
Election verifiability in

electronic voting protocols∗

Steve Kremer1, Mark Ryan2, and Ben Smyth2,3

1LSV, ENS Cachan & CNRS & INRIA, France
2School of Computer Science, University of Birmingham, UK

3École Normale Supérieure, CNRS, INRIA, Paris, France

Technical Report CSR-10-06

April 9, 2010
(Revised: June 28, 2010)

Abstract

We present a symbolic definition of election verifiability for electronic
voting protocols in the context of the applied pi calculus. Our definition
is given in terms of boolean tests which can be performed on the data
produced by an election. The definition distinguishes three aspects of
verifiability, which we call individual verifiability, universal verifiability,
and eligibility verifiability. It also allows us to determine precisely which
aspects of the system’s hardware and software must be trusted for the pur-
pose of election verifiability. In contrast with earlier work our definition
is compatible with a large class of electronic voting schemes, including
those based on blind signatures, homomorphic encryption and mixnets.
We demonstrate the applicability of our formalism by analysing two pro-
tocols which have been deployed; namely Helios 2.0, which is based on
homomorphic encryption, and Civitas, which uses mixnets. In addition
we consider the FOO protocol which is based on blind signatures.

1 Introduction

Electronic voting systems are being introduced, or trialled, in several countries
to provide more efficient voting procedures with an increased level of security.

∗This work has been partly supported by the EPSRC projects UbiVal (EP/D076625/2),
Trustworthy Voting Systems (EP/G02684X/1) and Verifying Interoperability Requirements

in Pervasive Systems (EP/F033540/1); the ANR SeSur AVOTÉ project; and the Direction
Générale pour l’Armement (DGA).

1

However, the security of electronic elections has been seriously questioned [9, 19,
8, 24]. A major difference with traditional paper based elections is the lack of
transparency. In paper elections it is often possible to observe the whole process
from ballot casting to tallying, and to rely on robustness characteristics of the
physical world (such as the impossibility of altering the markings on a paper
ballot sealed inside a locked ballot box). By comparison, it is not possible
to observe the electronic operations performed on data. Moreover, computer
systems may alter voting records in a way that cannot be detected by either
voters or election observers. For example, a voting terminal’s software might be
infected by malware which could change the vote entered by the user, or even
execute a completely different protocol than the one expected. The situation
can be described as voting on Satan’s computer, analogously with [5]. Computer
systems and election administrators should therefore be considered to be part
of the adversary model.

The concept of election verifiability that has emerged in the academic lit-
erature, for example, [17, 18, 10, 3], aims to address this problem. It should
allow voters and election observers to verify independently that votes have been
recorded, tallied and declared correctly. To emphasise a voter’s ability to ver-
ify the results of the entire election process, it is sometimes called end-to-end
verifiability [20, 2]. The verification is performed using hardware and software
of the verifier’s own choice, and is completely independent of the hardware and
software running the election. One generally distinguishes two aspects of verifi-
ability.

• Individual verifiability: a voter can check that her own ballot is included
in the bulletin board.

• Universal verifiability: anyone can check that the election outcome corre-
sponds to the ballots published on the bulletin board.

We identify another aspect of verifiability which is sometimes included in uni-
versal verifiability.

• Eligibility verifiability: anyone can check that each vote in the election
outcome was cast by a registered voter and there is at most one vote per
voter.

We explicitly distinguish eligibility verifiability as a distinct property for com-
patibility with a larger class of protocols.

In this paper we present a symbolic definition of election verifiability for
electronic voting protocols which captures the three desirable aspects. We model
voting protocols in the applied pi calculus and formalise the different aspects
of verifiability as a triple of boolean tests ΦIV ,ΦUV ,ΦEV . The test ΦIV is
intended to be checked by the individual voter who instantiates the test with
her private information (for example, her vote and data derived during the
execution of the protocol) and the public information available on the bulletin
board. The tests ΦUV and ΦEV can be checked by any external observer and
only rely on public information, that is, the contents of the bulletin board which

2

may include, for example, the set of ballots cast by voters, the list of eligible
voters and the declared outcome. Our definition requires that these tests satisfy
several conditions on all possible executions of the protocol. The consideration of
eligibility verifiability is particularly interesting because it is essential to provide
an assurance that the election outcome corresponds to votes legitimately cast
and hence provides a mechanism to detect ballot stuffing.

A further interesting aspect of our work is the clear identification of which
parts of the voting system need to be trusted to achieve verifiability. As al-
ready discussed it is not reasonable to assume voting systems behave correctly.
Accordingly, when modelling a voting protocol as a process, we only model the
parts of the protocol that we need to trust for the purpose of verifiability; all
the remaining parts of the system will be controlled by the adversarial environ-
ment. Ideally, such a process would only model the interaction between a voter
and the voting terminal; that is, the messages input by the voter. In particular,
the voter should not need to trust the election hardware or software. However,
achieving absolute verifiability in this context is difficult and we sometimes need
to make explicit trust assumptions about which parts of the voter and admin-
istrator processes need to be trusted. As an example, when showing that the
protocol by Fujioka et al. [15] ensures individual and universal verifiability we
model the protocol as νr.c〈v〉.c〈r〉: the voter needs to generate a fresh nonce
r and then give her vote v and r to the voting terminal, which is part of the
adversarial environment. When the protocol is executed correctly this nonce is
used to compute a commitment to the vote. This can be checked by the tests
that ensure verifiability. The fact that νr is part of the protocol model implies
that the nonce needs to be fresh for verifiability to hold. Hence, in this example
the voter either needs to have a means to provide a fresh nonce or trust some
part of the process to generate it freshly. Such trust assumptions are motivated
by the fact that parts of a protocol can be audited, or because they can be ex-
ecuted in a distributed manner amongst several different election officials. For
example, in the Helios 2.0 voting protocol [3], ballot construction can be audited
using a cast-or-audit mechanism. Since any third party software can be used to
audit the ballots the voters are assured that the ballots cast were constructed
according to the protocol specification with high probability. Whether these
trust assumptions are reasonable depends on the context of the given election.

We also note that the tests ΦIV ,ΦUV and ΦEV are assumed to be verified
in a trusted environment. Indeed, if a test is checked by malicious software
that always evaluates the test to hold, it is not of great value. However, the
verification of these tests, unlike the election, can be repeated sufficiently many
times, on different machines and using different software, which could be pro-
vided by different stakeholders of the election. Another possibility to avoid this
issue would be to have tests which are human-verifiable as discussed for instance
in [2, Chapter 5].

We demonstrate the applicability of our definition with three case studies:
the protocol by Fujioka, Okamoto and Ohta [15]; the Helios 2.0 protocol [4]
which was effectively used in recent university elections in Belgium; and the
protocol by Juels, Catalano and Jakobsson [18], which has been implemented

3

by Clarkson, Chong and Myers as Civitas [13, 12]. Among other properties
we show that the Helios protocol does not guarantee eligibility verifiability and
is therefore vulnerable to ballot stuffing by dishonest administrators. As the
protocol description does not mandate this property we do not claim this to be
an attack, but simply clarify which aspects of verifiability are satisfied.

1.1 Our contribution

Our contribution is as follows:

1. A symbolic definition of election verifiability that considers a large class of
protocols; including schemes based on: mixnets, homomorphic encryption
and blind signatures. (In contrast, our preliminary work presented in [22]
only considers blind signature schemes.)

2. Sound and intuitive consideration for eligibility verifiability. (A property
which has been largely neglected and which our earlier work [22] provided
only limited scope for.)

3. Formal treatment of trust assumptions for the purpose of verifiability.

In addition, the applicability of our work is demonstrated with respect to three
case studies; namely, Helios 2.0, Civitas and FOO. The consideration of Helios
2.0 and Civitas is of particular interest since these systems have been imple-
mented and deployed.

1.2 Related work

Juels et al. [17, 18] present a definition of universal verifiability in the prov-
able security model. Their definition assumes voting protocols produce non-
interactive zero-knowledge proofs of knowledge demonstrating the correctness
of tallying. Here we consider definitions in a symbolic model. Universal verifia-
bility was also studied by Chevallier-Mames et al. [11] with the aim of showing
an incompatibility result: protocols cannot satisfy verifiability and vote privacy
in an unconditional way (without relying on computational assumptions). But
as witnessed by [17, 18], weaker versions of these properties can hold simulta-
neously. Our case studies demonstrate that our definition allows privacy and
verifiability to coexist (see [14, 6] for a study of privacy properties in the applied
pi calculus). Baskar et al. [7] and subsequently Talbi et al. [23] have formalised
individual and universal verifiability with respect to the protocol by Fujioka et
al. [15]. Their definitions are tightly coupled to that particular protocol and
cannot easily be generalised. Moreover, their definitions characterise individual
executions as verifiable or not; whereas such properties should be considered
with respect to every execution (that is, the entire protocol).

In our earlier work [22] a preliminary definition of election verifiability was
presented with support for automated reasoning. However, that definition is too
strong to hold on protocols such as [18, 4]. In particular, our earlier definition

4

was only illustrated on a simplified version of [18] which did not satisfy privacy
because we omitted the mixnets. Hence, this is the first general, symbolic
definbition which can be used to show verifiability for many important protocols,
such as the ones studied in this paper.

2 Applied pi calculus

The applied pi calculus [1, 21] is a language for modelling concurrent, com-
municating processes. It is an extension of the pi calculus which was explicitly
designed for modelling cryptographic protocols. For this purpose, the applied pi
calculus allows processes to send terms constructed over a signature rather than
just names. This term algebra can be used to model cryptographic primitives.

2.1 Syntax

The calculus assumes an infinite set of names a, b, c, k,m, n, s, t, . . ., an infinite
set of variables v, x, y, z, . . . and a finite signature Σ, that is, a finite set of
function symbols each with an associated arity. A function symbol of arity 0
is a constant. We use metavariables u,w to range over both names and vari-
ables. Terms L,M,N, T, U, V are built by applying function symbols to names,
variables and other terms. Tuples u1, . . . , ul and M1, . . . ,Ml are occasionally ab-
breviated ũ and M̃ . We write {M1/x1, . . . ,Ml/xl} for substitutions that replace
variables x1, . . . , xl with terms M1, . . . ,Ml.

The applied pi calculus relies on a simple sort system. Terms can be of sort
Channel for channel names or Base for the payload sent out on these channels.
In addition we assume an infinite set of record variables. Function symbols can
only be applied to, and return, terms of sort Base. A term is ground when it
does not contain variables.

The grammar for processes is shown in Figure 1 where u is either a name or
variable of channel sort. Plain processes are standard constructs, except for the
record message rec(r,M).P construct which we discuss below. Extended pro-
cesses introduce active substitutions which generalise the classical let construct:
the process ν x.({M/x} | P) corresponds exactly to the process let x = M in P .
As usual names and variables have scopes which are delimited by restrictions
and by inputs. All substitutions are assumed to be cycle-free.

A frame ϕ is an extended process built from 0 and active substitutions
{M/x}; which are composed by parallel composition and restriction. The do-
main of a frame ϕ is the set of variables that ϕ exports. Every extended process
A can be mapped to a frame φ(A) by replacing every plain process in A with 0.

The record message construct rec(r,M).P introduces the possibility to enter
special entries in frames. We suppose that the sort system ensures that r is
a variable of record sort, which may only be used as a first argument of the
rec construct or in the domain of the frame. Moreover, we make the global
assumption that a record variable has a unique occurrence in each process.
Intuitively, this construct will be used to allow a voter to privately record some

5

Figure 1 Applied pi calculus grammar

P,Q,R ::= processes
0 null process
P | Q parallel
!P replication
ν n.P name restriction
u(x).P message input
u〈M〉.P message output
rec(r,M).P record message
if M = N then P else Q conditional

A,B,C ::=extended processes
P plain process
A | B parallel
ν n.A name restriction
ν x.A variable restriction
{M/x} active substitution

information which she may later use to verify the election; for example, nonces
constructed during an execution of the protocol and/or messages received as
input.

The sets of free and bound names, respectively variables, in process A are
denoted by fn(A), bn(A), fv(A), bv(A). We also write fn(M), fv(M) for the
names, respectively variables, in term M . Similarly, we write rv(A) and rv(M)
for the set of record variables in a process, respectively a term. An extended
process A is closed if it has no free variables. A context C[] is an extended
process with a hole. We obtain C[A] as the result of filling C[]’s hole with A.
An evaluation context is a context whose hole is not under a replication, a
conditional, an input, or an output.

The signature Σ is equipped with an equational theory E, that is, a finite
set of equations of the form M = N . We define =E as the smallest equivalence
relation on terms, that contains E and is closed under application of function
symbols, substitution of terms for variables and bijective renaming of names.

Example 1. Let Σ = {pair(·, ·), fst(·), snd(·)} and E be defined over the equa-
tions

fst(pair(x, y)) = x snd(pair(x, y)) = y

That is, the theory that models pairing and projection. Hence we have that
fst(snd(pair(a, pair(b, c)))) =E b.

In this paper we tacitly assume that all signatures and equational theories
contain the function symbols pair(·, ·), fst(·), snd(·) and equations for pairing as
well as some constant ⊥. As a convenient shortcut we then write (T1, . . . Tn)
for pair(T1, pair(. . . , pair(Tn,⊥))) and πi(T) for fst(sndi−1(T)).

2.2 Semantics

We now define the operational semantics of the applied pi calculus by the means
of three relations: structural equivalence, internal reductions and labelled re-
duction.

6

Structural equivalence (≡) is the smallest equivalence relation closed under α-
conversion of both bound names and variables and application of evaluation
contexts such that:

Par-0 A | 0 ≡ A
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P |!P

New-0 νn.0 ≡ 0
New-C νu.νw.A ≡ νw.νu.A
New-Par A | νu.B ≡ νu.(A | B)

if u 6∈ fn(A) ∪ fv(A)

Alias νx.{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x}

if M =E N

Internal reduction (−→) is the smallest relation closed under structural equiva-
lence, application of evaluation contexts and such that:

Rec rec(r,M).P → P | {M/r}
Comm c〈x〉.P | c(x).Q −→ P | Q
Then if N = N then P else Q −→ P
Else if L = M then P else Q −→ Q

for ground terms L,M where L 6=E M

Labelled reduction (α−→) extends internal reduction and enables the environment
to interact with the processes using the rules defined below. The label α is
either an input, or the output of a channel name or a variable of base sort.

a(x).P
a(M)−−−→ P{M/x} rv(M) = ∅

a〈u〉.P a〈u〉−−−→ P

A
a〈u〉−−−→ A′ u 6= a

νu.A
νu.a〈u〉−−−−−→ A′

A
α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

A
α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅

A | B α−→ A′ | B
A ≡ B B

α−→ B′ A′ ≡ B′

A
α−→ A′

We write =⇒ for (→∗ α−→→∗)∗, that is, the reflexive transitive closure of the
labelled reduction. We will not discuss these semantics in detail but give an
example illustrating them (Figure 2).

7

Figure 2 A sequence of reductions in the applied pi semantics
Let P = νa, b.rec(r, a).c〈(a, b)〉.c(x).if x = a then c〈f(a)〉. Then we have that

P → νa, b.(c〈(a, b)〉.c(x).if x = a then c〈f(a)〉 | {a/r})
≡ νa, b.(νy1.(c〈y〉.c(x).if x = a then c〈f(a)〉 | {(a,b)/y1}) | {a/r})

νx.c〈x〉−−−−−→ νa, b.(c(x).if x = a then c〈f(a)〉 | {(a,b)/y1} | {a/r})
νx.c(π1(y))−−−−−−−→ νa, b.(if a = a then c〈f(a)〉 | {(a,b)/y1} | {a/r})
→ νa, b.(c〈f(a)〉 | {| {(a,b)/y1} | {a/r})

νy2.c〈y2〉−−−−−−→ νa, b.(if a = a then c〈f(a)〉 | {(a,b)/y1} | {f(a)/y2} | {a/r}

Observe that each labelled output is done by reference and extends the domain
of the process’s frame.

3 Formalising voting protocols

As discussed in the introduction we want to explicitly specify the parts of the
election protocol which need to be trusted (that is, those parts of the system for
which no verifiable proof of correct behaviour is provided). Formally the trusted
parts of the voting protocol can be captured using a voting process specification.

Definition 1 (Voting process specification). A voting process specification is
a tuple 〈V,A〉 where V is a plain process without replication and A is a closed
evaluation context such that fv(V) = {v} and rv(V) = ∅.

Given a voting process specification 〈V,A〉, integer n ∈ N, and names
s1, . . . , sn we can build the voting process

VPn(s1, . . . , sn) = A[V1 | · · · | Vn]

where Vi = V {si/v}. Intuitively, VPn(s1, . . . , sn) models the protocol with n
voters casting votes for candidates s1, . . . , sn. Note that the votes s1, . . . , sn
are not required to be distinct (several voters may cast votes for the same
candidate).

Example 2. Consider the following simple raising hands protocol. Every voter
simply outputs her signed vote. We suppose that a trusted administrator first
distributes keying material and outputs a list of signed public keys correspond-
ing to the public credentials of eligible voters. Signatures are modeled by the
equations

checksign(pk(x), sign(x, y)) = true getmsg(sign(x, y)) = y

The administrator generating and distributing keys via a private channel d is
modelled by the following context.

A =̂ νd.νskA.(!νskv.d〈skv〉.c〈sign(skA, pk(skv))〉 | {pk(skA)/xpkA
} |)

8

The active substitution {pk(skA)/xpkA
} models the fact that the administrator’s

public key is known, e.g. published on the election bulletin board. The voter,
whom receives his private key and then outputs his signed vote is modelled by
the process:

V =̂ d(xskv).c〈(pk(xskv), sign(xskv, v))〉

We will prove that this protocol trivially satisfies individual and universal veri-
fiability in Section 4; and eligibility verifiability in Section 5.

For the purposes of individual verifiability the voter may be reliant on some
data derived during the execution of the protocol. We must therefore keep track
of all such values. Definition 2 achieves this objective using the record message
construct.

Definition 2. Let rv be an infinite list of distinct record variables. We define
the function R on a finite process P without replication as R(P) = Rrv(P) and,
for all lists rv:

Rrv(0) =̂ 0
Rrv(P | Q) =̂ Rodd(rv)(P) | Reven(rv)(Q)
Rrv(ν n.P) =̂ ν n.rec(head(rv), n).Rtail(rv)(P)
Rrv(u(x).P) =̂ u(x).rec(head(rv), x).Rtail(rv)(P)
Rrv(u〈M〉.P) =̂ u〈M〉.Rrv(P)
Rrv(if M = N then P else Q) =̂ if M = N then Rrv(P) else Rrv(Q)

where the functions head and tail are the usual ones for lists, and odd (resp.
even) returns the list of elements in odd (resp. even) position.

In the above definition odd and even are used as a convenient way to split an
infinite list into two infinite lists. A voting process can now be constructed such
that the voter V records the values constructed and input during execution.

Definition 3. Given a voting process specification 〈V,A〉, integer n ∈ N, and
names s1, . . . , sn , we build the augmented voting process

VP+
n (s1, . . . , sn) = A[V +

1 | · · · | V +
n]

where V +
i = R(V){si/v}{ri/r | r ∈ rv(R(V))}.

For notational purposes, given a sequence of record variables r̃, we denote by
r̃i the sequence of variables obtained by indexing each variable in r̃ with i. The
process VP+

n (s1, . . . , sn) models the voting protocol for n voters casting votes
s1, . . . , sn, who privately record the data that may be needed for verification
using record variables r̃i.

4 Election verifiability

We formalize election verifiability using three tests ΦIV , ΦUV , ΦEV . Formally,
a test is built from conjunctions and disjunctions of atomic tests of the form

9

(M =E N) where M,N are terms. Tests may contain variables and will need
to hold on frames arising from arbitrary protocol executions. The test ΦIV has
record variables which will be substituted by the records stored in the frame;
and variables expected to correspond to the voter’s ballot and other public
information, which will be other variables in the domain of the frame. The tests
ΦUV , ΦEV substitute only public information, that is, (plain) variables in the
frame’s domain and hence are suitable for the use by election observers. The
designers of electronic voting protocols need not explicitly specify cryptographic
tests ΦIV , ΦUV , ΦEV since our definition assumes the existence of tests (perhaps
devised after design) which satisfy our conditions. Now we recall the purpose of
each test and assume some conventions about how variables are named in the
tests.
Individual verifiability: The test ΦIV allows a voter to identify her ballot in the
bulletin board. The test has:

• a variable v referring to a voter’s vote.

• a variable w referring to a voter’s public credential.

• some variables x, x̄, x̂, . . . expected to refer to global public values per-
taining to the election, for example, public keys belonging to election
administrators.

• a variable y expected to refer to the voter’s ballot on the bulletin board.

• some record variables r1, . . . , rk referring to the voter’s private data.

Universal verifiability: The test ΦUV allows an observer to check that the elec-
tion outcome corresponds to the ballots in the bulletin board. The test has:

• a tuple of variables ṽ = (v1, . . . , vn) referring to the declared outcome.

• some variables x, x̄, x̂, . . . as above.

• a tuple ỹ = (y1, . . . , yn) expected to refer to all the voters’ ballots on the
bulletin board.

• some variables z, z̄, ẑ, . . . expected to refer to outputs generated during
the protocol used for the purposes of universal and eligibility verification.

Eligibility verifiability: The test ΦEV allows an observer to check that each
ballot in the bulletin board was cast by a unique registered voter. The test has:

• a tuple w̃ = (w1, . . . , wn) referring to public credentials of eligible voters.

• some variables x, x̄, x̂, . . . as above.

• a tuple ỹ as above.

• some variables z, z̄, ẑ, . . . as above.

The remainder of this section will focus on the individual and universal aspects
of our definition; eligibility verifiability will be discussed in Section 5.

10

4.1 Individual and universal verifiability

The tests suitable for the purposes of election verifiability have to satisfy cer-
tain conditions: if the tests succeed, then the data output by the election is
indeed valid (soundness); and there is a behaviour of the election authority
which produces election data satisfying the tests (effectiveness). Formally these
requirements are captured by the definition below. We use the notation T̃ ' T̃ ′
to denote that the tuples T̃ and T̃ ′ are a permutation of each others mod-
ulo the equational theory, that is, we have T̃ = T1, . . . Tn, T̃ ′ = T ′1, . . . T

′
n and

there exists a permutation χ on {1, . . . , n} such that for all 1 ≤ i ≤ n we have
Ti =E T ′χ(i).

Definition 4 (Individual and universal verifiability). A voting specification
〈V,A〉 satisfies individual and universal verifiability if for all n ∈ N there ex-
ist tests ΦIV ,ΦUV such that fn(ΦIV) = fn(ΦUV) = rv(ΦUV) = ∅, rv(ΦIV) ⊆
rv(R(V)), and for all names s̃ = (s1, . . . , sn) the conditions below hold. Let
r̃ = rv(ΦIV) and ΦIVi = ΦIV {si/v, r̃i/r̃}.

Soundness. For all contexts C and processes B such that C[VP+
n (s1, . . . , sn)]

=⇒ B and φ(B) ≡ νñ.σ, we have:

∀i, j. ΦIVi σ ∧ ΦIVj σ ⇒ i = j (1)

ΦUV σ ∧ ΦUV {ṽ
′
/ṽ}σ ⇒ ṽσ ' ṽ′σ (2)∧

1≤i≤n

ΦIVi {yi/y}σ ∧ ΦUV σ ⇒ s̃ ' ṽσ (3)

Effectiveness. There exists a context C and a process B, such that C[VP+
n (

s1, . . . , sn)] =⇒ B, φ(B) ≡ νñ.σ and∧
1≤i≤n

ΦIVi {yi/y}σ ∧ ΦUV σ (4)

We now discuss how voters and observers use these tests and what are the
guarantees given by the conditions stated in Definition 4.

An individual voter should verify that the test ΦIV holds when instantiated
with her vote si, the information r̃i recorded during the execution of the protocol
and some bulletin board entry (which she needs to identify in some way, maybe
by testing all of them). Indeed, Condition (1) ensures that the test will hold for
at most one bulletin board entry. This allows the voter to convince herself that
her ballot has been counted. (To understand the way the condition is encoded,
notice that in the first conjunct, the test succeeds with the ith voter’s data
and a ballot yσ provided by the context C[]; in the second conjunct, the test
succeeds with j’s data and the same ballot.) The fact that her ballot contains
her vote will be ensured by ΦUV which should also be tested by the voter.

An observer will instantiate the test ΦUV with the bulletin board entries ỹ
and the declared outcome ṽ. Condition (2) ensures the observer that ΦUV only

11

holds for one outcome. (In the first and second conjuncts, the test succeeds with
declared outcomes ṽσ and ṽ′σ respectively, where both ṽσ and ṽ′σ are provided
by the context C[].)

Condition (3) ensures that if a bulletin board contains the ballots of vot-
ers who voted s1, . . . , sn then ΦUV only holds if the declared outcome is (a
permutation of) these votes.

Finally, Condition (4) ensures that there exists an execution where the tests
hold. In particular this allows us to verify whether the protocol can satisfy the
tests when executed as expected. This also avoids tests which are always false
and would make Conditions (1)-(3) vacuously hold.

Example 3. We show that the raising hands protocol (Example 2) satisfies our
definition. Note that in the augmented voting process, the voter will record his
private key; we will denote the ith voter’s private key with the record variable
rskvi

. For all n ∈ N we define the tests

ΦIV =̂ y =E (pk(rskv), sign(rskv, v)) ΦUV =̂
∧

1≤i≤n

getmsg(π2(yi)) =E vi

We now show that Conditions (1)–(3) of Definition 4 are satisfied.

(1) Suppose that ΦIVi σ and ΦIVj σ hold, that is,

yσ =E (pk(rskvi
σ), sign(rskvi

σ, si))
yσ =E (pk(rskvj

σ), sign(rskvj
σ, sj))

From the equational theory it follows that rskvi
σ =E rskvj

σ. Moreover,
it follows from the voting process specification and the semantics of the
applied pi calculus that for every σ, such that C[VP+

n (s1, . . . , sn)] =⇒ B
and φ(B) ≡ νñ.σ, i 6= j implies that rskvi

σ 6=E rskvj
σ. Hence we conclude

that Condition (1) holds.

(2) For any substitution σ, the premise of Condition (2) implies
∧

1≤i≤n viσ =E

v′iσ and hence vσ ' v′σ.

(3) For any substitution σ, the premise of Condition (3) implies
∧

1≤i≤n si =E

π1(yiσ) ∧ π1(yiσ) =E viσ and hence s̃ ' ṽσ.

To see that Condition (4) holds let C =̂ . It is easy to see that VP+
n (s1, . . . , sn)

=⇒ B, such that

φ(B) ≡ νskA, skv1 . . . skvn.{pk(skA)/xpkA
,(pk(skv1),sign(skv1,s1)) /y1 ,

skv1 /rskv1
,

. . . , (pk(skvn),sign(skvn,sn))/yn
,skvn /rskvn

}

and that ΦIV σ ∧ ΦUV σ hold.

Example 4. Consider the postal vote protocol whereby all voters simply send
their vote to an administrator who publishes the list of cast votes. The voting
process specification is simply 〈c〈v〉, 〉. Such a protocol is obviously not verifiable
and violates our definition. It is indeed not possible to design a test ΦIV such
that Condition (1) holds when si = sj for some i 6= j.

12

4.2 Case study: FOO

The protocol by Fujioka, Okamoto and Ohta [15], FOO for short, was an early
protocol based on blind signatures and has been influential for the design of
later protocols.

How FOO works. The FOO protocol involves voters, a registrar and a tal-
lier. The voter first computes her ballot as a commitment to her vote m′ =
commit(rnd, v) and sends the signed blinded ballot sign(skV , blind(rnd′,m′)) to
the registrar. The registrar checks that the signature belongs to an eligible voter
and returns sign(skR, blind(rnd′,m′)) the blind signed ballot. The voter verifies
that this input corresponds to the registrar’s signature and unblinds the mes-
sage to recover her ballot signed by the registrar m = sign(skR,m′). The voter
then posts her signed ballot to the bulletin board. Once all votes have been cast
the tallier verifies all the entries and appends an identifier l to each valid entry.
The voter then checks the bulletin board for her entry, the triple (l,m′,m), and
appends the commitment factor rnd. Finally, using rnd the tallier opens all of
the ballots and announces the declared outcome.

Equational theory. We model blind signatures and commitment as follows.

checksign(pk(x), sign(x, y)) = true getmsg(sign(x, y)) = y
unblind(y, sign(x, blind(y, z))) = sign(x, z) unblind(x, blind(x, y)) = y

open(x, commit(x, y)) = y

Model in applied pi. As discussed in the introduction, the parts of the pro-
tocol that need to be trusted for achieving verifiability are surprisingly simple.
The name rnd models the randomness that is supposed to be used to compute
the commitment of the vote. All a voter needs to ensure is that the randomness
used for the commitment is fresh. To ensure verifiability, all other operations
such as computing the commitment, blinding and signing can be performed by
the untrusted terminal.

Definition 5. The voting process specification 〈Vfoo, Afoo〉 is defined where

Vfoo =̂ νrnd .c〈v〉.c〈rnd〉 and Afoo[] =̂

The name rnd models the randomness that is supposed to be used to com-
pute the commitment of the vote. All a voter needs to ensure is that the random-
ness used for the commitment is fresh. To ensure verifiability, all other opera-
tions such as computing the commitment, blinding and signing can be performed
by the untrusted terminal. The augmented voting process VP+

n (s1, . . . , sn) is
ν rnd .rec(r1, rnd).c〈s1〉.c〈rnd〉 | . . . | ν rnd .rec(rn, rnd).c〈sn〉.c〈rnd〉.

Individual and universal verifiability. We define the tests

ΦIV =̂ y =E (r, commit(r, v)) ΦUV =̂
∧

1≤i≤n

vi =E open(π1(y), π2(y))

13

Intuitively, a bulletin board entry y should correspond to the pair formed of the
random generated by voter i and commitment to her vote.

Theorem 1. 〈Vfoo, Afoo〉 satisfies individual and universal verifiability.

Proof. We show that the Conditions (1)–(3) of Definition 4 hold.

(1) Suppose C, B, i, j are such that C[VP+
n (s1, . . . , sn)] =⇒ B, φ(B) ≡ νñ.σ,

ΦIVi σ and ΦIVj σ. Then π2(y)σ = riσ by ΦIVi σ, and π2(y)σ = rjσ by
ΦIVj σ, so riσ = rjσ. But since these are randoms freshly generated by the
processes Vi and Vj , it follows that i = j. (This can be easily shown by
induction on the derivation which produces B.)

(2) For any σ we have for all 1 ≤ i ≤ n that

viσ =E open(π1(yi)σ, π2(yi)σ) ∧ v′iσ =E open(π1(yiσ), π2(yiσ))
⇒ viσ =E v′iσ

(3) It follows from the equational theory that for all 1 ≤ i ≤ n and substitution
σ that

yiσ =E (riσ, commit(riσ, si)) ∧ viσ =E open(π1(yiσ), π2(yiσ))
⇒ s̃ =E ṽσ

It is also easy to see that a context modelling the entire FOO protocol would
satisfy effectiveness (Condition (4)). One may for instance slightly adapt the
modelling of the FOO protocol given in [14] for this purpose.

Our model of FOO does not rely on the blind signatures. While this part
is crucial for privacy properties it does not contribute to verifiability. Similarly,
the voter’s signature on the blinded committed vote and the confidentiality of
the secret signing key are not required for individual and universal verifiability;
they are however essential for eligibility.

4.3 Case study: Helios 2.0

Helios 2.0 [4] is an open-source web-based election system, based on homomor-
phic tallying of encrypted votes. It allows the secret election key to be dis-
tributed amongst several trustees, and supports distributed decryption of the
election result. It also allows independent verification by voters and observers
of election results. Helios 2.0 was successfully used in March 2009 to elect the
president of the Catholic University of Louvain, an election that had 25,000
eligible voters.

14

How Helios works. An election is created by naming a set of trustees and
running a protocol that provides each of them with a share of the secret part
of a public key pair. The public part of the key is published. Each of the
eligible voters is also provided with a private pseudo-identity. The steps that
participants take during a run of Helios are as follows.

1. To cast a vote, the user runs a browser script that inputs her vote and
creates a ballot that is encrypted with the public key of the election. The
ballot includes a ZKP that the ballot represents an allowed vote (this is
needed because the ballots are never decrypted individually).

2. The user can audit the ballot to check if it really represents a vote for
her chosen candidate; if she elects to do this, the script provides her with
the random data used in the ballot creation. She can then independently
verify that the ballot was correctly constructed, but the ballot is now
invalid and she has to create another one.

3. When the voter has decided to cast her ballot, the voter’s browser submits
it along with her pseudo-identity to the server. The server checks the ZKPs
of the ballots, and publishes them on a bulletin board.

4. Individual voters can check that their ballots appear on the bulletin board.
Any observer can check that the ballots that appear on the bulletin board
represent allowed votes, by checking the ZKPs.

5. The server homomorphically combines the ballots, and publishes the en-
crypted tally. Anyone can check that this tally is done correctly.

6. The server submits the encrypted tally to each of the trustees, and obtains
their share of the decryption key for that particular ciphertext, together
with a proof that the key share is well-formed. The server publishes these
key shares along with the proofs. Anyone can check the proofs.

7. The server decrypts the tally and publishes the result. Anyone can check
this decryption.

Equational theory. We use a signature in which penc(xpk, xrand, xtext) de-
notes the encryption with key xpk and random xrand of the plaintext xtext, and
xciph ∗ yciph denotes the homomorphic combination of ciphertexts xciph and yciph

(the corresponding operation on plaintexts is written + and on randoms ◦). The
term ballotPf(xpk, xrand, s, xballot) represents a proof that the ballot xballot con-
tains some name s and random xrand with respect to key xpk; decKey(xsk, xciph) is
a decryption key for xciph w.r.t. public key pk(xsk); and decKeyPf(xsk, xciph, xdk)
is a proof that xdk is a decryption key for xciph w.r.t. public key pk(xsk). We use
the equational theory that asserts that +, ∗, ◦ are commutative and associative,

15

and includes the equations:

dec(xsk, penc(pk(xsk), xrand, xtext)) = xtext

dec(decKey(xsk, ciph), ciph) = xplain

where ciph = penc(pk(xsk), xrand, xplain)

penc(xpk, yrand, ytext) ∗ penc(xpk, zrand, ztext) = penc(xpk, yrand ◦ zrand, ytext + ztext)

checkBallotPf(xpk, ballot, ballotPf(xpk, xrand, s, ballot)) = true
where ballot = penc(xpk, xrand, s)

checkDecKeyPf(pk(xsk), ciph, dk, decKeyPf(xsk, ciph, dk)) = true
where ciph = penc(pk(xsk), xrand, xplain)and dk = decKey(xsk, ciph)

Note that in the equation for checkBallotPf we have that s is a name and not a
variable. As the equational theory is closed under bijective renaming of names
this equation will hold for any name, but will fail if one replaces the name by a
term, for example, s+ s. We suppose that all names are possible votes but give
the possibility to check that a voter does not include a term s+ s which would
allow her to add an additional vote to the outcome.

Model in applied pi. The parts of the system that are not verifiable are:

• The browser script that constructs the ballot. Although the voter cannot
verify it, the trust in this script is motivated by the fact that she is able
to audit it. She does that by creating as many ballots as she likes and
checking all but one of them, and then casting the one she didn’t verify.

• The trustees. Although the trustees’ behaviour cannot be verified, voters
and observers may want to trust them because trust is distributed among
them.

We model these two components as trusted parts, by including them in the
context Ahelios of our voting process specification.

Definition 6. The voting process specification 〈Vhelios, Ahelios〉 is defined where

Vhelios =̂ d(xpid). d〈v〉. d(xballot). d(xballotpf).c〈(w, xballot, xballotpf)〉
Ahelios[] =̂ νsk, d.

(
c〈pk(sk)〉 | (!νpid. d〈pid〉) | (!B) | T |

)
B =̂ νm. d(xvote).d〈penc(pk(sk),m, xvote)〉.

d〈ballotPf(pk(sk),m, xvote, penc(pk(sk),m, xvote))〉
T =̂ c(xtally). c〈(decKey(sk, xtally), decKeyPf(sk, xtally, decKey(sk, xtally)))〉

We suppose that the recording function records the inputs of xpid, xballot and
xballotpf in record variables rpid, rballot and rballotpf respectively. The voter Vhelios

receives her voter id pid on a private channel. She sends her vote on the channel
to Ahelios, which creates the ballot for her. She receives the ballot and sends it
(paired with pid) to the server. Ahelios represents the parts of the system that

16

are required to be trusted. It publishes the election key and issues voter ids.
It includes the ballot creation script B, which receives a voter’s vote, creates
a random m and forms the ballot, along with its proof, and returns it to the
voter. Ahelios also contains the trustee T , which accepts a tally ciphertext and
returns a decryption key for it, along with the proof that the decryption key
is correct. We assume the trustee will decrypt any ciphertext (but only one).
In practice, of course, the trustee should ensure that the ciphertext is the right
one, namely, the homomorphic addition of all the ballots posted to the bulletin
board.

The untrusted server is assumed to publish the election data. In our for-
malism, we expect the frame to have a substitution σ that defines the election
public key as xpk and the individual pid’s and ballots as yi for each voter i.
It also contains the homomorphic tally ztally of the encrypted ballots, and the
decryption key zdecKey and its proof of correctness zdecKeyPf obtained from the
trustees. When the protocol is executed as expected the resulting frame should
have substitution σ such that

xpkσ = pk(sk)
yiσ = (pidi, penc(pk(sk),mi, vi),

ballotPf(pk(sk),mi, vi, penc(pk(sk),mi, vi)))
ztallyσ = π2(y1) ∗ · · · ∗ π2(yn)σ

zdecKeyσ = decKey(sk, ztally)σ
zdecKeyPfσ = decKeyPf(sk, ztally, zdecKey)σ

The server then decrypts the tally to obtain the outcome of the election.

Individual and universal verifiability. For the purposes of individual and
universal verifiability, the tests ΦIV and ΦUV are introduced. Accordingly, given
n ∈ N we define:

ΦIV =̂ y =E (rpid, rballot, rballotpf)
ΦUV =̂ ztally =E π2(y1) ∗ · · · ∗ π2(yn)

∧
∧n
i=1(checkBallotPf(xpk, π2(yi), π3(yi)) =E true)

∧ checkDecKeyPf(xpk, ztally, zdecKey, zdecKeyPf) =E true
∧ v1 + · · ·+ vn =E dec(zdecKey, ztally)

The test ΦIV checks that the voter’s ballot is recorded on the bulletin board.
The test ΦUV checks that the tally is correctly computed; it checks the proof
for the decryption key; and it checks the decrypted tally corresponds to the
declared outcome ṽ.

Theorem 2. 〈Vhelios, Ahelios〉 satisfies individual and universal verifiability.

Proof. Suppose n ∈ N and test ΦIV ,ΦUV are given above. We will now show
that for all s̃ = (s1, . . . , sn) that the conditions of Definition 4 are satisfied.

(1) Suppose C, B, i, j are such that C[VP+
n (s1, . . . , sn)] =⇒ B, φ(B) ≡

νñ.σ, and ΦIVi σ and ΦIVj σ hold. Then π2(y)σ = rballot,iσ by ΦIVi σ, and

17

π2(y)σ = rballot,jσ by ΦIVj σ, so rballot,iσ = rballot,jσ. But since these
are randoms freshly generated for the processes Vi and Vj , it follows that
i = j.

(2) Let σ be any substitution and suppose that ΦUV σ and ΦUV {ṽ′/ṽ}σ. Then
(v1 + · · ·+ vn)σ = (v′1 + · · ·+ v′n)σ = dec(zdecKey, ztally)σ. Moreover, ΦUV σ
we have that

∧n
i=1(checkBallotPf(xpk, π2(yi), π3(yi)))σ which implies that

each viσ and v′iσ is a name. Hence ṽσ ' ṽ′σ.

(3) Let σ be any substitution and suppose that
∧

1≤i≤n ΦIVi {yi/y}σ and ΦUV σ.
From each ΦIVi {yi/y}σ, we have that π2(yi)σ = penc(pk(sk),mi, si)σ for
some mi. From ΦUV σ, we have ztallyσ = (π2(y1) ∗ · · · ∗ π2(yn))σ, and by
the equation for homomorphic encryption, this is penc(pk(sk),m1 ◦ · · · ◦
mn, s1 + · · ·+ sn). From the decryption key proof and the decryption, we
have (v1 + · · ·+ vn)σ = (s1 + · · ·+ sn), and from the ballot proofs, we can
conclude that s̃ ' ṽσ.

(4) The context C must marshal the election data on the frame in such a
way that xpkσ, yiσ, ztallyσ, zdecKeyσ, and zdecKeyPfσ are as defined above.
Moreover, it finds some names t1, . . . , tn such that ztallyσ = t1 + · · · + tn,
and sets the declared outcome ṽσ to be (t1, . . . , tn).

5 Eligibility verifiability

In order to fully capture election verifiability, the tests ΦIV and ΦUV must be
supplemented by a test ΦEV that checks eligibility of the voters whose votes
have been counted in the outcome. We suppose that the public voter creden-
tials appear on the bulletin board. Moreover, these credentials actually belong
to eligible voters; verifying this is beyond the scope of this paper. One approach
may involve publishing the list of credentials alongside the real names and ad-
dresses of the electorate, the validity of this list can then be scrutinised by the
observer. The test ΦEV allows an observer to check that only these individu-
als (that is, those in posession of credentials) cast votes, and at most one vote
each. The test is instantiated with the list of public credentials, and other pub-
lic outputs of the election process, such as the public keys, the voters’ ballots,
and any other outputs such as proofs. We use the variable naming convention
introduced in the previous section.

Definition 7 (Election verifiability). A voting specification 〈V,A〉 satisfies elec-
tion verifiability if for all n ∈ N there exist tests ΦIV ,ΦUV ,ΦEV such that
fn(ΦIV) = fn(ΦUV) = fn(ΦEV) = rv(ΦUV) = rv(ΦEV) = ∅, rv(ΦIV) ⊆
rv(R(V)), and for all names s̃ = (s1, . . . , sn) we have:

1. The tests ΦIV and ΦUV satisfy each of the conditions of Definition 4;

2. The additional conditions 5, 6, 7 and 8 below hold.

Let r̃ = rv(ΦIV), ΦIVi = ΦIV {si/v, r̃i/r̃, yi/y} and X = fv(ΦEV)\dom(VP+
n (s1,

. . . , sn))

18

Soundness. For all contexts C and processes B such that C[VP+
n (s1, . . . , sn)]

=⇒ B and φ(B) ≡ νñ.σ, we have:

ΦEV σ ∧ ΦEV {x
′
/x | x ∈ X\ỹ}σ ⇒ w̃σ ' w̃′σ (5)∧

1≤i≤n

ΦIVi σ ∧ ΦEV {w̃
′
/w̃}σ ⇒ w̃σ ' w̃′σ (6)

ΦEV σ ∧ ΦEV {x
′
/x | x ∈ X\w̃}σ ⇒ ỹσ ' ỹ′σ (7)

Effectiveness. There exists a context C and a process B such that C[VP+
n (s1,

. . . , sn)] =⇒ B, φ(B) ≡ νñ.σ and∧
1≤i≤n

ΦIVi σ ∧ ΦUV σ ∧ ΦEV σ (8)

The test ΦEV is instantiated by an observer with the bulletin board. Condition
(5) ensures that, given a set of ballots ỹσ, provided by the environment, ΦEV

succeeds only for one list of voter public credentials. Condition (6) ensures that
if a bulletin board contains the ballots of voters with public credentials w̃σ then
ΦEV only holds on a permutation of these credentials. Condition (7) ensures
that, given a set of credentials w̃, only one set of bulletin board entries ỹ are
accepted by ΦEV (observe that for such a strong requirement to hold we expect
the voting specification’s frame to contain a public key, to root trust). Finally,
the effectiveness condition is similar to Condition (4) of the previous section.

Example 5. The raising hands protocol satisfies eligibility verifiability. Let

ΦEV =̂
∧

1≤i≤n

(
checksign(xpkA, wi) =E true ∧ π1(yi) =E getmsg(wi)

∧ checksign(π1(y1), π2(yi)) =E true
)

We also need to slightly strengthen ΦIV which is defined as

ΦIV =̂ y =E (pk(rskv), sign(rskv, v)) ∧ getmsg(w) =E pk(rskv)
∧ checksign(xpkA, w) =E true

Conditions (1) – (4) can be proved as previously (Example 3). It remains to
show that Conditions (5) – (8) hold.

(5) Suppose ΦEV σ and ΦEV {x′/x | x ∈ X\ỹ}σ hold; for all 1 ≤ i ≤ n we
have

getmsg(wi)σ =E π1(yi)σ ∧ π1(yi)σ =E getmsg(w′i)σ
∧ checksign(wi, xpkA)σ =E true ∧ checksign(w′i, xpkA)σ =E true

By inspection of the equational theory we have that w̃iσ =E w̃′iσ.

19

(6) Suppose that
∧

1≤i≤n ΦIVi σ and ΦEV σ hold; hence for all 1 ≤ i ≤ n we
have

getmsg(wi)σ =E getmsg(w′i)σ
∧ checksign(xpkA, wi)σ =E checksign(w′i, xpkA)σ =E true

Again we have w̃iσ =E w̃′iσ.

(7) Suppose ΦEV σ ∧ ΦEV {x′/x | x ∈ X\w̃}σ hold; for all 1 ≤ i ≤ n we have

π1(yi)σ =E getmsg(wi)σ =E π1(y′i)σ ∧ checksign(xpkA, wi)σ =E true ∧
checksign(π1(yi), π2(yi))σ =E true ∧ checksign(π1(y′i), π2(y′i))σ =E true

For any σ such that C[VP+
n (s1, . . . , sn)] =⇒ B and φ(B) ≡ νñ.σ we have

that if checksign(xpkA, wi)σ =E true then getmsg(wi)σ =E pk(skvj) for
some j ∈ [1..n]. Moreover, if checksign(pk(skvj), π2(x))σ =E true then
getmsg(π2(yi))σ =E sj. Hence we have that for all 1 ≤ i ≤ n that
π2(yi)σ =E π2(y′i)σ. Finally we conclude ỹσ =E ỹ′σ.

Case studies: FOO and Helios 2.0. Neither FOO nor Helios use public
voting credentials in a manner suitable for eligibility verifiability. In FOO, the
administrator is responsible for ensuring eligibility, that is, checking the validity
of the voter’s ballots; whereas in Helios, there are no public voting credentials.
It follows immediately that Condition (7), in particular, cannot be satisfied.

5.1 Case study: JCJ-Civitas

The protocol due to Juels, Catalano & Jakobsson [18] is based on mixnets and
has been implemented by Clarkson, Chong & Myers [13, 12] as an open-source
voting system called Civitas. The schemes, which we call JCJ-Civitas, are the
first to provide election verifiability.

How JCJ-Civitas works. An election is created by naming a set of registrars
and talliers. The protocol is divided into four phases: setup, registration, voting
and tallying. We now detail the steps of the protocol, starting with the setup
phase.

1. The registrars (respectively talliers) run a protocol which constructs a
public key pair and distributes a share of the secret part amongst the
registrars’ (respectively talliers’). The public part pk(skT) (respectively
pk(skR)) of the key is then published. In addition, the registrars construct
a distributed signing key pair sskR, pk(sskR).

The registration phase then proceeds as follows.

20

2. The registrars generate and distribute voter credentials: a private part d
and a public part penc(pk(skR),m′′, d) (the probabilistic encryption of d
under the registrars’ public key pk(skR)). This is done in a distributed
manner, so that no registrar learns the value of any private credential d.

3. The registrars publish the signed public voter credentials.

4. The registrars announce the candidate list t̃ = (t1, . . . , tl).

The protocol then enters the voting phase.

5. Each voter selects her vote s ∈ t̃ and computes two ciphertexts M = penc(
pk(skT),m, s) and M ′ = penc(pk(skR),m′, d) where m,m′ are nonces. M
contains her vote andM ′ her credential. In addition, the voter constructs a
non-interactive zero-knowledge proof of knowledge demonstrating the cor-
rect construction of her ciphertexts and validity of the candidate (s ∈ t̃).
(The ZKP provides protection against coercion resistance, by preventing
forced abstention attacks via a write in, and binds the two ciphertexts for
eligibility verifiability.) The voter derives her ballot as the triple consisting
of her ciphertexts and zero-knowledge proof and posts it to the bulletin
board.

After some predefined deadline the tallying phase commences in order to com-
pute the election outcome.

6. The talliers read the n′ ballots posted to the bulletin board by voters (that
is, the triples consisting of the two ciphertexts and the zero-knowledge
proof) and discards any entries for which the zero-knowledge proof does
not hold.

7. The elimination of re-votes is performed on the ballots using pairwise
plaintext equality tests (PET) on the ciphertexts containing private voter
credentials. (A PET [16] is a cryptographic predicate which allows a key-
holder to provide a proof that two ciphertexts contain the same plaintext.)
Re-vote elimination is performed in a verifiable manner with respect to
some publicly defined policy, e.g., by the order of ballots on the bulletin
board.

8. The talliers perform a verifiable re-encryption mix on the ballots (ballots
consist of a vote ciphertext and a public credential ciphertext; the link
between both is preserved by the mix.) The mix ensures that a voter
cannot trace her vote, allowing the protocol to achieve coercion-resistance.

9. The talliers perform a verifiable re-encryption mix on the list of public
credentials published by the registrar. This mix anonymises public voter
credentials, breaking any link with the voter for privacy purposes.

10. Ballots based on invalid credentials are weeded using PETs between the
mixed ballots and the mixed public credentials. Both have been posted to
the bulletin board. (Using PETs the correctness of weeding is verifiable.)

21

11. Finally, the talliers perform a verifiable decryption and publish the result.

Equational theory. The protocol uses a variant of the ElGamal encryption
scheme [18]. Accordingly we adopt the signature and associated equational
theory from the Helios case study. The zero-knowledge proof demonstrating
correct construction of the voter’s ciphertexts is modelled by the equation

checkBallot(ballotPf(xpk, xrand, xtext, x
′
pk, x

′
rand, x

′
text),

penc(xpk, xrand, xtext), penc(x′pk, x
′
rand, x

′
text)) = true

(For simplicity the zero-knowledge proof does not demonstrate that the voter’s
vote s is a valid vote, that is, s ∈ t̃; this is of importance for privacy properties,
not verifiability.) Plaintext equivalence tests are modelled by the equation

pet(petPf(xsk, ciph, ciph
′), ciph, ciph′) = true

where ciph =̂ penc(pk(xsk), xrand, xtext) and ciph′ =̂ penc(pk(xsk), x′rand, xtext).
Re-encryption is defined with respect to the standard equation

renc(yrand, penc(pk(xsk), xrand, xtext)) = penc(pk(xsk), f(xrand, yrand), xtext).

In addition we consider verifiable re-encryption mixnets and introduce for each
permutation χ on {1, . . . , n} the equation:

checkMix(mixPf(xciph,1, . . . , xciph,n,

ciph1, . . . , ciphn, zrand,1, . . . , zrand,n),
xciph,1, . . . , xciph,n, ciph1, . . . , ciphn) = true

where ciphi =̂ renc(zrand,i, xciph,χ(i)). We also define re-encryption with respect
to pairs of ciphertexts and introduce for each permutation χ on {1, . . . , n} the
equation:

checkMixPair(mixPairPf((x1, x
′
1), . . . , (xn, x′n),

(c1, c′1), . . . , (cn, c′n), (z1, z′1), . . . , (zn, z′n)),
(x1, x

′
1), . . . , (xn, x′n), (c1, c′1), . . . , (cn, c′n)) = true

where ci =̂ renc(zi, xχ(i)) and c′i =̂ renc(z′i, x
′
χ(i)).

The following lemmata demonstrate useful properties of our equational the-
ory. We make use of the notation M̃

•' M̃ ′ to denote that the ciphertext
tuples M̃ , M̃ ′ are defined over the same plaintexts with respect to some public
key K, that is, we have M̃ =E (penc(K,R1, N1), . . . penc(K,Rn, Nn)), M̃ ′ =E

(penc(K,R′1, N
′
1), . . . penc(K,R′n, N

′
n)) for some tuples Ñ , Ñ ′, R̃, R̃′ and there

exists a permutation χ defined over {1, . . . , n} such that for all 1 ≤ i ≤ n we
have Ni =E N ′χ(i). The relation

•' is trivially seen to be an equivalence relation.

Moreover, if M̃
•' Ñ and M̃ ' M̃ ′, then M ′

•' Ñ .

22

Lemma 1. Given terms L,M,N , if pet(L,M,N) =E true, then M
•' N .

Lemma 2. Given terms L, M̃, Ñ , if checkMix(L, M̃, Ñ) =E true, then M̃
•' Ñ .

Lemma 3. Given terms L, M̃, Ñ , if checkMixPair(L, M̃, Ñ) =E true, then
(πi(M1), . . . , πi(M|M̃ |))

•' (πi(N1), . . . , πi(N|Ñ |)).

Model in applied pi. We make the following trust assumptions for verifia-
bility:

• The voter is able to construct her ballot; that is, she is able to gener-
ate nonces m,m′, construct a pair of ciphertexts and generate a zero-
knowledge proof.

• The registrar constructs distinct credentials d for each voter and con-
structs the voter’s public credential correctly. (The latter assumption can
be dropped if the registrar provides a proof that the public credential is
correctly formed [18].) The registrar also keeps the private part of the
signing key secret.

Although neither voters nor observers can verify that the registrars adhere to
such expectations, they trust them because trust is distributed. The trusted
components are modelled by the voting process specification 〈Ajcj, Vjcj〉 (Def-
inition 8). The context Ajcj publishes public keys and defines a sub-process
R to model the registrar. The registrar R constructs a fresh private creden-
tial d and sends the private credential along with the signed public part (that
is, sign(sskR, penc(xpkR

,m′′, d))) to the voter; the registrar also publishes the
signed public credential on the bulletin board. The voter Vjcj receives the pri-
vate and public credentials from the registrar and constructs her ballot; that is,
the pair of ciphertexts and a zero-knowledge proof demonstrating their correct
construction.

Definition 8. The voting process specification Ajcj, Vjcj is defined where:

Ajcj =̂ ν a, sskR.(!R | {pk(skR)/xpkR
, pk(sskR)/xspkR

, pk(skT)/xpkT
} |)

Vjcj =̂ ν m,m′.a(xcred).
let ciph = penc(xpkT

,m, v) in
let ciph′ = penc(xpkR

,m′, π1(xcred)) in
let zkp = ballotPf(xpkT

,m, v, xpkR
,m′, π1(xcred)) in

c〈(ciph, ciph′, zkp)〉
R =̂ ν d,m′′. let sig = sign(sskR, penc(xpkR

,m′′, d)) in a〈(d, sig)〉.c〈sig〉

At the end of the election the bulletin board is represented by the frame.
In our formalism we expect the frame to contain the substitution σ which de-
fines the voters’ public credentials as w1, . . . , wn, public keys of the registrars
as xpkR

, xspkR
and talliers’ public key as xpkT

. Triples y1, . . . , yn consisting of
each voter’s ciphertexts and zero-knowledge proofs. The mixed re-encryptions
of the voter’s ciphertexts zbal,1, . . . , zbal,n along with a proof zmixPairPf that the

23

mix was performed correct. For verifiable decryption we assume zdecKey,i is de-
fined as a decryption key associated with the proof zdecPf,i. For the purposes
of eligibility verifiability we also expect the mixed re-encryptions of the voter’s
public credentials zcred,1, . . . , zcred,1 along with a proof of correctness zmixPf . For
convenience a reordering ẑcred,1, . . . , ẑcred,n of these re-encryptions is also com-
puted. Finally, we expect PET proofs zpetPf,1, . . . , zpetPf,n for the reencryption
of the ciphertext constructed by the voter on her private credential (that is, the
output of the verifiable mix in Step 8 of the protocol) and the reencryption of
the voter’s public credential constructed by the registrars (that is, the output
of the mix in Step 9); such that the PET holds, that is, the pair of ciphertexts
contain the same private credential. Accordingly we expect σ to be such that
for all 1 ≤ i ≤ n:

wiσ = sign(sskR, c′′i)
xpkR

σ = pk(skR)
xspkR

σ = pk(sskR)
xpkT

σ = pk(skT)
yiσ = (ci, c′i, ballotPf(pk(skT),mi, si, pk(skR),m′i, di))
zbal,iσ = (renc(m̂i, cχ(i)), renc(m̂′i, c

′
χ(i)))

zmixPairPfσ = pfMixPair((c1, c′1), . . . , (cn, c′n), (renc(m̂1, cχ(1)), renc(m̂′1, c
′
χ(1))),

. . . , (renc(m̂n, cχ(n)), renc(m̂′n, c
′
χ(n))), (m̂1, m̂

′
1), . . . , (m̂n, m̂

′
n))

zdecKey,iσ = decKey(skT , renc(m̂i, cχ(i)))
zdecPf,iσ = decKeyPf(skT , renc(m̂i, cχ(i)), decKey(skT , renc(m̂i, cχ(i))))
zcred,iσ = renc(m̂′′i , c

′′
χ′(i))

ẑcred,iσ = renc(m̂′′χ(χ′−1(i)), c
′′
χ(i))

zmixPfσ = pfMix(c′′1 , . . . , c
′′
n, renc(m̂′′1 , c

′′
χ′(1)), . . . , renc(m̂′′n, c

′′
χ′(n)), m̂

′′
1 , . . . , m̂

′′
n)

zpetPf,iσ = petPf(skR, renc(m̂′i, c
′
χ(i)), renc(m̂′′χ(χ′−1(i)), c

′′
χ(i)))

where ci =̂ penc(pk(skT),m, si), c′i =̂ penc(pk(skR),m′, di), c′′i =̂ penc(pk(skR),
m′′, di) and χ, χ′ are permutations on {1, . . . , n}.

Election verifiability. For the purpose of election verifiability we introduce
the tests ΦIV ,ΦUV ,ΦEV . Without loss of generality suppose the recording
function uses record variables r̃ = (rcred, rm, rm′) = rv(R(V)) (corresponding to
the variable xcred and names m, m′ appearing in the process V). Accordingly,
given n ∈ N we define:

ΦIV =̂ y =E (penc(xpkT
, rm, v), penc(xpkR

, rm′ , π1(rcred)),
ballotPf(xpkT

, rm, v, xpkR
, rm′ , π1(rcred))) ∧ w = π2(rcred)

ΦUV =̂ checkMixPair(zmixPairPf , (π1(y1), π2(y1)), . . . , (π1(yn), π2(yn)),
zbal,1, . . . , zbal,n) =E true

∧
∧n
i=1 dec(zdecKey,i, π1(zbal,i)) =E vi

∧
∧n
i=1 checkDecKeyPf(xpkT

, π1(zbal,i), zdecKey,i, zdecPf,i) =E true
ΦEV =̂

∧n
i=1 checkBallot(π3(yi), π1(yi), π2(yi))
∧ checkMixPair(zmixPairPf , (π1(y1), π2(y1)), . . . , (π1(yn), π2(yn)),

zbal,1, . . . , zbal,n) =E true

24

∧
∧n
i=1 pet(zpetPf,i, π2(zbal,i), ẑcred,i) =E true

∧ (zcred,1, . . . , zcred,n) ' (ẑcred,1, . . . , ẑcred,n)
∧ checkMix(zmixPf , getmsg(w1), . . . , getmsg(wn), zcred,1, . . . , zcred,n) =E true
∧
∧n
i=1 checksign(xspkR

, wi)

The test ΦIV checks that the voter’s ballot and public credential are recorded
on the bulletin board. The test ΦUV checks that the tally is correctly computed;
that is, the mix is checked, the validity of decryption keys have been verified
and the decrypted tally corresponds to the declared outcome. Finally, the test
ΦEV checks that only eligible ballots are considered; that is, ballots are correctly
formed, mixes have been handled in suitable manner, PETs have been verified
and only authentic public voter credentials are considered.

Theorem 3. 〈Ajcj, Vjcj〉 satisfies election verifiability.

Proof. Suppose n ∈ N and the tests ΦIV ,ΦUV ,ΦEV are given above. We will
now show that for all names s̃ = (s1, . . . , sn) that the conditions of Definition 7
hold.

(1) Suppose C is a context, B is a process and i, j are integers such that
C[VP+

n (s1, . . . , sn)] =⇒ B, φ(B) ≡ νñ.σ and ΦIV {si/v, r̃i/r̃}σ∧ΦIV {sj/v,
r̃j/r̃}σ. It follows that π1(y)σ =E penc(xpkT

, rm,i, si)σ =E penc(xpkT
, rm,j ,

sj)σ and by inspection of the equational theory it is the case that rm,iσ =
rm,jσ. Since the record variables rm,i, rm,j are handles for fresh nonces
created by name restriction in the voter process it follows immediately
from rm,iσ = rm,jσ that i = j.

(2) We prove a stronger result, namely for any σ the condition holds. Suppose
ΦUV σ ∧ ΦUV {ṽ′/ṽ}σ and hence

n∧
i=1

dec(zdecKey,i, π1(zbal,i))σ =E viσ =E v′iσ.

It follows immediately that ṽσ =E ṽ′σ.

(3) Again, we will show that the condition holds for all substitutions σ. Sup-
pose ΦIV {si/v, r̃i/r̃, yi/y}σ holds for 1 ≤ i ≤ n and hence∧

1≤i≤n

π1(yi)σ =E penc(xpkT
, rm,i, si)σ.

Moreover suppose ΦUV σ holds and therefore

checkMixPair(zmixPairPf , (π1(y1), π2(y1)), . . . ,
(π1(yn), π2(yn)), zbal,1, . . . , zbal,n)σ =E true

holds. By inspection of the equational theory we have

π1(zbal,i)σ =E penc(xpkT
, f(rm,χ(i), Ri), sχ(i))σ

25

for some permutation χ defined over {1, . . . , n} and terms R1, . . . , Rn (note
R1, . . . , Rn appear in zmixPairPfσ). By our hypothesis, we also have for all
1 ≤ i ≤ n that

checkDecKeyPf(xpkT
, π1(zbal,i), zdecKey,i, zdecPf,i)σ =E true

and hence zdecKey,iσ is a decryption key for π1(zbal,i)σ. It follows that∧
1≤i≤n

dec(zdecKey,i, π1(zbal,i))σ =E sχ(i)

Finally, by hypothesis, we also have∧
1≤i≤n

dec(zdecKey,i, π1(zbal,i))σ =E viσ

and hence it follows that s̃ ' ṽ.

(4) We prove a stronger result, namely Condition 8 below.

(5) Suppose C is a context and B is a process such that C[VP+
n (s1, . . . ,

sn)] =⇒ B, φ(B) ≡ νñ.σ, and ΦEV σ ∧ ΦEV {x′/x | x ∈ X\ỹ}σ. We
have for all 1 ≤ i ≤ n that checkBallot(π3(yi), π1(yi), π2(yi))σ =E true
and it follows by inspection of the equational theory that

π2(yi)σ =E penc(Ki, Si,Mi)

for some terms Ki, Si,Mi. Since checkMixPair(zmixPairPf , (π1(y1), π2(y1)),
. . . , (π1(yn), π2(yn)), zbal,1, . . . , zbal,n)σ =E true and checkMixPair(zmixPairPf

′,
(π1(y1), π2(y1)), . . . , (π1(yn), π2(yn)), z′bal,1, . . . , z

′
bal,n)σ =E true, it follows

by Lemma 3 and transitivity of
•' that

(π2(zbal,1), . . . , π2(zbal,n))σ
•' (π2(z′bal,1), . . . , π2(z′bal,n))σ.

Moreover, we have for all 1 ≤ i ≤ n that pet(zpetPf,i, π2(zbal,i), ẑcred,i)σ =E

true and pet(z′petPf,i, π2(z′bal,i), ẑ
′
cred,i)σ =E true; by Lemma 1 it follows that

(ẑcred,1, . . . , ẑcred,n)σ
•' (ẑ′cred,1, . . . , ẑ

′
cred,n)σ.

We have (zcred,1, . . . , zcred,n)σ ' (ẑcred,1, . . . , ẑcred,n)σ, (z′cred,1, . . . , z
′
cred,n)

σ ' (ẑ′cred,1, . . . , ẑ
′
cred,n)σ and hence we trivially derive

(zcred,1, . . . , zcred,n)σ
•' (z′cred,1, . . . , z

′
cred,n)σ.

Since checkMix(zmixPf , getmsg(w1), . . . , getmsg(wn), zcred,1, . . . , zcred,n)σ =E

true and checkMix(zmixPf
′, getmsg(w′1), . . . , getmsg(w′n), z′cred,1, . . . , z

′
cred,n)σ

=E true; it follows by Lemma 2 that

(getmsg(w1), . . . , getmsg(wn))σ
•' (getmsg(w′1), . . . , getmsg(w′n))σ.

26

We have for all 1 ≤ i ≤ n that checksign(xspkR
, wi)σ =E true and

checksign(xspkR
, w′i)σ =E true where xspkR

σ = pk(sskR) and sskR ∈
ñ. By inspection of the equational theory it is the case that wiσ =E

sign(sskR,Mi)σ and w′iσ =E sign(sskR,M ′i)σ for some terms Mi,M
′
i .

Furthermore, since for all 1 ≤ i ≤ n we have getmsg(wi)σ =E Mi,
getmsg(w′i)σ =E M ′i and because (getmsg(w1), . . . , getmsg(wn))σ

•'
(getmsg(w′1), . . . , getmsg(w′n))σ, it follows that M̃

•' M̃ ′. Now, since the
signing key is under restriction, and by inspection of the voting process
and its possible outputs, it follows that for all 1 ≤ i ≤ n we have

getmsg(wi)σ =E penc(pk(skR),m′′χ(i), dχ(i))
getmsg(w′i)σ =E penc(pk(skR),m′′χ′(i), dχ′(i))

where di,m′′i are names under restriction in the registrar process R, xpkR
σ

=E pk(skR) and χ, χ′ are permutations defined over {1, . . . , n}. Finally
we conclude w̃σ ' w̃′σ.

(6) Suppose C is a context and B is a process such that C[VP+
n (s1, . . . ,

sn)] =⇒ B, φ(B) ≡ νñ.σ, and
∧

1≤i≤n ΦIVi σ ∧ ΦEV {w̃′/w̃}σ holds. We
have for all 1 ≤ i ≤ n that wiσ = π2(rcredi

)σ and by inspection of the
voting process we have

w̃σ =E (sign(sskR, penc(pk(skR),m′′1 , d1)),
. . . , sign(sskR, penc(pk(skR),m′′n, dn))).

In addition we have π2(yi)σ =E penc(pk(skR),m′i, di) for all 1 ≤ i ≤ n and
by similar reasoning to the above (see Condition 5.1) we derive w̃σ ' w̃′σ.

(7) Suppose C is a context and B is a process such that C[VP+
n (s1, . . . ,

sn)] =⇒ B, φ(B) ≡ νñ.σ, and ΦEV σ ∧ ΦEV {x′/x | x ∈ X\w̃}σ. We
have for all 1 ≤ i ≤ n that checksign(xspkR

, wi)σ =E true where xspkR
σ =

pk(sskR) and sskR ∈ ñ. By inspection of the equational theory it is the
case that

wiσ =E sign(sskR,Mi)σ

for some term Mi. Since the signing key is under restriction, and by
inspection of the voting process, it follows that for all 1 ≤ i ≤ n we have

Mi =E penc(pk(skR),m′′i , di)

where di,m′′i are names under restriction in the registrar process R and
xpkR

σ =E pk(skR). Since checkMix(zmixPf , getmsg(w1), . . . , getmsg(wn),
zcred,1, . . . , zcred,n)σ =E true, checkMix(zmixPf

′, getmsg(w1), . . . , getmsg(wn),
z′cred,1, . . . , z

′
cred,n)σ =E true and for all 1 ≤ i ≤ n we have getmsg(wi)σ =E

Mi it follows that

(zcred,1, . . . , zcred,n)σ
•' (z′cred,1, . . . , z

′
cred,n)σ

27

by Lemma 2. We have (zcred,1, . . . , zcred,n)σ ' (ẑcred,1, . . . , ẑcred,n)σ and
(z′cred,1, . . . , z

′
cred,n)σ ' (ẑ′cred,1, . . . , ẑ

′
cred,n)σ; it trivially follows that

(ẑcred,1, . . . , ẑcred,n)σ
•' (ẑ′cred,1, . . . , ẑ

′
cred,n)σ.

Moreover, we have for all 1 ≤ i ≤ n that pet(zpetPf,i, π2(zbal,i), ẑcred,i)σ =E

true and pet(z′petPf,i, π2(z′bal,i), ẑ
′
cred,i)σ =E true; hence by Lemma 1 it fol-

lows that

(π2(zbal,1), . . . , π2(zbal,n))σ
•' (π2(z′bal,1), . . . , π2(z′bal,n))σ.

By checkMixPair(zmixPairPf , (π1(y1), π2(y1)), . . . , (π1(yn), π2(yn)), zbal,1, . . . ,
zbal,n)σ =E true, checkMixPair(zmixPairPf

′, (π1(y′1), π2(y′1)), . . . , (π1(y′n),
π2(y′n)), z′bal,1, . . . , z

′
bal,n)σ =E true and Lemma 3 we have

(π2(y1), . . . , π2(yn))σ
•' (π2(y′1), . . . , π2(y′n))σ.

We have for all 1 ≤ i ≤ n that checkBallot(π3(yi), π1(yi), π2(yi))σ =E

true and checkBallot(π3(y′i), π1(y′i), π2(y′i))σ =E true. By inspection of
the equational theory and because (π2(y1), . . . , π2(yn))σ

•' (π2(y′1), . . . ,
π2(y′n))σ

•' (penc(pk(skR),m′′1 , d1), . . . , penc(pk(skR),m′′n, dn)) it is the
case that

π3(yi)σ =E ballotPf(PKTi , Ri, Ni, pk(skR), Si, dχ(i))
π3(y′i)σ =E ballotPf(PK ′Ti

, R′i, N
′
i , pk(skR), S′i, dχ′(i))

for some terms PKTi
, Ri, Ni, Si, PK

′
Ti
, R′i, N

′
i , S
′
i and permutations χ, χ′

defined over {1, . . . , n}. Since for all 1 ≤ i ≤ n the name di is under
restriction in the voting process specification, it follows that

π3(yi)σ =E ballotPf(pk(skT),mχ(i), sχ(i), pk(skR),m′χ(i), dχ(i))
π3(y′i)σ =E ballotPf(pk(skT),mχ′(i), sχ′(i), pk(skR),m′χ′(i), dχ′(i))

(that is, π3(yi)σ, π3(y′i)σ are the zero-knowledge proofs output by the
voters) and moreover by the validity of the proof, we have

π1(yi)σ =E penc(pk(skT),mχ(i), sχ(i))
π1(y′i)σ =E penc(pk(skT),mχ′(i), sχ′(i))

π2(yi)σ =E penc(pk(skR),m′χ(i), dχ(i))
π2(y′i)σ =E penc(pk(skR),m′χ′(i), dχ′(i))

Finally we conclude ỹσ ' ỹ′σ. (Formally we should also show that |ỹ| =
|ỹ′|. We omitted this detail from our test ΦEV for simplicity, however,
in this instance it could be incorporated with the additional conjunct
y = (π1(y), π2(y), π3(y)).)

(8) This can be witnessed by modelling the complete JCJ-Civitas protocol as
the context C[].

28

6 Conclusion

We present a symbolic definition of election verifiability which allows us to
precisely identify which parts of a voting system need to be trusted for veri-
fiability. The suitability of systems can then be evaluated and compared on
the basis of trust assumptions. We also consider eligibility verifiability, an as-
pect of verifiability that is often neglected and satisfied by only a few protocols,
but nonetheless an essential mechanism to detect ballot stuffing. We have ap-
plied our definition to three protocols: FOO, which uses blind signatures; Helios
2.0, which is based on homomorphic encryption, and JCJ-Civitas, which uses
mixnets and anonymous credentials. For each of these protocols we discuss the
trust assumptions that a voter or an observer needs to make for the protocol to
be verifiable. Since Helios 2.0 and JCJ-Civitas have been implemented and de-
ployed, we believe our formalisation is suitable for analysing real world election
systems.

Acknowledgements

We are particularly grateful to Michael Clarkson for careful reading of an earlier
draft, and for his perceptive questions and comments.

References

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure com-
munication. In POPL’01: Proceedings of the 28th ACM Symposium on
Principles of Programming Languages, pages 104–115, New York, USA,
2001. ACM.

[2] B. Adida. Advances in Cryptographic Voting Systems. PhD thesis, MIT,
2006.

[3] B. Adida. Helios: Web-based open-audit voting. In Proceedings of the Sev-
enteenth Usenix Security Symposium, pages 335–348. USENIX Association,
2008.

[4] B. Adida, O. de Marneffe, O. Pereira, and J.-J. Quisquater. Electing a
university president using open-audit voting: Analysis of real-world use of
Helios. In Electronic Voting Technology/Workshop on Trustworthy Elec-
tions (EVT/WOTE), 2009.

[5] R. Anderson and R. Needham. Programming Satan’s Computer. In Jan
van Leeuwen, editor, Computer Science Today: Recent Trends and Devel-
opments, volume 1000 of LNCS, pages 426–440. Springer, 1995.

[6] M. Backes, C. Hritcu, and M. Maffei. Automated verification of remote
electronic voting protocols in the applied pi-calculus. In CSF’08: Proceed-

29

ings of the 21st IEEE Computer Security Foundations Symposium, pages
195–209, Washington, USA, 2008. IEEE.

[7] A. Baskar, R. Ramanujam, and S. P. Suresh. Knowledge-based modelling
of voting protocols. In TARK’07: Proceedings of the 11th International
Conference on Theoretical Aspects of Rationality and Knowledge, pages
62–71, New York, USA, 2007. ACM.

[8] D. Bowen. Secretary of State Debra Bowen Moves to Strengthen
Voter Confidence in Election Security Following Top-to-Bottom Re-
view of Voting Systems. California Secretary of State, press re-
lease DB07:042 http://www.sos.ca.gov/elections/voting_systems/
ttbr/db07_042_ttbr_system_decisions_release.pdf, August 2007.

[9] Bundesverfassungsgericht (Germany’s Federal Constitutional Court). Use
of voting computers in 2005 Bundestag election unconstitutional. Press
release 19/2009 http://www.bundesverfassungsgericht.de/en/press/
bvg09-019en.html, March 2009.

[10] D. Chaum, P. Y. A. Ryan, and S. Schneider. A practical, voter-verifiable
election scheme. In Proc. 10th European Symposium On Research In Com-
puter Security (ESORICS’05), volume 3679 of Lecture Notes in Computer
Science, pages 118–139. Springer, 2005.

[11] B. Chevallier-Mames, P.-A. Fouque, D. Pointcheval, J. Stern, and J. Traore.
On Some Incompatible Properties of Voting Schemes. In WOTE’06:
Proceedings of the International Association for Voting Systems Sciences
Workshop on Trustworthy Elections, 2006.

[12] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure
voting system. Technical Report 2007-2081, Cornell University, May 2007.
Revised March 2008. http://hdl.handle.net/1813/7875.

[13] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure
voting system. In S&P’08: Proceedings of the 2008 IEEE Symposium on
Security and Privacy, pages 354–368, Washington, DC, USA, 2008. IEEE
Computer Society.

[14] S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties
of electronic voting protocols. Journal of Computer Security, 2009. To
appear.

[15] A. Fujioka, T. Okamoto, and K. Ohta. A Practical Secret Voting Scheme for
Large Scale Elections. In ASIACRYPT’92: Proceedings of the Workshop
on the Theory and Application of Cryptographic Techniques, pages 244–251,
London, 1992. Springer.

[16] M. Jakobsson and A. Juels. Mix and match: Secure function evaluation
via ciphertexts. In ASIACRYPT ’00: Proceedings of the 6th International

30

Conference on the Theory and Application of Cryptology and Information
Security, pages 162–177, London, UK, 2000. Springer.

[17] A. Juels, D. Catalano, and M. Jakobsson. Coercion-Resistant Electronic
Elections. Cryptology ePrint Archive, Report 2002/165, 2002.

[18] A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant electronic
elections. In WPES ’05: Proceedings of the 2005 ACM workshop on Privacy
in the electronic society, pages 61–70, New York, NY, USA, 2005. ACM.
See also http://www.rsa.com/rsalabs/node.asp?id=2860.

[19] Ministerie van Binnenlandse Zaken en Koninkrijksrelaties (Nether-
land’s Ministry of the Interior and Kingdom Relations). Stemmen
met potlood en papier (Voting with pencil and paper). Press release
http://www.minbzk.nl/onderwerpen/grondwet-en/verkiezingen/
nieuws--en/112441/stemmen-met-potlood, May 2008.

[20] Participants of the Dagstuhl Conference on Frontiers of E-Voting. Dagstuhl
accord. http://www.dagstuhlaccord.org/, 2007.

[21] M. D. Ryan and B. Smyth. Applied pi calculus. In V. Cortier and S. Kre-
mer, editors, Formal Models and Techniques for Analyzing Security Proto-
cols, chapter 6. IOS Press, 2010. To appear.

[22] B. Smyth, M. D. Ryan, S. Kremer, and M. Kourjieh. Towards automatic
analysis of election verifiability properties. In Joint Workshop on Auto-
mated Reasoning for Security Protocol Analysis and Issues in the Theory of
Security (ARSPA-WITS’10), Lecture Notes in Computer Science. Springer,
2010. To appear.

[23] M. Talbi, B. Morin, V. V. T. Tong, A. Bouhoula, and M. Mejri. Specifi-
cation of Electronic Voting Protocol Properties Using ADM Logic: FOO
Case Study. In ICICS’08: Proceedings of the 10th International Conference
on Information and Communications Security Conference, pages 403–418,
London, 2008. Springer.

[24] UK Electoral Commission. Key issues and conclusions: May 2007 electoral
pilot schemes. http://www.electoralcommission.org.uk/elections/
pilots/May2007.

31

