
Formal analysis of anonymity in ECC-based
Direct Anonymous Attestation schemes?

Ben Smyth1, Mark Ryan2, and Liqun Chen3

1 Toshiba Corporation, Kawasaki, Japan
2 School of Computer Science, University of Birmingham, UK

3 HP Laboratories, Bristol, UK

Abstract. A definition of user-controlled anonymity is introduced for
Direct Anonymous Attestation schemes. The definition is expressed as
an equivalence property suited to automated reasoning using ProVerif
and the practicality of the definition is demonstrated by examining the
ECC-based Direct Anonymous Attestation protocol by Brickell, Chen &
Li. We show that this scheme is secure under the assumption that the
adversary obtains no advantage from re-blinding a blind signature.

1 Introduction

Trusted computing allows commodity computers to provide cryptographic assur-
ances about their behaviour. At the core of the architecture is a hardware device
called the Trusted Platform Module (TPM). The TPM uses shielded memory to
store cryptographic keys, and other sensitive data, which can be used to achieve
security objectives. In particular, the chip can measure and report its state, and
authenticate. Cryptographic operations, by their nature, may reveal a platform’s
identity and as a consequence the TPM has been perceived as threat to privacy
by some users. Brickell, Camenisch & Chen [1] have introduced the notion of Di-
rect Anonymous Attestation (DAA) to overcome these privacy concerns. More
precisely, DAA is a remote authentication mechanism for trusted platforms which
provides user-controlled anonymity and traceability. The concept is based upon
group signatures with stronger anonymity guarantees; in particular, the identity
of a signer can never be revealed, but signatures may be linked with the signer’s
consent, and signatures produced by compromised platforms can be identified.
A DAA scheme considers a set of hosts, issuers, TPMs, and verifiers; the host
and TPM together form a trusted platform or signer. DAA protocols proceed as
follows. A host requests membership to a group provided by an issuer. The issuer
authenticates the host as a trusted platform and grants an attestation identity
credential (occasionally abbreviated credential). The host can now produce sig-
natures using the credential, thereby permitting a verifier to authenticate the
host as a group member and therefore a trusted platform.

Brickell, Chen & Li [2, 3] and Chen [4, 5] characterise the following properties
for Direct Anonymous Attestation schemes:

? Ben Smyth’s work was partly done at Loria, CNRS & INRIA Nancy Grand Est,
France and the School of Computer Science, University of Birmingham, UK.

– User-controlled anonymity.

• Privacy. The identity of a signer cannot be revealed from a signature.

• Unlinkability. Signatures cannot be linked without the signer’s consent.

– User-controlled traceability.

• Unforgeability. Signatures cannot be produced without a TPM.

• Basename linkability. Signatures are linkable with the signer’s consent.

– Non-frameability. An adversary cannot produce a signature associated with
an honest TPM.

– Correctness. Valid signatures can be verified and, where applicable, linked.

The contrasting nature of anonymity and traceability properties aims to balance
the privacy demands of users and the accountability needs of administrators.

Contribution. A definition of user-controlled anonymity is presented as an equiv-
alence property which is suited to automated reasoning using ProVerif. Infor-
mally, the definition asserts that an adversary cannot distinguish between sig-
natures produced by two distinct signers, even when the adversary controls the
issuer and has observed signatures produced by each signer. The application of
the definition is demonstrated by examining user-controlled anonymity in the
ECC-based DAA protocol [6, 3]. Support for the ECC-based scheme is man-
dated by the TPM.next specification [7], which is due to replace TPM version
1.2. Moreover, the scheme has been included in the ISO/IEC anonymous digi-
tal signature standard [8]. Unfortunately, we could not prove any results in the
general case and we, therefore, focus on proving the security of the scheme in a
model where the adversary is forbidden from re-blinding a blind signature.

Related work. In the computational model, Brickell, Camenisch & Chen [1] and
Chen, Morrissey & Smart [9–11] introduce simulation-based models of security,
and Brickell, Chen & Li [2, 3] propose a game-based security definition; the
relationship between the simulation-based models and the game-based defini-
tion is unknown [11, pp158]. We consider a symbolic definition, based upon the
game-based definition. By comparison, Backes, Maffei & Unruh [12] formalised
an earlier notion of user-controlled anonymity (informally described in [1]) for
the RSA-based DAA protocol. This formalisation is tightly coupled with their
model of the RSA-based protocol and it is unclear whether other DAA schemes
can be analysed or, indeed, how to analyse alternative models of the RSA-based
protocol. In addition, the formalisation pre-dates the user-controlled anonymity
definitions by Brickell, Chen & Li and Chen, Morrissey & Smart and consid-
ers a conceptually weaker adversary; for example, the following scenario is not
considered: 1) signer A obtains a credential creA and produces arbitrary many
signatures; 2) signer B obtains a credential creB and produces arbitrary many
signatures; and 3) the adversary attempts to distinguish between two fresh sig-
natures produced by the signers using credentials creA and creB . Finally, our
definition is intuitively simpler, which should aid analysis and, in particular, be
better suited to automated reasoning.

2 Preliminaries: Calculus of ProVerif

We adopt a dialect [13, 14] of the applied pi calculus [15, 16] which is suited to
automated reasoning using Blanchet’s ProVerif [17].

2.1 Syntax and semantics

The calculus assumes an infinite set of names, an infinite set of variables and a
signature Σ consisting of a finite set of function symbols (constructors and de-
structors), each with an associated arity. Substitutions {M/x} replace the vari-
able x with the term M and we let the letters σ and τ range over substitutions.
We write Nσ for the result of applying σ to the free variables of N .

The signature Σ is equipped with an equational theory E, that is, a finite set
of equations of the form M = N . We define =E as the smallest equivalence rela-
tion on terms that contains E, and is closed under application of constructors,
substitution of terms for variables, and bijective renaming of names. The seman-
tics of a destructor g of arity l is given by a finite set defΣ(g) of rewrite rules
g(M ′1, . . . ,M

′
l)→M ′, where M ′1, . . . ,M

′
l ,M

′ are terms containing only construc-
tors and variables; moreover, the variables of M ′ are bound in M ′1, . . . ,M

′
l , and

variables are subject to renaming. The term g(M1, . . . ,Ml) is defined iff there
exists a substitution σ and a rewrite rule g(M ′1, . . . ,M

′
l)→M ′ in defΣ(g) such

that Mi = M ′iσ for all i ∈ {1, . . . , l}, and in this case g(M1, . . . ,Ml) is M ′σ.
The grammar for terms and processes is presented in Figure 1. The process

let x = D in P else Q tries to evaluate D; if this succeeds, then x is bound
to the result and P is executed, otherwise Q is executed. The syntax does not
include the conditional if M = N then P else Q, but this can be defined as
let x = eq(M,N) in P else Q, where x is a fresh variable and eq is a binary
destructor with the rewrite rule eq(x, x)→ x. We always include this destructor
in Σ. The rest of the syntax is standard (see Blanchet [13, 14] for details).

The sets of free and bound names, respectively variables, in process P are
denoted by fn(P) and bn(P), respectively fv(P) and bv(P). We also write fn(M)
and fv(M) for the sets of names and variables in term M . A process P is closed if
it has no free variables. A context C is a process with a hole and we obtain C[P]
as the result of filling C’s hole with P . An evaluation context is a context whose
hole is not in the scope of a replication, an input, an output, or a term evaluation.

The operational semantics are defined by reduction (→Σ) in association with
the auxiliary rules for term evaluation (⇓Σ) and structural equivalence (≡), the
structural equivalence rules are standard and we omit them for brevity (see
Blanchet [13, 14] for details). Both ≡ and →Σ are defined only on closed pro-
cesses. We write →∗Σ for the reflexive and transitive closure of →Σ , and →∗Σ≡
for its union with ≡; we occasionally abbreviate →Σ as → and ⇓Σ as ⇓.

Biprocesses. The calculus provides a notation for modelling pairs of processes
that have the same structure and differ only by the terms and term evaluations
that they contain. We call such a pair of processes a biprocess. The grammar

Fig. 1 Syntax for terms and processes

M,N ::= terms
a, b, c, . . . , k, . . . ,m, n, . . . , s name
x, y, z variable
f(M1, . . . ,Ml) constructor application

D ::= term evaluations
M term
eval h(D1, . . . , Dl) function evaluation

P,Q,R ::= processes
0 null process
P | Q parallel composition
!P replication
ν a.P name restriction
M(x).P message input

M〈N〉.P message output
let x = D in P else Q term evaluation

Fig. 2 Semantics for terms and processes

M ⇓M
eval h(D1, . . . , Dn)⇓Nσ

if h(N1, . . . , Nn)→ N ∈ defΣ(h),
and σ is such that for all i, Di ⇓Mi and Σ `Mi = Niσ

N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if Σ ` N = N ′

let x = D in P else Q→ P{M/x} (Red Fun 1)
if D ⇓M

let x = D in P else Q→ Q (Red Fun 2)
if there is no M such that D ⇓M

!P → P | !P (Red Repl)
P → Q ⇒ P | R → Q | R (Red Par)
P → Q ⇒ ν a.P → ν a.Q (Red Res)
P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

for the calculus with biprocesses is a simple extension of Figure 1, with addi-
tional cases so that diff[M,M ′] is a term and diff[D,D′] is a term evaluation.
The semantics for biprocesses include the rules in Figure 2, except for (Red
I/O), (Red Fun 1), and (Red Fun 2) which are revised in Figure 3. We also
extend the definition of contexts to permit the use of diff, and sometimes refer
to contexts without diff as plain contexts.

We define processes fst(P) and snd(P), as follows: fst(P) is obtained by
replacing all occurrences of diff[M,M ′] with M and diff[D,D′] with D in P ; and,
similarly, snd(P) is obtained by replacing diff[M,M ′] with M ′ and diff[D,D′]
with D′ in P . We define fst(D), fst(M), snd(D), and snd(M) similarly.

Fig. 3 Generalised semantics for biprocesses

N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if Σ ` fst(N) = fst(N ′) and Σ ` snd(N) = snd(N ′)

let x = D in P else Q→ P{diff[M1,M2]/x} (Red Fun 1)
if fst(D)⇓M1 and snd(D)⇓M2

let x = D in P else Q→ Q (Red Fun 2)
if there is no M1 such that fst(D)⇓M1 and
there is no M2 such that snd(D)⇓M2

Assumptions and notation. In this paper, all signatures are tacitly assumed to
include the constant ∅, unary destructors fst and snd, and the binary construc-
tor pair. Furthermore, for all variables x and y we assume the rewrite rules
fst(pair(x, y)) → x and snd(pair(x, y)) → y. For convenience, pair(M1, pair(. . . ,
pair(Mn,∅))) is occasionally abbreviated as (M1, . . . ,Mn) and fst(sndi−1(M))
is denoted πi(M).

2.2 Observational equivalence

We write P ↓M when P can send a message onM , that is, when P ≡ C[M ′〈N〉.R]
for some evaluation context C[] such that fn(C)∩ fn(M) = ∅ and Σ `M = M ′.
The definition of observational equivalence [13, 14] follows.

Definition 1 (Observational equivalence). Observational equivalence ∼ is
the largest symmetric relation R between closed processes such that P R Q
implies:

1. if P ↓M , then Q ↓M ;
2. if P → P ′, then Q→ Q′ and P ′ R Q′ for some Q′;
3. C[P] R C[Q] for all evaluation contexts C[].

We define observational equivalence as a property of biprocesses.

Definition 2. The closed biprocess P satisfies observational equivalence if fst(P)
∼ snd(P).

Blanchet, Abadi & Fournet [13, 14] have shown that a biprocess P satisfies
observational equivalence when reductions in fst(P) or snd(P) imply reductions
in P ; this proof technique is formalised using the notion of uniformity.

Definition 3 (Uniform). A biprocess P is uniform if for all processes Q1 such
that fst(P) −→ Q1, then P −→ Q for some biprocess Q, where fst(Q) ≡ Q1, and
symmetrically for snd(P) −→ Q2.

Definition 4 (Strong uniformity). A closed biprocess P satisfies strong uni-
formity if for all plain evaluation contexts C and biprocesses Q such that C[P]
−→∗≡ Q, then Q is uniform.

Theorem 1 (Strong uniformity implies equivalence). Given a closed bipro-
cess P , if P satisfies strong uniformity, then P satisfies observational equiva-
lence.

3 Formalising DAA protocols

A Direct Anonymous Attestation scheme allows remote authentication of trusted
platforms, and comprises of five algorithms, each of which will now be discussed.

Setup. The setup algorithm is primarily used by the issuer to construct a public
key pair skI and pk(skI), the public part pk(skI) is published. In addition,
the setup algorithm may define implementation specific parameters.

Join. The join algorithm is run between a trusted platform and an issuer for the
purpose of obtaining group membership. On successful completion of the join
algorithm, the issuer grants the trusted platform with an attestation identity
credential cre based upon a secret tsk known only by the TPM.

Sign. The sign algorithm is executed by a trusted platform to produce a sig-
nature σ, based upon an attestation identity credential cre and secret tsk,
which asserts group membership and therefore trusted platform status. In
addition to cre and tsk, the algorithm takes as input a message m and a
basename bsn. The basename is used to control linkability between signa-
tures: if bsn = ⊥, then signatures should be unlinkable; otherwise, signa-
tures produced by the same signer and based upon the same basename can
be linked.

Verify. The verification algorithm is used by a verifier to check the validity of a
signature. The algorithm takes as input a set of secret keys ROGUEtsk, which
are known to have been successfully extracted from compromised TPMs,
allowing the identification of rogue platforms.

Link. The link algorithm is used by a verifier to check if two valid signatures
are linked, that is, signed using the same basename bsn and secret tsk.

3.1 Applied pi process specification

This paper considers user-controlled anonymity, which is dependent on a trusted
platform’s behaviour, that is, the join and sign algorithms. Formally, these al-
gorithms are modelled by a pair of processes 〈Join,Sign〉.

The signer (or trusted platform) is able to execute arbitrarily many instances
of the join and sign algorithms to become a member of a group and, subsequently,
produce signatures as a group member. This behaviour is captured by the Signer
process modelled below. The join and sign algorithms are modelled by the pro-
cesses Join and Sign, which are expected to behave like services, that is, they can
be called by, and return results to, the Signer process. The communication be-
tween the Signer and Join/Sign processes is achieved using private communication
over channels aj , a

′
j , as, and a′s. In essence, the private channel communication

models the internal bus used by computer systems for communication between
the host and TPM.

The process Signer instantiates arbitrarily many instances of the Join and
Sign processes. The restricted channel names aj and a′j are introduced to ensure
private communication between the Signer and Join processes; similarly, names
as and a′s ensure private communication between the Signer and Sign processes.

Signer = ν aj .ν a
′
j .ν as.ν a

′
s . ((!Join) | (!Sign) | (ν cnt.ν DAASeed.ν skM .c〈pk(skM)〉.

!c(wparams).aj〈(wparams, DAASeed, cnt, skM)〉.a′j(x).
let xcre = π1(x) in let xtsk = π2(x) in (

!c(y).let ybsn = π1(y) in let ymsg = π2(y) in
as〈(wparams, ybsn, ymsg, xcre, xtsk)〉.a′s(z).c〈z〉

)
))

The bound name cnt is a counter value selected by the host. The bound name
DAASeed represents the TPM’s internal secret and skM represents the TPM’s
endorsement key (these values are defined during manufacture [18]). The public
part of the endorsement key is published by the Signer process. The remainder of
the Signer process models a signer’s ability to execute arbitrarily many instances
of the join and sign algorithms. The Signer process must first input system pa-
rameters wparams, provided by the issuer. The Join process is assumed to act
like a service and listens for input on channel aj . It follows that the Signer pro-
cess can invoke the service by message output aj〈(wparams, DAASeed, cnt, wek)〉,
where (wparams, DAASeed, cnt, wek) models the join algorithm’s parameters. The
Join process is assumed to output results on channel a′j , and this response can
be received by the Signer process using message input a′j(x); the result is bound
to the variable x, and is expected to consist of a pair (xcre, xtsk) represent-
ing the attestation identity credential and TPM’s secret. The interaction be-
tween the Sign and Signer processes is similar. The Signer process first inputs
a variable y which is expected to be a pair representing the verifier’s base-
name ybsn and a message ymsg. The invocation of the sign algorithm by the
signer is modelled by the message output as〈(wparams, ybsn, ymsg, xcre, xtsk)〉, where
(wparams, ybsn, ymsg, xcre, xtsk) represents the algorithm’s parameters. The sign al-
gorithm is expected to output a signature which can be sent to a verifier, in the
Signer process this signature is received from the Sign process by message input
a′s(z) and the variable z, representing the signature, is immediately output.

4 Security definition: User-controlled anonymity

Informally, the notion of user-controlled anonymity asserts that given two honest
signers A and B, an adversary cannot distinguish between a situation in which
A signs a message, from another one in which B signs a message. Based upon
the game-based definition by Brickell, Chen & Li [2, 3] we present the following
security definition.

Initial: The adversary constructs the key pair skI and pk(skI), and publishes
the public part pk(skI). The adversary also publishes any additional parameters.

Phase 1: The adversary makes the following requests to signers A and B:

– Join. The signer executes the join algorithm to create cre and tsk. The
adversary, as the issuer, learns cre but typically not tsk.

– Sign. The adversary submits a basename bsn and a message m. The signer
runs the sign algorithm and returns the signature to the adversary.

At the end of Phase 1, both signers are required to have run the join algorithm
at least once.

Phase 2 (Challenge): The adversary submits a message m′ and a basename bsn′

to the signers, with the restriction that the basename has not been previously
used if bsn′ 6= ⊥. Each signer produces a signature on the message and returns
the signature to the adversary.

Phase 3: The adversary continues to probe the signers with join and sign
requests, but is explicitly forbidden to use the basename used in Phase 2 if
bsn 6= ⊥.

Result: The protocol satisfies user-controlled anonymity if the adversary cannot
distinguish between the two signatures output during the challenge.

Our definition intuitively captures privacy because the adversary cannot distin-
guish between the two signatures output during the challenge. We can witness
that this is a sufficent condition for privacy as follows: suppose a protocol satis-
fies user-controlled anonymity but the identity of a signer can be revealed from
a signature, it follows immediately that the adversary can test which signa-
ture output during the challenge belongs to A, allowing the signatures to be
distinguished and therefore deriving a contradiction. Moreover, our definition
also captures unlinkability. This can be witnessed as follows. Suppose a proto-
col satisfies user-controlled anonymity but signatures can be linked without the
signer’s consent. It follows from our security definition that no adversary can
distinguish between two signatures output during the challenge. Let us now con-
sider an adversary that requests a signature σA from A during Phase 1 using
basename bsn = ⊥ (that is, the signer does not consent to linkability) and an
arbitrary message m. The adversary submits an arbitrary message m′ and base-
name bsn′ = ⊥ during the challenge, and the signers return signatures σ1 and
σ2. Since signatures can be linked without the signer’s consent, the adversary is
able to test if σA and σ1 are linked, or whether σA and σ2 are linked; exactly
one test will succeed allowing the adversary to distinguish between signatures
σ1 and σ2. We have derived a contradiction and therefore a protocol satisfying
our definition of user-controlled anonymity provides unlinkability.

Formally, our definition of user-controlled anonymity can be modelled as an
observational equivalence property (Definition 5) using the DAA game biprocess
DAA-G presented in Figure 4. The Challenge process, which forms part of the
process DAA-G, is designed to capture the behaviour of the signers in Phase
2. This is achieved by outputting the attestation identity credential xcre and
TPM’s secret xtsk, produced by the signers in Phase 1, on the private channels

Fig. 4 Biprocess modelling user-controlled anonymity in DAA

Given a pair of processes 〈Join, Sign〉, the DAA game biprocess DAA-G is defined as

ν bA.ν bB .c(wparams) . (Challenge | Signer+{bA/wb} | Signer
+{bB/wb})

such that bA, bB 6∈ (fn(Sign) ∪ fv(Sign) ∪ fn(Join) ∪ fv(Join)) and where

Signer+ = ν aj .ν a
′
j .ν as.ν a

′
s.((!Join) | (!Sign) | (ν cnt.ν DAASeed.ν skM .c〈pk(skM)〉

!aj〈(wparams, DAASeed, cnt, skM)〉.a′j(x).
let xcre = π1(x) in let xtsk = π2(x) in (

!c(y).let ybsn = π1(y) in let ymsg = π2(y) in
if ybsn =⊥ then
as〈(wparams, ybsn, ymsg, xcre, xtsk)〉.a′s(z).c〈z〉

else
as〈(wparams, (chl

+, ybsn), ymsg, xcre, xtsk)〉.a′s(z).c〈z〉
) | (
wb〈(xcre, xtsk)〉

)
))

Challenge = ν as.ν a
′
s . ((Sign) | (

bA(x).let xcre = π1(x) in let xtsk = π2(x) in
bB(y).let ycre = π1(y) in let ytsk = π2(y) in
c(z).let zbsn = π1(z) in let zmsg = π2(z) in
if zbsn =⊥ then
as〈(wparams, zbsn, zmsg, diff[xcre, ycre], diff[xtsk, ytsk])〉.a′s(z).c〈z〉

else
as〈(wparams, (chl

−, zbsn), zmsg,diff[xcre, ycre], diff[xtsk, ytsk])〉.a′s(z).c〈z〉
))

for some constants chl+, chl−.

bA and bB in Signer+, and inputting these values in the Challenge process. The
Challenge process proceeds by producing a signature in the standard manner,
but uses diff[xcre, ycre] and diff[xtsk, ytsk] to ensure that the signature is produced
by A in fst(DAA-G) and B in snd(DAA-G). Finally, the necessity for a distinct
basename in Phase 2 (when bsn 6= ⊥) is enforced by prefixing the basename
used by Challenge with chl− and, similarly, prefixing the basenames used by
Signer+ with chl+. Our definition of user-controlled anonymity (Definition 5)
follows naturally.

Definition 5 (User-controlled anonymity). Given a pair of processes 〈Join,
Sign〉, user-controlled anonymity is satisfied if the DAA game biprocess DAA-G
satisfies observational equivalence.

Comparison with the game-based definition. In the game-based definition by
Brickell, Chen & Li [2, 3] either A or B signs the message during Phase 2 and
user-controlled anonymity is satisfied if the adversary has a negligible advantage
over guessing the correct signer. By comparison, in our definition, both A and
B sign the message during Phase 2 and user-controlled anonymity is satisfied if

these signatures are indistinguishable. Intuitively, any adversary strategy that
exists where either A or B signs can be exploited in the setting where both A
and B sign, and we therefore believe that our definition is at least as strong.
This result can be stated as follows. Let Game be the game-based definition
presented by Brickell, Chen & Li and let Game ′ be the variant presented here.
If there exists an adversary M that is able to win Game, then there exists
an adversary M′ that can win Game ′. It follows immediately that any attack
against a protocol can be discovered in Game ′, that is, Game ′ is as strong as
Game. We now sketch our proof. Suppose σ1 and σ2 are signatures produced
during the challenge of Game ′. The adversary M′ can submit σ1 to M and the
adversary M can reveal the signer’s identity id1; similarly, the adversary M′
can exploit M to reveal the signer’s identity id2 from σ2. The adversary M′

tests id1
?
= A and id2

?
= A, exactly one of these tests will succeed allowing M′

to distinguish the two signatures output during the challenge. For a complete
proof it would be necessary to either: 1) define a symbolic version of the game by
Brickell, Chen & Li, or 2) formalise our definition in the computational model.
The former appears problematic and hence explains why we base our definition
on Brickell, Chen & Li rather than stricty follow it. The complete proof remains
as future work. Computational soundness results would also be an interesting
future direction.

5 Case study: ECC-based DAA

The ECC-based DAA protocol was introduced by Brickell, Chen & Li [6, 3] to
overcome efficiency issues with the RSA-based DAA protocol.

5.1 Primitives and building blocks

We first recall the details of Camenisch-Lysyanskaya (CL) signatures [19], which
form the foundations of the ECC-based DAA protocol.

Randomised signature scheme. A CL signature is denoted clsign(xsk, xnonce, xmsg),
where xsk is the secret key, xnonce is a nonce, and xmsg is a message. The random
component clcommit(pk(xsk), xnonce) can be derived from a signature clsign(xsk,
xnonce, xmsg). Verification is standard given a signature, message, and public key,
that is, checkclsign(pk(xsk), xmsg, clsign(xsk, xnonce, xmsg)) → accept. The scheme
allows randomisation of signatures, and we denote the randomisation of the
signature σ = clsign(xsk, xnonce, xmsg) as clrand(ynonce, σ) for some random nonce
ynonce such that clrand(ynonce, σ)→ clsign(xsk,mul(xnonce, ynonce), xmsg).

Signature scheme for committed values. Given the public part of a signing key
pk(xsk) and a message xcsk, the corresponding commitment is U = clcommit(
pk(xsk), xcsk) and the associated signature is clsigncommit(xsk, xnonce, U)→ clsign(
xsk, xnonce, xcsk), where xnonce is a nonce. To maintain security of the signature
scheme, knowledge of xcsk must be demonstrated.

Tractability of DDH problem. The DDH problem is tractable for cyclic groups
with symmetric pairing, that is, given a pairing e : G1 × G1 → G2 and
integers g, ga, gb, gc ∈ G1, the distribution {(g, ga, gb, gab)} is distinguishable
from {(g, ga, gb, gc)}, where G1 and G2 are groups of prime order. This is due
to the bilinear property of the pairing function: for all integers g, h ∈ G1

and integers a, b ∈ Z we have e(ga, hb) = e(g, h)ab. It follows immediately
that {(g, ga, gb, gab)} is distinguishable from {(g, ga, gb, gc)} because e(g, gc) =
e(ga, gb) iff c = ab. Moreover, we have {(g, h, ga, ha)} is distinguishable from
{(g, h, ga, hb)} because e(ga, h) = e(g, hb) iff a = b. Finally, e(g, arx+rmxy) =
e(g, a)rx+rmxy = e(gx, ar) · e(gm, arxy) and hence, by reference to the crypto-
graphic description of CL-signatures, the commitment M = gm can be linked to
the randomised signature (a′, b′, c′) = (ar, ary, arx+rmxy) when the secret key x
is known. We explicitly include the following properties in our symbolic model.

– clcommit(xbase, xmsg) is related to clcommit(x′base, xmsg), where xbase and x′base
are known.

– clsign(xsk, xnonce, xmsg) is related to clcommit(pk(xsk), xmsg), where xsk is known.

We shall also use a commitment function commit in which the DDH problem
is intractable, that is, commit(xbase, xmsg) and commit(x′base, xmsg) are indistin-
guishable when xbase 6= x′base.

Proving knowledge of a signature. The signature scheme for committed val-
ues can be used to build an anonymous credential system. Given a signature
σ = clsign(xsk, xnonce, xcsk), random nonce ynonce and blinding factor yblind, the
anonymous credential σ̂ = clblind(yblind, clrand(ynonce, σ)). (We remark that the
random component clcommit(pk(xsk), xnonce) can be recovered from both the sig-
nature σ and the blind signature clblind(yblind, σ), hence the two signatures can
be linked; it follows that blinding is insufficient to derive an anonymous creden-
tial.) A zero-knowledge proof of knowledge can then be used to demonstrate that
the anonymous credential σ̂ is indeed a blinded signature on message xcsk using
blinding factor xblind. We will adopt the notation introduced by Camenisch &
Stadler [20] to describe signatures of knowledge. For instance, SPK{(α) : F =
clcommit(pk(skI), α)}(m) denotes a “ Signature Proof of Knowledge of α such
that F = commit(pk(skI), α) holds, where m is the message being signed.” In
the example, the Greek letters in parentheses are used for values about which
knowledge is being proved and these values are kept secret by the prover.

5.2 Protocol description

For the purpose of studying user-controlled anonymity, it is sufficient to consider
the join and sign algorithms. The join algorithm (Figure 5) is defined below, given
the algorithm’s input: system parameter KI and pk(skI) (that is, the issuer’s
long- and short-term public keys), the TPM’s secret DAASeed, a counter value
cnt, and the TPM’s endorsement key pair skM and pk(skM). We remark that

Fig. 5 ECC-based DAA join algorithm

Trusted platform Issuer

Issuer publishes KI and pk(skI)

tsk = hash(DAASeed,KI)

F = clcommit(pk(skI), tsk)

F .

Generate ni

/ ni

SPK{(tsk) : F = clcommit(pk(skI), tsk)}(ni) .

Generate r

/ clsign(skI , r, F)

the issuer’s basename bsnI is not provided as input (unlike the RSA-based DAA
protocol) in the standard mode of operation.

1. The TPM computes the secret tsk = hash(DAASeed,KI), derives the com-
mitment F = clcommit(pk(skI), tsk) and sends F to the issuer.

2. The issuer generates a nonce ni and sends it to the trusted platform.
3. The trusted platform generates a signature proof of knowledge SPK{(tsk) :
F = clcommit(pk(skI), tsk)}(ni) that the message F is correctly formed.
The host sends the proof to the issuer.

4. The issuer verifies the proof and generates a credential cre = clsign(skI , r, F).
The signature cre is sent to the trusted platform and the platform verifies
the signature.

At the end of the algorithm, the credential cre can be public (in particular, it is
known by the host and the issuer), but only the TPM knows the corresponding
secret tsk. The credential cre and secret tsk can be provided as input to the
sign algorithm, along with a basename bsn and message m. The sign algorithm
proceeds as follows.

5. If bsn = ⊥, then the host generates a nonce ζ; otherwise, the host computes
ζ = hash(1, bsn). The host provides the TPM with ζ. The TPM computes
the commitment NV = commit(ζ, tsk). The host generates a random nonce
r′ and blinding factor r̂, which are used to compute the anonymous credential
ĉre = clblind(r̂, clrand(r′, cre)). The trusted platform then produces a sig-
nature proof of knowledge that ĉre is a valid blinded credential on message
tsk using blinding factor r̂, and that NV is correctly formed.

The sign algorithm outputs the signature proof of knowledge which is sent to the
verifier. Intuitively, if a verifier is presented with such a proof, then the verifier
is convinced that it is communicating with a trusted platform.

We remark that our attack against the RSA-based DAA scheme [21] (see
also [22, §4.4.5]) cannot be launched in the ECC setting, because it is not possible
to select a public key pk(skI) and basename bsn such that the commitments
F = clcommit(pk(skI), tsk) and NV = commit(hash(1, bsn), tsk) can be linked;
this is due to the constraints placed upon the public key, the pre-image resistance
of hash functions, and properties of the respective commitment functions.

5.3 Signature and equational theory

We construct a signature Σ to capture the cryptographic primitives used by the
scheme and define rewrite rules to capture the relationship between these prim-
itives. Let Σ = {accept, ⊥, 1, Fjoin, Fsign, clgetnonce, hash, pk, clblind, clcommit,
commit, clrand, mul, checkclsign, checkspk, clsign, clsigncommit, linksigcomm, spk,
clbsign, linkcomm}. Functions accept, ⊥, 1, Fjoin, Fsign are constants; clgetnonce,
hash, pk are unary functions; clblind, clcommit, commit, clrand, mul are binary
functions; checkclsign, checkspk, clsign, clsigncommit, linksigcomm, spk are ternary
functions; and clbsign, linkcomm are functions of arity four. We occasionally write
hash(xplain,1, . . . , xplain,n) to denote hash((xplain,1, . . . , xplain,n)). The rewrite rules
associated with the destructors in Σ are defined below.

clsigncommit(xsk, xnonce, clcommit(pk(xsk), xmsg))→ clsign(xsk, xnonce, xmsg)

clrand(ynonce, clsign(xsk, xnonce, xmsg))→ clsign(xsk,mul(xnonce, ynonce), xmsg)

clrand(ynonce, clbsign(xblind, xsk, xnonce, xmsg))
→ clbsign(xblind, xsk,mul(xnonce, ynonce), xmsg)

clblind(yblind, clsign(xsk, xnonce, xmsg))→ clbsign(yblind, xsk, xnonce, xmsg)

clblind(yblind, clbsign(xblind, xsk, xnonce, xmsg))
→ clbsign(mul(xblind, yblind), xsk, xnonce, xmsg)

clgetnonce(clsign(xsk, xnonce, xmsg))→ clcommit(pk(xsk), xnonce)

clgetnonce(clbsign(xblind, xsk, xnonce, xmsg))→ clcommit(pk(xsk), xnonce)

checkclsign(pk(xsk), xmsg, clsign(xsk, xnonce, xmsg))→ accept

A signature proof of knowledge is encoded in the form spk(F,U, V), where F is a
constant declaring the particular proof in use, U denotes the witness (or private
component) of a signature of knowledge, and V defines the public parameters
and message being signed. The function checkspk is used to verify a signature
and we define the following equations.

checkspk(Fjoin, V, spk(Fjoin, xtsk, V))→ accept
where V = (ypk, clcommit(ypk, xtsk), ymsg)

checkspk(Fsign, V, spk(Fsign, (xtsk, xblind), V))→ accept
where V = (yζ , pk(zsk), commit(yζ , xtsk), clbsign(xblind, zsk, znonce, xtsk), ymsg)

Fig. 6 Applied pi process specification for the ECC-based DAA protocol

JoinECC =̂ aj(wparams, wDAASeed, wcnt, wek) .
let wK = π1(wparams) in let wpk = π2(wparams) in
let tsk = hash(wDAASeed, wK) in
let F = clcommit(wpk, tsk) in
c〈F 〉 .
c(x) .
c〈spk(Fjoin, tsk, (wK, F, x))〉 .
c(ycre) .
if checkclsign(wpk, tsk, ycre) = accept then

a′j〈(ycre, tsk)〉

SignECC =̂ as(wparams, wbsn, wmsg, wcre, wtsk) . let wpk = π2(wparams) in
ν r′ . ν r̂ . ν nt . c(x) .
if wbsn =⊥ then

ν ζ .
let ĉre = clblind(r̂, clrand(r′, wcre)) in
let NV = commit(ζ, wtsk) in
let spk = spk(Fsign, (wtsk, r̂), (ζ, wpk, NV , ĉre, (nt, x, wmsg))) in
a′s〈(ζ,NV , ĉre, nt, spk)〉

else
let ζ = hash(1, wbsn) in
let ĉre = clblind(r̂, clrand(r′, wcre)) in
let NV = commit(ζ, wtsk) in
let spk = spk(Fsign, (wtsk, r̂), (ζ, wpk, NV , ĉre, (nt, x, wmsg))) in
a′s〈(ζ,NV , ĉre, nt, spk)〉

The first equation is used to verify the signature proof of knowledge produced
by the trusted platform during the join algorithm and the second is used by a
trusted platform during the sign algorithm to assert group membership. Finally,
the tractability of the DDH problem for cyclic groups with symmetric pairing
requires the following equations.

linkcomm(xbase, x
′
base, clcommit(xbase, zmsg), clcommit(x′base, zmsg))→ accept

linksigcomm(xsk, clcommit(pk(xsk), zmsg), clsign(xsk, znonce, zmsg))→ accept

5.4 Model in applied pi

The ECC-based join and sign algorithms are modelled by the pair of processes
〈JoinECC,SignECC〉 presented in Figure 6, in which we abbreviate c(x).let x1 =
π1(x) in . . . let xn = πn(x) in P as c(x1, . . . , xn).P .

The join process JoinECC is instantiated by inputting the join algorithm’s pa-
rameters: the ECC-based DAA system parameters wparams, the TPM’s internal
secret wDAASeed, the counter value wcnt chosen by the host, and the TPM’s en-
dorsement key wek. The system parameters wparams are expected to be a pair con-
taining the issuer’s long-term public key KI and short-term public key pk(skI).

The process constructs the terms tsk and F in accordance with the protocol’s
description (Section 5.2), and outputs F to the issuer. A nonce x is then in-
put and a signature proof of knowledge is produced. Finally, the process inputs
a signature ycre on the secret tsk and concludes by outputting the attestation
identity credential ycre and TPM’s secret tsk on the private channel a′j , that is,
the JoinECC process returns the values ycre and tsk to the Signer+ process.

The sign process SignECC is instantiated by inputting the sign algorithm’s
parameters: the ECC-based DAA system parameters wparams, the verifier’s base-
name wbsn, the message wmsg to be signed, the attestation identity credential wcre,
and the TPM’s secret wtsk. The process inputs a nonce x from the verifier. The
if-then-else branch models the signer’s ability to produce linkable or unlinkable
signatures, based upon the parameter wbsn; in particular, the if-branch produces
an unlinkable signature, whereas the else-branch produces a linkable signature.
The process concludes by outputting a signature on the private channel a′s; that
is, the SignECC process returns the signature to the Signer+ process.

5.5 Analysis: User-controlled anonymity

The DAA game biprocess derived from 〈JoinECC,SignECC〉 can be automati-
cally analysed using ProVerif; unfortunately, however, ProVerif cannot prove
equivalence in the general case. Accordingly, rather than prove that the spec-
ification 〈JoinECC,SignECC〉 satisfies user-controlled anonymity, we attempt to
prove security in a setting where the adversary is forbidden from re-blinding
a blind signature, this is an under-approximation and introduces the assump-
tion that the adversary obtains no advantage from re-blinding a blind sig-
nature. This under-approximation can be acheived by removing the rewrite
rule clblind(yblind, clbsign(xblind, xsk, xnonce, xmsg)) → clbsign(mul(xblind, yblind), xsk,
xnonce, xmsg).

In addition, we make two over-approximations of attacker knowledge. First,
we replace the rewrite rules associated with clgetnonce with the following rules.

clgetnonce(clsign(xsk, xnonce, xmsg))→ xnonce

clgetnonce(clbsign(xblind, xsk, xnonce, xmsg))→ xnonce

Secondly, we modify the rewrite rule clrand(ynonce, clbsign(xblind, xsk, xnonce, xmsg))
→ clbsign(xblind, xsk,mul(xnonce, ynonce), xmsg) to use pairing rather than the func-
tion mul, that is, we use the following rule.

clrand(ynonce, clbsign(xblind, xsk, xnonce, xmsg))

→ clbsign(xblind, xsk, (xnonce, ynonce), xmsg)

Although, in general, the revised rewrite rules for clgetnonce are not equiv-
alent to the original rules, they intuitively overapproximate attacker knowl-
edge in our setting. The specification 〈JoinECC,SignECC〉 does not restrict any
signing keys and thus public keys can be freely constructed by application

of the function symbol pk. If the environment has knowledge of a signature
clsign(K,R,M), then the environment can recover the nonce R and construct
the commitment clcommit(pk(K), R), that is, we have an over-approximation
(the reasoning is similar for blind signatures). Moreover, given the modified
rewrite rules for clgetnonce, the revised rewrite rule for clrand is also an over-
approximation; in particular, witness that the environment can recover (R,R′)
from an arbitrary blind signature clbsign(R′′,K, (R,R′),M) and trivially con-
struct clcommit(pk(K),mul(R,R′)).

Over-approximations are the norm in ProVerif (it introduces them anyway);
if ProVerif concludes that a protocol is correct even with over-approximations of
attacker knowledge, then one may conclude it is correct. Under-approximations
are more problematic, however: they introduce an assumption. Thus, our proof of
correctness is valid only on the assumption introduced by our under-approximation,
namely, that the attacker obtains no advantage from re-blinding a blind signa-
ture.

In our revised model, ProVerif is able to automatically verify user-controlled
anonymity. The ProVerif scripts associated with our analysis are available online:
http://www.bensmyth.com/publications/11-anonymity-in-DAA/.

6 Further work and conclusion

Direct Anonymous Attestation is a relatively new concept and its properties
merit further study. In particular, user-controlled traceability, non-frameability,
and correctness have received limited attention. Extending this work to include
a complete definition of DAA properties would be an interesting direction for
the future. Moreover, establishing a unified definition which includes all proper-
ties (that is, correctness, non-frameability, user-controlled anonymity and user-
controlled traceability) would be of interest to reduce the verification workload.
As a starting point, this could be achieved by developing the formalisation of join
and sign algorithms, modelled by 〈Join,Sign〉, to distinguish between operations
performed by the host and those performed by the TPM. This distinction is
not necessary for our definition of user-controlled anonymity because this prop-
erty can only be achieved if both the host and TPM are trusted. By contrast,
a corrupt host – even in collaboration with a corrupt TPM (where the TPM is
known to be rogue) – should not be able to violate traceability properties and
therefore an alternative model of 〈Join,Sign〉 would be required such that the
actions performed by the host and TPM are distinguished.

Unfortunately, we are unable to derive any conclusions about user-controlled
anonymity in the ECC-based DAA scheme in the general setting; however, using
an approximation of our rewrite rules, we show the scheme is secure under the
assumption that the adversary obtains no advantage from re-blinding a blind sig-
nature. In addition, two over-approximations were required. Future work could
develop theory for the sound abstraction between sets of rewrite rules, thereby
providing more confidence in our over-approximations; indeed, Backes, Maffei &
Unruh [12] make some progress in this direction.

Conclusion. This paper presents a definition of user-controlled anonymity for Di-
rect Anonymous Attestation protocols. The definition is expressed as an equiva-
lence property suitable for automated reasoning. The practicality of the approach
is demonstrated by examining the ECC-based Direct Anonymous Attestation
protocol. The ECC-based scheme is particularly significant because support is
mandated by the TPM.next specification which is due to replace TPM version
1.2 and, moreover, the protocol has been included in the ISO/IEC anonymous
digital signature standard. Our analysis demonstrates the absence of attacks in
a model where we restrict the adversary from re-blinding a blind signature.

Acknowledgements

We are particularly grateful to Tom Chothia and Andy Gordon for their care-
ful reading of an earlier version of this work and their constructive feedback.
We are also grateful to the anonymous reviewers who provided constructive
criticism. This research was conducted as part of the EPSRC projects UbiVal
(EP/D076625/2) and Verifying Interoperability Requirements in Pervasive Sys-
tems (EP/F033540/1), and as part of the ProSecure project which is funded by
the European Research Council under the European Unions Seventh Framework
Programme (FP7/2007-2013) / ERC grant agreement n◦ 258865.

References

1. Brickell, E., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: CCS’04:
11th ACM Conference on Computer and Communications Security, ACM Press
(2004) 132–145

2. Brickell, E., Chen, L., Li, J.: Simplified Security Notions of Direct Anonymous
Attestation and a Concrete Scheme from Pairings. Cryptology ePrint Archive,
Report 2008/104 (2008)

3. Brickell, E., Chen, L., Li, J.: Simplified security notions of Direct Anonymous
Attestation and a concrete scheme from pairings. International Journal of Infor-
mation Security 8(5) (2009) 315–330

4. Chen, L.: A DAA Scheme Requiring Less TPM Resources. Cryptology ePrint
Archive, Report 2010/008 (2010)

5. Chen, L.: A DAA Scheme Requiring Less TPM Resources. In: INSCRYPT’09: 5th
International Conference on Information Security and Cryptology. Volume 6151 of
LNCS., Springer (2011) 350–365

6. Brickell, E., Chen, L., Li, J.: A New Direct Anonymous Attestation Scheme from
Bilinear Maps. In: Trust’08: 1st International Conference on Trusted Computing
and Trust in Information Technologies. Volume 4968 of LNCS. (2008) 166–178

7. Trusted Computing Group: Draft TPM 2.0 Specification, Revision oo79. (2011)
8. International Organization for Standardization: ISO/IEC WD 20008-2 (Working

Draft) Information technology – Security techniques – Anonymous digital signature
– Part 2: Mechanisms using a group public key. (2011)

9. Chen, L., Morrissey, P., Smart, N.P.: DAA: Fixing the pairing based protocols.
Unpublished draft (2010)

10. Chen, L., Morrissey, P., Smart, N.P.: DAA: Fixing the pairing based protocols.
Cryptology ePrint Archive, Report 2009/198 (2009)

11. Chen, L., Morrissey, P., Smart, N.P.: On Proofs of Security for DAA Schemes.
In: ProvSec’08: 2nd International Conference on Provable Security. Volume 5324
of LNCS., Springer (2008) 156–175

12. Backes, M., Maffei, M., Unruh, D.: Zero-Knowledge in the Applied Pi-calculus
and Automated Verification of the Direct Anonymous Attestation Protocol. In:
S&P’08: 29th IEEE Symposium on Security and Privacy, IEEE Computer Society
(2008) 202–215

13. Blanchet, B.: Automatic Proof of Strong Secrecy for Security Protocols. In:
S&P’04: 25th IEEE Symposium on Security and Privacy, IEEE Computer Society
(2004) 86–100

14. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming 75(1)
(February–March 2008) 3–51

15. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
POPL’01: 28th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, ACM Press (2001) 104–115

16. Ryan, M.D., Smyth, B.: Applied pi calculus. In Cortier, V., Kremer, S., eds.:
Formal Models and Techniques for Analyzing Security Protocols. IOS Press (2011)

17. Blanchet, B., Smyth, B.: ProVerif: Automatic Cryptographic Protocol Verifier
User Manual & Tutorial. http://www.proverif.ens.fr/ (2011)

18. Trusted Computing Group: TPM Specification version 1.2. (2007)
19. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials

from Bilinear Maps. In: CRYPTO’04: 24th International Cryptology Conference.
Volume 3152 of LNCS., Springer (2004) 56–72

20. Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups.
In: CRYPTO’97: 17th International Cryptology Conference. Volume 1294 of
LNCS., Springer (1997) 410–424

21. Smyth, B., Ryan, M.D., Chen, L.: Direct Anonymous Attestation (DAA): Ensuring
privacy with corrupt administrators. In: ESAS’07: 4th European Workshop on
Security and Privacy in Ad hoc and Sensor Networks. Volume 4572 of LNCS.,
Springer (2007) 218–231

22. Smyth, B.: Formal verification of cryptographic protocols with automated reason-
ing. PhD thesis, School of Computer Science, University of Birmingham (2011)

