
Identity Escrow Protocol and Anonymity Analysis

in the Applied pi-calculus

AYBEK MUKHAMEDOV AND MARK D. RYAN

University of Birmingham

Anonymity with identity escrow attempts to allow users of an on-line service to remain anonymous,
while providing the possibility that the service owner can break the anonymity in exceptional

circumstances, such as to assist in a criminal investigation. In the paper, we propose an identity
escrow protocol that distributes user identity among several escrow agents. The main feature of
our scheme is it is based on standard encryption algorithms and it provides user anonymity even
if all but one escrow holders are dishonest acting in a coalition. We also present analysis of the
anonymity property of our protocol in the applied pi calculus. We review a related scheme by
Marshall and Molina-Jiminez that aimed to achieve goals similar to ours, and show that their
scheme suffers from serious weaknesses.

Categories and Subject Descriptors: C.2.2 [Network Protocols]: Protocol verification; K.4.4

[Electronic Commerce (J.1)]: Security

General Terms: Security, Verification

Additional Key Words and Phrases: identity escrow protocol, applied π-calculus

1. INTRODUCTION

With the increasing sophistication and adoption of communication systems in busi-
nesses and personal use, privacy and anonymity has become a concern among users
[BusinessWeek 2000; Cranor et al. 1999; Harris 1999]. Service usages (such as us-
age of mobile phones, Internet, financial payments) are routinely logged, and those
logs will allow organisations to build sophisticated profiles of customers and their
preferences and associates. Users fear that this information could be abused. But
while users may wish for complete privacy and anonymity, the failure of digital cash
to achieve widespread adoption shows that society as a whole also requires security
and accountability. Digital cash failed because it would allow criminal behaviour
to go undetected. An appropriate balance between unrestricted anonymity and
totalitarian security needs to be found, and this is likely to be a major theme in
security research for some years.
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Identity escrow attempts to provide such a balance for some applications. It al-
lows users to access services anonymously while guaranteeing that service providers
can break the anonymity in special circumstances; for example, to assist in a crim-
inal investigation. If Alice wishes to use the service from provider S, she first puts
her identity in escrow with an escrow agent T , from whom she obtains a token.
She presents the token to S as evidence that she has placed her identity in escrow.
S allows her to use the service anonymously. In the event of service misuse, S can
apply to T to obtain the identity of the user corresponding to the token.

The term ‘identity escrow’ was first introduced by Kilian and Petrank in [Kilian
and Petrank 1998], which was motivated by the ideas from key escrow encryption
systems (e.g. [Leighton 1994; Micali 1993]). The idea can also be traced in group
signature schemes and anonymous credential systems, which are mechanisms which
can be used to offer identity escrow [Camenisch and Lysyanskaya 2001; 2004; Ca-
menisch and Shoup 2003; Kiayias and Yung 2004]. Clearly, the systems break down
if a single escrow agent (known as group manager or issuer) holds the escrowed
identity and he is dishonest – he can reveal Alice’s identity even if the agreed condi-
tions for doing so have not been met. To address this problem the escrow agent can
be implemented as a set of agents called token providers [Kilian and Petrank 1998].
Neither S nor any token provider are supposed to know the identity behind an
escrowed certificate, but if it is proved necessary, all token providers can cooperate
in order to reveal it.

We propose a new identity escrow scheme that offers several advantages over
the escrow schemes mentioned above. In our scheme, the escrowed identity is dis-
tributed among several token providers chosen by the user and the user’s list (except
for the last token provider in the list) is not revealed when he presents his token to
the service provider. Moreover, our scheme uses standard cryptographic primitives,
which are better known than zero-knowledge proofs and more widely implemented
in APIs. Having said that, there are some features of our protocol which may make
it unattractive in some cases. Although the cryptographic primitives are standard,
they are not computationally cheap. The distribution of trust in a large number of
token providers is great for the user, but service providers may not like it because
obtaining a user’s identity in the event of misuse requires all the token providers to
be available. We expect the protocol to find applications in niche areas where the
anonymity requirement is paramount, and misuse is rare.

We model and analyze our protocol in the applied pi-calculus, and show that it
satisfies the anonymity property. In an earlier work Marshall and Molina-Jiminez
[Marshall and Molina-Jiminez 2003] proposed a protocol that aimed to achieve
goals similar to ours – distribute escrowed user identity among several trusted par-
ties using standard cryptographic primitives. However, their scheme puts strong
assumptions on escrow agents and suffers from serious weaknesses, which we men-
tion in the paper.

The paper is organised as follows. In the following two sections, we present
our protocol together with its formal analysis in the applied pi-calculus. Next, we
briefly detail Marshall and Molina-Jiminez’s protocol and the problems we have
identified with it, and conclude in section 5. Appendix A summarises the applied
pi-calculus, for the benefit of readers not familiar with it. Appendix B contains the
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proofs of lemmas we rely upon for our analysis.
Our protocol together with its preliminary analysis appeared in [Mukhamedov

and Ryan 2007] and our analysis of Marshall and Molina-Jiminez’s protocol ap-
peared in [Mukhamedov and Ryan 2005].

2. THE PROTOCOL

The protocol is based on the idea that certain agents that we call token providers
assist the user by helping him construct an onion. The user’s identity is in the
innermost layer, while the service key with which the user obtains the service is
in the outermost layer. In the event of an upheld complaint, one can link the
service key and the user’s identity by contacting all the token providers that were
used. If they are honest, they will only assist in the link if there really is an upheld
complaint. Thus, the anonymity of the user is guaranteed even if all but one escrow
holders are dishonest.

2.0.1 Notation. The following labeling conventions are used throughout the pa-
per:

—S denotes an anonymous service provider.

—T = {T1, T2, . . .} is a set of identity token providers.

—Φi is an identity token issued by Tai
. We write ΦA for the full identity token

obtained by A by using the protocol.

—KA is A’s long-term public key. K[A] is the public part of A’s ephemeral key that
it uses to access anonymous services provided by S. K[A] is freshly generated by
A for each service usage and no other agent knows the correspondence between
K[A] and A.

—{m}K is the message m deterministically encrypted with the public key K and
[m]K− is A’s universally verifiable signature on m.

Our protocol consists of two parts. First, there is a sign-up protocol, which is the
main protocol that is executed by A to receive a token from the members of T . The
token permits A to use the service from S. Next, there is a complaint resolution
protocol, which is executed by S upon a misuse of its service, in order to reveal the
identity of the offending anonymous user.

2.0.2 Sign-up. Alice has a long-term certified public key KA. She creates a
temporary service public key K[A] which she will use to identify herself to S. Then
she proceeds to build up an onion Φn (actions 1, 2 below). At the end of this process,
the onion consists of the service key K[A] in its centre, wrapped with encryptions
and signatures by the token providers. This is then paired with Alice’s identity
A, and by engaging in the protocol with token providers, it is wrapped again by
encryptions and signatures of the token providers. The formal definition follows;
an illustration in the case n = 4 is given in Figure 1.

The onion build-up is detailed as follows. Alice choses a sequence of token
providers Ta1

, Ta2
, . . . , Tan

from T (possibly with duplications) and creates the fol-
lowing term:
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1) Φ1 = { InitITKReq,K[A], Ka1 }KTa1

It is an encryption of a tag InitITKReq, the public part of A’s service key K[A]

and the symmetric key Ka1
by Ta1

’s public key, where Ka1
is freshly generated by

A. The goal of the protocol is to have the key K[A] associated with A’s identity
token in a way that does not reveal this link even if all but one Tai

are dishonest.
Next A creates further terms from Φ1:

2) for i = 2 to n− 1 : Φi = { ITKReq,Φi−1, Kai }KTai

By the end of the sequence of encryptions (2) (n−2 times), A will have obtained
the token Φn−1:

{ ITKReq, { . . .
{ ITKReq, {InitITKReq,K[A], Ka1

}KTa1
, Ka2

}KTa2

. . . }KTan−2
, Kan−1

}KTan−1

The token Φn−1 serves as a disguise of the service key K[A]. The symmetric keys Kai
generated by A in the above steps are used in order to randomise the ciphertexts
and to encrypt messages from token providers in later stages.

Next, A signs the token Φn−1 and sends it to Tan
, and then contacts Tan−1

, Tan−2
,

. . . , Ta1
anonymously as shown in Steps 3, 4, 3a, 4a. They reverse the sequence of

encryptions, and at the same time build up the identity token Φ̃n−1. The notation
A |−→ B means that A anonymously sends a message to B. In this case, B does
not know A’s identity. Similarly, A −→| B means that B receives a message anony-
mously, from A; A does not know B’s identity.

3) A −→ Tan
: { [ InitITKSig, Φn−1, A ]K−

A
}KTan

4) Tan
−→ A : Φ̃1

where Φ̃1 = [ { [ InitITKSig, Φn−1, A ]K−

A
}KTan

,Φn−1 ]K−

Tan

For i = 1 to n− 2:

∗





3a) A |−→ Tan−i
: { ITKSig, Φ̃i, Kan−i

}KTan−i

where for i > 1 Φ̃i = [ { Φ̃i−1, Kan−i+1
}KTan−i+1

, Φn−i ]K−

Tan+1−i

4a) Tan−i
−→| A : { [ { Φ̃i, Kan−i

}KTan−i
,Φn−i−1 ]K−

Tan−i

}Kan−i

After step 3a, before sending out a response, the token provider Tan−i
checks

that the session key Kan−i
supplied in the request matches the one embedded in

Φn−i (cf. step 2 above). The same rule applies to Ta1
at step 5. In addition, both

token providers also check that Φ̃i contained in the request was signed by a token
provider.

5) A |−→ Ta1
: { ITKSig, Φ̃n−1, Ka1}KTa1

6) Ta1
−→| A : { Φ̃A }Ka1 ,

where Φ̃A = [ { Φ̃n−1, Ka1 }KTa1
,K[A] ]K−

Ta1
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Upon reaching step 6, A has the following identity token:

Φ̃A = [ { . . . [ {Φ̃1, Kan−1
}KTan−1

,Φn−2 ]K−

Tan−1

. . . Ka1}KTa1
,K[A] ]K−

Ta1

The token Φ̃A associates the service key K[A] with A. He presents the token to S
when requesting its service.

7) A |−→ S : { Φ̃A, K[A] }KS

S checks that the token is signed by some token provider, and that the value
signed is a pair whose second element is the key K[A]. In case of service misuse
the token may be delayered to reveal the identity of a user bound to it via the
complaint resolution protocol.

Alice Ta1 Ta2 Ta3 Ta4

[ InitITKSig, Φ3, A ]
K

−

A

eΦ1 = [ { [ InitITKSig, Φ3, A ]
K

−

A

}KTa4
, Φ3 ]

K
−

Ta4

ITKSig, eΦ1, Ka3

{eΦ2}Ka3 , where eΦ2 = [ { eΦ1, Ka3}KTa3
, Φ2 ]

K
−

Ta3

ITKSig, eΦ2, Ka2

{eΦ3}Ka2 , where eΦ3 = [ { eΦ2, Ka2}KTa2
, Φ1 ]

K
−

Ta2

ITKSig, eΦ3, Ka1

{eΦA}Ka1 , where eΦA =

[ { eΦ3, Ka1}KTa1
, K[A] ]

K
−

Ta1

Fig. 1. Illustration of the sign-up protocol in the case n = 4. Messages from A are encrypted with
the public key of the receiver (this encryption is not shown)

ACM Journal Name, Vol. V, No. N, Month 20YY.



6 · A. Mukhamedov and M. Ryan

2.0.3 Complaint Resolution. We assume that some misuse evidence Ψ̃K[A]
is

uniquely associated with A’s service key K[A] and the service provider S. It must
be verifiable by each token provider (or endorsed by a third party accepted by all
token providers) and not forgeable by S.

The protocol is given as follows. As before, an illustration is given for the case
n = 4 in Figure 2.

1) S −→ Ta1
: { Reveal, Φ̃A, Ψ̃K[A]

, S }KTa1

2) Ta1
−→ S : { [Φ̃n−1, Ka1

, Ψ̃K[A]
]K−

Ta1

}KS

For i = 1 to n− 2:

∗





3a) S −→ Tai+1
: { Reveal, ((Φ̃n−i, Kai

), . . . , (Φ̃n−1, Ka1
), Φ̃A),

Ψ̃K[A]
, S }KTai+1

4a) Tai+1
−→ S : { [Φ̃n−i−1, Kai+1

, Ψ̃K[A]
]K−

Tai+1

}KS

5) S −→ Tan
: { Reveal, ((Φ̃1, Kan−1

), . . . , (Φ̃n−1, Ka1), Φ̃A), Ψ̃K[A]
, S }KTan

6) Tan
−→ S : { [[ ITKSig, Φn−1, A ]K−

A
, Ψ̃K[A]

]K−

Tan

}KS

We assume that S has access to the chain of token providers Ta1
, . . . Tan

through
the application software, so S knows what signature verification keys should be
used.

In message 3a, the tuple of Φ̃is serves to prevent complaint resolution messages
in one session being used in another. Before sending a response each Tai

checks

that the sequence he receives is correct, i.e. {Φ̃n−i, Kai}KTai−1
equals to the second

element in the signed tuple Φ̃n−i+1, and {Φ̃n−i+1, Kai−1
}KTai−2

equals to the second

element in the signed tuple Φ̃n−i+2, etc. , until Φ̃A is reached. This check ensures

that Tai
will not decrypt a token that is not related to Φ̃A.

At the nth iteration S reveals the identity of the user when it receives [ ITKSig, Φn−1, A ]K−

A

from Tan
. Importantly, in the sequence of unfoldings of Φ̃ai

s, S also keeps track
of Φai

s inside them, using the session keys Kai
, in order to make sure that Φn−1 is

formed from the session key she was given in the service request step. That is to
avoid rogue token providers disrupting or misleading the identity recovery process.

3. ANALYSIS OF ANONYMITY PROPERTY

We prove that the protocol satisfies anonymity: the identity token produced by
the user cannot be linked to its identity, even if all but one of the token providers
are dishonest. We start with defining the model of the protocol, then present
some general results about the static equivalence on frames involving nonces and
encryptions. We conclude the section with the proof of anonymity.
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S Ta1 Ta2 Ta3 Ta4

Reveal, eΦA, eΨK[A]
, S

[eΦ3, Ka1 ,
eΨK[A]

]
K

−

Ta1

Reveal, ((eΦ3, Ka1 ),
eΦA), eΨK[A]

, S

[eΦ2, Ka2 ,
eΨK[A]

]
K

−

Ta2

Reveal, ((eΦ2, Ka2 ),(
eΦ3, Ka1 ),

eΦA), eΨK[A]
, S

[eΦ1, Ka3 ,
eΨK[A]

]
K

−

Ta3

Reveal, ((eΦ1, Ka3 ), (
eΦ2, Ka2 ), (

eΦ3, Ka1 )),
eΦA), eΨK[A]

[[ InitITKSig, Φ3, A ]
K

−

A

, eΨK[A]
]
K

−

Ta4

Fig. 2. Complaint resolution protocol for the case n = 4. All messages are encrypted with the
public key of the recepient (to avoid clutter this encryption is not shown).

3.1 Model of the protocol

The protocol is modelled in the applied π-calculus. We do not put restrictions on the
number of sessions, or agents, and assume an active adversary (aka Dolev-Yao) that
can inject as well as intercept messages from the network. Public channels represent
the network and they are the means of interacting with the environment, whereas
private channels are used for private communications among processes. Channels by
themselves do not reveal sender or recipient of messages, and thus are anonymous.
We present the model in the language of the ProVerif tool extended with a for-loop
construct, which is defined as a macro expansion: for condition(j) followed by
body(j) stands for body(1), body(2), ..., body(n) , where {1, . . . , n} is the
set of integers that satisfy the condition(j). The scope of the loop is denoted
by indetation (as in Python programming language). We also allow conditional
expressions inside the for-loop, which are unpacked when the macro expansion
takes place: ifex[e1=e2,e3,e4] is replaced by e3, if e1 and e2 are syntactically
equal after substituting for the control variable (e.g., j) of the for-loop; otherwise
it is replaced by e4.
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fun pk/1. (* gets public key from a private key *)

fun enc/2. (* public key encryption *)

fun senc/2. (* symmetric key encryption *)

fun dec/2. (* and decryption *)

fun sdec/2.

fun sign/2. (* universally verifiable signature *)

fun getSigKey/1. (* retrieves public key of a signer *)

fun getSigMess/1. (* retrieves a message from a signature *)

fun pair/2. (* pairs two terms *)

fun fst/1. (* first term of a pair *)

fun snd/1. (* second term of a pair *)

fun thd/1. (* third term of a tuple *)

equation dec(enc(m,pk(sk)),sk) = m.

equation sdec(senc(m,k),k) = m.

equation getSigKey(sign(m,sk)) = pk(sk).

equation getSigMess(sign(m,sk)) = m.

equation fst(pair(x,y))=x.

equation snd(pair(x,y))=y.

equation thd(x) = snd(snd(x)).

Fig. 3. Signature and equational theory. The notation “fun f/i” means that f is a function of
arity i.

3.2 Signature and equations

The signature of our model includes function symbols for public key cryptographic
operations and universally verifiable signing, as well as other auxiliary constants
and functions used in the protocol. The purpose of the functions should be clear
from the comments in brackets. The equational theory is generated by the equations
shown in Figure 3.

We sometimes write (M,N) instead of pair(M,N), and (M,N,K) instead of
pair(M,pair(N,K)). We also use some shorthands from ProVerif syntax. We write
“let x = M in P” to mean P{M/x}, and we allow pattern matching. Thus, for
example, “let (x,= N) = M in P” means “if snd(M) = N then P{fst(M)/x}.

3.3 The protocol process

The protocol is encoded in the processes as shown in Figure 4 and 5, where processT
and processU denote token provider and user, respectively (defined below).

The fresh name skTh represents the private decryption key of the honest token
provider. Signing keys are of course different from the private decryption keys.
We allow the intruder to access honest token providers signing key; intuitively, the
anonymity property relies only on the secrecy of their decryption keys. (Secrecy of
the signing keys is important for other properties of the protocol, which we don’t
analyse.) The dishonest token providers are represented by the attacker that has
an encryption key pk(skTd) and a signing key signTd.

The expression of the form new n; P corresponds to the restriction νn.P of the
applied-π calculus. A construct of the form (=N,y)=M pattern matches the left
element of a tuple M against N, but assigns the right element of M to y.
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1 free c. (* public channel *)

2 free ITKReq, ITKSig, InitITKReq, InitITKSig.

3 free skTd,signTd. (* dishonest TP’s decryption and signing keys *)

4 free signTh (* honest TP’s signing key *)

5 process

6 new skTh; (* honest TP’s decryption key *)

7 out(c,pk(skTh)); new signA;

8 let (pkTh, pkTd) = (pk(skTh),pk(skTd)) in !processT | (out(c,pk(signA));

9 let (signU,n,pU) = (signA,nA,pA) in processU)

10 let processU=

11 (* pU is Th’s position in U’s request chain *)

12 for 0<j<n+1 & j<>pU:

13 new sesK_j;

14 let (upkT_j,signT_j) = (pkTd,signTd) in

15 new sesK_pU;

16 let (upkT_pU,signT_pU) = (pkTh,signTh) in

17 new servK; out(c,pk(servK));

18 (* Step 1 *)

19 let phi_1=enc((InitITKReq,pk(servK),sesK_1),upkT_1) in

20 (* Step 2 *)

21 for 1<j<n:

22 let phi_j=enc((ITKReq,phi_(j-1),sesK_j),upkT_j) in

23 (* Step 3,4 *)

24 let commit = sign((InitITKSig,phi_(n-1),pk(signU)),signU) in

25 out(c,enc(commit,upkT_n));

26 in(c,m3);

27 let tphi_1=m3 in

28 if getSigKey(tphi_1)=pk(signT_n) then

29 let (x1, oldTphi) = getSigMess(tphi_1) in

30 if oldTphi = enc((sign((ITKSig,phi_(n-1),pk(signU)),signU)),upkT_n) then

31 (* Step 3a,4a *)

32 for 0<j<n-1:

33 out(c,enc((ITKSig,tphi_j,sesK_(n-j)),upkT_(n-j)));

34 in(c,m4);

35 let tphi_(j+1)=dec(m4,sesK_(n-j)) in

36 if getSigKey(tphi_(j+1))=pk(signT_(n-j)) then

37 (* Step 5,6 *)

38 out(c,enc((ITKSig,tphi_(n-1),sesK_1),upkT_1));

39 in(c,m);

40 let token=dec(m,sesK_1) in

41 if getSigKey(token)=pk(signT_1) then

42 let (x2,key) = getSigMess(token) in

43 if key = servK then out(c,token)

Fig. 4. The Main and the user processes. We have extended ProVerif syntax with a for-loop and
conditional expression (used in steps 2 and 3a,4a), as defined in the text.
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let processT=

in(c,m);

let req=dec(m,skTh) in

let (=ITKSig,d4,k)=req in

(

let (x1,oldPhi) = getSigMess(d4) in

(

let (=InitITKReq,key,=k) = dec(oldPhi,skTh) in

out(c,senc(sign((enc((d4,k),pkTh),key),signTh),k))

else

let (=ITKReq,oldPhi1,=k) = dec(oldPhi,skTh) in

out(c,senc(sign((enc((d4,k),pkTh),oldPhi1),signTh),k))

)

)

else let (=InitITKSig,d3,upk)=getSigMess(req) in

(

if upk=getSigKey(req) then

out(c,sign((enc(req,pkTh),d3),signTh))

).

Fig. 5. The token provider process

3.4 Auxiliary results

In this section we present several results about the static equivalence of frames.
The last three lemmas of the section are particularly interesting since two of those
establish criteria when a ciphertext (a public key or symmetric key encrypted mes-
sage) reveals no more information to the attacker than a freshly generated value,
and the last one says when a term occuring inside a ciphertext remains hidden
from the attacker. We will use the lemmas to simplify analysis of the anonymity
property in the next section.

Assumption 1. Let E be an equational theory. We assume that the relation
equality modulo E on terms is closed under substitutions of arbitrary terms for
names and variables, and application of contexts.

Definition 1. We write {M/N} for the substitution that replaces all occurrences
of the term N by the term M .

Note that T1 =E T2 does not imply that T1{
M/N} =E T2{

M/N}.
The first simple lemma shows that exporting nonces does not affect static equiv-

alence on frames. It is a consequence of Lemma 1 of [Abadi and Fournet 2001]
using the context νk.({k/x} | ), although since that lemma is not proved there, we
provide our own proof.

Lemma 1. Let E be an equational theory, ϕ,ϕ′ be frames, ñ, ñ′ be sets of names
and k a name s.t. k 6∈ fn(ϕ,ϕ′) ∩ (ñ ∪ ñ′). If νñ.ϕ ≈s νñ

′.ϕ′ then νñ, k.({k/x} |
ϕ) ≈s νñ

′, k.({k/x} | ϕ′), where x 6∈ dom(ϕ).

The following lemma establishes sufficient conditions under which parts of frames
can be simplified (substituted by fresh names). All further lemmas make use of this
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result. We say that a frame is in normal form if all the terms occurring in it are in
normal form. When we write Mστ , it means (Mσ)τ .

Lemma 2. Consider a convergent equational theory E, a closed term L in normal
form, names ñ, s and a frame ϕ in normal form such that s 6∈ fn(ϕ). Suppose that:

—L does not occur in ϕ, and νñ.ϕ 6⊢ L.

—for any m̃, σ,M,N such that νñ.({L/x}|ϕ) ≡ νm̃.σ, (fn(M) ∪ fn(N)) ∩ m̃ = ∅
and Mσ =E Nσ we have Mσ{z/L} =E Nσ{z/L}.

Then: νñ.({L/x}|ϕ) ≈s νñ, s.({
s/x}|ϕ).

All subsequent lemmas are restricted to the equational theory with standard
public and session key encryption, decryption and digital signing operations (Epk)
defined in Figure 3. We use the notation {M}k and enc(M,k) interchangeably.

Lemma 3. Consider the equational theory Epk, and let M,N,L and J be terms
in normal form s.t. M,N do not contain dec(x, J) and M{{L}J/x} =E N{{L}J/x}.
Then:

(M{{L}J/x}){
z/{L}J

} =E (N{{L}J/x}){
z/{L}J

}

Lemma 4. Consider the equational theory Epk, a name k, and a frame νñ.σ in
normal form that does not contain dec(x, k), such that νñ.σ 6⊢ k. If M is a term
such that ñ ∩ fn(M) = ∅, then dec(x, k) does not occur in Mσ↓.

Lemma 5. Consider the equational theory Epk, a frame νñ.σ in normal form,
and a name k ∈ ñ, s.t. k occurs in σ only as a key argument to the encryption
function (that is, only in the form { }k). If M is a term such that ñ∩ fn(M) = ∅,
then dec(x, k) does not occur in Mσ↓.

Lemma 6. Consider the equational theory Epk, a closed term L in normal form,
names ñ, s, and a frame νñ.σ in normal form. Suppose νñ.σ 6⊢ s and {s, L}pk(k)

does not occur in σ. Then νñ.σ 6⊢ {s, L}pk(k).

Lemma 7. Given a closed term L in normal form, names ñ, s and a frame νñ.σ
in normal form, suppose:

(1 ) νñ.σ 6⊢ k, νñ.σ 6⊢ {s, L}pk(k) and m 6∈ fn(σ)

(2 ) {s, L}pk(k) does not occur in σ.

(3 ) dec(x, k) does not occur in σ.

Then νñ, s.({{s,L}pk(k)/x}|σ) ≈s νñ,m.({m/x}|σ).

Lemma 8. Given a closed term L in normal form, names k, s ∈ ñ and a frame
νñ.σ also in normal form, suppose:

(1 ) k occurs in σ only as an encryption key argument, i.e. in the form { }k;

(2 ) L does not occur in σ and s 6∈ fn(σ).

Then: νñ.({{L}k/x}|σ) ≈s νñ, s.({s/x}|σ).
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Lemma 9. Given a frame νñ.σ in normal form and s, k ∈ ñ, where νñ.σ 6⊢ k,
suppose for all occurences of s in σ:

(1 ) Either there exists a term L such that {L}pk(k) occurs in σ and the occurrence
of s is a subterm of L.

(2 ) Or s occurs in σ as an encryption key argument.

Then νñ.σ 6⊢ s.

3.5 Proof of the anonymity property

Notation and set-up:

—Th is the honest token provider (meaning that it executes the protocol correctly),
and Td is one of the dishonest ones (it does whatever the attacker says). In our
threat model we also consider the service provider S to be dishonest. Our aim is
to show the identity token produced by the user cannot be linked to its identity,
even if all but one of the token providers and the service provider are dishonest
and act in collusion.

—We don’t model dishonest token providers Td and the service provider, since they
form part of the attacker (in the applied pi-calculus the attacker is represented
by an active context). Their decryption and signing keys are free names.

—The property is shown to hold even if Th’s signing key is public. We model it
as a free name that the attacker can use. Intuitively, the anonymity property
hinges on the Th’s private decryption key sKTh being secret.

—KTh stands for the public encryption key corresponding to the decryption key
sKTh, i.e. pk(sKTh) = KTh.

—Honest user A is an instantiation of the process processU in Figure 4, and cor-
respondingly, Th is an instantiation of the process processT in Figure 5.

—ñA is the set of names that include A’s restricted values, i.e. signing key, service
key, and session keys generated by A during the run of the protocol. ñA =
{K−

A , sK[A]} ∪ {KA1, . . . , KAnA−1}.

—A’s request chain is a sequence of token providers that A uses when building a
token for anonymous service usage. It is denoted by reqA with length nA; Th’s
position in the chain is pA.

We introduce the following notion of an oracle that is used to model anonymity.

Definition 2. The oracle RTh is a process that given an input m outputs a digi-
tal signature of Th on m, denoted by [m]K−

T h
. Namely, we have

RTh = in(sR,m); out(sR, [m]K−

T h
), where sR is a private channel shared between

the honest user A and RTh.

We now define processes Ar and Al by which the theorem 1 below is stated.
Let Al be processU (in Figure 4) with the name restrictions of lines 13, 15, 17

removed, and with K−
A in place of signU, sK[A] in place of servK, KAi in place of

sesK i, and KApA
in place of sesK pU.

Let Ar be processU with the same changes as in Al, and also the following
changes: Line 9 is replaced with new sr; let (signU,n,pU) = (signA,nA,pA)
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in processU | R Th), where R Th is the oracle process of Definition 2 and sr is the
private channel (noted sR above) shared only between R Th and Ar. In the for-loop
at line 21, line 22 is substituted by new e;let phi j = ifex[j=pU,enc((ITKReq,

e,sesK j),upkT j),E] in, where E is the rhs term of the original let expres-
sion on line 22. Line 24 is replaced with new e;let commit = ifex[pU=n,sign(

(InitITKSig,e,pk(signU)),signU),E] in, where E is the rhs term of the origi-
nal let expression. In the for-loop at line 32, line 35 is replaced with new e;out(sr,

(enc((ITKSig,e,sesK (n-j)),upkT (n-j)),phi (n-j-1)));in(sr,N); let tphi (j+1)

= ifex[j=n-pU,N,E] in, where E is the original rhs expression. Line 40 is substi-
tuted by if pU=n then new e;out(sr,(enc((ITKSig,e,sesK 1),upkT 1),servK));

in(sr,token);Q else let token=dec(m,sesK 1) in Q, where Q is the code on
lines 41, 42 and 43.

Intuitively, the process Ar represents the user A constructing an empty service to-
ken with the help of the oracle RTh. More precisely, in Ar, in the message to Ta1

the
user sends its signature on an empty token Φ(ε)nA−1 =
{ITKReq, . . . {ITKReq, ε, KApA

}KT h
. . .}KTan−1

, where ε is a fresh nonce generated

by A. So, Φ(ε)nA−1 does not contain A’s service key K[A], but a random value in-
serted at the point of encryption with Th’s public key. Afterwards, Ar is the same
as Al up to the point where both receive a reply from Th. Then in Ar the user A
discards the reply from Th, creates a fresh nonce ε and with the help of the oracle
RTh constructs the term Φ̃(ε)nA−pA+1 = [{KApA

, ε}KT h
,K[A]]K−

T h
if Th is the first

in its request chain, or Φ̃(ε)nA−pA+1 = [{KApA
, ε}KT h

,ΦpA−1]K−

T h
otherwise. Then

Ar continues the protocol as in Al. All the interaction of A with the oracle is not
visible to the attacker.

The resultant service token Φ̃(ε) constructed by the user in Ar does not have A’s

identity embedded inside it, as opposed to the service token Φ̃(A) constructed in
Al. So if the attacker cannot tell apart the lhs and the rhs processes depicted in
the equivalence below then he cannot link the service token with the user’s identity
embedded inside it.

Comparison with Mukhamedov and Ryan [2007]. In our earlier work, we used
a slightly different formulation of the anonymity property, in which two honest
users swap their tokens; the anonymity property then says that this swap is in-
distinguishable to the attacker. In this paper, we use a simpler formulation for
anonymity property that we believe captures the essence of the property more
faithfully, saying that the attacker cannot distinguish between a genuine and an
oracle-faked token. This version is simpler because it involves one user only; and
it is more faithful because the anonymity that a user obtains does not rely on the
presence of another user doing something different.

Theorem 1. Suppose A is an honest user of the protocol, Th is an honest token
provider in A’s request chain. Then the protocol guarantees user anonymity; that
is,

ν sKTh,K
−
A ,K

′−
A′ . (ν ñA. A

l | ν ñA′ .(A′ | out(ch, Ψ̃K′

[A′]
)) | !Th)

≈

ν sKTh,K
−
A ,K

′−
A′ . (ν ñA, sR. (A

r | RTh) | ν ñA′ .(A′ | out(ch, Ψ̃K′

[A′]
)) | !Th)
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where processes Al, Ar,RTh are as defined above. sKTh is Th’s private decryption
key, K−

A is A’s signing key, sR is a private channel shared between Ar and oracle

RTh, and ch is a public channel. A′ = νK−
A′ .processU[{

K−

A′ /signU}, { /pU}, { /n}]

is another service user that has arbitrary values for pU and n, and Ψ̃K′

[A′]
is a valid

complaint related to the service key K ′
[A′] of A′ (if A′ = A then we have K−

A = K
′−
A′ ).

We have K[A] ∈ ñA and K ′
[A′] ∈ ñA′ ; we assume K ′

[A′] 6= K[A].

Proof. We prove labelled bisimilarity between our processes, since observational
equivalence ≈ coincides with labelled bisimilarity ≈ℓ, and the latter relation is
easier to reason about by hand. The definition of ≈ℓ requires that every labelled
and internal transitions of a process on one side of the equivalence are matched with
those of a process on the other side. Furthermore, all the intermediate processes
need to be statically equivalent.

In our case the matching of labelled transitions is straightforward, since we have
essentially the same processes on both sides of the equivalence (only the data they
manipulate are different): the Out-Atom transition only permits outputting terms
by reference, so we shall have the same such labels on both sides of the equivalence;
and in case of In rule, the same term M will be input on both sides. The communi-
cation of Ar with RTh over the private channel sR is not visible to the environment
– there is no corresponding labelled transition. Instead, it is captured by the inter-
nal reduction Comm. Therefore, we match labelled transitions as follows: for Al’s
transitions on the lhs with pick those of Ar on the rhs, (and vice versa) and we
match the rest with the transitions of the identical process on the other side of the
equivalence. The crux of the theorem is in proving the static equivalence of the lhs
and the rhs at each step.

The theorem holds if we show that the static equivalence (1) below holds. That
is because frames of all intermediate processes resulting from ≈ℓ transitions are
subframes in the equivalence (1) and if it is true then all subframes with equal
domains are also statically equivalent:

ν sKTh,K
−
A ,K

′−
A′ . (ν ñA.(φ

l
A | {

eΦ(A)l

/x}) | ν ñA′ .(φA′ | {
eΨK′

[A′]/y}) |
(
f
i∈N φl

Thi
) || {KT h/z})

≈s

ν sKTh,K
−
A ,K

′−
A′ . (ν ñA.(φ

r
A | {

eΦ(ε)r

/x}) | ν ñA′ .(φA′ | {
eΨK′

[A′]/y}) |
(
f
i∈N φr

Thi
) | {KT h/z})

(1)

where φl
A, φ

r
A are Al’s and Ar’s frames respectively. Φ̃(A)l is a service token output

by Al and Φ̃(ε)r is a service token output by Ar. φA′ is A′’s frame and KTh is the
public part of Th’s encryption key sKTh. N is a set of integers representing the
number of times !Th has been instantiated during the process evolution.

We simplify the equivalence (1) by noting that (1) holds if (2) below holds (by

application of the evaluation context C[ ] = νK−
A ,K

′−
A′ . ). Intuitively, this corre-

sponds to the statement that if the attacker cannot distinguish the outputs in (2),
even when having access to A’s and A′’s signing keys, then he cannot tell part the
same processes when he does not have access to those keys.
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ν sKTh. (ν ñA.(φ
l
A | {

eΦ(A)l

/x}) | ν ñA′ .(φA′ | {
eΨK′

[A′]/y}) |
(
f
i∈N φl

Thi
) || {KT h/z}))

≈s

ν sKTh. (ν ñA.(φ
r
A | {

eΦ(ε)r

/x}) | ν ñA′ .(φA′ | {
eΨK′

[A′]/y}) |
(
f
i∈N φr

Thi
) | {KT h/z}))

(2)

The equivalence (2) can now be simplified by omitting process ν ñA′ .(φA′ |

{
eΨK′

[A′]/y}), since the private names (including sKTh) of other processes do not
occur in it. In other words, if we show that (3) below holds, then (2) will also hold

by application of the evaluation context C[ ] = (ν ñA′ .(φA′ | {
eΨK′

[A′]/y})) | .

ν sKTh. (ν ñA.(φ
l
A | {

eΦ(A)l

/x}) | (
f
i∈N φl

Thi
) | {KT h/z}))

≈s

ν sKTh. (ν ñA.(φ
r
A | {

eΦ(ε)r

/x}) | (
f
i∈N φr

Thi
) | {KT h/z}))

(3)

We now need to consider the specifics of our protocol to show (3) holds. We apply
several simplifications to the above equivalence (steps (4)-(7) below) by removing
parts of the frames that are already available to the environment and, hence, do
not affect the anonymity property.

By inspection of the token provider process (Fig. 5), we note that the frames it
generates in response to ITKSig requests are of the form

φj
Thi

= {
{[{[Mi,Li]

K
−

Ti

, Ki}KT h
,L′

i]K−

T h

}Ki
/ti

}, where L′
i = snd(dec(Li, sKTh)), Ki =

thd(dec(Li, sKTh)) and Li = [{ITKReq, L′
i,Ki}KT h

]K−

T h
. Let ψl1 be the left-hand

and ψr1 be the right-hand processes of the static equivalence (3), and suppose
C1(j)[ ] is a context such that C1(j)[

f
i∈N φj

Thi
)] = ψj1 for j ∈ {l, r}. To prove (3),

it is sufficient to show

C1(l)[ φ
l
ThpA

| (
n

i∈N ′

dec-φThi
)] ≈s C1(r)[ φ

r
ThpA

| (
n

i∈N ′

dec-φThi
)] (4)

where φj
ThpA

= {
{[{KAj

pA
,i1}KT h

,i2]
K

−

T h

}
KA

j
pA /t2} for i1 = Φ̃(A)j

n−pA−1, i2 = Φ(A)j
pA−1

if j = l, else i1 = i2 = ε, and dec-φThi
= {dec(Li,KT h)/t(i,1)

}, where L is a token
request message that originates from the attacker; N ′ = N \{pA}. To see this, note
that (3) is obtained by applying the context

νt(i,1). | {
{[{[Mi,Li]

K
−

T

,thd(t(i,1))}xt3
,snd(t(i,1))]K−

T h

}thd(t(i,1))/ti
} to each side of (4) for

each i ∈ N ′. Intuitively, this step helps us to simplify the equivalence by making
explicit the decryption service of the Th that is available to the attacker.

Let ψl2 be the left-hand and ψr2 be the right-hand processes of the static equiva-
lence (4), and for j ∈ {l, r} suppose C2(j) is a context such that

C2(j)[{
eΦ(i)j

/x}] = ψj2, where i = A if j = l, else i = ε. The terms Φ̃(x)j have
application of sign (by some token provider T ) at their outermost level. To prove
(4), it is sufficient to prove
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C2(l)[{
{eΦ(A)l

n−1,KAl
n−1}KT /x1

} | {K[A]/x2
}]

≈s C2(r)[{
{y,KAr

n−1}KT /x1
} | {K[A]/x2

})]
(5)

where according to our definition of the process Ar if KT = KTh then y = ε else
y = Φ̃(ε)r

n−1. We have (5)⇒(4), because (4) is obtained by applying the context

νx1, x2.( | {[x1,x2]K−/x}, where K− is T ’s signing key, to each side of (5).

Intuitively, in (5) we delayered the term Φ̃(i)j by breaking it up using equa-
tional rewriting and structural equivalence, and then removing a process context
from each side. We recursively repeat such delayering of all non-atomic terms of
the frames on both sides of the latter equivalence, except for the terms exported
by the honest token provider’s frames. Delayering is performed until we reach ei-
ther (i) atomic terms, or (ii) non-atomic terms which are the result of applying
encryption with a restricted name as the key argument (that intuitively represent
a message encrypted with the honest token provider’s public key, or A’s session
key). For example, removing one layer from Φ̃(A)l

n−k for n − 2 > k > 0 results

in terms Φ̃(A)l
n−k−1,Φ(A)l

k, KA
l
k+1 and delayering Φ(A)l

k in turn results in terms

Φ(A)l
k−1, KA

l
k. Here is the resulting equivalence, which assumes that the honest

token provider Th is at the position pA of A’s request chain reqA of the length nA:

C3(l)[(
f
0<i<pA

{KA
l
i/ai

}) | {Φ(A)l
pA /ap

} | {{KA
l
pA

,eΦ(A)l
n−pA−1}KT h/aq

}]
≈s

C3(r)[(
f
0<i<pA

{KA
r
i /ai

}) | {{ITKReq,ε,KAr
pA

}KT h/ap
} | {{KA

r
pA

,ε}KT h/aq
}]

(6)

where C3[ ] is the context νsKTh, ñA. (φ
j
ThpA

| ). Note that dec-φThi
also reduce

to some of the frames above.
Remark. In the special case when pA = nA (i.e. when Th is the last one in A’s

request chain) the resulting equivalence is slightly simpler and is dealt with in a
similar way as below omitting non-applicable steps.

Next, by Lemma 1 we eliminate all substitutions that export session keys. So,
equivalence (6) holds if:

ν sKTh, ñ
′
l .({

{ITKReq, KAl
pA

,Φ(A)l
pA−1}KT h/ap

} | {{KA
l
pA

,eΦ(A)l
n−pA−1}KT h/aq

} |
(φl

ThpA
) | {KT h/z} | {K[A]/x2

})

≈s

ν sKTh, ñ
′
r .({

{ITKReq, ε,KAr
pA

}KT h/ap
} | {{KA

r
pA

,ε}KT h /aq
} |

(φr
ThpA

) | {KT h/z}) | {
K[A]/x2

})

(7)

We have unfolded Φ(A)l
pA

= {ITKReq, KAl
pA
,Φ(A)l

pA−1}KT h
, which appears in

(6), to elucidate the difference between the lhs and the rhs frames.
Let ψl3 , ψr3

be the lhs and the rhs of the equivalence (7), respectively. We normal-
ize those frames and consider each of the substitutions of the resulting equivalence
in turn:

—{{KA
j
pA

,i}KT h/aq
}, where i = Φ̃(A)l

n−pA−1 if j = l, else i = ε. This substitution
resulted from delayering the token Th issues to A. We have ψj3 6⊢ sKTh as
Th’s private decryption key never occurs in messages sent between the agents.
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Moreover, since all occurrences of KAj
pA

in ψj3 are in ciphertexts, either in the
main body that is encrypted with KTh or as an encryption key argument, by
Lemma 9 we also have ψj3 6⊢ KAj

pA
.

The term {KAj
pA
, i}KT h

does not occur in other parts of ψj3 , so by Lemma 6 we

have ψl3 , ψr3
6⊢ {KAj

pA
, i}KT h

. We also note by examination of Th’s protocol that
it only performs decryption of messages of the form {ITKReq, Z}KT h

for some
term Z, which it receives as part of a larger input, and so dec(aq, sKTh) does
not occur in ψj3 . As a consequence, by Lemma 7 we can replace the substitution
in question by a substitution of a fresh name on both sides of the equivalence.

—{{ITKReq,KA
j

T h
,i}KT h/ap

}, where i = Φ(A)l
pA−1 if j = l, else i = ε. The exported

term is the token A produces in the construction phase of the protocol. As above
we have ψj3 6⊢ KAj

pA
, sKTh. Since {ITKReq, KAj

Th, i}KT h
does not occur in other

parts of ψj3 , by Lemma 6 it is not derivable from those frames. The frames ψj3

are closed and in normal form, so dec(ap, sKTh) does not occur in them. That
in turn implies that by Lemma 7, we can replace the substitution in question by
a substitution of a fresh name on both sides of the equivalence.

—φj
ThpA

= {
{[{KAj

pA
,i1}KT h

,i2]
K

−

T h

}
KA

j
pA /t2}, where i1 = Φ̃(A)j

n−pA−1, i2 = Φ(A)j
pA−1

if j = l, else i1 = i2 = ε. It is a reply from Th to A in the second stage of the
protocol. As above, ψj3 6⊢ KAj

pA
, sKTh and after the previous two transformations

KAj
pA

does not occur in other parts of ψj3 . So by Lemma 8 we can replace the
exported term of the substitution in question by fresh names on both sides of the
equivalence.

Following the above transformations we note that the lhs of the equivalence is
α-equivalent to the rhs. Consequently, ψl3 ≈s ψr3

.

4. PROTOCOL BY MARSHALL AND MOLINA-JIMINEZ

In an earlier work Marshall and Molina-Jiminez [Marshall and Molina-Jiminez 2003]
proposed a protocol that aimed to distribute escrowed user identity among several
trusted parties using standard cryptographic primitives. However, their scheme
requires strong assumptions on the trusted parties and suffers from weaknesses. In
this section we briefly detail Marshall and Molina-Jiminez’s (MJ) protocol and the
problems we have identified with it.

The MJ protocol consists of two parts: sign-up protocol, where users generate
anonymous service tokens, and complaint resolution protocol, which is executed to
reveal the identity of the offending anonymous user. Those parts are depicted in
Protocols 1 and 2, respectively.

In Protocol 1, E stands for a set of adjudicators {E1, . . . , Ek}. The set is initially
chosen by S and then H ⊆ E is chosen by A. The set of adjudicators H decide in
case of a complaint from S whether it is valid and A’s identity should be revealed.
an id is a pseudonym that is used by A when accessing services of S; K[A] is the
public part of A’s anonymous service key; K bA

is the public part of A’s temporary
anonymous communication key that each Tai

(i > 1) use to anonymously send
messages to A.
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1. A −→ Ta1
: { [ ITKReq ]K−

A
}KTa1

2. Ta1
−→ A: { Φ1 }KA

, where Φ1 = [ {KA}KTa1
]K−

Ta1

∗





1a A |−→ Tai+1
: { ITKSig, Φi }KTai+1

where Φi = [{ Φi−1}KTai
]K−

Tai

2a Tai+1
−→| A : { [ { Φi}KTai+1

]K−

Tai+1

}K bA

3. A |−→ S: { ServReq,K[A],ΦA }S

4. S −→| A: { n,E }K[A]

5. A |−→ S: { H }S

6. S −→| A: { an id }K[A]
Protocol 1: MJ sign-up protocol

1. S −→ Ei: { AdjReq,Ψ }KEi

2. Ei −→ S: { [ Vi ]K−

Ei

}KS

3. S −→ Tai
: { Reveal,Φi,Ψ,H, V }KTai

4. Tai
−→ S: { Φi−1 }KS

Protocol 2: MJ complaint resolution protocol

In Protocol 2, Ψ is a complaint that S submits to adjudicators from the set H
(chosen in the previous protocol), and to the set of token providers chosen by A.
V = {V1, . . . , Vn} is the set of ’yes/no’ votes by Ei ∈ H that decide whether Ψ is
valid or not. If V is positive in the majority, S presents the tuple of signed votes
V to each Tai

, in order to reveal the identity of a user associated with the token of
the offending user.

4.1 Analysis of MJ protocol

The protocol is subject to the following vulnerabilities:

4.1.1 Service Misuse. Any of the identity token providers can misuse services
of S (or let someone else to do that) and, furthermore, it can implicate any entity
of its choice in such a misuse:
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Suppose Tai
is a dishonest token provider. He can present any intermediate token

which he receives during the sign-up protocol to S, and obtain an identifier to use
the service. He can misuse the service and in doing so implicate the user who
initiated the creation of the intermediate token. Moreover, since the identity token
takes the form

[ { . . . [ {KA}KTa1
]K−

Ta1

. . . }KTap
]K−

Tap

and Ta1
has access to A’s public key KA, he can create [ {KA}KTa1

]K−

Ta1

and

anonymously request the signature services from Ta2
, . . . , Tap

in order to create the
A’s full identity token ΦA. (Other token providers cannot easily create ΦA since
they don’t directly receive [ITKReq]K−

A
).

Clearly, the MJ protocol requires putting full trust on all token providers that
are involved in generating ΦA, since the token is not unforgeably tied to A’s real
identity.

4.1.2 Identity Compromise (1). Suppose A has chosen a sequence of token providers
Ta1

, Ta2
, . . . , Tap

, and Ta1
is dishonest. Then the service provider S in a coalition

with Ta1
can identify the identity token ΦA that A has generated:

Suppose Ta1
is dishonest and reveals to S identity tickets it issues. Then it

takes at most nk−1 number of operations (ITKSig requests and encryptions) for the
coalition to find out ΦA, where n is the total number of identity token providers
and k is the length of A’s requests chain - a straightforward brute-force search.
If we allow the coalition to eavesdrop locally on messages of other token providers
Tai

, then the number of operations they need to perform is polynomial in k, namely
n(k − 1).

4.1.3 Identity Compromise (2). Suppose S has successfully processed a com-
plaint about a particular user. Then S can reveal the identity of any subsequent
user of the service.

Once S has successfully processed a complaint, he is in possession of the infor-
mation Ψ,H, V corresponding to the complaint. He can use this to make Reveal

requests to any sequence of Ti’s corresponding to some other protocol session, and
thereby break its anonymity.

The MJ protocol has some other weaknesses too: any third party can find out
who misused the services of an anonymous service provider S; a dishonest service
provider S can change the set H to include more lenient adjudicators, when re-
questing to reveal the identity of an anonymous user in the complaint resolution
protocol.

5. CONCLUSION

In the paper, we proposed a protocol that addresses the problem of anonymity
with identity escrow, which is about balancing the need for anonymity with the
need for traceability and accountability on the Internet. Our protocol allows online
users to access the services anonymously, while providing the possibility that the
service owner can break the anonymity if its service is misused. The main feature
of our scheme is it provides user anonymity even if all but one escrow holders
are dishonest acting in a coalition and it achieves that property using standard
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cryptographic primitives.
We analysed the anonymity property of the protocol in the applied pi calculus

and in the process established compelling reduction criteria for static equivalences
in a public-key equational theory. Lastly, we reviewed a protocol proposed by
Marshall and Molina-Jiminez [Marshall and Molina-Jiminez 2003] that aimed to
achieve goals similar to ours, and showed that their scheme suffers from serious
weaknesses.
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A. APPLIED PI-CALCULUS

The applied pi calculus [Abadi and Fournet 2001] is a language for describing con-
current processes and their interactions. It is based on the pi calculus, but is in-
tended to be less pure and therefore more convenient to use. Properties of processes
described in the applied pi calculus can be proved by employing manual techniques
[Abadi and Fournet 2001], or by automated tools such as ProVerif [Blanchet 2001].
As well as reachability properties which are typical of model checking tools, ProVerif
can in some cases prove that processes are observationally equivalent [Blanchet
2004]. This capability is important for anonymity-type properties such as the one
we study here. The applied pi calculus has been used to study a variety of security
protocols, such as those for private authentication [Fournet and Abadi 2003], for key
establishment [Abadi et al. 2004], as well as an electronic voting protocol [Kremer
and Ryan 2005].

To describe processes in the applied pi calculus, one starts with a set of names
(which are used to name communication channels or other constants), a set of
variables, and a signature Σ which consists of the function symbols which will be
used to define terms. In the case of security protocols, typical function symbols
will include enc for encryption, which takes plaintext and a key and returns the
corresponding cipher text, and dec for decryption, taking ciphertext and a key
and returning the plaintext. Terms are defined as names, variables, and function
symbols applied to other terms. Terms and function symbols can be sorted, and
function symbol application must then respect sorts. An equational theory E is a a
signature Σ together with a set of equations which hold on terms constructed from
the signature. We denote =E the smallest equivalence relation that includes the
equations in E and is closed under substitutions of arbitrary terms for names and
variables, and application of contexts. A typical example of an equational theory
useful for cryptographic protocols is

dec(enc(x, k), k) = x.

For example, given this theory and terms T1 = dec(enc(enc(n, k1), k2), k2) and
T2 = enc(n, k1), we have that T1 =E T2 (while obviously the syntactic equality
does not hold). We write M == N if M is syntactically equivalent to N . By
orienting the equations in the equational theory from left to right one can obtain
a rewriting system RE . If RE is convergent, we say that E is convergent; and in
that case, all terms have unique normal forms. N↓ denotes normal form of N . A
frame is in normal form if all the terms occurring in it are in normal form. The
standard public key encryption equational theory Epk which includes projections,
pairing, digital signing, public and session key encyption, decryption functions is
known to be convergent.

In the applied pi calculus, one has (plain) processes and extended processes. Plain
processes are built up in a similar way to processes in the pi calculus, except that
messages can contain terms (rather than just names). In the grammar described
below, M and N are terms, n is a name, x a variable and u is a metavariable, i.e.
a name or a variable.

P,Q,R := plain processes
0 null process
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P | Q parallel composition
!P replication
νn.P name restriction
if M = N then P else Q conditional
in(u, x).P message input
out(u,N).P message output

Extended processes add active substitutions and restriction on variables:

A,B,C := extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

{M/x} is the substitution that replaces the variable x with the term M . Active
substitutions generalise “let”. The process νx.({M/x} | P ) corresponds exactly to
“let x = M in P”. As usual, names and variables have scopes, which are delimited
by restrictions and by inputs. We write fv(A), bv(A), fn(A) and bn(A) for the sets
of free and bound variables and free and bound names of A, respectively. We say
that an extended process is closed if all its variables are either bound or defined by
an active substitution.

Active substitutions are useful because they allow us to map an extended process
A to its frame φ(A) by replacing every plain process in A with 0. A frame is an
extended process built up from 0 and active substitutions by parallel composition
and restriction. The frame φ(A) can be viewed as an approximation of A that
accounts for the static knowledge A exposes to its environment, but not A’s dynamic
behaviour. Every frame can be written in the form ϕ = νñ.{T1/x1, . . . , Tn/xn}.
The domain of ϕ is dom(ϕ) = {x1, . . . , xn}. We say that ϕ is closed if all the terms
Ti are closed, i.e. contain no variables.

Definition 3. We say two terms M,N are equal in the frame ϕ, and write
(M = N)ϕ, if ϕ ≡ νñ.σ, Mσ =E Nσ, and ñ ∩ fn(M,N) = ∅ for some names ñ
and substitution σ.

A context C[·] is a process with a hole; an evaluation context is a context whose
hole is not under a replication, a conditional, an input, or an output. Structural
equivalence, noted ≡, is the smallest equivalence relation on extended processes that
is closed under α-conversion on names and variables, by application of evaluation
contexts, and satisfying some further basic structural rules, namely, for all names
n, extended processes A,B, plain processes P , and variables or names u, v:

—!P ≡!P | P ; A | 0 ≡ A;

—associativity and commutativity of |;

—νn.0 ≡ 0; νu.νw.A ≡ νw.νu.A;

—A | νu.B ≡ νu.(A | B) where u 6∈ fn(A) ∪ fv(A);
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—νx.{M/x} ≡ 0; {M/x} | A ≡ {M/x} | A{M/x};

—{M/x} ≡ {N/x} whenever M =E N .

We can now define what it means for two frames to be statically equivalent.

Definition 4 Static equivalence. Two closed frames ϕ1 and ϕ2 are stati-
cally equivalent, written ϕ1 ≈s ϕ2, iff for some names ñ, and substitutions σ1, σ2,
such that ϕ1 ≡ νñ.σ1 and ϕ2 ≡ νñ.σ2, we have that:

(i) dom(ϕ1) = dom(ϕ2),

(ii) for all terms M,N with variables included in dom(ϕi) and using no names
occurring in ñ, Mσ1 =E Nσ1 is equivalent to Mσ2 =E Nσ2.

We also say that two extended processes A and B are statically equivalent if and
only if φ(A) ≈s φ(B).

Example 1. Consider ϕ0 = νk.{enc(s0, k)/x1, k/x2} and ϕ1 = νk.{enc(s1, k)/x1, k/x2}
where s1, s2 and k are names. Let E be the theory defined by the axiom dec(enc(x, k), k) =
x. We have (dec(x1, x2) =E s0)ϕ0 but not (dec(x1, x2) =E s0)ϕ1. Therefore,
ϕ0 6≈s ϕ1 although νk.{enc(s0, k)/x1} ≈s νk.{enc(s1, k)/x1}.

The operational semantics of processes in the applied pi calculus is defined by
structural rules defining two relations: structural equivalence (described above)
and internal reduction, noted →. Internal reduction → is the smallest relation on
extended processes closed under structural equivalence and application of evaluation
contexts such that ā〈x〉.P | a(x).Q → P | Q and for all terms M,N,K such that
N,K are ground and N 6=E K,

if M = M then P else Q → P
if N = K then P else Q → Q.

Definition 5 Deducibility. Given a frame ϕ that represents a history of mes-
sages output during the execution of the processes, we define the deduction relation,
denoted by ϕ ⊢ M . Deducible messages are those that can be derived from ϕ by
application of function symbols and the equational theory E.

νñ. σ ⊢ xσ
[x ∈ dom(σ)]

νñ. σ ⊢ m
[m ∈ N \ ñ]

νñ. σ ⊢ T1 . . . νñ. σ ⊢ Tl

νñ. σ ⊢ f(T1, . . . , Tl)

νñ. σ ⊢ T T =E T ′

νñ. σ ⊢ T ′

Example 2. n is deducible from the frame νn, k′.({enc(n,k′)/x} | {k′

/y}), but not
from the frame νn.{f(n)/x}, where f is a hash function (i.e., there are no equations
involving f).

Proposition A.0.1. Let ϕ = νñ.σ be a frame and M be a term. ϕ ⊢M if and
only if there exists a term T , such that fn(T ) ∩ ñ = ∅ and Tσ =E M .

We further extend the operational semantics by a labeled operational semantics
enabling us to reason about processes that interact with their environment. Labeled

ACM Journal Name, Vol. V, No. N, Month 20YY.



Identity Escrow Protocol and Anonymity Analysis in the Applied pi-calculus · 25

operational semantics defines the relation
α
→ where α is either an input or the output

of a channel name or a variable of base type. More details can be found in [Abadi
and Fournet 2001].

in(c, x).P
in(c,M)
→ P{M/x} [In] out(c, u).P

out(c,u)
→ P [Out-Atom]

A
out(c,u)

→ A′

νu.A
νu.out(c,u)

→ A′
[Open-Atom]

A
α
→ A′

νu.A
α
→ νu.A′

[Scope]

A
α
→ A′

A | B
α
→ A′ | B

[Par]
A ≡ B B

α
→ B′ B′ ≡ A′

A
α
→ A′

[Struct]

where u is a metavariable that ranges over names and variables, and Par rule is
restricted to bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅.

Definition 6 Labeled bisimilarity (≈ℓ). Labeled bisimilarity is the largest
symmetric relation R on closed extended processes, such that A R B implies:

(1 ) A ≈s B;

(2 ) if A→ A′, then B →∗ B′ and A′ R B′ for some B′;

(3 ) if A
α
→ A′, then B →∗ α

→→∗ B′ and A′ R B′ for some B′.

In [Abadi and Fournet 2001], it is shown that labeled bisimilarity coincides with
observational equivalence, which is used to formalize many security properties, and
in particular anonymity properties. In this work we prefer to use labeled bisimilar-
ity, rather than observational equivalence, because proofs for labeled bisimilarity
are easier for us to carry out.

B. PROOFS OF LEMMAS

Lemma 1. Let E be an equational theory, ϕ,ϕ′ be frames, ñ, ñ′ be sets of names
and k a name s.t. k 6∈ fn(ϕ,ϕ′) ∩ (ñ ∪ ñ′). If νñ.ϕ ≈s νñ

′.ϕ′ then νñ, k.({k/x} |
ϕ) ≈s νñ

′, k.({k/x} | ϕ′), where x 6∈ dom(ϕ).

Proof. Let φl ≡ νm̃l.σl and φr ≡ νm̃r.σr be the lhs and the rhs of the proposed
equivalence, respectively. Suppose νñ.ϕ ≡ νm̃.σ with m̃ = m̃l \ {k}, since by our
hypothesis k 6∈ fn(ϕ,ϕ′)∩(n ∪ n′), and let νñ.ϕ ≈s νñ

′.ϕ′. We have σl = σ | {k/x}.
Take two terms M,N such that fn(M,N)∩m̃l = ∅. If (M = N)φl then Mσl =E

Nσl, and so (Mσ){k/x} =E (Nσ){k/x}. Since fv(σ) = ∅ and x 6∈ dom(ϕ), we have
(Mσ){k/x} == (M{k/x})σ, (Nσ){k/x} == (N{k/x})σ, and hence (M{k/x})σ =E

(N{k/x})σ. As k 6∈ m̃ we get ((M{k/x}) = (N{k/x}))νñ.ϕ.
Now, if (M = N)νñ.ϕ then (Mσ){k/x} = (Nσ){k/x}, and hence (M = N)φl,

since equational theory is closed under substitution of arbitrary terms for variables.
So, (M = N)φl iff (M = N)νñ.ϕ and similarly we have (M = N)φr iff ((M{k/x}) =
(N{k/x}))νñ′.ϕ′, which imply (M = N)φl iff (M = N)φr. Hence, φl ≈s φr.
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Lemma 2. Consider a convergent equational theory E, a closed term L in normal
form, names ñ, s and a frame ϕ in normal form such that s 6∈ fn(ϕ). Suppose that:

—L does not occur in ϕ, and νñ.ϕ 6⊢ L.

—for any m̃, σ,M,N such that νñ.({L/x}|ϕ) ≡ νm̃.σ, (fn(M) ∪ fn(N)) ∩ m̃ = ∅
and Mσ =E Nσ we have Mσ{z/L} =E Nσ{z/L}.

Then: νñ.({L/x}|ϕ) ≈s νñ, s.({
s/x}|ϕ).

Proof. Let φl, φr denote the right and left parts of the equivalence, respectively.
We need to show that for any terms J,K we have (J = K)φl iff (J = K)φr. Here,
(J = K)φmeans that there exists ñ and σ such that φ ≡ νñ.σ, ñ∩(fv(J)∪fv(K)) =
∅, and Jσ =E Kσ.

“⇒” direction. Suppose (J = K)φl. Then, ∃m̃, σ such that φl ≡ νm̃.σ, Jσ =E

Kσ and m̃∩ (fn(J)∪ fn(K)) = ∅. By hypothesis, (Jσ){z/L} =E (Kσ){z/L}, and
hence, ((Jσ){z/L}){s/z} =E ((Kσ){z/L}){s/z}, where s 6∈ fn(K) ∪ fn(J).

Wlog suppose ϕ is a substitution σϕ, then σ = σϕ ∪ {L/x}. Consider terms Jσϕ

and Kσϕ. Since L does not occur in ϕ and νñ.ϕ 6⊢ L, L does not occur in Jσϕ

and Kσϕ. Hence, ((Jσ){z/L}){s/z} = (((Jσϕ){L/x}){z/L}){s/z} = (Jσϕ){s/x},
and similarly ((Kσ){z/L}){

s/z} = (Kσϕ){s/x}. We have φr ≡ νm̃′.σ′, where
m̃′ ∩ fn(J,K) = ∅ and σ′ = σϕ ∪ {s/x}. Therefore, (J = K)φr.

“⇐” direction. Suppose (J = K)φr. Then ∃m̃, σ such that φr ≡ νm̃.σ,
Jσ =E Kσ and m̃ ∩ fn(J,K) = ∅. Wlog suppose ϕ is a substitution σϕ, then
σ = σϕ ∪ {s/x}, where s ∈ m̃, and (Jσϕ){s/x} =E (Kσϕ){s/x}, and also Jσϕ =E

Kσϕ by our assumption 1 that the equational theory is closed under substitution of
arbitrary terms for names. So, (Jσϕ){L/x} =E (Kσϕ){L/x}. We have φl ≡ νm̃′.σ′,
where m̃′ ∩ fn(J,K) = ∅ and σ′ = σϕ{L/x}. Therefore, (J = K)φl.

Lemma 3. Consider the equational theory Epk, and let M,N,L and J be terms
in normal form s.t. M,N do not contain dec(x, J) and M{{L}J/x} =E N{{L}J/x}.
Then:

(M{{L}J/x}){
z/{L}J

} =E (N{{L}J/x}){
z/{L}J

}

Proof. Since M,L and J are in normal form and dec(x, k) does not occur in
M , the term M{{L}J/x} is in normal form. Similarly, N{{L}J/x} is also in normal
form. We have M{{L}J/x} =E N{{L}J/x} and since normal forms are unique in
Epk, we have M{{L}J/x} == N{{L}J/x}. Since == is closed under replacement,
we can conclude.

Lemma 4. Consider the equational theory Epk, a name k, and a frame νñ.σ in
normal form that does not contain dec(x, k), such that νñ.σ 6⊢ k. If M is a term
such that ñ ∩ fn(M) = ∅, then dec(x, k) does not occur in Mσ↓.

Proof. The proof is by induction on M .
Base case: M == u. If u 6∈ dom(σ) then there is nothing to do, else uσ == N ,

where {N/u} is a substitution in σ. N is in normal form, since σ is in normal form,
and it does not contain dec(x, k) as dec(x, k) does not occur in σ.
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Induction step. Suppose for some M,N , ñ∩fn(M,N) = ∅, dec(x, k) does not
occur in Mσ↓ and Nσ↓. Then we need to consider the following cases:

—M ′ == f(M,N), where f is enc, pair or sign: we haveM ′σ↓ == f(Mσ↓, Nσ↓).
So, by the IH dec(x, k) does not occur in M ′σ↓.

—M ′ == f(M), where f is a unary function in Epk. M ′σ↓ is f(Mσ↓) or M ′′,
where M ′′ is a subterm of Mσ↓ or pk(N) for some subterm N of Mσ↓. By our
IH dec(x, k) does not occur in M ′σ↓.

—M ′ == dec(M,N). M ′σ↓ == dec(Mσ↓, Nσ↓) or M ′σ↓ is a subterm of Mσ↓.
The term Nσ↓ is distinct from k, since νñ.σ 6⊢ k. Again, by the IH dec(x, k)
does not occur in M ′σ↓.

Lemma 5. Consider the equational theory Epk, a frame νñ.σ in normal form,
and a name k ∈ ñ, s.t. k occurs in σ only as a key argument to the encryption
function (that is, only in the form { }k). If M is a term such that ñ∩ fn(M) = ∅,
then dec(x, k) does not occur in Mσ↓.

Proof. The proof is by induction on M .
Base case: M == u. If u 6∈ dom(σ) then there is nothing to do, else uσ == N ,

where {N/u} is a substitution in σ. N is in normal form, since σ is in normal form,
and it does not contain dec(x, k) by our assumption.

Induction step. Suppose for some M,N , ñ∩fn(M,N) = ∅, dec(x, k) does not
occur in Mσ↓ and Nσ↓. Then we need to consider the following cases:

—M ′ == f(M,N), where f is enc, pair or sign: we haveM ′σ↓ == f(Mσ↓, Nσ↓).
So, by the IH dec(x, k) does not occur in M ′σ↓.

—M ′ == f(M), where f is a unary function in Epk. M ′σ↓ is f(Mσ↓), M ′′, or
pk(M ′′), where M ′′ is a subterm of Mσ↓. By our IH dec(x, k) does not occur in
M ′σ↓.

—M ′ == dec(M,N). M ′σ↓ == dec(Mσ↓, Nσ↓) or M ′σ↓ is a subterm of Mσ↓.
The term Nσ↓ is distinct from k, since νñ.σ 6⊢ k, which easily follows from our
assumption that k occurs in σ only as an encryption key argument. So, again by
the IH dec(x, k) does not occur in M ′σ↓.

Lemma 6. Consider the equational theory Epk, a closed term L in normal form,
names ñ, s, and a frame νñ.σ in normal form. Suppose νñ.σ 6⊢ s and {s, L}pk(k)

does not occur in σ. Then νñ.σ 6⊢ {s, L}pk(k).

Proof. Let L′ = {s, L}pk(k). It is known that νñ.σ 6⊢ L′ if for anyM , s.t. fn(M)∩
ñ = ∅, Mσ 6=E L′. The latter inequality will hold if we show that Mσ↓ 6=E L′. We
proceed by induction on M .

Base case: M == u. If u 6∈ dom(σ) then there is nothing to do, else uσ == N ,
where {N/u} is a substitution in σ. As σ is in normal form, all subterms of N are
also in normal form. We note that L′ is in normal form too because L is in normal
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form by assumption. Furthermore, every subterm K of N is distinct from L′, as L′

does not occur in σ. As a result, for all such K, K 6=E L′ by the fact that normal
forms are unique.

Induction step. Take some M,N such that ñ ∩ fn(M,N) = ∅. By the facts
that s ∈ ñ and s 6∈ fn(σ), we see that for all subterms K of Mσ↓ and Nσ↓, we
have K 6=E L′. Then we need to consider the following cases:

—M ′ == f(M,N), where f is pair or sign: we have M ′σ↓ == f(Mσ↓, Nσ↓).
So, by the IH for all subterms K of M ′σ↓ we get K 6=E L′.

—M ′ == dec(M,N): M ′σ↓ == dec(Mσ↓, Nσ↓) or it is M ′′, where M ′′ is a
subterm of Mσ↓. In any case, by the IH for all subterms K of M ′σ↓ we get
K 6=E L′.

—M ′ == f(M), where f is a unary function in Epk. M ′σ↓ is f(Mσ↓), M ′′ or
pk(M ′′), where M ′′ is a subterm of Mσ↓. By our IH for all subterms K of M ′σ↓
we get K 6=E L′.

—M ′ == enc(M,N). M ′σ↓ == enc(Mσ↓, Nσ↓). The term Mσ↓ 6=E {s, L}, since
otherwise fst(Mσ↓) =E s contradicting our assumption νñ.σ 6⊢ s. So, again by
the IH for all subterms K of M ′σ↓ we get K 6=E L′.

Lemma 7. Given a closed term L in normal form, names ñ, s and a frame νñ.σ
in normal form, suppose:

(1 ) νñ.σ 6⊢ k, νñ.σ 6⊢ {s, L}pk(k) and m 6∈ fn(σ)

(2 ) {s, L}pk(k) does not occur in σ.

(3 ) dec(x, k) does not occur in σ.

Then νñ, s.({{s,L}pk(k)/x}|σ) ≈s νñ,m.({
m/x}|σ).

Proof. Take terms M,N such that fn(M,N)∩ ñ = ∅ and Mσ′ =E Nσ′, where
σ′ = σ ∪{{s,L}pk(k)/x}. We show that any Mσ′{z/{s,L}pk(k)

} =E Nσ′{z/{s,L}pk(k)
}.

The substitution σ is in normal form and it does not contain dec(x, k) by as-
sumption 3. Since νñ.σ 6⊢ k by Lemma 4 we have Mσ↓, Nσ↓ do not contain
dec(x, k). The term {s, L}pk(k) is in normal form, since L is in normal form

by assumption. As a result, by Lemma 3 ((Mσ↓){{s,L}pk(k)/x}){
z/{s,L}pk(k)

} =E

((Nσ↓){{s,L}pk(k)/x}){
z/{s,L}pk(k)

}, and hence ((Mσ){{s,L}pk(k)/x}){
z/{s,L}pk(k)

} =E

((Nσ){{s,L}pk(k)/x}){
z/{s,L}pk(k)

}.
By our assumptions νñ.ϕ 6⊢ {s, L}pk(k) and {s, L}pk(k) does not occur in σ, so by

Lemma 2 it follows that our lemma holds.
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Lemma 8. Given a closed term L in normal form, names k, s ∈ ñ and a frame
νñ.σ also in normal form, suppose:

(1 ) k occurs in σ only as an encryption key argument, i.e. in the form { }k;

(2 ) L does not occur in σ and s 6∈ fn(σ).

Then: νñ.({{L}k/x}|σ) ≈s νñ, s.({
s/x}|σ).

Proof. Take terms M,N such that fn(M,N)∩m̃ = ∅ and Mσ′ =E Nσ′, where
σ′ = σ{{L}k/x}. We show that Mσ′{z/{L}k

} =E Nσ′{z/{L}k
}.

The substitution σ is in normal form, where k occurs only as an encryption key
argument so by Lemma 5 Mσ↓, Nσ↓ do not contain dec(x, k). Since L is in normal
form using Lemma 3 we conclude Mσ′{z/{L}k

} =E Nσ′{z/{L}k
}.

From our assumptions 1 and 2 it follows that νñ.σ 6⊢ {L}k and {L}k does not
occur in σ, so by Lemma 2 our lemma holds.

Lemma 9. Given a frame νñ.σ in normal form and s, k ∈ ñ, where νñ.σ 6⊢ k,
suppose for all occurences of s in σ:

(1 ) Either there exists a term L such that {L}pk(k) occurs in σ and the occurrence
of s is a subterm of L.

(2 ) Or s occurs in σ as an encryption key argument.

Then νñ.σ 6⊢ s.

Proof. We know that νñ.σ 6⊢ s if for any M , s.t. fn(M)∩ñ = ∅, Mσ 6=E s. The
latter inequality will hold if we show that Mσ↓ 6=E s. We proceed by induction on
M .

Base case: M == u. If u 6∈ dom(σ) then there is nothing to do, else uσ == N ,
where {N/u} is a substitution in σ. As by assumption σ is in normal form, N is
in normal form. As a result, by our hypothesis and the fact that normal forms are
unique in this case Mσ↓ 6= s.

Induction step. Take a term M ′ and suppose for all M,N , ñ∩ fn(M,N) = ∅,
such that M,N are subterms of M ′ we have Mσ↓ 6= s and Nσ↓ 6= s. Then we need
to consider the following cases:

—M ′ == f(M,N), where f can be pair, enc or sign: we have M ′σ↓ ==
f(Mσ↓, Nσ↓). So, M ′σ↓ 6= s.

—M ′ == dec(M,N): M ′σ↓ == dec(Mσ↓, Nσ↓) or it is M ′′, where M ′′ is a
subterm of Mσ↓. In the former case we are done, and in the latter we note that
M ′σ == dec(enc(K,L), Nσ), where L = pk(Nσ). Nσ 6=E k since otherwise
that would violate our assumption νñ.σ 6⊢ k and hence L 6= pk(k).
Note Mσ == enc(K,L). Since σ is in normal form if K is not in normal form
then ∃K ′ s.t. K == K ′σ and K ′ is a subterm of M . By the IH K↓ 6= s, and
therefore in this case M ′′ 6= s. If K is in normal form then by L 6= pk(k) and by
our assumptions K 6= s, and again M ′′ 6= s.

—M ′ == f(M), where f is a unary function. M ′σ↓ is f(Mσ↓), pk(M ′′) or M ′′,
where M ′′ is a subterm of Mσ↓. In the former two cases we are done. In the
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latter M ′σ == f(f ′(K)), where f ′ is a function that is not enc (it may have
arity more than one).
Note Mσ == f ′(K). Since σ is in normal form if K is not in normal form then
∃K ′ s.t. K == K ′σ and K ′ is a subterm of M . By the IH K↓ 6= s, and therefore
in this case M ′′ 6= s. If K is in normal form then by our assumptions K 6= s,
and again M ′′ 6= s.
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