Verifying Security Property of Peer-to-Peer
Systems Using CSP

Tien Tuan Anh Dinh and Mark Ryan

School of Computer Science,
University of Birmingham, Birmingham
United Kingdom, B15 2TT
{ttd,mdr}@cs.bham.ac.uk

Abstract. Due to their nature, Peer-to-Peer (P2P) systems are subject
to a wide range of security issues. In this paper, we focus on a specific
security property, called the root authenticity (or RA) property of the
so-called structured P2P overlays. We propose a P2P architecture that
uses Trusted Computing as the security mechanism. We formalize that
system using a process algebra (CSP), then verify that it indeed meets
the RA property.

Key words: Peer-to-Peer, Trusted Computing, formal verification, CSP

1 Introduction

Peer-to-Peer (P2P) overlays are heterogeneous systems that consists of
autonomous peers (or nodes), in which most traffic is among peers. The most
well-known P2P applications, file-sharings [1, 2], are built on top of unstructured
overlays. In these overlays, peers form a random topology, i.e. a peer can connect
to any other peer. Searching is done by broadcasting the query to neighboring
nodes (which is not scalable). Unstructured overlays support approximate search,
i.e. searching for items close to the search key k. They are suitable for dynamic
environments (where peers leave and join frequently).

In this paper, we focus on structured P2P overlays, in which peers form rigid
topologies, i.e. a node only connects to a certain set of neighbors. Examples are
Chord [3], Pastry [4], etc. It is necessary to update the topology when nodes join
or leave the network, which is an expensive operation. Exact-match searching is
done deterministically and is very efficient. In many overlays, it takes O(logN)
hops, where N is the number of peers. On the one hand, structured overlays are
restricted to relatively stable environments where joining and leaving are infre-
quent. On the other hand, they are much more scalable than the unstructured
counterpart, and therefore can support applications with very large numbers of
participants. Existing applications of structured overlays range from global stor-
age systems [5], P2P-based communications [6], application-level multicast [7],
P2P-based marketplaces [8] to botnets [9].

2 Verifying Security Property of Peer-to-Peer Systems Using CSP

Due to the decentralization nature, P2P systems are subject to a wide range
of security attacks. They are normally caused by the lack of an identity man-
agement mechanism or of a central authority. In this work, we investigate an
attack, called the false-destination attack, in which the adversary falsely claims
that it is the destination of a search key k. We say that a P2P system satisfies
the root authenticity (or RA) property if it is secure from this attack. In struc-
tured overlays, where the data key k is uniquely assigned to a root node, there
are various reasons behind this attack. For example, in the P2P storage system,
the adversary wishes to censor a piece of data identified by the key k. It will
(falsely) claim to be the root node of k. As the consequence, all traffic regarding
k (queries or deposit of the data) will be forwarded to the adversary, which now
has total control of the data it wanted to censor.

Despite the early recognition of security problems in P2P systems, not much
progress has been made in addressing them. Most related work propose solutions
that are probabilistic. They normally do not scale well and incur great overhead
when churn (nodes joining and leaving the network) is frequent. More impor-
tantly, there is a serious lack of formal studies of P2P security. For P2P overlays
to be used in applications that demand a certain level of security, such formal
studies are vital.

Contribution. Our main contributions from this paper are as follows:

1. We discuss security issues of P2P systems, categorizing those issues as inher-
ently belonging to different levels of abstraction. This enables us to clarify
how the RA property relates to the various sets of security problems.

2. We propose a P2P architecture aiming to satisfy the RA property. This sys-
tem makes use of Trusted Computing as the underlying security mechanism.

3. We explain our formalization in CSP of the proposed system, and describe
our approach to verifying that the system does indeed satisfy the RA prop-
erty.

The detailed CSP model can be found in the Appendix. For the complete
proof, see [10].

Related Work. Sit et al. [11] present a taxonomy of security attacks on struc-
tured P2P overlays. Castro et al [12] propose a secure routing mechanism based
on a number of components: secure ID assignment, secure neighbor maintenance
and secure message forwarding. Their solution is probabilistic and incurs large
overhead.

Regarding the false destination attack, the closest to our work is that by
Wang et al. [13]. Their solution assumes the existence of a certificate authority
(or CA) that when a node joins issues certificates to 2.l + 1 neighbors, where
[is the number of closest neighbor to a peer in one direction (i.e. its leafset).
This approach is probabilistic and its effectiveness increases with [. Ganesh et
al. [14] propose another solution that assumes peers regular publishing their ID

Verifying Security Property of Peer-to-Peer Systems Using CSP 3

certificates. For verification, it relies on name-space density estimation, which is
probabilistic.

Work on formalizing and verifying P2P systems are limited in numbers.
Borgstrom et al. [15] model Distributed K-ary Search (DKS), a structured over-
lay in Calculus of Communicating Systems (CCS). They verify that the routing
protocol in DKS, under the static case (when no node joining or leaving), is
correct. Bakhshi et al. [16] model Chord in 7m-calculus and verify that the stabi-
lization protocol in Chord is correct.

Paper’s Organization. In the next section, we discuss the range of security
issues in P2P systems, focusing on the RA property. We show that RA is implied
by another property, called the neighbor authenticity (NA) property. In Section
3, we introduce our P2P architecture built on top of Trusted Computing. We
show details of the routing and churn protocols that make use of the Trusted
Platform Modules (TPMs) running at each peer. In Section 4, we describe the
CSP model of the above architecture and define (in CSP) the NA property. We
then explain our approach for verifying that the current model satisfies the NA
property in Section 5. Finally, we conclude and discuss future work in Section 6.

2 Security Issues in P2P Systems

2.1 Overview

---="""""[Target | Peer

144 +1 296
144 + 2 296
144 + 4 296
144 +8 296
144 +16 | 296
144 +32 | 296
144 +64 | 296

144 + 128 296
144 + 256 498
144 + 512 775

\| 144 + 1024 144

550

Fig. 1. Example of a Chord overlay. The big circles represent peers, the rectangles
represent data objects, and the small circles represent the IDs that are used to construct
the finger table of peer 144.

Example of a Structured P2P System. There are a number of structured
P2P systems, each differs from another in its topology, routing or maintenance
protocols. In this paper, we consider Chord, one of the earliest structured P2P

4 Verifying Security Property of Peer-to-Peer Systems Using CSP

systems. Chord is more popular than the other systems, due to its simplicity
and efficient routing protocol.

Let P and D be the set of peers and data objects. In Chord, members of both
sets are hashed using a non-collision hash function into the same circular ID
space ZD. Fig. 1 shows an example in which ZD = [0, 2!°) and there are 6 peers
with IDs of 144,296,498,609,775 and 1000. The two data objects are hashed
to the value 550 and 744. Each peer in Chord connects to a peer immediate on
its left (predecessor) and on its right (successor). In Fig.1, the predecessor and
successor of peer 144 are 1000 and 296 respectively.

Let successor(k) be the peer immediate on the right of the key k in the ID
ring. In Chord, successor(k) is the destination node of k, which is responsible
for storing the data identified by the key k. For instance, successor(300) =
successor(400) = 498 and successor(250) = 296. The data 744 is stored at peer
775. For efficient routing, each node p in Chord also maintains a finger table
of size m, where 2™ is the size of D and finger[i] = successor(p + 27 1) for
1 < i < m. In the above example, the 4" and 9 finger of peer 144 points to
node 296 and 498 respectively.

To search for successor(k), the searching peer forwards its query to the
neighbor, which is one of its successor, predecessor or finger pointers and is
furthest from it but still on the left of k. The query is then executed at the new
node, until the current node is the closest on the left of k. The search then stops
and the current node’s successor is returned. In Fig. 1, the routing path from
node 144 for successor(744) is 144 — 498 — 609. Finally, 775 is returned as the
destination of k.

[Storage] [Contemdistributio}w [Communicaﬂon [Auctionj [App—multicastj

Appiication layer

CAST/DOLR
Application I nterface layer

Routing layer Routing

Fig. 2. Different levels of abstraction in P2P systems. Adapted from [17]

P2P Abstraction Layers. A P2P system can be studied at different levels
of abstractions, as illustrated in Fig. 2:

+ Routing layer: implements the route(k) protocol, which, if successful, re-
turns successor(k). In unstructured P2P systems, this protocol is imple-
mented by broadcasting the query to all neighbors. In structured P2P sys-
tems, this is implemented more efficiently by deterministically forwarding
the query to neighbors closer to k.

Verifying Security Property of Peer-to-Peer Systems Using CSP 5

+ Application interface layer: implements the store(k,data), which places
the tuple (k,data) at a node. In a Distributed Hash Table (DHT) system, for
example, this tuple is stored at the destination node of k. In other systems,
it is also stored at nodes along the routing path.

+ Application layer: consists of application-specific protocols that utilize the
lower levels. For instance, P2P communication systems make use of the rout-
ing layer, whereas P2P storage systems use the application interface layer to
store data in a scalable way.

Security Issues. Given the abstraction in Fig. 2, an adversary can perform
attacks against a P2P system at more than one level. In the following, we discuss
inherent security concerns at each level. The hierarchy in Fig. 2 suggests that
to achieve security at one level, one must at first address the security issues at
levels below it.

1. Routing layer: the adversary can corrupt the routing protocol. For example:
+ No routing: queries are dropped. As the consequence, the network is
partitioned into parts that can not reach each other.
+ Redirection: queries are forwarded to malicious nodes. They could also
be forwarded to innocent nodes, in attempt at a DDoS attack.
+ Impersonate the final node in the routing path
2. Application interface layer: the adversary can corrupt the store(k,data) pro-
tocol in the following ways:
+ Dropping the tuple (k,data) that is destined to stored at its node.
+ Tampering with the data.
3. Application layer: the adversary can compromise application-specific prop-
erties. For example:
+ Corrupting data: malware, etc.
+ Attacking other mechanisms such as replication, access control, etc.

2.2 Root Authenticity Property of a P2P System

As previously described, the adversary may attempt to impersonate the desti-
nation of a search key, called the false-destination attack. For example, in Fig.1,
an adversary controlling peer 498 and 775 could convince peer 144 that node
775 is the destination for the data 550 (the correct destination, given the current
configuration of the network, is node 609). The RA property implies that such
an attack is not possible. In the following, we present a more formal definition
of this property.

Let ZD = [0,2™) for a reasonable large value of m. For any x,y,z € ID,
denote inBetween(z,x,y) as the predicate that indicates that going clock-wise
from x one gets to z before y. More precisely:

inBetween(z,z,y) = (|20z| + |y 2| = |[yOzl)

6 Verifying Security Property of Peer-to-Peer Systems Using CSP

[

. L <- V.getPredecessor(D);
. if (V.neighborVerification(L,D))
if (inBetween(k,L,D))
return true;
3. return false;

N

Fig. 3. Details of the V.destVerification(k,D) protocol

where @ and © are addition and subtraction in modulo 2™, and |x©y]| is the
function returning the clock-wise distance between y and x .

Let P be the set of peers in the network. We can refer to them by their
unique IDs. Let V' be an honest peer that searches for the destination of a key
k. V can perform the following operations:

1. Viroute(k) : the P2P routing protocol. We will not consider the details of
the function route. In our analysis, we allow it to be any function returning
a value in P.

2. V.getPredecessor(D) : V contacts D and asks for its predecessor. Similar
to route, we allow V.get Predecessor to be any function returning a value in

P.

3. VineighborVerification(L,R) : for any L,R € P, V checks if L is the
predecessor of R in the current network. The details of this protocol is the
main focus of Section 3.

4. V.destVerification(k,D): forany ke ID,V checksif D is the destination
of k, given the current configuration of the network. The details of this
protocol are shown in Fig.3.

Definition 1 (Root Authenticity (RA) Property). Let P! be the set of
current nodes in the P2P system, at a given time t. Assume that the system
evolves from t to (t + 1) as a new peer joins or an existing peer leaves the
system. The RA property is defined as:

VD,keID,t. V.destVerification(k,D)
= DeP' A (VD' eP'\{D}.|D'Ok|>|DEk|)

Definition 2 (Neighbor Authenticity (NA) Property). Let P! be the set
of current nodes in the P2P system, at a given time t. Assume that the system
evolves from t to (t+1) as a new peer joins or an existing peer leaves the system.
The NA property is defined as:
VL,D,t. V.neighborVerification(L, D)
= {L.D}cP" A (VD' eP'\{L}.|D'OL|>|DOLI|)

Hzoyl=t © 0<t<2™ A y®t==x

Verifying Security Property of Peer-to-Peer Systems Using CSP 7

Informally speaking, the RA property requires that for any key k and a peer
D at time t, if destVerification(k, D) returns true then D is the closest peer on
the right of k at time ¢. The N A property requires that at time ¢ for any peer L
and D in the network, if neighborVerification(L, D) returns true then L is in
fact the immediate left neighbor of D at time ¢. From these definitions, we have
the following proposition:

Proposition 1. NA = RA

This theorem means that if the neighbor verification protocol is correct, then
the system satisfies the RA property.

Why RA Property. In a system not satisfying the RA property, an adversary
A can falsely convince an honest peer that it is the destination of a key k. There
are various reasons behind such attacks. Since the data identified by k is stored
at the destination of k, the attacker may launch this attack to gain control
or censor a particular piece of data. In P2P storage systems, for example, the
attacker having the data can modify or removing them from the system. In other
applications where controlling more data could imply economic gains (such as
P2P-based marketplaces), there are more tangible incentives for A to initiate the
attack. In P2P-based communication systems (such as Voice Over IP (VOIP)
or instant messaging), the data generally contains the connection details of the
communicating hosts. Having control over such data means that A might be
able to eavesdrop the communication, or even prevent it from happening. The
impact cause by these attacks can be worsened by the adversary launching Sybil
attacks, in which the adversary has many identities and therefore controlling
multiple nodes at different locations in the network.

Recently, there are much research on reputation systems for P2P. One fun-
damental element of a reputation system is the feedback mechanism, by which a
peer can rate the behavior of another. In many cases, this requires a peer being
able to verify if another is telling the truth or not. The RA property implies that
a peer can check if the result of route(k) is the correct destination, therefore it
can confidently give good or bad feedback to the nodes involved in the routing
path.

3 A Secure P2P System Using Trusted Computing

3.1 Trusted Computing and Trusted Platform Modules

Trusted Computing is a collection of current and future initiatives to root security
in hardware that have been under development since about 2003. It is set to
transform the computing security landscape over the next decade. Currently, the
most noticeable manifestations are the Trusted Platform Module (TPM), Intel’s
Trusted eXecution Technology (TXT) and Virtualisation Technology (VT-d).
The TPM is a hardware chip currently shipped in high-end laptops, desktops
and servers made by all the major manufacturers and destined to be in all devices

8 Verifying Security Property of Peer-to-Peer Systems Using CSP

within the next few years. It is specified by an industry consortium [18], and the
specification is now an ISO standard [19]. There are currently 100M TPMs in
existence as of 2008, and this figure is expected to be 250M by 2010 [20, 21]. The
TPM provides hardware-secured storage, secure platform integrity measurement
and reporting, and platform authentication. Software that uses this functionality
will be rolled out over the coming years. The TPM is commonly used for:

1. Secure storage. User processes can store content that is encrypted by keys
only available to the TPM.

2. Platform measurement and reporting. A platform can create reports of its
integrity and configuration state that can be relied on by a remote verifier.

3. Platform authentication. A platform can obtain keys by which it can au-
thenticate itself reliably.

In the P2P context, we make use of the following set of the TPM features:

1. A TPM can create a public/private key pair (K Priv, K Pub), called an At-
testation Identity Key (AIK). The TPM can identify itself using the AIK,
which can be certified using a certificate authority.

2. Monotonic counters: each TPM maintains a set of monotonic counters. On
a counter with ID cid, one can perform the following operations:

(a) TPM_ReadCounter(cid): returns the current value of the counter cid.

(b) TPM_IncrementCounter(cid): increments and returns the new value of
the counter cid.

3. Transport sessions: the TPM commands can be grouped and executed to-
gether within a transport session. The session can be exclusive, meaning that
no other commands can be executed outside of the session when it is active.
Furthermore, the session’s log can be signed by the TPM.

(a) TPM_EstablishTransport(exc): sets up a transport session. The flag exc
determines if the session is exclusive. A session handle, sHandle is re-
turned.

(b) TPM_ExecuteTransport(comm,sHandle): executes comm, which con-
tains a wrapped TPMs command, inside the session sHandle.

(¢c) TPM_ReleaseTransportSigned(n, sHandle): closes the transport session
and signs its log containing input, output of all the commands executed
in sHandle. n is used as the non-replay nonce in the signature.

Example. As an example, suppose the TPM of an agent B has a counter cid,
whose value is of interest to an agent A. Protocol 1 and Fig. 4 illustrates how A
finds out the latest value of cid.

First, A sends cid and a freshly generated nonce n to B, which then executes
getSignedCounterValues(n, cid) on its local TPM. The
getSignedCounterValues(n, cid) procedure, detailed in Fig.4, first establishes
a transport session with the TPM, then executes TPM_ReadCounter(cid) within
that session. Finally, the session is closed and the TPM’s signature on the ses-
sion’s log is returned, in which n is used as the non-replay nonce. Notice that
it is not possible for B to generate such a signature without having its TPM
executing the TPM_ReadCounter(cid) command inside a transport session.

Verifying Security Property of Peer-to-Peer Systems Using CSP 9

cid, n

{read, cid, value, 7L>Kp7.i,UB « getSignedCounterValues(n, cid)

{read, cid, value, Nk Privg

Protocol 1: A queries B for the latest value of its counter cid

sHandle <- TPM_EstablishTransport (true)

wc <- wrap command TPM_ReadCounter(cid)
TPM_ExecuteTransport(wc, sHandle)

sig <- TPM_ReleaseTransportSigned(sHandle,n)
return sig

O W N

Fig. 4. getSignedCounterValues(n, cid) is executed by the local TPM at B

3.2 A Secure P2P System Using Trusted Computing

Assumptions. In our proposed P2P system, we assume that all peers have sup-
port for the trusted computing infrastructure. In particular, peers are equipped
with TPMs. For a large-scale P2P system, one may question if this assumption is
reasonable. We wish to stress that firstly, more computers are being shipped with
trusted computing support. Secondly, our proposal could work with any other
infrastructure that supports the features listed in Section 3.1. It could be in the
form of smart-cards or online services. These alternatives could be better choices
than TPMs due to their flexibility and wider range of trusted functionalities.

Regarding the churn model, we assume that peers leave the network grace-
fully. This means peers notify their neighbors (or other relevant entities) before
exiting.

Certificate Authority. In our system, there exists a certificate authority
(CA) which is trusted to issue neighbor certificates as peers join and leave the
network. The CA does not have to run on trusted hardware. It acts as a single
point of trust, but as discussed later, is unlikely to be a performance bottleneck.

The CA has an asymmetric key pair (K Privca, K Pubca). In the joining
process, for example, a new peer N contacts CA to be issued a neighbor certifi-

10 Verifying Security Property of Peer-to-Peer Systems Using CSP

cate, which is of the form:
<Cid7 v, N7 Lv R>P1’i1}KCA

where v is the current value of the counter cid. L, R are the immediate left
and right neighbors of N, at the moment the certificate is issued. These nodes
also receive new certificates from the CA. It is important that the CA knows
the correct immediate left and right neighbors of N at any given time in order
to issue such certificates. There are several ways for the CA to acquire this
knowledge. For simplicity, we assume that it maintains a list of peers currently
in the network. When N joins, it checks that IV is not already in the list, then
issues the relevant certificates and adds N to the list. It performs the opposite
when N leaves the network.

CA L N R

cid|n,

{ine, cid, cn | Nn) K Privy

cid, n;

{inc, cid, ¢y, nl>Kp7.wL

cid, n,

(inc, cid, cr, Nr)K Privy

{cid,cn, N, L, R>KP’V”L"UOA

Cid, Cr, L, - N>KP7‘i’uOé

cid, cry, Ry N, YK Prive 4

Protocol 2: Peer N joins in between L and R in the network

Joining /Leaving Protocol. Protocol 2 illustrates the protocol between the
CA and other nodes when N joins the network. The CA knows that L, R are the
immediate left and right neighbor of N in the current network. First, it asks IV,
L and R to increment their specific counters (cid). Once received the signatures
on the new counter values, the CA adds N to its list of existing peers, then issues
new certificates for NV, L and R containing information of the new neighbors.

When a peer E leaves the network, the protocol is similar, except that the
CA only issues certificates for E’s current neighbors.

Verifying Security Property of Peer-to-Peer Systems Using CSP 11

Verifier D R

cid, ng

(read, cid, cq,nd)K Privp,

{cid, cq, D, -, R>KPr7’,ucA

cid| n,.

{read, cid, c|, n’r'>KP’V"L"UR

{cid,cry R, I}, YK Prive 4

Protocol 3: Peer V verifies if R is the current right neighbor of peer D

Routing Protocol. Consider a peer V searching for the destination node of
a key k. First, the normal P2P routing protocol (Chord or Pastry routing, for
example) is used, which returns a peer D. Before accepting D as the destination
of k, V performs the verification protocol with D, as illustrated in Protocol 3.
The Verifier queries the latest value of D’s counter cid, namely cq. It then asks D
for the certificate of Cy that contains c¢4. By doing this, the Verifier is confident
that Cy is the latest certificate issued by the CA to D.

Cq4 contains information of D’s right neighbor, namely R. The Verifier then
asks for R’s latest certificate, C,. in the same way it did for D. The verification
returns true if Cy and C) match, meaning that in Cy, R is the right neighbor of
D and in C,, D is the left neighbor of R.

The reason for requiring certificates from both D and R is to avoid the fol-
lowing scenario. D is an adversary, it executed the joining protocol properly and
has already left the network (gracefully). However, the routing protocol returns
D, and since it is still online, D returns its out-of-date certificate, which would
be accepted by the Verifier. In other words, D is accepted as the destination of
k. This violates the RA property, which requires the destination node to be a
node currently in the network.

Discussion. It can be seen from the description of the routing and joining
protocols that the CA is a relatively off-line entity, since its only involvement is
during churn events. The CA is not consulted during the routing process. In a
typical P2P system, the rate of query-routing is considerably more frequent than
the rate of churn. We therefore argue that the CA is unlikely to be a performance
bottleneck.

12 Verifying Security Property of Peer-to-Peer Systems Using CSP

More specifically, let M be the number of nodes in the network. Churn events
can be modeled by a Poisson distribution. This means that a peer’s session time
(duration during which the peer stays in the network) follows an exponential
distribution. Let ¢ be the churn rate, so that the session times are exponentially
distributed with the expected value of % It then follows that the expected num-
ber of churn events that the CA has to deal with per time unit is ¢.M. For a
large (but relatively stable) network, i.e. M is in order of millions and the av-
erage session time is in the order of days, c.M is small enough so that the CA
would not become a bottleneck.

In our current design, the CA maintains a list of peers currently in the
network, which could be a concern. A typical computer nowadays can deal with
M in the size of millions. For scalability, however, it will be better to relieve the
CA from maintaining such a list. Instead, during the joining or leaving process,
the CA also asks for the certificates of the joining or leaving peer as well as
of its immediate neighbors. If the certificates match, the CA then issues new
certificates as described early. We conjecture that if all the certificates before a
churn event were issued correctly, then so are the new ones after the event is
completed. We plan to investigate this system in future work.

Finally, the current churn model is quite strict, as we consider peers leaving
gracefully, i.e. they notify the CA before leaving. We could make it more realistic
by taking the fail-stop and Byzantine failure models into account. To deal with
these failures, a time-out mechanism is needed that indicates when a certificate
will expire. More specifically, peers need to contact the CA regularly to have their
certificates renewed, or else they will be considered having left the network. This
would imply more overhead for the CA, as it needs to issues more certificates
and keeps track of which peers have left the network. Detailed investigation of
the time-out mechanism is left for future work.

4 Formal Model in CSP

A brief introduction to CSP syntax and its semantic can be found in the Ap-
pendix. CSP has three denotational semantic models: traces, stable failures and
failures/divergences. In this work, we only use the traces model, especially the
refinement relation on traces. In particular, let traces(P) and traces(Q) be set
of traces of the process P and @, then () is said to refine P, written as P &1 Q)
if:

traces(Q) C traces(P)

4.1 The System Model in CSP

The model consists of several agents, as shown in Fig.5

1. Nonce Manager: supplies fresh and unique nonces for other agents. These
values are used during joining, leaving and verification to avoid replaying of
old counter values. They are communicated by the NonceManager process
to others via the send channel.

Verifying Security Property of Peer-to-Peer Systems Using CSP 13

out put
[J:ﬁggzr] [Verifier

send

unl ock

send .
receive

receive fake recei ve

take send

| ear say

Adver sary

Fig. 5. Channels used by the processes

2. TPM: models the trusted hardware used in the system. Each TPM has a

counter cid for the P2P operations. The counter ID is known to all peers.
In addition, each TPM is identified by an unique ID, which can be used as
the peer ID. Balfe et al. [22] propose a mechanism for enforcing stable IDs
based on the Direct Anonymous Attestation (DAA) protocol. In our context,
however, we could just assign the ID to be the public part of an AIK. During
P2P operations, such ID shall be unique, even though more than one AIKs
can be generated for a TPM. It is because the counter cid is unique in each
TPM. If multiple IDs are used by a TPM, then updating the counter value
of one ID will effectively invalidate the states of the other IDs.
The CSP process representing a TPM receives nonces on the channel receive.
It then sends back a signature on the latest counter value, after a read or an
increment operation. The signature is of the form of the event SqR.(n,i,c)
(after a read operation) or SqI.{n,1,c) (after an increment operation) where
n, i, c are the received nonce, the TPM’s ID and the counter value.

3. Certificate Authority: issues certificates during churn events, as explained in
the previous section. The CA process uses the send and receive channels for
sending nonces and receiving other messages. Once it has issued all relevant
certificates for a churn event, it outputs on the channel completeChurn to
signal that the churn event has completed. For example, the event
completeChurn.Churn.(join,iy where ¢ is a peer indicates that ¢ has suc-
cessfully joined the network.

4. Verifier: picks a random peer D and asks it to returns its immediate right
neighbor R. The Verifier performs the verification and then outputs whether
it accepts that R is the immediate right neighbor of D. This basically models
the neighborVerification protocol described in section 2. It follows from
Proposition 1 that if the Verifier cannot be fooled then the RA property is
met.

The Verifier process sends nonces and receives other messages on the send
and receive channel respectively. Events on the channel output indicates that

14 Verifying Security Property of Peer-to-Peer Systems Using CSP

the Verifier accepts that one peer is the immediate right neighbor of another.
For instance, output.L.R means it is convinced that R is the immediate right
neighbor of L in the current network.

5. Adversary: models the attacker trying to break the RA property of the sys-

tem. We give the adversary total control of all the peers in the network, i.e.
it controls all the TPMs, even though it cannot fake signatures generated by
the TPM.
The Adversary process uses the learn and say channel to eavesdrop and send
messages from and to the other agents. We model the Adversary being able
to remember all messages it has seen, i.e. having infinite memory, so that it
could replay old messages. It can be seen from Fig.5 that all the send and
receive channels are renamed to take and fake, which are in turned mapped
to the learn and say channels (by a many-to-one mapping function). This
renaming scheme introduces non-determinism and as an effect increases the
adversary’s power.

The detailed CSP models for these agents can be found in the Appendix.

4.2 Checking the RA Property

As Proposition 1 indicates, the RA property is implied by the correctness of the
neighbor verification protocol neighborVerification, which can be formalized
by the following process:
Spec(ps,pn) = [] completeChurn.Churn.(join,iy — Spec(ps U {i}, pn\{i})
1EpN
O[] completeChurn.Churn.leave,iy — Spec(ps\{i}, pn U {i})
1EPS
| D output.i.right(i,ps) — Spec(ps, pn)
1EPS
ps, pn are the sets of peers currently in and not in the network respectively.
These sets change after events in the completeChurn channels occur, i.e. after
a churn event completed. The function succ(i, ps) returns the immediate right

neighbor of ¢ in the set ps, which is defined as follows:
right(p,ps) =1 ifreps A Vp' eps\{r}.|r©p <|roy|
Let System be the CSP model of the entire system (the details can be found

in the Appendix). To prove that the system satisfies the RA property is equiva-
lent to showing the following;:

Spec({},P) ¢ System (1)

5 Verification

The current CSP model System is very large and complex. Even if one only
considers a network with a small number of peers, this model still contains too

Verifying Security Property of Peer-to-Peer Systems Using CSP 15

many states and transitions to be checked automatically by a model checker. Our
approach for the verification is to firstly find an abstraction of the original model,
called Abstraction, whose state-space is smaller. In particular, the abstraction
satisfies: Abstraction Ep System. Next, we show that
Spec({}, P) ¢ Abstraction, which then implies that Eq.1 is correct.

Due to the space constraint, we describe our approach only briefly here. More
details can be found at [10]. First, we arrive at Abstraction through the following
steps:

1. Weakening the adversary. The original adversary has infinite memory that
helps it remember and replay old messages. We weaken it by removing the
memory, i.e. allowing the adversary to only relay messages. It turns out that
the new model using this weakened adversary has the same traces as the
original.

2. Reducing the nonce set. The NonceManager process supplies unique and
fresh nonces from a potentially infinite set. We make use of the data inde-
pendence techniques, developed by [23,24], to derive an abstraction of the
original model that uses only 2 nonces (one used by the CA and another by
the Verifier). In System (in all processes except for NonceManager), nonces
are used only for equality check and polymorphic operations (tupling, list-
ing). In other words, these processes are independent of the nonce type.

3. Reducing the counter set. We use the same technique as above to reduce the
counter set (which is potentially infinite) to only one value. In the current
model, the TPM process uses counter values with the >’ operators, which
makes it dependent of the counter type. Therefore, before applying the data
independence techniques, we transform the model (without reducing its trace
set) to make it independent of the counter type.

After these reduction steps, we arrive at Abstraction, the model less complex
but refined by System. We have implemented a small instance of Abstraction
for a system with 3 peers in FDR [25], the model-checker tool for CSP. The
check for Spec({}, P) Er Abstraction returns true after 13,501,797 states and
73,831,002 transitions. Next, we generalize this result to an arbitrary number
of peers by proving that traces(Abstraction) € traces(Spec({},P)) for any P.
The proof is constructed via induction, as follows:

1. (Base case). Let tr be a trace of Abstraction such that tr | {|completeChurn|}
(> where [is the restriction operator (for example, sq}X removes non-X el-

ements from sq). Then tr € traces(Spec({}, P)).
2. (Inductive case). For any 6 # <}, let tr be a trace of Abstraction such that:

tr M {|completeChurn|} = 8 A tr € traces(Spec({}, P))
Let ¢’ be another trace of Abstraction, then:

Ye. tr' [{|completeChurn|} = 0"{e) = tr' € traces(Spec({}),P)

16 Verifying Security Property of Peer-to-Peer Systems Using CSP

6 Conclusion

In this paper, we have discussed various security problems in structured P2P
systems. We focus on the false-destination attacks, in which an adversary can
falsely claim to be the destination of a search key. Due to the nature of struc-
tured P2P overlays (keys are stored at unique root nodes), there are a number
of reasons for such attacks. A P2P system is secure from these attacks if it sat-
isfies the root authenticity (or RA) property, which is implied by the neighbor
authenticity (NA) property. We propose a P2P architecture aiming to meet this
property, using Trusted Computing as the security mechanism. We then describe
our formalization of the proposed architecture in CSP, then our verification that
the RA property is indeed met.

We identify a few avenues to be explored in the future work. Our current
churn model is relatively strict, since peers are only allowed to leave gracefully.
To be more realistic, it must allow for fail-stop and Byzantine failure. The CA
may not have to keep information of which nodes currently in the network.
It means that before issuing certificate to a peer, the CA would ask for its
neighbor certificates and only continue if they match. A further extension would
be to remove the CA altogether. In this case, the certificate and verification
mechanism might become much more complex and the system might not be
able to cope with a complex churn model. In another direction, because the
TPM was not designed with P2P applications in mind, its operation set may
be too restricted for such systems. Therefore, it would be interesting to find an
abstraction of general-purposed trusted hardware that is more powerful, flexible
and suitable for P2P. Finally, we plan to carry out performance analysis (via
simulation) of our proposed P2P architecture as well as its extensions in order
to evaluate the overhead incurred from having the RA property.

References

1. Gnutella Project: Gnutella specification. World Wide Web http://rfc-gnutella.
sourceforge.net/developer/testing/ (July 2007)

2. Emule Project: emule homepage. World Wide Web http://www.emule-project.
net/ (May 2002)

3. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: 2001 ACM SIG-
COMM Conference on Applications, technologies, architectures, and protocols for
computer communications. (2001) 149-160

4. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: IFIP/ACM International Confer-
ence on Distributed Systems Platforms Heidelberg. (2001) 329-350

5. Rowstron, A., Druschel, P.: Storage management and caching in past, a large-scale,
persistent peer-to-peer storage utility. SIGOPS Operating Systems Review 35(5)
(2001) 188-201

6. Bryan, D.A., Lowekamp, B.B., Jennings, C.: Sosimple: A serverless, standards-
based, p2p sip communication system. In: International Workshop on Advanced
Archtectures and Algorithms for Internet Delivery and Applications. (2005) 42-49

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Verifying Security Property of Peer-to-Peer Systems Using CSP 17

Castro, M., Duschel, P., Kermarrec, A.M., Rowstron, A.: Scribe: a large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected
Areas in Communication 20(8) (2002)

Dinh, T.T.A., Chothia, T., Ryan, M.: A trusted infrastructure for p2p-based
marketplaces. In: 9th IEEE International Conference on P2P Computing. (2009)
151-154

Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.: Measurements and miti-
gation of peer-to-peer-based botnets: a case study on storm worm. In: 1st Usenix
Workshop on Large-Scale Exploits and Emergent Threats. (2008) 1-9

Dinh, T.T.A., Ryan, M.: Checking security property of P2P systems in CSP. Tech-
nical Report CSR-~10-07, School of Computer Science, University of Birmingham,
http://www.cs.bham.ac.uk/“ttd/files/technicalReport.pdf (2010)

Sit, E., Morris, R.: Security considerations for peer-to-peer distributed hash tables.
In: First International Workshop on Peer-to-Peer Systems, Springer-Verlag (2002)
261-269

Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing
for structured peer-to-peer overlay networks. ACM SIGOPS Operating Systems
Review 36(SI) (2002) 299-314

Wang, P., Hopper, N., Osipkov, I., Kim, Y.: Mpyrmic: Secure and robust DHT
routing. Technical report, University of Minnesota (2006)

Ganesh, L., Zhao, B.Y.: Identity theft protection in structured overlays. In: IEEE
Workshop on Secure Network Protocols. (2005) 49-54

Borgstrom, J., Nestmann, U., Alima, L.O., Gurov, D.: Verifying a structured peer-
to-peer overlay network: The static case. In: Global Computing. (2004) 250-265
Bakhshi, R., Gurov, D.: Verification of peer-to-peer algorithms: A case study.
Electronic Notes in Theoretical Computer Science 181 (2007) 35-47

Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a common
api for structured peer-to-peer overlays. In: 2nd International Workshop on Peer-
to-Peer Systems (IPTPS’03). (2003) 33-44

Trusted Computing Group: TPM Specification version 1.2. Parts 1-3. www.
trustedcomputinggroup.org/specs/TPM/ (2007)

: ISO/IEC PAS DIS 11889: Information technology — Security techniques — Trusted
platform module

Trusted Computing Group: Press release. www.trustedcomputinggroup.org/
news/press/member_releases/WAVETCGPROMOTIYONMW5_31_FINAL_.pdf (2008)
Trusted Computing Group: TCG timeline. www.trustedcomputinggroup.org/
about/corporate_documents/ (2008)

Balfe, S., Lakhani, A.D., Paterson, K.G.: Trusted computing: Providing security for
peer-to-peer networks. In: International Conference on Peer-to-Peer Computing,
IEEE Computer Society (2005) 117-124

Lazic, R.S.: A Semantic Study of Data-Independence with Applications to the
Mechanical Verification of Concurrent Systems. PhD thesis, Oxford University
(1997)

Broadfoot, P.J.: Data Independence in the Model Checking of Security Protocols.
PhD thesis, Oxford University (2001)

Formal System Europe Ltd: FDR2 model checker tool. World Wide Web http:
//wwu.fsel.com/software.html

18 Verifying Security Property of Peer-to-Peer Systems Using CSP

Appendix:
CSpP
Events.
a,b event communicated by CSP processes
b)) universal sets of events; a,b e X
cv communication of event v on channel ¢
| set of all events on channel ¢
Processes.
A CSP process
STOP do nothing
a— P prefix
cv— P communicate value v on channel ¢, then behave as P
POQ, P4b+Q external choice and condition (if b then P; else Q)
P| Q@ P and Q executed concurrently, synchronized on X
X
Pl Q interleaving
P[R], P\X renaming relation and hiding events in X

Trace Models. This is one of the three denotational semantics supported by
CSP. The other two are stable failure and failure-divergence semantics.

traces(STOP) = {{}
traces(a — P) = {O} u {{a)"s|s € traces(P)}
traces(P[1Q) = traces(P) u traces(Q)

traces(P[R]) = {tr | 3s € traces(P) o s R* tr}
traces(P ||| Q) = U{s ||| t | s € traces(P),t € traces(Q)}
traces(P)H(Q) = J{s)H(t}| s € traces(P),t € traces(Q)

where R*, ||| and | are defined as follows:
X

Verifying Security Property of Peer-to-Peer Systems Using CSP 19
{at, . any R* {by,...,bpyen=m A Vi<ne a; R

Olll's = {s}

sllie=1lls
@ [0 = (@hu fues |||)
OB u fuet ||| <y s)
slt=tls
O[O =10)
OL@=1{0) (@eX)
Ol =) wEx)
@)hs | e = {Ghuue s | 1)
X X
@yns | oyt = {@rulues | 1
X X
@'s [@t =10} (@reX rz)
s | W= (yulues | G
ol uluet | Gyul

System Model in CSP

Events. Let P and Nonces = {Nonce.id|id € NoncelDs} be the set of peers
(each having a unique ID) and the set of fresh nonces. Let

ChurnFEvents = {Churn.{c,i)|c € {join,leave},i € P}

be the set of churn events. Let Counts be the set of counter values. We define
the set of events representing TPMs’ signature on counter values as:

SigMessages = {SqR.{(n,p,c), Sql.{n,p,c)y|ne Nonces,p € P,ce Counts}

For any n,p,c, SqR.(n,p,c) and Sql.{(n,p,c) represent signatures on the
results of the TPM_ReadCounter and TPM_IncrementCounter commands respec-
tively.

Let NonceMessages = {SqN.{n)|n € Nonces} be a set of events repre-
senting a nonce value being passed in the network. Finally, the set of events
representing certificates issued by the CA is defined as:

CertMessages = {Cert.{p,l,r,cy|p,l,r € P,ce Counts}
Then, the set of all events used in the model is defined as:

Messages = ChurnMessages v SigMessages

U NonceMessages u CertMessages

20 Verifying Security Property of Peer-to-Peer Systems Using CSP

Channels. The following channels are used:

send, receive : Agents.Agents.Messages
where Agents =P u {NM,CA,VF}
take, fake : Agents.Agents.Messages
learn, say : Messages
output : P.P
completeChurn : ChurnMessages
unlock : Agents. P

NonceManager Process.
NManager(X) = [] send.NM.j.SqN.(n) — NManager(X\{n})

neX
jeAgents

NonceManager = NManager(Nonces)

TPM Process.

TPM(i,c) =
[[] receiveji.SqN{n)
neNonces
jeAgents
[] sendi.j.SqR<n,i,dy — unlock.VF.i — TPM(i,d)
N deeggiﬁmts
| D send.i.j.Sql {n,i,dy — unlock.CA.i — TPM(i,d)
deggslﬁnts
TPMs = ||| TPM(i,0)
i€P
CA Process.
CAProcess(ps,pn) = |ps| == 0 & Join0O(ps,pn)

O |ps| == 1 & Joinl(ps,pn)
O |ps| > 1 & JoinAndLeaveN(ps,pn)

JoinAndLeaveN(ps,pn) = D receive.i.C A.Churn.(join, iy — JoinN(i,ps,pn)
iEpN
O[] receive.i.CA.Churn.(leave, iy —
1EPS
if |ps| > 2 then LeaveN(i,ps,pn)
else Leave2(i,ps,pn)

Verifying Security Property of Peer-to-Peer Systems Using CSP 21

JoinN(i,ps,pn) =

nl,n2,n3e Nonces

receive. NM.CA.SqN.(nly — send.C' A.i.SqN {nl)

D receive.i.CA.Sql.(nl,i, cl)y —
c1,c2,c3e Counts
let S=psu{i}

(I,7) = neighbor(i, S)

(11,71) = neighbor(l, S)

(12,72) = neighbor(r, S) within
send.C A.i.Cert.(i,l,r,cl)
receive. NM.C A.SqN .({n2)
send.C A.l.SqN {n2)
receive.l.CA.Sql.{n2,1,c2)
send.C A.l.Certl,11,1,c2)
receive. NM.C A.SqN .{n3)
send.C A.r.SqN.(n3)
receive.r.CA.Sql {n3,r, c3)
send.CA.r.Cert.(r,i,72,c3)
completeChurn.Churn.(join, i)
unlock.C A.i — unlock.CA.l
unlock.C A.r — CAProcess(S,pn\{i})

L I R A A

Other sub-processes, namely Join0O(ps,pn), Joinl(ps,pn), Leave2(ps,pn) and

LeaveN (ps,pn) are

be defined similarly. The function neighbor(p, ps) returns the

left and right neighbor of p in ps. More precisely,

neighbor(p, ps) = (left(p,ps), right(p,ps))

left(p,ps) =1

right(p,ps) = r

if leps A Vp'eps\{i}. [poIll <P O
if reps A Vp' eps\{r}.|rOp| <|rep

Verifier Process.

VerifierProcess =

[] receive. NM.VF.SqN(n)

neNonces

[] send.VF.i.SqN.{n)
i,l,reP
D receive.i.VF.SqR.(n,i,c)
ceCounts
— receive.i.VF.Cert.{i,l,r, c)

N — ifl=r andl =1 then
output.i.i — unlock.V F.i
— STOP

else VerifierProcessN(l,i)

22 Verifying Security Property of Peer-to-Peer Systems Using CSP

VerifierProcessN(l,i) =
receive. NM.VF.SqgN.{n) — send.VF.[.SqN.{n)

neNonces
D receive.l.VE.SqR.(n,l,cl)
cleCounts
|:| receive.l.VF.Cert.(l,1l,i,cl)
lieP
— output.l.i = unlock.V F.i

— unlock.VF.Il - STOP

Adversary Process.
MemoryNonce(n) = learn.SqN.{n) — ReplayNonce(n)
ReplayNonce(n) = say.SqN.{n) — ReplayNonce(n)

MemorySigR (n,i,c) = learn.SqR.{(n,i,c)y — ReplaySigR(n,i,c)

MemorySigl(n,i,c) = learn.Sql {n,i,c) — ReplaySigl(n,i,c)
ReplaySigR (n,i,c) = say.SqR.{(n,i,cy — ReplaySigR(n,i,c)
ReplaySigl(n,i,c) = say.Sql {n,i,cy — ReplaySigl(n,i,c)

MemoryCert(i,l,r,c) = learn.Cert.(i,l,r,c) — ReplayCert(i,l,r,c)
ReplayCert(i,l,r,c) = say.Cert.(i,l,r,cy — ReplayCert(i,l,r,c)

Memory = | MemoryNonce(n)

neNonces

I H‘ MemorySigR (n,i,c)
Il MemorySigl(n,i,c)

neNonces,ieP,ceCounts

i i MemoryCert(i,l,r,c)

i,l,reP,ceCounts

(say.Churn.{join, iy — ChurnlInitiator)

Churnlnitiator = [] O say.Churn.(leave, iy — Churnlnitiator

i€P

Adversary = Memory ||| Churnlnitiator

Putting It Together.

Network = (Adversary

TPMs) \x:

Xi
CAandVFProcess = CAProcess({}, P) ||| VerifierProcess

OtherAgents = (NonceManager

CAandVFProcess)
{|fake.NM]|}

Impl = (OtherAgents | Network Big) \{|take, fake, unlock|}

Xe

Verifying Security Property of Peer-to-Peer Systems Using CSP 23

Name Details Applied to

RAd, learn « take.i.j | 1,7 € Agents, {i,j} U P # J|Adversary

RAd, say « fake.i.j | i,j € Agents, {i,j} v P # & |Adversary

RComa send <« take TPMs, CAProcess and
Verifier Process

RComg receive «— fake TPMs, CAProcess and
Verifier Process

RNoncey send.NM.i «— take.NM.i | i € P NonceManager

RNonces send.NM.j «— fake. NM.j | j ¢ P NonceManager

Xi {|take.i.a, fake.a.i|i € P,a € Agents|}

Xe {|take.a.i, fake.i.a|i € P,a € Agents|}

Table 1. Renaming relations and synchronization sets

