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Abstract

The applied pi calculus is a language for modelling security protocols. It is an extension of
the pi calculus, a language for studying concurrency and process interaction. This chapter
presents the applied pi calculus in a tutorial style. It describes reachability, correspondence,
and observational equivalence properties, with examples showing how to model secrecy, au-
thentication, and privacy aspects of protocols.
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1 Introduction

The applied pi calculus [AF01] is a language for describing and analysing security protocols. It
provides an intuitive process syntax for detailing the actions of the participants in a protocol, em-
phasising their communication. The syntax is coupled with a formal semantics to allow reasoning
about protocols. The language is based on the pi calculus with the addition of a rich term algebra
to enable modelling of the cryptographic operations used by security protocols. A wide variety
of cryptographic primitives can be abstractly modelled by means of an equational theory. The
calculus allows one to express several types of security goal, and to analyse whether the protocol
meets its goal or not. This analysis can sometimes be performed automatically, using the ProVerif
software tool [BAF08, Bla09, BS10].

The applied pi calculus has been used to model security protocols in a variety of areas. The
following examples are not exhaustive:

• Certified email [AB05b];

• Privacy properties [KR05, DKR09b, BHM08, KT09], and election verifiability properties
[KRS10, SRKK10] in electronic voting;

• Authorisation protocols [CR09, MGR09], and attestation protocols [SRC07, BMU08] in
trusted computing;

• Interoperability of web services, where a compiler [BFGT06] converts descriptions in the F#
language [SGC07] into applied pi, suitable for analysis by ProVerif;

• Integrity of file systems on untrusted storage [BC08];

• Authentication protocols and key agreement [ABF07].
∗This work is an extended version of Mark D. Ryan and Ben Smyth (2011) Applied pi calculus. In V Cortier

and S Kremer, editor, Formal Models and Techniques for Analyzing Security Protocols.
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Notation and running example. Throughout this Chapter we will make use of the Handshake
protocol discussed in Section 1.1. The following notation will be used, symmetric encryption of a
message m with key k is denoted {|m|}sk. Similarly, we write {|m|}apk for the asymmetric encryption
of m with the public key pk and [m]sk for the digital signature of m with the secret key sk. The
pairing of messages m1 and m2 is denoted 〈m1,m2〉.

1.1 Handshake protocol

A näıve Handshake protocol between a client C and server S is illustrated below. It is assumed
that each of them has a public/private key pair, and that the client knows the server’s public key
pk(skS). The aim of the protocol is to establish a secret symmetric key k, enabling the client to
communicate a secret s to the server. The protocol proceeds as follows. On request from a client
C, server S generates a fresh session key k, signs it with her private key skS and encrypts it using
her client’s public key pk(skC). When C receives this message he decrypts it using his private key
skC , verifies the digital signature made by S using her public key pk(skS), and extracts the session
key k. C uses this key to symmetrically encrypt the secret s and sends the encrypted message to
S. The rationale behind the protocol is that C receives the signature asymmetrically encrypted
with his public key and hence he should be the only one able to decrypt its content. Moreover,
the digital signature should ensure that S is the originator of the message. The protocol narration
is illustrated as follows:

Client (C) Server (S)

/ {|[k]skS |}
a
pk(skC)

{|s|}sk .

Note that protocol narrations (as above) are useful, but lack detail. For example, they do not
specify the construction of nonces, nor do they describe any checks which should be made by the
participants during the execution of the protocol. Such checks include verifying digital signatures
and ensuring that encrypted messages are correctly formed. Failure of these checks typically
results in the participant aborting the protocol. These details will be explicitly stated when
protocols are modelled in the applied pi calculus. (For further discussion on protocol specification
see [AN96, Aba00].)

Informally, the three properties we would like this protocol to provide are:

1. Secrecy: The value s is known only to C and S.

2. Authentication of S: if C reaches the end of the protocol with session key k, then S proposed
k for use by C.

3. Authentication of C: if S reaches the end of the protocol and believes session key k has been
shared with C, then C was indeed her interlocutor and has k.

The different forms of the two authentication properties arise because of the different assump-
tions we made about C and S. Recall that C knows S’s public key, and is only willing to run the
protocol with S. But S is willing to run the protocol with anyone.

Careful analysis reveals that the protocol does not satisfy all three of the intended properties.
It is vulnerable to a man-in-the-middle attack (illustrated below). If a dishonest participant M
starts a session with S, thenM is able to impersonate S in a subsequent session he starts with C.
At the end of the protocol C believes that he shares the secret s with S, while he actually shares
s with M.

Client (C) Adversary (M) Server (S)

/ {|[k]skS |}
a
pk(skM )

/ {|[k]skS |}
a
pk(skC)

{|s|}sk .
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The protocol can easily be corrected by adding the identities of the intended participants to the
data that is signed in the first message:

Client (C) Server (S)

/ {|[〈pk(skS), 〈pk(skC), k〉〉]skS |}
a
pk(skC)

{|s|}sk .

With this correction, M is not able to re-use the signed key from S in his session with C.

2 Applied pi calculus

The applied pi calculus [AF01] is a language for describing concurrent processes and their inter-
actions. It is based on the pi calculus but is intended to be more convenient to use, and it is
specifically targeted at modelling security protocols. In this respect the applied pi calculus also
has similarities with the spi calculus [AG97]. The key difference concerns the way in which cryp-
tographic primitives are handled. The spi calculus has a fixed set of primitives built-in (namely,
symmetric and public key encryption), while the applied pi calculus allows a wide variety of more
complex primitives (including, for example, non-deterministic encryption, digital signatures, and
proofs of knowledge) to be defined by means of an equational theory.

2.1 Syntax and informal semantics

The calculus assumes an infinite set of names, an infinite set of variables, and a signature Σ con-
sisting of a finite set of function symbols each with an associated arity. Function symbols capture
primitives used by cryptographic protocols (for example: one-way hash functions, encryption, dig-
ital signatures, and data structures such as pairing). A function symbol with arity 0 is a constant.
Terms are built by applying function symbols to names, variables and other terms:

L,M,N, T, U, V ::= terms
a, b, c, . . . , k, . . . ,m, n, . . . , s name
x, y, z variable
g(M1, . . . ,Ml) function application

where g ranges over the functions of Σ and l is the arity of g. We use metavariables u, v, w to range
over both names and variables. Tuples u1, . . . , ul and M1, . . . ,Ml are occasionally abbreviated ũ
and M̃ . A term is ground when it does not contain variables.

We assume a type system (also known as a sort system) for terms generated by a set of base
types S, which includes the universal type Data. In addition, if ω is a type, then Channel〈ω〉 is a
type too. Formally, the set of types generated by the base types S is the smallest set Ω satisfying:
1) S ⊆ Ω; and 2) if ω ∈ Ω then Channel〈ω〉 ∈ Ω. Names and variables can have any type. By
convention we use a, b, c for channel names, k, s as names of base type and m,n for names of any
type. A channel of type Channel〈ω〉 may communicate messages of type ω. For simplicity, function
symbols can only be applied to, and return, terms of base type. We always assume that terms are
well-typed.
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The grammar for processes is shown below:

P,Q,R ::= processes (or plain processes)
0 null process
P | Q parallel composition
!P replication
ν n.P name restriction
if M = N then P else Q conditional
u(x).P message input
u〈M〉.P message output

The null process 0 does nothing; P | Q is the parallel composition of processes P and Q, used to
represent participants of a protocol running in parallel; and replication !P is the infinite composi-
tion P | P | . . ., which is often used to capture an unbounded number of sessions. Name restriction
ν n.P binds n inside P , the introduction of restricted names (or private names) is useful to cap-
ture both fresh random numbers (modelling nonces and keys, for example) and private channels.
The conditional if M = N then P else Q is standard, but we stress M = N represents equality
(modulo an equational theory) rather than strict syntactic identity. For convenience we abbreviate
conditionals as if M = N then P , when Q is the null process. Finally, communication is captured
by message input and message output. The process u(x).P awaits a message from channel u and
then behaves as P with the received message bound to the variable x; that is, every free occurrence
of x in P refers to the message received. The process u〈M〉.P is ready to send M on channel u and
then run P . In both of these cases we may omit P when it is 0. We write P{M/x} for P with all
free occurrences of x replaced by M and sometimes we write let x = M in P instead of P{M/x};
in such substitutions, we insist that no name or variable occurring in M becomes bound by a re-
striction occurring in P (for example, let x = c in ν c.c〈x〉 is not allowed, but let x = c in ν a.a〈x〉
is permitted).

Bracketing must be used to avoid ambiguities in the way processes are written down. For
example, the process !P | Q might be interpreted as (!P ) | Q or as !(P | Q). These processes are
different. To avoid too much bracketing, we adopt conventions about the precedence of process
operators. Unary operators !, ν n, u(x), and u〈M〉 bind more closely than binary operators; and
the binary if-then-else operator binds more closely than the binary operator |. It follows that the
expression c(x).if x = M then P | !Q | R means (c(x).if x = M then P ) | (!Q) | R. We remark
that different conventions are used elsewhere, for example [BS10].

The expression P | Q | R is also ambiguous, since it could mean either (P | Q) | R or
P | (Q | R). However, we will later see that these processes are semantically identical, so we
tolerate the ambiguity in the syntax. Another possible ambiguity arises because of the convention
of omitting “else 0” in the if-then-else construct: it is not clear which “if” the “else” applies to in
the expression:

if M = N then if K = L then Q else R.

In absence of brackets indicating the contrary, we adopt the convention that the else branch
belongs to the closest if and hence the statement should be interpreted as if M = N then (if K =
L then Q else R).

Processes are extended with active substitutions to capture the knowledge exposed to the
adversarial environment:

A,B,C ::= extended processes
P plain process
A | B parallel composition
ν n.A name restriction
ν x.A variable restriction
{M/x} active substitution

The active substitution {M/x} represents a process that has previously output M . The value M
is now available to the environment by reference to the ‘handle’ x. The active substitution {M/x}
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can replace the variable x for the term M in every process it comes into contact with (formally this
is captured by the operational semantics). This behaviour can be controlled by restriction, and the
process ν x.({M/x} | P ) corresponds exactly to let x = M in P . This allows access to terms which
the environment cannot construct; such a scenario may arise, for example, when the environment
does not know all of the names occurring in a term. Arbitrarily large active substitutions can
be obtained by parallel composition and we occasionally abbreviate {M1/x1} | . . . | {Ml/xl} as
{M1/x1, . . . ,Ml/xl} or {M̃/x̃}. The letters σ and τ range over substitutions. We write Nσ for the
result of applying σ to the variables of N . Active substitutions are always assumed to be cycle-free:
given substitution σ, the repeated application of σ to itself may only result in a bounded number
of replacements. For example, the substitution {g(y)/x, n/y} is cycle-free; but {g(y)/x, x/y} is not
and repeated application could result in terms of unbounded length. Extended processes must
have at most one active substitution for each variable and there is exactly one when the variable is
under restriction. In particular, this means that ν x can only occur if there is an active substitution
{M/x} in its scope. Finally, we write ν ũ for the (possibly empty) series of pairwise-distinct binders
ν u1.ν u2. · · · .ν ul.

The type system for terms is extended to processes. It enforces that M,N are of the same
type in the conditional expression if M = N then P else Q; message input u(x) is defined only
where u is of type Channel〈ω〉 and x is of type ω; and similarly message output u〈M〉 requires u
of type Channel〈ω〉 and M of type ω. In addition, we assume that in active substitutions {M/x},
the term M and the variable x are of the same base type. This assumption was not explicitly
stated in [AF01] but its necessity has been confirmed [AF06] and is essential for the validity of
Theorem 1 [BJPV09]. Finally, we assume extended processes are well-typed.

The scope of names and variables are delimited by binders u(x) and ν u. The set of bound
names bn(A) contains every name n which is under restriction ν n inside A. The set of bound
variables bv(A) consists of all those variables x occurring in A that are bound by restriction ν x or
input u(x). We also define the set of free names and the set of free variables. The set of free names
in A, denoted fn(A), consists of those names n occurring in A not in the scope of the binder ν n.
The set of free variables fv(A) contains the variables x occurring in A which are not in the scope of
a restriction ν x or input u(x). Note that a name or variable can occur both free and bound in A.
Thus, the sets fv(A)∩ bv(A) and fn(A)∩ bn(A) may be non-empty. We occasionally write fn(M)
and fv(M), for the set of names, respectively variables, which appear in term M . The concept of
bound and free values is similar to local and global scope in programming languages. An extended
process is closed when every variable x is either bound or defined by an active substitution, (that is,
the process contains {M/x} for some term M). Example 1 demonstrates name and variable scope.
Bound names and bound variables are subject to α-conversion (also called α-renaming); that is,
they may be uniformly renamed without changing the meaning of the process, as demonstrated
in Example 2.

A frame, denoted ϕ or ψ, is an extended process built from 0 and active substitutions {M/x};
which are composed by parallel composition and restriction. The domain dom(ϕ) of a frame ϕ is
the set of variables that ϕ exports; that is, the set of variables x for which ϕ contains an active
substitution {M/x} such that x is not under restriction. Every extended process A can be mapped
to a frame ϕ(A) by replacing every plain process in A with 0. The frame ϕ(A) represents the
static knowledge output by a process to its environment. The domain dom(A) of A is the domain
of ϕ(A).

Example 1 (Name and variable scope) Consider the closed process A , ν x.((c(y).c〈aenc(
pair(x, z), y)〉) | (ν s.{s/x}) | {h(x, s′)/z}) defined with respect to the signature Σ = {aenc, h, pair}
where aenc, h, pair are all binary functions. The occurrences of the variable x are bound by the
variable restriction ν x and those of y are bound by the input c(y). The name s is bound by the
name restriction ν s. The remaining name s′ and variable z occur free. To summarise, we have
fv(A) = {z}, bv(A) = {x, y}, fn(A) = {s′} and bn(A) = {s}. Now let A′ , A | {s/y}, and observe
that the occurrences of s and y in the active substitution {s/y} are free. They have no relation
to the bound values s, y which occur in A. To avoid confusion it is good practice to use distinct
identifiers for free and bound, names and variables.
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Example 2 (α-conversion) α-conversion means renaming a bound name or variable without
changing the semantics. This is also done in logic (the statements ∀x.P (x) and ∀y.P (y) are equiv-
alent), and in programming (the programs for i in I do P(i) and for j in I do P(j) are
equivalent). In the applied pi calculus, the process ν k.c(x).c〈senc(k, x)〉 is equivalent to ν s.c(y).c〈
senc(s, y)〉; we have α-renamed all occurrences of the name k to the name s and similarly the
variable x has been renamed y. But, ν k.c(x).ν k.c〈senc(k, x)〉 is not α-equivalent to ν k.c(y).ν s.c〈
senc(k, y)〉.

2.1.1 Modelling the Handshake protocol

The Handshake protocol (Section 1.1) is defined with respect to the signature ΣH , which is used
to capture primitives modelling cryptographic operators, data structures and constants: ΣH =
{true, fst, snd, hash, pk, getmsg, pair, sdec, senc, adec, aenc, sign, checksign,mac} where true is a con-
stant; fst, snd, hash, pk, getmsg are unary functions; and pair, sdec, senc, adec, aenc, sign, checksign,
mac are binary functions. The behaviour of these functions is captured by the smallest equational
theory EH satisfying the following equations over variables x, y:

fst(pair(x, y)) = x
snd(pair(x, y)) = y
sdec(x, senc(x, y)) = y
adec(x, aenc(pk(x), y)) = y
getmsg(sign(x, y)) = y
checksign(pk(x), sign(x, y)) = true

This theory allows us to model: pairing, both symmetric and asymmetric cryptography, digital
signature schemes with message recovery, hash functions and message authentication codes. For
example, in order to express that the application of the symmetric decryption function sdec to the
term modelling a symmetric encryption senc(k,m) should return the plaintext m if the correct
key k is supplied, we use the equation sdec(x, senc(x, y)) = y. The absence of any equational
theory associated with the hash function ensures preimage resistance, second-preimage resistance
and collision resistance properties of cryptographic hash functions (in fact, far stronger properties
are ensured); and similar properties for the function mac. Observe that a tuple M1, . . . ,Ml of an
arbitrary length l can be constructed by pairing pair(M1, pair(M2, pair(. . . , pair(Ml−1,Ml) . . .)))
and an element can be extracted using the equations defined for fst, snd.

The Handshake protocol can now be captured in our calculus as the process P , defined as
follows.

P , ν skS .ν skC .ν s.
let pkS = pk(skS) in let pkC = pk(skC) in
(c〈pkS〉 | c〈pkC〉 | !PS | !PC)

PS , c(x pk).ν k.c〈aenc(x pk, sign(skS , k))〉.
c(z).if fst(sdec(k, z)) = tag then Q

PC , c(y).let y′ = adec(skC , y) in let y k = getmsg(y′) in
if checksign(pkS , y′) = true then
c〈senc(y k, pair(tag, s))〉

The process begins by constructing the private keys skC , skS for principals C, S respectively.
The public key parts pk(skC), pk(skS) are then output on the public communication channel c,
ensuring they are available to the adversary. (Observe that this is done using handles pkC and
pkS for convenience.) The protocol then launches multiple copies of processes PC , PS representing
multiple sessions of the roles of C and S. Note that syntactic scope does not represent the
knowledge of a protocol’s participants. For example, the server’s private key skS is assumed not
to be known by the client C (hence it does not occur in PC), even though skS is in the scope of
PC .
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Figure 1 Properties of equality modulo the equational theory
Given an equational theory E the following properties are satisfied for all terms L,M,N , functions
f of arity l, substitutions σ and names m,n:

1. M = N ∈ E ⇒M =E N

2. Equivalence relation:

• Reflexivity: M =E M

• Symmetry: M =E N ⇒ N =E M

• Transitivity: L =E M ∧M =E N ⇒ L =E N

3. Application of function symbols: M1 =E N1 ∧ · · · ∧ Ml =E Nl ⇒ f(M1, . . . ,Ml) =E

f(N1, . . . , Nl)

4. Substitution of terms for variables: M =E N ⇒Mσ =E Nσ

5. Bijective renaming of names: M =E N ⇒ M{m/n} =E N{m/n}, where M{m/n} (respec-
tively N{m/n}) is the term M (respectively N) with every name n replaced by m.

We assume that S is willing to run the protocol with any other principal; the choice of her
interlocutor will be made by the environment. This is captured by modelling the first input c(x pk)
to PS as the interlocutor’s public key. C on the other hand only wishes to share his secret s with
S, and C is assumed to know S’s public key; accordingly, S’s public key is hard-coded into the
process PC . We additionally assume that each principal is willing to engage in an unbounded
number of sessions and hence PC , PS are under replication.

On request from her interlocutor, server S starts the protocol by selecting key k and outputting
aenc(x pk, sign(skS , k)); that is, her signature on the key k encrypted with her interlocutor’s public
key x pk. Meanwhile C awaits the input of his interlocutor’s signature on the key k encrypted
using his public key. C decrypts the message and verifies the signature. Next, if C believes he is
indeed talking to S, he outputs his secret s encrypted with the symmetric key k. Note that he
inserts a tag (modelled as a free name), so that the decryptor can verify that the decryption has
worked correctly. Principal S inputs z and confirms the presence of the tag. Finally, principal
S executes the process Q. The description of Q is independent of the protocol, but one would
expect the recovery of the interlocutor’s secret; that is, Q is defined by the process let z s =
snd(sdec(k, z)) in Q′ for some Q′.

The purpose of the protocol is to establish a session key to transport the secret represented
by s. We abstract away from the details of what s is, and how many such secrets there are, by
modelling it simply as a restricted name.

2.2 Operational semantics

The signature Σ is equipped with an equational theory E, that is, a set of equations of the form
M = N , where terms M,N are defined over the signature Σ (sometimes written M,N ∈ TΣ). This
allows us to capture relationships between primitives defined in Σ. We define equality modulo the
equational theory, written =E , as the smallest equivalence relation on terms, that contains E and
is closed under application of function symbols, substitution of terms for variables and bijective
renaming of names. The properties of =E are summarised in Figure 1. We write M =E N when
the equation M = N is in the theory E and keep the signature implicit. When E is clear from the
context we may abbreviate M =E N as M = N . The negation of M =E N is denoted M 6=E N
(and similarly abbreviated M 6= N). For further discussion on equational theories see [AF01, §3]
and [AC06].
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Example 3 (Reasoning with equational theories) Consider the signature ΣH and the equa-
tional theory EH . Show that each of the following equalities hold:

1. sdec(k, senc(k, L)) =EH
L

2. pair(M,N) =EH
pair(sdec(k, senc(k, fst(pair(M,N)))), N)

3. fst(sdec(snd(pair(K,L)), senc(fst(pair(L,N)), pair(M,K)))) =EH
M

Hint. Figure 1 may be helpful.

Contexts may be used to represent the adversarial environment in which a process is run; that
environment provides the data that the process inputs, and consumes the data that it outputs.
We define context C[ ] to be an extended process with a hole. We obtain C[A] as the result of
filling C[ ]’s hole with the extended process A. An evaluation context is a context whose hole is
not in the scope of a replication, a conditional, an input, or an output. A context C[ ] closes A
when C[A] is closed.

2.2.1 Structural equivalence

Informally, two processes are structurally equivalent if they model the same thing, but the grammar
permits different encodings. For example, to describe a pair of processes A,B running in parallel,
the grammar forces us to put one on the left-hand side, and one on the right-hand side of the
parallel operator; that is, we have to write either A | B or B | A. These two processes are said to
be structurally equivalent. Formally, structural equivalence (≡) is the smallest equivalence relation
on extended processes that is closed by α-conversion of both bound names and bound variables,
and closed under application of evaluation contexts such that:

Par-0 A ≡ A | 0
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P | !P

New-0 ν n.0 ≡ 0
New-C ν u.ν w.A ≡ ν w.ν u.A
New-Par A | ν u.B ≡ ν u.(A | B)

where u 6∈ fv(A) ∪ fn(A)

Alias ν x.{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x}

where M =E N

The rules for parallel composition, replication and restriction are self-explanatory. Alias enables
the introduction of an arbitrary active substitution with restricted scope. Subst describes the
application of an active substitution to a process that it comes into contact with, where A{M/x}
is A with all free occurrences of x replaced by M (in such a way that no names or variables in
M become bound). The final rule, Rewrite, allows terms that are equal modulo the equational
theory to be swapped as desired.

Structural equivalence allows every closed extended process A to be rewritten as a substitution
and a closed plain process with some restricted names: A ≡ ν ñ.({M̃/x̃} | P ) where fv(M̃) =
fv(P ) = ∅ and ñ ⊆ fn(M̃). It follows immediately that every closed frame ϕ can be rewritten as
a substitution with some restricted names: ϕ ≡ ν ñ.{M̃/x̃} where fv(M̃) = ∅ and ñ ⊆ fn(M̃). We
note that the domain of ϕ is x̃.
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2.2.2 Internal reduction.

A process can be executed without contact with its environment; either because if-statements are
evaluated and the then- or else-branch is taken, or because internal subprocesses communicate
with each other. The execution of a process with respect to control flow and communication
is captured by internal reduction. Formally, internal reduction (−→) is the smallest relation on
extended processes closed under structural equivalence and application of evaluation contexts
such that:

Comm c〈x〉.P | c(x).Q −→ P | Q

Then if N = N then P else Q −→ P

Else if L = M then P else Q −→ Q
for ground terms L,M where L 6=E M

We write −→∗ for the reflexive and transitive closure of −→.

Communication (Comm) is defined on variables, making it look rather restricted. However,
this entails no loss of generality because Alias and Subst can be used to allow communication
of an arbitrary term M instead of a variable x. To see how this works, consider the process
c〈M〉.P | c(x).Q. We can suppose that x is not in fv(P ) (if it is, pick any x′ 6∈ fv(P ) and α-rename
the bound variable x to x′ in c(x).Q). Then c〈M〉.P | c(x).Q ≡ ν x.(c〈x〉.P | c(x).Q | {M/x}).
Since c〈x〉.P | c(x).Q −→ P | Q by Comm, we derive P | Q{M/x} by application of an evaluation
context. To see this step in more detail, consider C[ ] = ν x.( | {M/x}) and observe ν x.(c〈x〉.P |
c(x).Q | {M/x}) = C[c〈x〉.P | c(x).Q] −→ C[P | Q] which is structurally equivalent to P | Q{M/x}.
Since −→ is closed under structural equivalence, we have c〈M〉.P | c(x).Q −→ P | Q{M/x}.

Conditionals (Then and Else) are dependent on the equational theory. Applications of Then
may require the use of the structural equivalence rule Rewrite to derive “N = N” from “M = N”
where M =E N . Else may require that active substitutions in the context be applied using Alias
and Subst to ensure L,M are ground.

2.2.3 Labelled reductions

The labelled semantics defines a ternary relation written, A α−→ B, where α is a label of the
form c(M), c〈u〉, or ν u.c〈u〉 such that u is either a channel name or a variable of base type.

The transition A
c(M)−−−→ B means that the process A performs an input of the term M from the

environment on the channel c, and the resulting process is B. The situation for output is a bit
more complicated, since there are several cases. If the item is a free variable x or a free channel
name d, then the label c〈x〉, respectively c〈d〉, is used. If the item being output is a restricted
channel name d, then the label ν d.c〈d〉 is used. Finally, if the item is a term M , then the label
ν x.c〈x〉 is used, after replacing the occurrence of the term M by x and wrapping the process in
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νx.({M/x} | ). The operational semantics of §2.2.1 are extended to include the following rules:

In c(x).P
c(M)−−−→ P{M/x}

Out-Atom c〈u〉.P c〈u〉−−−→ P

Open-Atom
A

c〈u〉−−−→ A′ u 6= c

ν u.A
ν u.c〈u〉−−−−−→ A′

Scope
A

α−→ A′ u does not occur in α

ν u.A
α−→ ν u.A′

Par
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

Struct
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

The rule Open-Atom is used in two ways: 1) to output a restricted channel; and 2) to output a

term. The first instance is straight forward and one may prove that νd.c〈d〉.P νd.c〈d〉−−−−→ P , provided
c 6= d. The latter is a little more complicated since it requires the use of structural equivalence

rules. Observe that c〈M〉.P νx.c〈x〉−−−−−→ P | {M/x}, where x 6∈ fv(P ), by first writing c〈M〉.P as
νx.(c〈x〉.P | {M/x}). The full derivation is given below:

c〈M〉.P ≡

Out-Atom

c〈x〉.P c〈x〉−−→ P
Par

c〈x〉.P | {M/x}
c〈x〉−−→ P | {M/x}

Open-Atom

ν x.(c〈x〉.P | {M/x})
ν x.c〈x〉−−−−−→ P | {M/x} ≡ P | {M/x}

Struct

c〈M〉.P ν x.c〈x〉−−−−−→ P | {M/x}

Note that the fact x 6∈ fv(P ) is needed for the first of the two structural equivalences in the
occurrence of Struct.

Example 4 (Labelled semantics) Consider the process A , c〈m〉.c〈m〉. Show the reductions

A
ν x.c〈x〉−−−−−→ ν y.c〈y〉−−−−−→ {m/x} | {m/y}. Also show the reductions A

ν x.c〈x〉−−−−−→ c〈x〉−−→ {m/x}. (Hint. The
last one involves an application of Subst.)

2.2.4 Names and the environment

The reduction ν ñ.c〈M〉.P νx.c〈x〉−−−−−→ ν ñ.(P | {M/x}) represents an important idiom of the applied
pi calculus. It is the way that an arbitrary term M is output to the environment. This illustrates
the way that the environment’s use of names is controlled.

If s is a restricted name in a process then the environment cannot use that s to construct a
term. Moreover, if the environment uses the name s, then it is not the same as the one in the
process. Consider for example the process

A , ν s.(c(x).if x = s then c〈i got s〉)

This process can never output i got s, because no term input as x can be equal to the ‘new’ s
created by the process. More precisely, there is no sequence of reductions

A −→∗ α−→−→∗ · · · →∗ α−→→∗ B | {i got s/y}
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for some process B and variable y.
Now suppose the process A′ creates a new s and outputs some term containing s:

A′ , ν s.(c〈hash(s)〉.B′)

We have A′
ν x.c〈x〉−−−−−→ ν s.(B′ | {hash(s)/x}). This process exposes hash(s) to the environment, by

reference to the handle x. Although the environment still does not have s, it can use hash(s) in
an expression, simply by using x in its place. For example, it can use x to construct input in B′.

Now consider the process A′′ which creates a new s, outputs the encryption of s by a (free)
key k, and then accepts an input and tests if the input is s.

A′′ , ν s.(c〈senc(k, s)〉.c(x).if x = s then c〈i got s〉)

This test can succeed; the process can output i got s, as shown by the following execution:

A′′
ν y.c〈y〉−−−−−→ ν s.(c(x).if x = s then c〈i got s〉 | {senc(k, s)/y})

c(sdec(k,y))−−−−−−−→ ν s.(if sdec(k, y) = s then c〈i got s〉 | {senc(k, s)/y})
≡ ν s.(if sdec(k, senc(k, s)) = s then c〈i got s〉 | {senc(k, s)/y})
≡ ν s.(if s = s then c〈i got s〉 | {senc(k, s)/y})
−→ ν s.(c〈i got s〉 | {senc(k, s)/y})

ν z.c〈z〉−−−−−→ ν s.({senc(k, s)/y} | {i got s/z})
≡ ν s.({senc(k, s)/y}) | {i got s/z}

The first of the equivalences ≡ holds by the rule Subst; the second one is by Rewrite, using the
equation sdec(k, senc(k, s)) = s. Intuitively, the environment has taken the encrypted output and
decrypted it (since the key k is a name known to the environment). It can then input the result
to the process, which sees that it is indeed equal to s.

It is instructive to return to the process A , ν s.(c(x).if x = s then c〈i got s〉) above, and
consider what happens if the environment gives it the name s as input. As stated earlier, intu-
itively this s from the environment is considered different from the s that the process constructs.

Technically, this is handled as follows. If we try to perform a transition A
c(s)−−→ B, we find that

we cannot quite use the expected combination of the rules In and Scope, because In asks us to
perform the substitution

ν s.(if x = s then c〈i got s〉{s/x})

which would insert the s from the substitution into the scope of the νs. As previously mentioned,
such substitutions are not allowed. We can resolve the situation by α-renaming the bound s first:

A ≡ ν s′.(c(x).if x = s′ then c〈i got s〉).

Recall that if M = N then P is an abbreviation of if M = N then P else 0 and hence we have
the reductions:

ν s′.(c(x).if x = s′ then c〈i got s〉) c(s)−−→ if s = s′ then c〈i got s〉 −→ 0.

3 Secrecy and correspondence properties

This section presents formal definitions of secrecy and correspondence in the presence of an ad-
versary who has full control of the network. The attacker can therefore eavesdrop, replay, inject
and block messages. Formally the attacker is captured as an arbitrary process and is sometimes
called the Dolev-Yao adversary [DY83].
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3.1 Secrecy

Intuitively, a protocol preserves the secrecy of some term M if an adversary cannot obtain M by
constructing it from the outputs of the protocol [AB05a]. We formalise the adversary as a process
running in parallel with the protocol, that after constructing M outputs it on a public channel.
The adversary process does not have any of the protocol’s secrets.

A term may refer to names inside a process; to analyse secrecy of the term, it is important
that these names appear unambiguously in the process. Otherwise it is not clear which name the
term refers to. For example, if a name in the term is both bound and free in the process, then it
is not clear whether the term refers to the free instance, or the bound instance. We formalise that
by requiring the process to be “name distinct” for the names mentioned in the term.

Definition 1 (name-distinct for m̃) A closed plain process P is name-distinct for a set of
names m̃, if m̃ ∩ fn(P ) ∩ bn(P ) = ∅ and for each name n ∈ m̃ ∩ bn(P ) there is exactly one name
restriction ν n occurring in P , and the restriction is not under replication “!”.

Definition 2 (Can output) A plain process P can output the term M if there exists an eval-
uation context C[ ], a channel name c 6∈ bn(C) and process R such that the reduction P −→∗
C[c〈M〉.R] holds with no alpha-renaming of the names in fn(M).

In Definition 2, the process C[c〈M〉.R] is capable of outputting the term M on the free channel
c in one further step. Note that the definition forbids renaming names in M during the reduction
P −→∗ C[c〈M〉.R], because we must not change which names in P are referred to by M . Thus,
the process νb.c〈b〉 cannot output s; if we allowed renaming, we could write the process as νs.c〈s〉
and it would be able to output s.

Definition 3 (Reachability-based secrecy) Let M be a term, and P be a closed plain process
that is name-distinct for fn(M). Then P preserves the reachability-based secrecy of M if there is
no plain process I such that (fn(I) ∪ bn(I)) ∩ bn(P ) = ∅ and P | I can output M .

In the definition above, I is the adversary (or intruder) process. Typically, it is built in order
to receive the outputs from P , and then possibly to construct from them the secret term M , and
output it. If there is no such intruder, then P keeps M secret. This definition is based on the one
in [AB05a], but extends it to cope with bound names.

Example 5 (Reasoning with secrecy) Consider the process P corresponding to the Handshake
protocol (Section 2.1.1) and the equational theory EH . We show that P does not preserve the
secrecy of s, by presenting an adversarial process

I , c(y pk).c〈pk(skM )〉.c(x).
c〈aenc(y pk, adec(skM , x))〉.c(z).
c〈snd(sdec(getmsg(adec(skM , x)), z))〉

and demonstrating that P | I can evolve to a process that can output s on a public channel. To aid
readability, we apply all the substitutions denoted by ‘let’ occurring in P , and we use the context

C[ ] , ν skS .ν skC .ν s. ( | !PS | !PC)

and write P ≡ C[c〈pk(skS)〉 | c〈pk(skC)〉 | PS | PC ]. Since skS , skC , s 6∈ fn(I) ∪ fv(I), we have

P | I ≡ C[
c〈pk(skS)〉 | c〈pk(skC)〉
| c(x pk).ν k.c〈aenc(x pk, sign(skS , k))〉.
c(z).if fst(sdec(k, z)) = tag then Q

| c(y).if checksign(pk(skS), adec(skC , y)) = true then
c〈senc(getmsg(adec(skC , y)), pair(tag, s))〉

| I
]
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The execution path which results in the adversary being able to output s on a public channel is
shown in Figure 2. Intuitively, the following sequence takes place (the item numbers correspond to
the transitions in the figure):

1. C’s public key pk(skC) is published and hence made available to the adversary, who inputs it
as ypk.

2. The adversary provides her public key pk(skM ) as S’s interlocutor.

3. S outputs her signature on k, encrypted for the adversary, and the adversary inputs it as x.
(Observe that closure under structural equivalence is used to move the name restriction ν k
outside of the context; more precisely, the rules New-C, New-Par are applied.)

4. The adversary gives to C the value k signed by S, this time encrypted for C.

5. The process is further rewritten using structural equivalence (essentially several occurrences
of the rule Rewrite with respect to EH). (Note that this rewriting could have been included
in the previous step because internal reduction is closed under structural equivalence, but we
explicitly present it for clarity.)

6. The conditional is evaluated and C sends the value senc(k, pair(tag, s)) to the adversary.

7. Observe that c〈snd(sdec(k, senc(k, pair(tag, s))))〉 ≡ c〈s〉 and hence the adversary can obtain
s and publish the value on a public channel.

3.2 Correspondence properties

Correspondence properties are used to capture relationships between events that can be expressed
in the form “if an event e has been executed then event e′ has been previously executed.” Moreover,
these events may contain arguments, which allow relationships between the arguments of events
to be expressed. To reason with correspondence properties we annotate processes with events,
marking important stages reached by the protocol which do not otherwise affect behaviour. Events
are analogous to breakpoints used in software development. In this chapter, we only consider
basic correspondence properties, which are sufficient to model authentication. More elaborate
formalisms can be found in [ABF07, Bla09]. Events are message outputs f〈M〉 where f is an
event channel (a name in a particular set, disjoint from the set of ordinary channel names). In
labelled transitions, output labels for events use event variables e. Those event variables are not
allowed to appear in input labels u(M), so the adversary cannot use them. (This condition is
important, since events are added just for checking correspondence properties; in particular an
event f〈M〉 does not reveal M to the adversary.) Hence, the execution of the process P after
inserting events f〈M〉 is the execution of P without events, plus the recording of events using
labels ν e.f〈e〉 and active substitutions {M/e}.

Definition 4 (Correspondence property) A correspondence property is a formula of the form:
f〈M〉 g〈N〉.

The property asserts that if the event f has been executed in a trace with parameters M , then
the event g must have been previously executed with parameters N .

Authentication can be captured as a correspondence property. Recall that in addition to the
secrecy property mentioned for the Handshake protocol in Section 1, there were also authentication
properties. The protocol is intended to ensure that if S thinks she executes the protocol with C,
then she really does so, and vice versa. When we say ‘she thinks’ that she executes it with C,
we mean that the data she receives indicates that fact. Accordingly we annotate the Handshake
protocol with events. To capture equality tests within events we include the binary function eq in
the signature ΣH and extend the equational theory EH with the equation eq(x, x) = true.
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Figure 2 Execution of Handshake protocol (internal reduction)

1. P | I −→ C[c〈pk(skS)〉
| c(x pk).ν k.c〈aenc(x pk, sign(skS , k))〉.
c(z).if fst(sdec(k, z)) = tag then Q

| c(y).if checksign(pk(skS), adec(skC , y)) = true then
c〈senc(getmsg(adec(skC , y)), pair(tag, s))〉

| c〈pk(skM )〉.c(x).c〈aenc(pk(skC), adec(skM , x))〉.c(z).
c〈snd(sdec(getmsg(adec(skM , x)), z))〉]

2. −→ C[c〈pk(skS)〉
| ν k.c〈aenc(pk(skM ), sign(skS , k))〉.
c(z).if fst(sdec(k, z)) = tag then Q

| c(y).if checksign(pk(skS), adec(skC , y)) = true then
c〈senc(getmsg(adec(skC , y)), pair(tag, s))〉

| c(x).c〈aenc(pk(skC), adec(skM , x))〉.c(z).
c〈snd(sdec(getmsg(adec(skM , x)), z))〉]

3. −→ ν k.C[c〈pk(skS)〉
| c(z).if fst(sdec(k, z)) = tag then Q
| c(y).if checksign(pk(skS), adec(skC , y)) = true then
c〈senc(getmsg(adec(skC , y)), pair(tag, s))〉

| c〈aenc(pk(skC), adec(skM , aenc(pk(skM ), sign(skS , k))))〉.c(z).
c〈snd(sdec(getmsg(adec(skM , aenc(pk(skM ), sign(skS , k)))), z))〉]

4. −→ ν k.C[c〈pk(skS)〉
| c(z).if fst(sdec(k, z)) = tag then Q
| if checksign(pk(skS), adec(skC , aenc(pk(skC),

adec(skM , aenc(pk(skM ), sign(skS , k)))))) = true then
c〈senc(getmsg(adec(skC , aenc(pk(skC),

adec(skM , aenc(pk(skM ), sign(skS , k)))))), pair(tag, s))〉
| c(z).
c〈snd(sdec(getmsg(adec(skM , aenc(pk(skM ), sign(skS , k)))), z))〉]

5. ≡ ν k.C[c〈pk(skS)〉
| c(z).if fst(sdec(k, z)) = tag then Q
| if true = true then
c〈senc(k, pair(tag, s))〉

| c(z).c〈snd(sdec(k, z))〉]
6. −→−→ ν k.C[c〈pk(skS)〉

| c(z).if fst(sdec(k, z)) = tag then Q
| c〈snd(sdec(k, senc(k, pair(tag, s))))〉]

7. ≡ ν k.C[c〈pk(skS)〉
| c(z).if fst(sdec(k, z)) = tag then Q
| c〈s〉]
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Example 6 (Annotated Handshake protocol) The annotated Handshake protocol is present-
ed below

P , ν skS .ν skC .ν s.
let pkS = pk(skS) in let pkC = pk(skC) in
(c〈pkS〉 | c〈pkC〉 | !PS | !PC)

PS , c(x pk).ν k.startedS〈pair(x pk, k)〉
c〈aenc(x pk, sign(skS , k))〉.
c(z).if fst(sdec(k, z)) = tag then
completedS〈pair(k, eq(x pk, pkC))〉.Q

PC , c(y).let y′ = adec(skC , y) in let y k = getmsg(y′) in
startedC〈y k〉
if checksign(pkS , y′) = true then
c〈senc(y k, pair(tag, s))〉
completedC〈pair(pkC , y k)〉

where the four events are interpreted as follows:

• startedS〈pair(x pk, k)〉 means that S considers she has started the protocol with an inter-
locutor whose public key is x pk, and she has proposed k as the session key.

• startedC〈y k〉 means that C considers he has started the protocol with the session key y k.

• completedS〈pair(k, t)〉 means that S believes she has completed the protocol with session key
k and if t =EH

true, then the protocol was completed with C.

• completedC〈pair(pkC , y k)〉 means that C considers he has successfully completed the protocol
with S using session key y k, where pkC is his public key.

Correspondence properties can now be defined to allow the analysis of authentication. Recall that
the client C is only willing to share her secret with the server S. We formalise the authentication
of C using the correspondence property

completedC〈pair(x, y)〉 startedS〈pair(x, y)〉.

In comparison, S is willing to run the protocol with any other principal. The correspondence
property says that if she believes C was her interlocutor, then C must have completed the protocol
with the suggested key. This is formalised as:

completedS〈pair(y, true)〉 startedC〈y〉

The subtle differences between the two correspondence properties is due to the differing authenti-
cation properties expected by participants S and C.

Formally we define the validity of a correspondence property in Definition 5. Intuitively, it
ensures that if the event f is executed, then the event g must have been previously executed.
Moreover, the parametrisation of the events must satisfy any relationships defined by M,N ; that
is, the variables fv(M) ∩ fv(N) must be parametrised in the same way.

Definition 5 (Validity of correspondence property) Let E be an equational theory, and A0

an extended process. We say that A0 satisfies the correspondence property f〈M〉  g〈N〉 if for
all execution paths

A0 →∗
α1−→→∗ A1 →∗

α2−→→∗ · · · →∗ αn−−→→∗ An,

and all index i ∈ N, substitution σ and variable e such that αi = ν e.f〈e〉 and eϕ(Ai) =E Mσ,
there exists j ∈ N and e′ such that αj = ν e′.g〈e′〉, e′ϕ(Aj) =E Nσ and j < i.
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Example 7 (Reasoning with correspondence) Consider the annotated Handshake protocol
(Example 6). The first correspondence property, namely

completedC〈pair(x, y)〉 startedS〈pair(x, y)〉

is not valid. This can be observed by constructing an execution path in which the events completedC
and startedS both occur, but with different arguments. To aid readability, we apply some of the sub-
stitutions denoted by ‘let’ occurring in P , and we reuse the context C[ ] , ν skS .ν skC .ν s.( | !PS |
!PC) from Example 5. The execution path is shown in Figures 3 & 4. Intuitively, the following
sequence of actions takes place:

1. C’s public key pk(skC) is output, using the handle y pk. This public key is now available to
the environment.

2. The environment provides the public key pk(skM ) as S’s interlocutor.

3. The event startedS〈pair(x pk, k)〉 is executed with the environment’s public key pk(skM )
assigned to parameter x pk.

4. S outputs as x the value k signed by S and encrypted for the environment.

5. The environment gives to C the value k signed by S, this time encrypted for C.

6. The process is rewritten using structural equivalence (essentially several occurrences of the
rules Subst and Rewrite).

7. The event startedC〈y k〉 is executed with k as parameter y k.

8. The conditional is trivially evaluated and C outputs the value senc(k, pair(tag, s)) as z.

9. Finally, the event completedC〈pair(pkC , y k)〉 is executed with respect to the value k assigned
to parameter y k.

Thus, the conditions of Definition 5 are violated; we have completedC〈e3〉, and although we do
have a previous startedS〈e1〉, it does not have the same arguments as can be observed from the
frame.

3.2.1 Injective correspondence properties

The definition of correspondence we have just discussed is insufficient to capture injective rela-
tionships between events; making it unsuitable for certain authentication properties. For example,
consider a financial transaction in which a server requests payment from a client; the server should
only complete a transaction, when that transaction was started by the client. (If this were not
the case, the client could be charged for several transactions, even if the client only started one.)
The situation is similar for access control and other scenarios. Further discussion can be found
in [Low97].

Example 8 Consider the process

start〈n〉.complete〈n〉.complete〈n〉

which satisfies the correspondence complete〈x〉  start〈x〉, but permits two occurrences of the
event complete〈n〉 to be matched by a single event start〈n〉.

Injective correspondence properties are denoted by the presence of the keyword inj.

Definition 6 (Injective correspondence property) An injective correspondence property is
a formula of the form: f〈M〉 inj g〈N〉.



Applied pi calculus 17

Figure 3 Execution of Handshake protocol, part I (labelled semantics)

1. P
ν y pk.c〈y pk〉−−−−−−−−−→ C[c〈pk(skS)〉 | {pk(skC)/y pk}

| c(x pk).ν k.startedS〈pair(x pk, k)〉.
c〈aenc(x pk, sign(skS , k))〉.
c(z).if fst(sdec(k, z)) = tag then
completedS〈pair(k, eq(x pk, pk(skC)))〉.Q

| c(y).
let y′ = adec(skC , y) in
let y k = getmsg(y′) in
startedC〈y k〉.
if checksign(pk(skS), y′) = true then
c〈senc(y k, pair(tag, s))〉
completedC〈pair(pk(skC), y k)〉]

2.
c(pk(skM ))−−−−−−−→

3.
ν e1.startedS〈e1〉−−−−−−−−−−−→

4.
ν x.c〈x〉−−−−−→ ν k.C[c〈pk(skS)〉 | {pk(skC)/y pk}

| {pair(pk(skM ), k)/e1}
| {aenc(pk(skM ), sign(skS , k))/x}
| c(z).if fst(sdec(k, z)) = tag then
completedS〈pair(k, eq(pk(skM ), pk(skC)))〉.Q

| c(y).
let y′ = adec(skC , y) in
let y k = getmsg(y′) in
startedC〈y k〉.
if checksign(pk(skS), y′) = true then
c〈senc(y k, pair(tag, s))〉
completedC〈pair(pk(skC), y k)〉]
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Figure 4 Execution of Handshake protocol, part II (labelled semantics)

5.
c(aenc(y pk,adec(skM ,x)))−−−−−−−−−−−−−−−−→ ν k.C[c〈pk(skS)〉 | {pk(skC)/y pk}

| {pair(pk(skM ), k)/e1}
| {aenc(pk(skM ), sign(skS , k))/x}
| c(z).if fst(sdec(k, z)) = tag then
completedS〈pair(k, eq(pk(skM ), pk(skC)))〉.Q

| let y′ = adec(skC , aenc(y pk, adec(skM , x))) in
let y k = getmsg(y′) in
startedC〈y k〉.
if checksign(pk(skS), y′) = true then
c〈senc(y k, pair(tag, s))〉
completedC〈pair(pk(skC), y k)〉]

6. ≡ ν k.C[c〈pk(skS)〉 | {pk(skC)/y pk}
| {pair(pk(skM ), k)/e1}
| {aenc(pk(skM ), sign(skS , k))/x}
| c(z).if fst(sdec(k, z)) = tag then
completedS〈pair(k, eq(pk(skM ), pk(skC)))〉.Q

| startedC〈k〉.
if true = true then
c〈senc(k, pair(tag, s))〉
completedC〈pair(pk(skC), k)〉]

7.
ν e2.startedC〈e2〉−−−−−−−−−−−→

8. −→ ν z.c〈z〉−−−−−→

9.
ν e3.completedC〈e3〉−−−−−−−−−−−−−→ ν k.C[c〈pk(skS)〉 | {pk(skC)/y pk}

| {pair(pk(skM ), k)/e1}
| {aenc(pk(skM ), sign(skS , k))/x}
| c(z).if fst(sdec(k, z)) = tag then
completedS〈pair(k, eq(pk(skM ), pk(skC)))〉.Q

| {k/e2}
| {senc(k, pair(tag, s))/z}
| {pair(pk(skC), k)/e3}]
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Informally, it asserts that if a process executes event f , then there is a distinct earlier occurrence of
the event g and any relationship between the event parameters is satisfied. It follows immediately
that the number of occurrences of the label ν e.g〈e〉 is greater than, or equal to, the number of
occurrences of ν e′.f〈e′〉 for some event variables e, e′.

Definition 7 (Validity of injective correspondence property) Let E be an equational the-
ory, and A0 an extended process. We say that A0 satisfies the injective correspondence property
f〈M〉 inj g〈N〉 if for all execution paths

A0 →∗
α1−→→∗ A1 →∗

α2−→→∗ · · · →∗ αn−−→→∗ An,

there exists a partial injective function h : {1, . . . , n} −→ {1, . . . , n} such that for all i ∈ {1, . . . , n},
substitution σ and variable e such that αi = ν e.f〈e〉 and eϕ(Ai) =E Mσ, then the follow-
ing conditions are satisfied: (1) h(i) is defined; (2) αh(i) = ν e′.g〈e′〉 for some e′ such that
e′ϕ(Ah(i)) =E Nσ; and, (3) h(i) < i.

Returning to our Handshake protocol, observe that authentication of C is injective; that is,
if S reaches the end of the protocol with the belief that she has session key k with interlocutor
C, then she has indeed done so; and moreover, C has done so in this session (that is, there is an
injective relationship).

Example 9 (Reasoning with correspondence, revisited) Consider the annotated Hand-
shake protocol and observe the injective correspondence property

completedS〈pair(y, true)〉 inj startedC〈y〉

is valid. To show this conclusively, one has to consider all the possible execution paths, and show
that for each of them, whenever there is a label ν e.completedS〈e〉 associated with the substitution
{pair(M, true)/e}, then there is an earlier label ν e′.startedC〈e′〉 and substitution {M/e′}; such that
no two occurrences of the event completedS are mapped to the same event startedC. ProVerif
can be used to prove this result.

3.3 Fixing the Handshake protocol

As mentioned in Section 1, the man-in-the-middle attack that is illustrated in Figure 2 can be
avoided by putting the participants’ public keys along with k in the signature formed by S. The
resulting process looks like this:

P , ν skS .ν skC .ν s.
let pkS = pk(skS) in let pkC = pk(skC) in
(c〈pkS〉 | c〈pkC〉 | !PS | !PC)

PS , c(x pk).ν k.c〈aenc(x pk, sign(skS , pair(pkS , pair(x pk, k))))〉.
c(z).if fst(sdec(k, z)) = tag then Q

PC , c(y).let y′ = adec(skC , y) in let y′′ = snd(getmsg(y′)) in
if fst(y′′) = pkC then
if checksign(pkS , y′) = true then
c〈senc(snd(y′′), pair(tag, s))〉

As an exercise the reader may like to identify exactly which step of the attack of Figure 2 fails for
the revised protocol.

We remark that the injective correspondence property completedC〈pair(x, y)〉 inj startedS〈
pair(x, y)〉 does not hold, because the client cannot ascertain as to whether the initial message he
receives is fresh. However, this does not affect the security of the protocol’s high-level objective
which is to enable the client C to share the secret s with the server S.
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4 Equivalence properties

The notion of indistinguishability is a powerful concept which allows us to reason about complex
properties that cannot be expressed as secrecy or correspondence properties. Intuitively, two
processes are said to be equivalent if an observer has no way to tell them apart. The processes
may be handling different data, and internally performing quite different computations, but they
look the same to an external observer. This notion allows us to define strong notions of secrecy
and privacy.

A natural starting point for defining observational equivalence says that processes A and B are
equivalent if they can output on the same channels, no matter what the context they are placed
inside. Formally we write A ⇓ c when A can evolve to a process that can send a message on
channel c, that is, when A→∗ C[c〈M〉.P ] for some term M , process P and evaluation context C[ ]
that does not bind c. This then allows us to characterise equivalence as follows: for all contexts
C[ ], we have C[A] ⇓ c if and only if C[B] ⇓ c. One might think that this condition is too weak
– it should say that C[A] and C[B] output the same term on the channel c – but that is not
necessary, since if two processes output different terms then a context that inspects the output
could be constructed to distinguish them.

4.1 Observational equivalence

In practice, the definition motivated above is hard to compute, and instead a stronger definition
is often used. The stronger definition, called observational equivalence, has a recursive character.
Roughly speaking, processes A and B are said to be observationally equivalent if they can output
on the same channel for all contexts they are placed inside (as before); and also, for all contexts
and every step made by A inside the context, there exists a step that B can make (inside the
context), such that the resulting pair of processes are observationally equivalent (and vice-versa).
We avoid the circularity of this informal characterisation, and define it rigorously as follows.

Definition 8 (Observational equivalence) Observational equivalence (≈) is the largest sym-
metric relation R between closed extended processes with the same domain such that A R B
implies:

1. if A ⇓ c, then B ⇓ c;

2. if A −→∗ A′, then B −→∗ B′ and A′ R B′ for some B′;

3. C[A] R C[B] for all closing evaluation contexts C[ ].

Note that we insist thatR is symmetric, so we can state the Conditions 1 and 2 in a non-symmetric
way (the symmetric part is guaranteed by the symmetry of R). Note also the added condition
that the two processes have the same domain; this captures the ‘observable’ difference between
processes in which the value of a variable appearing in one frame, is not defined in the other.

A classical example illustrates the difference between observational equivalence and the notion
of equivalence mentioned at the start of Section 4 (sometimes called trace equivalence). Intuitively,
trace equivalence checks that the outputs on the traces allowed by C[A] are the same as those of
C[B], but it does not enforce that decisions inside A and B occur at the same point. Let us use
the notation A1 + A2 to mean the non-deterministic choice of A1 or A2. This is expressible in
applied pi, as follows:

A1 +A2 , ν a.(a〈left〉 | a〈right〉 | a(x).if x = left then A1 else A2)

Here, left and right are names, and a scheduler chooses which message output a〈left〉 or a〈right〉
to perform, and hence whether A1 or A2 runs. Note that only one of A1 and A2 runs, in contrast
with A1 | A2; moreover, only one of the outputs a〈left〉, a〈right〉 may occur, because there is only
one input a(x), and a is restricted. Now consider the processes A , d〈b1〉.d〈b2〉+ d〈b1〉.d〈b3〉 and
B , d〈b1〉.(d〈b2〉 + d〈b3〉). One can see that they are trace equivalent, by experimenting with a



Applied pi calculus 21

variety of contexts. However, in A the decision between outputting b2 or b3 is taken earlier than it
is in B. Observational equivalence captures this as an observable difference. Consider the context
C[ ] = | d(y). Although C[A] and C[B] have the same output capabilities, C[B] can evolve to
a process (namely d〈b2〉 + d〈b3〉) which is not equivalent to any process that C[A] can evolve to
(namely, the processes d〈b2〉 or d〈b3〉).

4.2 Labelled bisimilarity

The quantification over contexts makes the definition of observational equivalence hard to use in
practice. Therefore, labelled bisimilarity is introduced, which is more suitable for both manual
and automatic reasoning. Labelled bisimilarity relies on an equivalence relation between frames,
called static equivalence, which we define first. Intuitively, two frames are statically equivalent if
no ‘test’ M = N can tell them apart, where M and N have variables that are substituted from
the frame. Formally:

Definition 9 (Static equivalence) Two closed frames ϕ and ψ are statically equivalent, denoted
ϕ ≈s ψ, if dom(ϕ) = dom(ψ) and there exists a set of names ñ and substitutions σ, τ such that
ϕ ≡ ν ñ.σ and ψ ≡ ν ñ.τ and for all terms M,N such that ñ ∩ (fn(M) ∪ fn(N)) = ∅, we have
Mσ =E Nσ holds if and only if Mτ =E Nτ holds. We say two closed extended processes A,B
are statically equivalent, and write A ≈s B, when their frames are statically equivalent; that is,
ϕ(A) ≈s ϕ(B).

The relation is called static equivalence because it only examines the current state of the processes
(as represented by their frames), and not the processes’ dynamic behaviour (that is, the ways
in which they may execute in the future). Thus, two processes are statically equivalent if they
cannot be distinguished on the basis of their output so far. Static equivalence captures the static
part of observational equivalence. More precisely, observational equivalence and static equivalence
coincide on frames. Static equivalence can straightforwardly be shown to be closed under structural
equivalence, internal reduction and application of closing evaluation contexts.

Example 10 (Static equivalence) In the following examples we assume the signature ΣS =
{hash, fst, snd, pair} and the smallest equational theory ES satisfying the equations fst(pair(x, y)) =
x, snd(pair(x, y)) = y over all variables x, y, where as expected hash, fst, snd are unary functions
and pair is a binary function.

• ν m.{m/x} ≈s ν n.{n/x}; trivial, since they are structurally equivalent.

• ν m.{m/x} ≈s ν n.{hash(n)/x}.

• {m/x} 6≈s {hash(m)/x}. The first one satisfies x = m but the second one does not.

• ν k.{k/x} | ν s.{s/y} ≈s ν k.({hash(pair(a, k))/x} | {hash(pair(b, k))/y}.

• ν k.{k/x} | ν s.{s/y} 6≈s ν k.({k/x} | {hash(k)/y}), since the second one satisfies hash(x) = y
and the first one does not.

• ν s.{pair(s, s)/x} 6≈s ν s.{s/x}, since the first one satisfies pair(fst(x), snd(x)) = x but the
second one does not.

As mentioned, static equivalence captures the static part of observational equivalence. The
following definition of labelled bisimilarity captures the dynamic part.

Definition 10 (Labelled bisimilarity) Labelled bisimilarity (≈l) is the largest symmetric rela-
tion R on closed extended processes such that A R B implies:

1. A ≈s B;

2. if A −→ A′, then B −→∗ B′ and A′ R B′ for some B′;
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3. if A α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅; then B −→∗ α−→−→∗ B′ and A′ R B′

for some B′.

Clauses 2 and 3 of this definition correspond to classical notions of bisimilarity [Mil99]. Notice
the use of the “largest relation” construction, to allow us to insist that the processes A′ and B′

are again within the relation. Clause 1 asserts static equivalence at each step of the bisimulation.
Let us now consider the side condition of Clause 3. Recall that there are three possibilities for

α, namely c(M), c〈u〉, and νu.c〈u〉, where u is either a channel name or a variable of base type.
In Clause 3, α can have free variables (in the cases c(M) and c〈u〉), but any such variables must
be defined by the frame of A (and since A ≈s B, also by the frame of B). Hence the condition
fv(α) ⊆ dom(A). The label α can also have bound names (in the case νd.c〈d〉, where d is a channel
name), in which case the transition A α−→ A′ has the effect of removing the restriction on a bound
channel name. That channel must not occur free in B, to avoid confusing the restricted name with
the global name; hence the condition bn(α)∩ fn(B) = ∅. To see this in more detail, consider A,B
such that A ≈l B, and suppose a ∈ fn(B)\fn(A). (For example, A is 0 and B is if a = b then c〈a〉.)
Intuitively, we would like A | (νa.c〈a〉) ≈l B | (νa.c〈a〉). But to achieve that, we need the side

condition, for otherwise the transition A | (νa.c〈a〉) νa.c〈a〉−−−−→ A would have to be matched on the

right hand side by B | (νa.c〈a〉) νa.c〈a〉−−−−→ B, which is false.

Working with labelled bisimilarity. To show labelled bisimilarity of A and B, it is necessary
to find a symmetric relation R that satisfies the conditions contained in Definition 10, such that
A R B. Note that the R we find is not required to be the largest one. That is because the set of
relations that satisfies the conditions contained in Definition 10 is closed under union. Therefore,
the largest one is the union of them all. Any relation satisfying the conditions of Definition 10
can serve as a witness to show that two processes are labelled bisimilar. Note also that, although
labelled bisimilarity is easily seen to be an equivalence relation, the relation R is merely required
to be symmetric.

Example 11 (Labelled bisimilarity) We prove that for all closed processes P1, P2, C and names
ñ such that c ∈ ñ, we have νñ.(c〈a〉.P1 | c(x).P2) | C ≈l νñ.(P1 | P2{a/x}) | C. Intuitively, the
equivalence holds because the only choice that the left side has, which the right side does not, is
an internal reduction (private channel communication). Let A R B hold if there exists a closed
extended process C ′ such that one of the following holds:

• A ≡ νñ.(c〈a〉.P1 | c(x).P2) | C ′ and B ≡ νñ.(P1 | P2{a/x}) | C ′; or

• B ≡ νñ.(c〈a〉.P1 | c(x).P2) | C ′ and A ≡ νñ.(P1 | P2{a/x}) | C ′; or

• A ≡ B.

One may show that R satisfies the conditions contained in Definition 10. First, R is easily seen
to be symmetric. For the next part, suppose A R B.

1. We show A ≈s B. There are three cases.

(a) A ≡ νñ.(c〈a〉.P1 | c(x).P2) | C ′ and B ≡ νñ.(P1 | P2{a/x}) | C ′. Since νñ.(c〈a〉.P1 |
c(x).P2) ≈s νñ.(P1 | P2{a/x}), we have A ≈s B.

(b) B ≡ νñ.(c〈a〉.P1 | c(x).P2) | C ′ and A ≡ νñ.(P1 | P2{a/x}) | C ′. In this case, a similar
argument applies.

(c) A ≡ B and hence we trivially have A ≈s B.

2. Now suppose A→ A′. There are again three cases to consider.

(a) A ≡ νñ.(c〈a〉.P1 | c(x).P2) | C ′ and B ≡ νñ.(P1 | P2{a/x}) | C ′. If A′ ≡ νñ.(P1 |
P2{a/x}) | C ′, then let B′ , B. Otherwise, A′ ≡ νñ.(c〈a〉.P1 | c(x).P2) | C ′′ for some
C ′′, in which case let B′ , νñ.(P1 | P2{a/x}) | C ′′.
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(b) A ≡ νñ.(P1 | P2{a/x}) | C ′ and B ≡ νñ.(c〈a〉.P1 | c(x).P2) | C ′. Since B → A, it
follows that B →∗ A′, so let B′ , A′.

(c) A ≡ B and hence the result follows trivially by B′ , A′.

In all cases we have A′ R B′, as required.

3. Now suppose A α−→ A′. Again we have three cases:

(a) A ≡ νñ.(c〈a〉.P1 | c(x).P2) | C ′ and B ≡ νñ.(P1 | P2{a/x}) | C ′. Since only the C ′ part
is able to make a labelled transition, A′ ≡ νñ.(c〈a〉.P1 | c(x).P2) | C ′′ for some C ′′, in
which case let B′ , νñ.(P1 | P2{a/x}) | C ′′, and we have B α−→ B′.

(b) A ≡ νñ.(P1 | P2{a/x}) | C ′ and B ≡ νñ.(c〈a〉.P1 | c(x).P2) | C ′. Since B → A, it
follows that B →∗ α−→ A′, so let B′ , A′.

(c) A ≡ B and hence the result is trivial by B′ , A′.

In all cases we have A′ R B′, as required.

Abadi & Fournet [AF01] state the following useful results, although as far as we are aware
fully detailed proofs have not yet been published.

Lemma 1 Given closed extended processes A,B and a closing evaluation context C[ ], we have
A ≈l B implies C[A] ≈l C[B].

Theorem 1 Observational equivalence and labelled bisimilarity coincide: ≈ = ≈l.

The condition stating that active substitutions are of base type (Section 2.1) is crucial to The-
orem 1. Without this constraint, one would have the following counterexample: ν a.({a/x} |
x(y).c〈n〉) 6≈ ν a.{a/x} (this can be seen using the closing evaluation context C[ ] = x〈b〉 | );
whereas ν a.({a/x} | x(y).c〈n〉) ≈l ν a.{a/x}.

4.3 Strong secrecy

Our earlier definition of secrecy required that the secret was not obtained by the adversary. We
will now use notions of equivalence to demonstrate a stronger notion of secrecy which states an
adversary is unable to distinguish when the secret changes [Aba00, CRZ07]. Intuitively, this means
the value of the secret should not effect the observable behaviour of the protocol. Strong secrecy
is useful, for example, to capture the adversary’s inability to learn any partial information about
the secret.

Strong secrecy is also useful to formalise ‘dictionary attacks’, also known as ‘guessing attacks’,
in which the attacker tries all the possible values of the secret until he finds the right one. If a
secret is chosen from a relatively small set of possible values, then such an attack might be possible;
we call such a secret “weak”. Passwords are often examples of weak secrets. For example, a server
which requires the user to send her password s, deterministically encrypted with server’s public
key pk, that is, to send {|s|}apk, is vulnerable to guessing attacks on s. That is because an attacker
in possession of {|s|}apk can make a guess s′ of the password s, and check the validity of his guess
by constructing {|s′|}apk and comparing it with {|s|}apk. Suppose instead the server requires the user
to include a random nonce in the encryption, that is, to send {|〈s, r〉|}apk, where r is a nonce chosen
from a large set. In that case the system is not vulnerable to guessing attacks.

This may be formalised by the following definitions [Bau05, DKR08].

Definition 11 Let ϕ ≡ νn.ϕ′ be a frame. We say that ϕ is resistant to guessing attacks against n
if, and only if, νn.(ϕ′ | {n/x}) ≈s νn′.νn.(ϕ′ | {n′/x}) where n′ is a fresh name and x is a variable
such that x 6∈ dom(ϕ).
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The definition says that the environment cannot distinguish between a situation in which he
possesses the correct value of the secret, from another one in which he has some random value
instead. This definition can be extended to the more general case.

Definition 12 (Guessing attacks) Let A be a process and n ∈ bn(A). We say that A is resis-
tant to guessing attacks against n if, for every process B such that A(→∗ α−→→∗)∗B, then we have
that ϕ(B) is resistant to guessing attacks against n.

Example 12 (TPM authentication [CR08]) We consider a protocol where a client A shares
a secret s with a server B (the protocol is based on the one used in the Trusted Platform Module
[Tru07]). In this example, the terms M and N are commonly used for tuples, so it is con-
venient to introduce a little syntactic sugar to express them. We write (M1, . . . ,Mn) to mean
pair(M1, pair(M2, pair(. . . , pair(Mn, ∗) . . . ))), where ∗ is any constant. We also write 1st(M),
2nd(M), and 3rd(M) to mean fst(M), fst(snd(M)), and fst(snd(snd(M))) respectively. Note that
(M1, . . . ,Mk ), 1st(N), etc., are not new functions, but merely syntactic sugar for combinations
of functions that we already have. The protocol proceeds as follows. The client sends commands
to the server, and authenticates them by supplying a MAC of the command values, keyed on s.
An additional nonce n is supplied and used in the MAC, to ensure it has high entropy. More
precisely, to run the command ‘comm’, A sends the message (comm, n,mac(s, (comm, n))). B
checks the MAC by reconstructing it, and if it is correct, sends the response ‘resp’. This protocol
may be modelled by the following process P , where we assume the signature ΣT = ΣS ∪{mac} and
equational theory ES (recall that ΣS and ES were defined in Example 10, and note that binary
function mac has no equations).

P , ν s.(!PA | !PB)

PA , ν n.c〈(comm, n, mac(s, (comm, n)))〉

PB , c(x).if 3rd(x) = mac(s, (1st(x), 2nd(x))) then c〈resp〉

P is vulnerable to guessing attacks on s. To see this, we consider the transition

P
νx.c〈x〉−−−−−→ νs.(νn.{(comm, n, mac(s, (comm, n)))/x} | !PA | !PB)

The frame of this latter process is vulnerable to guessing attacks on s, since we have

νs.νn.({(comm, n, mac(s, (comm, n)))/x} | {s/z})
6≈s νs′.νs.νn.({(comm, n, mac(s, (comm, n)))/x} | {s′/z})

as witnessed by the test
3rd(x) = mac(z, (1st(x), 2nd(x))).

A comparison of two views of secrecy. The reachability-based secrecy introduced in Sec-
tion 3.1 requires that the adversary should never learn secret values; the equivalence-based (strong)
secrecy introduced in this section states that two executions of a protocol are indistinguishable
regardless of the chosen secret values. The formulation of strong secrecy offers a higher degree
of security, but reachability-based secrecy has been more widely studied resulting in more auto-
mated support. For further discussion on the relationship between these two styles of secrecy the
reader is referred to [CRZ07, Aba00], see also Blanchet for a more generic formalisation of strong
secrecy [Bla04].

4.4 Vote privacy for electronic voting

Electronic voting systems are being introduced, or trialled, in several countries to provide more
efficient voting procedures with an increased level of security. The applied pi calculus can be used
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to formalise the properties which an electronic voting scheme should satisfy [KRS10, SRKK10,
DKR09b, BHM08]. For example, the property of vote privacy (or ballot secrecy) means that
no-one (not even the election officers) can link a particular vote with the voter.

Consider the following protocol, which is a simplification of the one by Fujioka, Okamoto, and
Ohta [FOO92]. We assume the signature ΣF = {true, fst, snd, pk, getmsg, pair, sign, checksign, blind,
unblind}, the arities of which are defined in the usual way; that is, true is a constant; fst, snd, pk,
getmsg are unary functions; and pair, sign, checksign, blind, unblind are binary functions. The pro-
tocol [FOO92] relies on blind signatures; with this cryptographic primitive, an election officer can
sign a text without having seen it. The voter first blinds the text and the officer signs it. The
voter can then unblind the message to recover the officer’s signature on the text. We do not need
to consider how this cryptography actually works; we can encode the effect using the equation

unblind(x, sign(y, blind(x, z))) = sign(y, z)

which says that if one blinds a text z using a blinding factor x, and then signs it with the private
key y, and then unblinds it (again using x), then the result is the text z signed by y in the usual
way. Blind signatures are useful in electronic voting because they allow the officer to sign a vote
(thus establishing its eligibility for counting) without knowing what the vote is. The equations
associated with the remaining functions in ΣF are defined in the usual way (see Section 2.1.1).

The protocol proceeds as follows. The voter wishing to vote for candidate v creates a nonce
n, and blinds the tuple 〈v, n〉 using a random blinding factor r. She then signs this value and
sends it to the election officer. The officer checks the voter’s eligibility and also checks she has not
already voted. If these checks succeed, then the officer signs the blinded vote-nonce pair and sends
it back to the voter. The voter can now unblind the signature, recovering the officer’s signature
on the vote-nonce pair. Once all voters have obtained the officer’s signature in this way, they
can anonymously submit the signed vote-nonce pair for counting. The protocol thus proceeds as
follows:

Voter Officer

sign(skV , blind(r, pair(v, n))) .

/ sign(skO, blind(r, pair(v, n)))

synch

sign(skO, pair(v, n)) .

The purpose of the value n is to allow the officer to count the signed vote only once. The
synchronisation point, denoted synch, ensures that every voter receives the officer’s signature
before any of them submit the unblinded value for counting. It is necessary to ensure vote privacy;
without it, traffic analysis might link the voter’s signature in the first message with the anonymous
submission in the third one. This protocol is inadequate for a real election, but it does satisfy the
property of vote privacy.

We formalise this illustrative voting protocol in the applied pi calculus as follows. We assume
a public channel c for communication between the voter and the officer, and a channel vote for



26 Mark D. Ryan and Ben Smyth

the officer to declare the list of counted votes.

P , ν sk1 . . . ν skn. ν skO.
let pk1 = pk(sk1) in . . . let pkn = pk(skn) in
let pkO = pk(skO) in
(c〈pk1〉 | · · · | c〈pkn〉 | c〈pkO〉 | PV {sk1/skV , v1/v} | · · · | PV {skn/skV , vn/v} | !PO | S)

PV , νn.νr.let bvn = blind(r, pair(v, n)) in
c〈pair(pk(skV ), sign(skV , bvn))〉.
c(x).if checksign(pkO, x) = true then
if getmsg(x) = bvn then
synch.
c〈unblind(r, x)〉

PO , c(y).if checksign(fst(y), snd(y)) = true then
if Eligible(fst(y)) = true then
c〈sign(skO, getmsg(snd(y)))〉.
c(w).
if checksign(pkO, w) = true then
if NotSeen(w) = true then
vote〈fst(getmsg(w))〉

In the above process, we assume functions Eligible(x) and NotSeen(x) are available to the offi-
cer. Eligible(x) checks whether the voter with public key x is eligible and hasn’t already voted;
NotSeen(x) stores x and returns true if it has not seen x before; otherwise it returns false. The
purpose of NotSeen(x) is to ensure that the voter can’t use the signed token twice. We also assume
a subprocess synch which a voter uses to synchronise with other voters. This can be modelled by
defining a process S to coordinate the synchronisation. In the case of n voters, the coordination
process receives precisely n tokens, and then sends them back. To synchronise with the other
voters, a voter sends a token to this synchronisation coordinator and awaits its response. Thus,

synch , syn〈∗〉.syn′(o)
S , syn(x1) . . . syn(xn).syn′〈∗〉 . . . syn′〈∗〉

where syn, syn′ are private channels shared between the voters and S, ∗ is any name and o is a
variable.

Now we define the property of vote privacy, and prove it. Since it should hold even if the officer
is corrupt, we can suppose that the officer is part of the attacker, and we need not consider its
formalisation as PO above. This means the secrecy of the officer’s key is not required for the vote
privacy property, so we can treat it as a free name. Moreover, the voters’ secret keys are also not
required to be kept secret in order to ensure the vote privacy property. They too can be treated
as free names. (Of course, these keys are required to be secret for other properties.)

Consider two voters A, B and two candidates va, vb. Based upon [DKR09b], we formalise vote
privacy for two voters with the assertion that the attacker (including the election officers) cannot
distinguish between a situation in which A votes va and B votes vb, from another one in which A
votes vb and B votes va. We will write this as the equivalence:

ν syn.ν syn′.(PV {skA/skV , va/v} | PV {skB/skV , vb/v} | S)
≈l ν syn.ν syn′.(PV {skA/skV , vb/v} | PV {skB/skV , va/v} | S)

To prove this equivalence, let us call the left hand side Lhs, and the right hand side Rhs. We
need to show a relation R satisfying the requirements of Definition 10 such that Lhs R Rhs. As
we have seen, the idea of R is to relate successors of Lhs and Rhs that are expected to correspond
to each other in the bisimulation. As Lhs evolves, the corresponding evolution of Rhs is the
one that mimics A moves in Lhs with A moves in Rhs, and B moves in Lhs with B moves in
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Rhs, up to the synchronisation. After the synchronisation, A moves in Lhs are mimicked by B
moves in Rhs, and B moves in Lhs are mimicked by A moves in Rhs. The reason for the ‘swap’
in mimicking is to ensure that the static equivalences will hold; before the synchronisation, the
output data produced by A on both the Lhs and Rhs are indistinguishable (and similarly for B).
Observe that the output data reveals the keys pk(skA), pk(skB) (matched by pk(skA), pk(skB))
and the signed blind votes sign(skA, blind(r, pair(va, n))), sign(skB , blind(r′, pair(vb, n′))) (matched
by sign(skA, blind(r, pair(vb, n))), sign(skB , blind(r′, pair(va, n′)))) where names n, n′, r, r′ are under
restriction in both Lhs and Rhs. Indistinguishability between the Lhs and Rhs with respect to
the signed blind votes is due to the properties of blinding. After the synchronisation A will reveal
va on the Lhs and vb on the Rhs (similarly B will reveal vb on the Lhs and va on the Rhs). Hence
after synchronisation the actions mimicked are swapped.

To define this formally, we first define some partial evolutions of PV , as follows.

P1 , νn.νr.
c〈pair(pk(skV ), sign(skV , blind(r, pair(v, n))))〉.
c(x).if checksign(pkO, x) = true then
if getmsg(x) = blind(r, pair(v, n)) then
syn〈∗〉.syn′(o).
c〈unblind(r, x)〉

P2 , νn.νr.
(
{pair(pk(skV ), sign(skV , blind(r, pair(v, n))))/y} |

c(x).if checksign(pkO, x) = true then
if getmsg(x) = blind(r, pair(v, n)) then
syn〈∗〉.syn′(o).
c〈unblind(r, x)〉

)
P3 , νn.νr.

(
{pair(pk(skV ), sign(skV , blind(r, pair(v, n))))/y} |

if checksign(pkO,m) = true then
if getmsg(m) = blind(r, pair(v, n)) then
syn〈∗〉.syn′(o).
c〈unblind(r,m)〉

)
P4 , νn.νr.

(
{pair(pk(skV ), sign(skV , blind(r, pair(v, n))))/y} |

if getmsg(m) = blind(r, pair(v, n)) then
syn〈∗〉.syn′(o).
c〈unblind(r,m)〉

)
P5 , νn.νr.

(
{pair(pk(skV ), sign(skV , blind(r, pair(v, n))))/y} |

syn〈∗〉.syn′(o).
c〈unblind(r, sign(skO, blind(r, pair(v, n))))〉

)
P6 , νn.νr.

(
{pair(pk(skV ), sign(skV , blind(r, pair(v, n))))/y} |

syn′(o).
c〈unblind(r, sign(skO, blind(r, pair(v, n))))〉

)
P7 , νn.νr.

(
{pair(pk(skV ), sign(skV , blind(r, pair(v, n))))/y} |

c〈unblind(r, sign(skO, blind(r, pair(v, n))))〉
)

P8 , νn.νr.
(
{pair(pk(skV ), sign(skV , blind(r, pair(v, n))))/y} |

{unblind(r, sign(skO, blind(r, pair(v, n))))/u}
)

These are abbreviations that will be useful in our definition of the simulation relation. We define
the relation R as follows. Given closed extended processes X and Y , X R Y and Y R X both
hold if
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• there exist integers i, j, variables w, z and terms M,N with 1 ≤ i, j ≤ 6 and

X ≡ Pi{skA/skV , va/v,w/y,M/m} | Pj{skB/skV , vb/v, z/y,N/m} | Si,j ,
Y ≡ Pi{skA/skV , vb/v,w/y,M/m} | Pj{skB/skV , va/v, z/y,N/m} | Si,j ;

and if i = 4 then checksign(pkO,M) = true, and if j = 4 then checksign(pkO, N) = true; or

• there exist integers i, j, and variables s, t, w, z with 6 ≤ i, j ≤ 8 and

X ≡ Pi{skA/skV , va/v,w/y, s/u} | Pj{skB/skV , vb/v, z/y, t/u} | Si,j ,
Y ≡ Pj{skA/skV , vb/v,w/y, t/u} | Pi{skB/skV , va/v, z/y, s/u} | Si,j .

Notice that the substitutions above are syntactic, and recall that in an active substitution, the vari-
able in the domain is considered to occur free. Thus, (A | {M/y}){x/y} = A{x/y} | {M{x/y}/x};
that is, the domain variable changed from y to x.

In the definition of R, Si,j is whatever part of S is left to execute. More precisely,

Si,j ,


syn(x)syn(x).syn〈∗〉syn〈∗〉 if i, j < 6
syn(x).syn〈∗〉syn〈∗〉 if i = 6, j < 6 or i < 6, j = 6
syn〈∗〉syn〈∗〉 if i, j = 6
syn〈∗〉 if i = 6, j = 7 or i = 7, j = 6
0 if i, j ≥ 7

We present a proof sketch that R satisfies the requirements of Definition 10.

Static equivalence. Consider, for example:

P1{skA/skV , va/v} | P2{skB/skV , vb/v, z/y} | S1,2

R P1{skA/skV , vb/v) | P2{skB/skV , va/v, z/y} | S1,2

The frame of the process on the left is νn.νr.{pair(pk(skB), sign(skB , blind(r, pair(vb, n))))/z} while
the one on the right is νn.νr.{pair(pk(skB), sign(skB , blind(r, pair(va, n))))/z}. These differ only by
the subterm vb on the left (va on the right). Static equivalence holds because of the blinding.
Consider

P7{skA/skV , va/v,w/y} | P8{skB/skV , vb/v, z/y, t/u} | S7,8

R P7{skB/skV , va/v, z/y} | P8{skA/skV , vb/v,w/y, t/u} | S7,8

The frame of the process on the left is structurally equivalent to

νn1.νr1.{pair(pk(skA), sign(skA, blind(r1, pair(va, n1))))/w} |
νn2.νr2.

(
{pair(pk(skB), sign(skB , blind(r2, pair(vb, n2))))/z} |
{unblind(r2, sign(skO, blind(r2, pair(vb, n2))))/t}

)
while the frame on the right is structurally equivalent to

νn1.νr1.{pair(pk(skB), sign(skB , blind(r1, pair(va, n1))))/z} |
νn2.νr2.

(
{pair(pk(skA), sign(skA, blind(r2, pair(vb, n2))))/w} |
{unblind(r2, sign(skO, blind(r2, pair(vb, n2))))/t}

)
These frames are statically equivalent.

Unlabelled transitions. Suppose, for example, A −→ A′ and

A ≡ P3{skA/skV , va/v,w/y,M/m} | P4{skB/skV , vb/v, z/y,N/m} | S3,4

A′ ≡ P3{skA/skV , va/v,w/y,M/m} | P5{skB/skV , vb/v, z/y} | S3,5
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Then, by R,

B ≡ P3{skA/skV , vb/v,w/y,M/m) | P4{skB/skV , va/v, z/y,N/m) | S3,4

and checksign(pkO, N) = true. Since the transition A→ A′ was possible, we have getmsg(N)
= blind(r, pair(vb, n)), where r, n are the values used inside the occurrence of P4. It follows
that we have N = sign(skO, getmsg(snd(z))). Therefore, the transition B → B′ is possible,
where

B′ , P3{skA/skV , vb/v,w/y,M/m} | P5{skB/skV , va/v, z/y} | S3,5,

and we have A′ R B′.

Labelled transitions. Suppose, for example, A
νw.c〈w〉−−−−−→ A′ and

A ≡ P1{skA/skV , va/v} | P2{skB/skV , vb/v, z/y} | S1,2

A′ ≡ P2{skA/skV , va/v,w/y} | P2{skB/skV , vb/v, z/y} | S2,2

Then, by R,

B ≡ P1{skA/skV , vb/v} | P2{skB/skV , va/v, z/y} | S1,2

and so we set

B′ , P2{skA/skV , vb/v,w/y} | P2{skB/skV , va/v, z/y} | S2,2.

We have A′ R B′.

Suppose, for example, A
c(T )−−−→ A′ and

A ≡ P1{skA/skV , va/v} | P2{skB/skV , vb/v, z/y} | S1,2

A′ ≡ P1{skA/skV , va/v} | P3{skB/skV , vb/v, z/y, T/m} | S1,3

Then, by R,

B ≡ P1{skA/skV , vb/v} | P2{skB/skV , va/v, z/y} | S1,2

and so we set

B′ , P1{skA/skV , vb/v} | P3{skB/skV , va/v, z/y, T/m} | S1,3

We again have A′ R B′.

This concludes our proof sketch of the labelled bisimilarity that expresses the privacy property for
two voters. To complete this proof formally, once would have to consider all the cases involved in
showing that R satisfies the requirements of Definition 10.

5 Outlook

This chapter studies the applied pi calculus and demonstrates its applicability for analysing secrecy,
correspondence and observational equivalence properties in the context of security protocols. In
this section we briefly refer to some on-going research about the calculus. Our discussion is neither
exhaustive nor complete.

The ability to reason with security properties is largely dependent on being able to reason with
the equational theory. Abadi & Cortier [AC04] have studied decidability of secrecy and static
equivalence for a large class of equational theories in the presence of a passive adversary. Sub-
sequent work by Baudet, Cortier & Delaune [BCD09] and Ciobâcă, Delaune & Kremer [CDK09]
introduces automated tools for analysing static equivalence with respect to convergent equational
theories.
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For an active adversary, reachability properties, in particular secrecy, have been studied in
[Bla01, AB02] with updated and extended versions [AB05a, Bla10]. Strong secrecy has been
considered in [Bla04]. Correspondence properties have been presented in the context of authen-
ticity [Bla02], and subsequently extended upon and revised in [Bla09]. Proofs of observational
equivalence have been studied with respect to processes that differ only by the choice of the terms
that they contain, using the notion of uniformity [BAF05, BAF08]. But this notion of unifor-
mity is often too strict; for example, the voting process discussed in this chapter does not satisfy
it. A practical approach to overcoming the problem is introduced [DRS08], [Smy11, Chapter 5]
(the technique defined by [Smy11, Chapter 5] has been implemented as a tool called ProSwap-
per [KSR10]) and subsequently used [BHM08, DDS10]. As an alternative to uniformity as a proof
technique, a symbolic version of the applied pi calculus is introduced in [DKR09a]; by treating
inputs symbolically, it avoids potentially infinite branching of processes due to inputs from the
environment. Cortier & Delaune [CD09] have shown that observational equivalence coincides with
trace equivalence for determinate processes; and based on the symbolic semantics, this yields a
decision procedure for observational equivalence of finite determinate processes without replica-
tion.
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