. Let st1, st2 and stg be sets of states and ξ1 and ξ2 be strategies
such that st1 →ξ1 stg and st2 →ξ2 stg. Suppose p ∈ prop(fst1) ∩ prop(fst2),
std = stfst1[>/p] ∩ stfst2[⊥/p] and s ∈ std. Then if s(p) = >, we conclude that
s→ξ1 stg, otherwise s→ξ2 stg will be concluded.

Proof. A complete proof using structural induction is provided in [12].

Let stg in proposition 1 be the set of goal states, std the set of states found
according to the proposition 1 and st0 the set of initial states. If there exist a
strategy ξ0 such that st0 →ξ0 std, then by definition 9, the atomic proposition p
is an effective proposition and therefore std →if(p) {ξ1} else {ξ2} stg. The states in
std are called decision states.

Example 3. Let (T, Pred,A,R) be a simple policy for changing password in a
system, where:

T = {Agent}
Pred = {permission(a : Agent), trick(a : Agent),passChanged(a : Agent)}
A = {setTrick(a) : {+trick(a)} ← ¬permission(a),

changePass(a) : {+passChanged(a)} ← permission(a) ∨ trick(a)}

We have excluded read permission rules, as they are not required in this partic-
ular example. In the above policy, the administrator of the system has defined a
permission for changing password. The permission declares that one of the propo-
sitions permission(a) or trick(a) is needed for changing password. permission(a)
is write protected for the agents and no action is defined for changing it. If an
agent does not have permission to change his password, he can set trick(a) to
true first and then, he will be able to change the password. This can be seen as
a mistake in the policy.

Consider that we have just one object of type Agent in the system (ΣAgent =
{a1}) and we want to verify the query {} → {a} : (passChanged(a)). The only
possible instantiation of the query is when a is assigned to a1. As the initial
condition is empty, the set of initial states contain all the system states (st0 = S).
The following procedures show how the strategy can be found:

fstg = passChanged(a1)

We can find one set of states as the pre-state of stg:

fPRE∃changePass(a1)(stg) = fst1 = permission(a1) ∨ trick(a1)

st1 →changePass(a1) stg

fstg and fst1 don’t share any proposition and hence, there is no effective
proposition occurring in both of them together. For the set st1, we can find one
pre-set:

fPRE∃setTrick(a1)(st1)
= fst2 = ¬permission(a1)

st2 →setTrick(a1);changePass(a1) stg

The next step is to look for effective propositions occurring in fst1 and fst2 .
For p = permission(a1) we have:

fst1 [>/p] = >, fst2 [⊥/p] = >, fst1 [>/p] ∧ fst2 [⊥/p] = >

st3 = st> = S st3 →ξ stg

ξ =if(permission(a1)){changePass(a1)} else {setTrick(a1); changePass(a1)}

Since st0 ⊆ st3, the goal is reachable and we output the strategy.

Backward search transition filtering: If an action changes a proposition, the
value of the proposition will be known for the rest of the strategy. So in backward
search algorithm, we filter out the transitions that alter effective propositions
before their corresponding decision states are reached.

4.2 Pseudocode for finding strategy

Consider P as the set of atomic propositions, AC the set of all the actions that
the agents in coalition C can perform, st0 the set of initial states and stg the
set of goal states for simple goal g. KC contains the propositions known by
the agents in coalition C at the beginning (tagged with ! in the query). The
triple (st, ξ, efv) is called state strategy which keeps the set of states st found
during backward search, the strategy ξ to reach the goal from st and the set of
effective propositions efv occurring in ξ. The pseudocode for the strategy finding
algorithm is as follows:

1: input: P , AC , st0, stg, KC

2: output: strategy
3: state strategies:={(stg,null, ∅)}
4: states seen:=∅
5: old strategies:=∅
6:

7: while old strategies 6=state strategies do
8: old strategies:=state strategies
9: for all (st1, ξ1, efv1) ∈ state strategies do

10: for all a ∈ AC do
11: if effect(a) ∩ efv1 = ∅ then
12: PRE := PRE∃a (st1)
13: if PRE 6= ∅ and PRE 6⊆ states seen then
14: states seen := states seen ∪ PRE
15: ξ := “a; ” + ξ1
16: state strategies := state strategies ∪ {(PRE, ξ, efv1)}
17: if st0 ⊆ PRE then
18: output ξ
19: end if
20: end if
21: end if
22: end for
23:

24: for all (st2, ξ2, efv2) ∈ state strategies do
25: for all p ∈ P\KC do
26: if p ∈ prop(fst1) ∩ prop(fst2) then
27: PRE := stfst1[>/p] ∩ stfst2[⊥/p]

28: if PRE 6= ∅ and PRE 6⊆ states seen then
29: states seen := states seen ∪ PRE
30: ξ := “if(p)” + ξ1 + “else” + ξ2
31: state strategies := state strategies ∪ {(PRE, ξ, efv1 ∪ efv2∪
32: {p})}
33: if st0 ⊆ PRE then
34: output ξ
35: end if
36: end if

37: end if
38: end for
39: end for
40: end for
41: end while

The outermost while loop checks the fixed point of the algorithm, where no
more state (or equivalently, state strategy) could be found in backward search.
Inside the while loop, the algorithm traverses the state strategy set that contains
(stg,null, ∅) at the beginning. For each state strategy (st, ξ, efv), it finds all
the possible pre-states for st and appends the corresponding state strategies to
the set. It also finds effective propositions and decision states by performing
pairwise analysis between all the members of the state strategy set based on
the proposition 1. The strategy will be returned if the initial states are found
in backward search. The proof for the termination, soundness (If the algorithm
outputs a strategy, it can be run over st0 and results in stg) and completeness (If
some strategy exists from st0 to stg, then the algorithm will find one) is provided
in [12].

Verification of the nested goals: To verify a nested goal, we begin from
the inner-most goal. By backward search, all backward reachable states will be
found and their intersection with the states for the outer goal will construct the
new set of goal states. For the outer-most goal, we look for the initial states
between backward reachable states. If we find them, we output the strategy.
Otherwise, the nested goal is unreachable.

5 Knowledge vs. guessing in strategy

Agents in a coalition know the value of a proposition if: they have read the value
before, or they have performed an action that has affected that proposition3.
If a strategy is found, we are able to verify the knowledge of the agents over
the strategy and specifically for effective propositions, using read permissions
defined in the policy. Read permissions don’t lead to any transition or action,
and are used just to detect if an agent or coalition of agents can find out the way
to the goal with complete or partial knowledge of the system. The knowledge is
shared between the agents in a coalition.

To find agent knowledge over effective propositions, we begin from the initial
states, run the strategy and verify the ability of the coalition to read the effective
propositions. If at least one of the agents in the coalition can read an effective
proposition before or at the corresponding decision states, then the coalition can
find the path without taking any risk. In the lack of knowledge, agents should
guess the value in order to find the next required action along the strategy.

3 In this research, we do not consider reasoning about knowledge like the one in in-
terpreted systems. This approach makes the concept of knowledge weaker, but more
efficient to verify.

Pseudocode for knowledge verification over the strategy: Let g be a
simple goal and (st0, ξ, efv) be the state strategy where st0 is the set of initial
states, st0 →ξ stg and efv is the set of effective propositions occurring in ξ.
If C is the coalition of agents and KC the knowledge of the coalition at the
beginning, then the recursive function “KnowledgeAlgo” returns an annotated
strategy with a string “Guess:” added to the beginning of every “if” statement
in ξ, where the coalition does not know the value of the proposition inside if
statement.

1: input: st0, ξ, efv , C,KC

2: output: Annotated strategy ξ′

3:

4: function KnowledgeAlgo(st, ξ, efv , C,KC)
5: if ξ=null then
6: return null
7: end if
8: for all p ∈ efv , u1 ∈ C do
9: for all read permissions ρ(u1,o) : p← f do

10: if st |= f then
11: KC := KC ∪ {p}
12: end if
13: end for
14: end for
15: if ξ = a; ξ1 then
16: st′ :=result of performing action a in st
17: return “a;”+
18: KnowledgeAlgo(st′, ξ1, efv , C,KC ∪ effect(a))
19: else if ξ = if(p){ξ1} else {ξ2} then
20: if p ∈ KC then
21: str :=“”
22: else
23: str :=“Guess: ”
24: end if
25: return str+ “if(p){”+
26: KnowledgeAlgo(stfst∧p, ξ1, efv\{p}, C,KC) + “} else {”+
27: KnowledgeAlgo(stfst∧¬p, ξ2, efv\{p}, C,KC) +“}”
28: end if
29: end function

Knowledge verification for nested goals: To handle knowledge verifi-
cation over the strategies found by nested goal verification, we begin from the
outermost goal. We traverse over the strategy until the goal states are reached.
For the next goal, all the accumulated knowledge will be transferred to the new
coalition if there exists at least one common agent between the two coalitions.
The algorithm proceeds until the strategy is fully traversed.

RW(Algo-1) PoliVer algorithm

Query Time Memory Time Memory

Query 4.2 2.05 18.18 0.27 3.4

Query 4.3 0.46 9.01 0.162 6.68

Query 4.4 6.45 59.95 0.52 6.61

Query 6.4 9.10 102.35 0.8 12.92

Query 6.8 20.44 222.02 0.488 7.30

Fig. 2. A comparison of query verification time (in second) and runtime memory usage
(in MB) between RW and PoliVer.

6 Experimental results

We implemented the algorithms as a policy verification tool called PoliVer by
modifying the AcPeg model-checker, which is an open source tool written in Java.
First, we changed the parser in order to define actions and read permissions
in the policy as in section 3.1. The query language also changed to support
queries of the form defined in section 3.3. Second, we implemented the strategy
finding algorithm in the core of AcPeg and then, applied knowledge verification
algorithm over strategies found.

One of the outcomes of the implementation was the considerable reduction of
binary decision diagram (BDD) variable size compared to RW. In RW, there are
7 knowledge states per proposition and therefore, an access control system with
n propositions contains 7n different states. Our simplification of knowledge-state
variables results in 2n states. The post-processing time for knowledge verification
over found strategies is negligible compared to the whole process of strategy
finding, while produces more expressive results.

We encoded authorization policies for a conference review system (CRS),
employee information system (EIS) and student information system (SIS) in [1]
into our policy language. We compared the performance in terms of verification
time and memory usage for the queries: Query 4.2 for CRS with 7 objects (3
papers and 4 agents) that looks for strategies which an agent can promote himself
to become a reviewer of a paper, Query 4.3 for CRS which is a nested query that
asks if a reviewer can submit his review for a paper while he has read the review
of someone else before, Query 4.4 with 4 objects for CRS with five-level nested
queries that checks if an agents can be assigned as a pcmember by the chair and
then resign his membership, Query 6.4 with 18 objects for EIS which evaluates
if two managers can collaborate to set a bonus for one of them and Query 6.8
for SIS with 10 objects that asks if a lecturer can assign two students as the
demonstrator of each other.

Figure 2 shows a considerable reduction in time and memory usage by the
proposed algorithm compared to Algo-1 in RW (Algo-1 has slightly better per-
formance and similar memory usage compared to Algo-0). As a disadvantage
for both systems, the verification time and state space grow exponentially when
more objects are added. But this situation in our algorithm is much better
than RW. Our experimental results demonstrates the correctness of our claim in

Fig. 3. Verification time vs. number of agents for RW and PoliVer (Query 6.8)

practice by comparing the verification time of Query 6.8 for different number of
agents. Figure 3 sketches the verification time for both algorithms for different
number of agents in logarithmic scale. The verification time in RW increases as
2.5n where n is the number of agents added, while the time increases as 1.4n in
our algorithm. Note that this case study does not show the worst case behaviour
when the number of agents increases4.

7 Conclusion and future work

Our language and tool is optimised for analysing the access control policies of
web-based collaborative systems such Facebook, LinkedIn and Easychair. These
systems are likely to become more and more critical in the future, so analysing
them is important. More specifically, in this work:

– We have developed a policy language and verification algorithm, which is
also implemented as a tool. The algorithm produces evidence (in the form
of a strategy) when the system satisfies a property.

– We remove the requirement to reason explicitly about knowledge, approxi-
mating it with the simpler requirement to reason about readability as it is
sufficient in many cases. Compared to RW that has 7n states, we have only
2n states in our approach (where n is the number of propositions). Also, com-
plicated properties can be evaluated over the policy by the query language
provided.

– We detect the vulnerabilities in the policy that enable an attacker to discover
the strategy to achieve the goal, when some required information is not
accessible. We introduce the concept of effective propositions to detect such
vulnerabilities.

– A set of propositions can be updated in one action. In the RW framework,
each write action can update only one proposition at a time.

4 The tool, case studies and technical reports are accessible at: http://www.cs.bham.
ac.uk/~mdr/research/projects/11-AccessControl/poliver/

Future work: For the next step, we intend to cover large applications like Face-
book and Easychair in our case studies.

Acknowledgements: We would like to thank Microsoft Research as Masoud
Koleini is supported by a Microsoft PhD scholarship. We also thank Moritz
Becker and Tien Tuan Anh Dinh for their useful comments and Joshua Phillips
for the performance and quality testing of the release version of PoliVer.

References

1. Zhang, N., Ryan, M., Guelev, D.P.: Synthesising verified access control systems
through model checking. J. Comput. Secur. 16(1) (2008) 1–61

2. Becker, M.Y.: Specification and analysis of dynamic authorisation policies. In:
CSF ’09: Proceedings of the 2009 22nd IEEE Computer Security Foundations
Symposium, Washington, DC, USA, IEEE Computer Society (2009) 203–217

3. Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Specifying and reasoning about
dynamic access-control policies. In: of Lecture Notes in Computer Science. Volume
4130., Springer (2006) 632–646

4. Naldurg, P., Campbell, R.H.: Dynamic access control: preserving safety and trust
for network defense operations. In: SACMAT ’03: Proceedings of the eighth ACM
symposium on access control models and technologies, New York, NY, USA, ACM
(2003) 231–237

5. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and
change-impact analysis of access-control policies. In: ICSE ’05: Proceedings of the
27th international conference on software engineering, New York, NY, USA, ACM
(2005) 196–205

6. Becker, M.Y., Gordon, A.D., Fournet, C.: SecPAL: Design and semantics of a
decentralised authorisation language. Technical report, Microsoft Research, Cam-
bridge (Sep. 2006)

7. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust manage-
ment framework. In: Proceedings of the 2002 IEEE Symposium on Security and
Privacy, IEEE Computer Society Press (May 2002) 114–130

8. Bell, D., LaPadula., L.J.: Secure computer systems: Mathematical foundations and
model. Technical report, The Mitre Corporation (1976)

9. Bell, D.E.: Looking back at the bell-la padula model. In: ACSAC ’05: Proceedings
of the 21st Annual Computer Security Applications Conference, Washington, DC,
USA, IEEE Computer Society (2005) 337–351

10. Becker, M.Y., Nanz, S.: A logic for state-modifying authorization policies. ACM
Trans. Inf. Syst. Secur. 13(3) (2010) 1–28

11. Fox, M., Long, D.: Pddl2.1: An extension to pddl for expressing temporal planning
domains. Journal of Artificial Intelligence Research 20 (2003) 61–124

12. Koleini, M., Ryan, M.: A knowledge-based verification method for dynamic
access control policies. Technical report, University of Birmingham, School
of Computer Science, Available at: http://www.cs.bham.ac.uk/~mdr/research/
projects/11-AccessControl/poliver/ (2010)

