
Analysing Unlinkability and Anonymity Using the Applied Pi Calculus

Myrto Arapinis, Tom Chothia, Eike Ritter and Mark Ryan

School of Computer Science, University of Birmingham, UK
{m.d.arapinis, t.chothia, e.ritter, m.d.ryan}@cs.bham.ac.uk

Abstract—An attacker that can identify messages as coming
from the same source, can use this information to build up a
picture of targets’ behaviour, and so, threaten their privacy. In
response to this danger, unlinkable protocols aim to make it
impossible for a third party to identify two runs of a protocol
as coming from the same device. We present a framework for
analysing unlinkability and anonymity in the applied pi calculus.
We show that unlinkability and anonymity are complementary
properties; one does not imply the other. Using our framework
we show that the French RFID e-passport preserves anonymity
but it is linkable therefore anyone carrying a French e-passport
can be physically traced.

I. INTRODUCTION

The proliferation of portable computing devices has lead to
a range of new computer security problems. Mobile phones,
Bluetooth devices and RFID tags have all been shown to leak
private information, and such security concerns are regularly
reported by the media [9], [6], [17]. Protocols that keep
the identity of their users secure may still allow an attacker
to identify particular sessions as having involved the same
principal. Such linkability attacks may, for instance, make it
possible for a third party to trace the movements of someone
carrying an RFID tag. Linkability attacks are not restricted to
mobile devices; for example, they can also occur when using
web-based services. When AOL published an anonymised list
of search queries, the ability to link the different queries lead
to serious breaches of privacy [6].

In this paper we give a framework for analysing unlinkabil-
ity and anonymity in the applied pi-calculus. Using the applied
pi-calculus [2] has the advantage of making our definitions
precise, and lets us build on a large body of work on checking
other security properties. Another advantage of the applied
pi-calculus is that, in many cases, we can check protocols
automatically using the ProVerif tool [7].

We give a “strong” and a “weak” definition of unlinkability.
The strong definition is very much in the style of the applied
pi-calculus: we say that a protocol is strongly unlinkable if
an instance of the protocol made up of an arbitrary number
of repeating processes is bisimilar to an instance in which no
process runs more than once. While a protocol that has this
property is unlinkable, the failure of this property does not
guarantee a practical attack that would allow an observer to
conclude that two particular runs come from the same process.
Furthermore, bisimulation may fail due to the internal state
of the processes, and these differences in the internal state
may not be observable by an outside attacker. We define weak
unlinkability based on the traces of a system. We consider

the case where an attacker has observed a system and decides
that two particular messages might be from different sessions
being performed by the same agent. The system is weakly
unlinkable if, for all such cases, there exists another trace of
the system, which looks the same to the attacker, and in this
other trace the two messages came from different agents. A
failure of weak unlinkability directly implies an attack.

We show that our definition of strong unlinkability implies
the weaker version. As strong unlinkability can sometimes
be checked automatically using the ProVerif tool, this means
that when checking a protocol it is useful to check the strong
definition first. If it fails, one may go on to use the weaker
version to look for a practical attack. We also show that
unlinkability does not imply anonymity, contradictory to what
has been suggested by other authors [13]. An example of
a device that would be unlinkable but not anonymous is an
RFID tag with an identity-revealing kill function. Suppose the
protocol is such that the past sessions are not linkable with the
identity, and now the kill function is executed. It permanently
disables the tag but also reveals its identity. Anonymity has
been broken, but unlinkability of past sessions remains intact.

While looking for case studies to illustrate our work, we
found a new linkability attack against the French version of
the e-Passport. The Basic Access Control (BAC) protocol on
e-Passports is designed to make the passports unlinkable [21].
We show that in the case of the French e-Passport, a replayed
message can be used to identify a passport. This attack makes
it possible to detect when a particular passport comes into
range of a reader, which could for instance, be placed by a
doorway, in order to monitor when a target enters or leaves
a particular building. We also show that other nations, like
UK, Germany, Ireland, and Russia have avoided this linkability
attack in their implementation of the BAC protocol.

In the next section we briefly describe the applied pi-
calculus. Our main definitions of strong and weak unlinkability
are defined in Section III. The following two sections give our
case study. Finally we conclude and discuss further work in
Section V.

Previous and Related Work: We have previously announced
the existence of the attack on the French passport [11], [17],
this paper is the first to present a formal analysis of the attack
we found. We suggested using the applied pi calculus to model
untraceability in a previous paper [3]. The exact forms of our
definitions and all of the theorems presented in this paper are
new.

While security, authenticity and anonymity have been

widely studied, unlinkability has received less attention. A
number of papers discuss the privacy problems raised by
RFID technologies (see for example [16], [18], [24]) but very
few precisely define what they mean by unlinkable1. Avoine
et al. in [5] were the first to give a formal definition of
unlinkability. Some other attempts to formalise unlinkability
then followed [4], [8], [19], [23]. All this work is carried
out in the computational model, which is poorly supported by
automatic tools. The advantage of our work is that it is carried
out in the symbolic setting, which (as already mentioned) is
supported by the ProVerif tool. As these two settings are very
different, it is difficult to compare our work directly.

In the symbolic world, Deursen et al. propose a formal
definition of untraceability in a particular trace model [13] and
in an algebraic model [14]. Their definition is similar to our
definition of weak unlinkability, however our model is more
general and allows us to also consider stronger definitions
of unlinkability and anonymity, while the equational theory
of the applied pi calculus lets us add arbitrary cryptographic
primitives.

Symbolic work on anonymity is more common than work
on unlinkability. For instance, Schneider and Sidiropoulos
use CSP to analyse anonymity [22] and Garcia et al. [15]
develop their own framework for proving anonymity based
on epistemic logic. In previous work, we used a definition of
anonymity in the pi-calculus to find a flaw in an anonymous
file-sharing system [10], the definition of anonymity that we
present in this paper is much more general. We have also
looked at the anonymity of voting systems in the applied pi
calculus [12].

II. THE APPLIED PI CALCULUS AND p-PARTY PROTOCOLS

The applied pi calculus [2] is a language for modelling
distributed systems and their interactions. It extends the pi cal-
culus with an equational theory, which is particularly useful for
modelling cryptographic protocols. The following subsections
describe the syntax and semantics of the calculus, equality
relations for processes and the way in which we will describe
protocols.

A. Syntax

The calculus assumes an infinite set of names N = {a, b, c,
. . .}, an infinite set of variables V = {x, y, z, . . .} and a finite
signature Σ, that is, a finite set of function symbols each with
an associated arity. We use meta-variables u, v, w to range
over both names and variables. Terms M,N, T, . . . are built
by applying function symbols to names, variables and other
terms. Tuples M1, . . . ,Ml are occasionally abbreviated M̃ .
We write {M1/u1, . . . ,Ml/ul} for substitutions that replace
u1, . . . , ul with M1, . . . ,Ml. The applied pi calculus relies on
a simple type system. Terms can be of sort Channel for channel
names or Base for the payload sent out on these channels.
Function symbols can only be applied to, and return, terms of

1The term “untraceability” is often used in other papers. While the terms
are sometimes interchangeable, we use “unlinkability” because we do not
want to imply that the targets are necessarily being physically tracked.

P, Q, R ::= processes
0 null process
P | Q parallel
!P replication
ν n.P name restriction
u(x).P message input
u〈M〉.P message output
if M = N then P else Q conditional

A, B, C ::= extended processes
P plain process
A | B parallel composition
ν n.A name restriction
ν x.A variable restriction
{M/x} active substitution

Fig. 1. Applied pi calculus grammar

sort Base. A term is ground when it does not contain variables.
The grammar for processes is shown in Figure 1 where u is
either a name or variable of channel sort.

Plain processes are standard. Extended processes introduce
active substitutions which generalise the classical let construct:
the process ν x.({M/x} | P) corresponds exactly to the
process let x = M in P . As usual names and variables have
scopes which are delimited by restrictions and by inputs. All
substitutions are assumed to be cycle-free.

The sets of free and bound names, respectively variables,
in process A are denoted by fn(A), bn(A), fv(A), bv(A). We
also write fn(M), fv(M) for the names, respectively variables,
in term M . An extended process A is closed if it has no free
variables. A context C[] is an extended process with a hole.
We obtain C[A] as the result of filling C[]’s hole with A.
An evaluation context is a context whose hole is not under a
replication, a conditional, an input, or an output.

The signature Σ is equipped with an equational theory
E, that is a finite set of equations of the form M = N .
We define =E as the smallest equivalence relation on terms,
that contains E and is closed under application of function
symbols, substitution of terms for variables and bijective
renaming of names.

B. Semantics

We now define the operational semantics of the applied pi
calculus by the means of two relations: structural equivalence
and internal reductions. Structural equivalence (≡) is the
smallest equivalence relation closed under α-conversion of
both bound names and variables and application of evaluation
contexts such that:

A | 0 ≡ A νn.0 ≡ 0
A | (B | C) ≡ (A | B) | C νu.νw.A ≡ νw.νu.A

A | B ≡ B | A A | νu.B ≡ νu.(A | B)
!P ≡ P |!P if u 6∈ fn(A) ∪ fv(A)

νx.{M/x} ≡ 0 {M/x} ≡ {N/x}
{M/x} | A ≡ {M/x} | A{M/x} if M =E N

Internal reduction (−→) is the smallest relation closed under
structural equivalence, application of evaluation contexts and
such that

COMM c〈x〉.P | c(x).Q −→ P | Q
THEN if N = N then P else Q −→ P
ELSE if L = M then P else Q −→ Q

for ground terms L, M where L 6=E M

We write ⇒ for an arbitrary (possibly zero) number of internal
reductions.

Labelled reduction (α−→) extends the internal reduction and
enables the environment to interact with the processes. The
label α is either an input, or the output of a channel name or
a variable of base type.

a(x).P
a(M)−−−→ P{M/x} a〈u〉.P a〈u〉−−−→ P

A
a〈u〉−−−→ A′ u 6= a

νu.A
νu.a〈u〉−−−−−→ A′

A
α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

A
α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅

A | B α−→ A′ | B

A ≡ B B
α−→ B′ A′ ≡ B′

A
α−→ A′

We write α⇒ for an arbitrary number of internal reductions
followed by a labelled reduction and then an arbitrary number
of internal reductions, i.e., α⇒ equals ⇒ α−→⇒.

Example 1: Assume the empty signature, and consider the
process

P , !U U , νid. !(νs. c〈hello〉)

This process P models a system with an unbounded number
of agents (!U). Each agent has a distinct identity as indicated
by νid (although the ID is not used by the agent). Each agent
executes an unbounded number of runs of the protocol (as
indicated by the “!” in the U process) and each session simply
involves outputting the message “hello” on the public channel
c. Every session is associated with a distinct session identifier
(νs), which again is not used directly by the agent. The use
of identifiers for particular agents help us keep track of who
performs which actions, as we will see in Section III.

A possible trace of the process P is:

P ≡ νid1. νid2. νs1. νs2.„
!U | !(νs. c〈hello〉) | !(νs. c〈hello〉) |
c〈hello〉 | c〈hello〉

«
νx. c〈x〉−−−−−→ νid1. νid2. νs1. νs2.„

!U | !(νs. c〈hello〉) | !(νs. c〈hello〉) |
c〈hello〉 | {hello/x}

«
νy. c〈y〉−−−−−→ νid1. νid2. νs1. νs2.`

!U | !(νs. c〈hello〉) | !(νs. c〈hello〉) | {hello/y}
´

In this trace, there are two agents with the identities id1 and
id2 and two sessions of the protocol are executed. We cannot
tell if both sessions where executed by the same agent, or if
each agent executed a single run. This is because, in the first

step, the c〈hello〉 processes could have been unwound from
either agent.

C. Equivalence Relations for Processes

In this subsection, we define our notions of equivalence
for processes. First, we say when active substitutions are the
same, then we go on to define two complementary notions of
equivalence: labelled bisimulation and trace equivalence.

A frame, denoted ϕ or ψ, is an extended process built from
0 and active substitutions {M/x}, which are composed by par-
allel composition and restriction. The frame ϕ(A) represents
the static knowledge output by a process to its environment.
The domain dom(ϕ) of a frame ϕ is the set of variables that ϕ
exports; that is, the set of variables x for which ϕ contains an
active substitution {M/x} such that x is not under restriction.
Every extended process A can be mapped to a frame ϕ(A) by
replacing every plain process in A with 0.

Two frames are considered different when there exists a pair
of variables that are equal under the substitutions of one frame
but not equal under the substitutions of the other. When it is
impossible to tell two frames apart in this way, we say that
they are statically equivalent:

Definition 1 (Static equivalence): Two closed frames φ ≡
ν m̃.σ and θ ≡ ν ñ.τ are statically equivalent, denoted ϕ ≈s

θ, if dom(ϕ) = dom(θ) and for all terms M,N such that
(m̃∪ñ)∩(fn(M)∪fn(N)) = ∅, we have Mσ =E Nσ holds if
and only if Mτ =E Nτ holds. Two closed extended processes
A,B are statically equivalent, written A ≈s B, if ϕ(A) ≈s

ϕ(B).

We now present two notions of equivalence for the applied
pi calculus. The first, trace equivalence, says that two processes
are the same when they process the same sequences of inputs
and outputs:

Definition 2 (Trace equivalence): Let

trA = A0
α1⇒ A1

α2⇒ . . .
αn−1⇒ An−1

αn⇒ An

and

trB = B0
α1⇒ B1

α2⇒ . . .
αn−1⇒ Bn−1

αn⇒ Bn

The traces trA and trB are equivalent denoted trA ∼ trB if
Ai ≈s Bi for all i.

Two processes are trace equivalent if for every trace from
each process there is an equivalent trace from the other.

Our second notion of equivalence, labelled bisimilarity,
requires that the states of the reductions can be matched,
as well as their actions. It is a stronger relation than trace
equivalence; labelled bisimulation implies trace equivalence.
However, if labelled bisimulation fails due to miss-matched
states, then it still may be the case that an outside observer
cannot tell the processes apart, as there may be no way to

detect the difference in state from outside the process. Labelled
bisimulation is however more efficient to check, in terms of
time, because a failure can be detected sooner.

Definition 3 (Labelled bisimilarity): Labelled bisimilar-
ity (≈l) is the largest symmetric relation R on closed extended
processes such that A R B implies:

1) A ≈s B;
2) if A −→ A′ then B ⇒ B′ and A′ R B′ for some B′;
3) if A α−→ A′ and fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅;

then B α⇒ B′ and A′ R B′ for some B′.

D. The Class of p-Party Protocols

In order to simplify our definitions we define standard forms
of processes and protocols.

Definition 4 (Canonical form): A process A is said to be
in canonical form if (i) names and variables never appear both
bound and free, (ii) each name and variable is bounded at most
once in A:
(i) bn(A) ∩ fn(A) = ∅ and bv(A) ∩ fv(A) = ∅

(ii) ∀C[],D[], ∀B, C, ∀u
A = C[νu.B] ∧ A = D[νu.C] ⇒ C[] = D[] ∧ B = C

Note that by α-conversion we can always transform a process
in a structurally equivalent one which is in canonical form.

Definition 5 (Well-formed Protocol): A p-party protocol
is said to be well-formed if it is a closed plain process P of
the form:

P = νñ. (!R1 | . . . | !Rp)
∀i ∈ {1, . . . , p} Ri = νid. νm̃. initi. !(νs. maini)

where (i) all channels are ground, (ii) private channels are
never sent on public channels, (iii) P is in canonical form, (iv)
initi and maini are any two processes (possibly empty) such
that P is a closed plain process, and (v) because we consider a
Dolev-Yao attacker, i.e. controlling the network, public input
channels and public output channels of P are disjoint.

For all i in {1, . . . , p}, Ri models the ith role of the
protocol and maini models a session of role Ri. A user is
an instance of a role, and we consider an unbounded number
of users (replication in front of Ris). Each user is dynamically
associated to a distinct identity (νid). A user can execute an
unbounded number of sessions of the role he takes (replication
in front of mainis). Each such session will dynamically be
associated to a distinct session identifier (νs).

It is important to note that this representation of protocols
does not limit the kinds of processes we may consider. In the
above definition either the main or the init process may be
null and the processes do not have to explicitly make use of
their identities. The roles may include a number of sub-roles,
so each user may play more than one part in the protocol.
This means that any protocol can be written as a well-formed
protocol.

Example 2: Consider an RFID system with two roles:
readers (R) and tags (T). All readers share the same private
key k corresponding to the public key pbk(k). The key-servers
(K) publish the readers’ public key pbk(k). Tags identify
themselves to readers by sending their identity id encrypted
with the readers’ public key pbk(k). For this example we con-
sider the asymmetric encryption algorithm to be deterministic.
This protocol can be modelled in the Alice and Bob notation
by

T (id, pbk(k))
{id}pbk(k)−−−−−−→ R (k, pbk(k))

and by the following closed plain process over
Σ = {aenc, adec, pbk} with the equational theory
E = {adec(aenc(x, y)) = pdk(x)}

P , νk. (!R | !T | !K)

R , νid. !(νs. in(x))

T , νid. !(νs. outT 〈aenc(id, pbk(k))〉)
K , νid. outK〈pbk(k)〉

Example 3: We consider three traces of P of Figure 2. It
is easy to see that A2 6≈s A4. Indeed, if we consider the terms
y1 and y2, then

y1φ(A2) = aenc(id1, pbk(k)) =E aenc(id1, pbk(k)) = y2φ(A2)

but

y1φ(A4) = aenc(id1, pbk(k)) 6=E aenc(id2, pbk(k)) = y2φ(A4)

We can thus conclude that tr1 6∼ tr2. On the other hand,
φ(P) = φ(A5), φ(A1) = φ(A6), and φ(A2) = φ(A7) imply
that tr1 ∼ tr3.

III. FORMALISING PRIVACY

The formal definitions of unlinkability and anonymity re-
quire us to define two complementary operations, namely the
augment and the erase operations. The need for having the
augment operation comes from the fact that the applied pi
calculus does not provide us with information on the initiator
of a transition. To express unlinkability we need to distin-
guish transitions initiated by the same users and transitions
initiated by different users. However, we cannot do so in the
trace exhibited in Example 1, for instance, because this trace
corresponds to both the case where hello is outputted by the
same user and the case when it is outputted by two different
users.

A. Augmented processes

The purpose of the augment operation is to aug-
ment/annotate protocols in such a way that the initiator
of particular actions is made explicit in the traces of the
augmented/annotated protocol. Annotations are message out-
puts f〈M〉 where f is a channel not used in the original
process. In labelled transitions, output labels for annotations
use particular annotation variables. These annotation variables
are not allowed to appear in input labels u(M), so the

tr1 = P
νy1. outT 〈y1〉−−−−−−−−−−→A1 = νidT,1 . νsT,1 . νk.0@ !R | !T | !K |

!(νs. outT 〈aenc(idT,1 , pbk(k))〉) |
{aenc(idT,1 , pbk(k))/y1}

1A
νy2. outT 〈y2〉−−−−−−−−−−→A2 = νidT,1 . νsT,1 . νsT,2 . νk.0BB@

!R | !T | !K |
!(νs. outT 〈aenc(idT,1 , pbk(k))〉) |
{aenc(idT,1 , pbk(k))/y1} |
{aenc(idT,1 , pbk(k))/y2}

1CCA
tr2 = P

νy1. outT 〈y1〉−−−−−−−−−−→A3 = νidT,1 . νsT,1 . νk.0@ !R | !T | !K |
!(νs. outT 〈aenc(idT,1 , pbk(k))〉) |
{aenc(idT,1 , pbk(k))/y1}

1A
νy2. outT 〈y2〉−−−−−−−−−−→A4 = νidT,1 . νidT,2νsT,1 . νsT,2 . νk.0BBBB@

!R | !T | !K |
!(νs. outT 〈aenc(idT,1 , pbk(k))〉) |
!(νs. outT 〈aenc(idT,2 , pbk(k))〉) |
{aenc(idT,1 , pbk(k))/y1} |
{aenc(idT,2 , pbk(k))/y2}

1CCCCA
tr3 = P

−−−−−−−−−→A5 = νidT,1 . νidR,1 . νsT,1 . νsR,1 . νk.0@ !R | !T | !K |
!(νs. outT 〈aenc(idT,1 , pbk(k))〉) |
!(νs. in(x))

1A
νy1. outT 〈y1〉−−−−−−−−−−→A6 = νidT,1 . νidR,1 .νsT,1 . νsT,2 . νsR,1 .νk.0BB@

!R | !T | !K |
!(νs. outT 〈aenc(idT,1 , pbk(k))〉) |
!(νs. in(x)) |
{aenc(idT,1 , pbk(k))/y1}

1CCA
νy2. outT 〈y2〉−−−−−−−−−−→A7 = νidT,1 . νidR,1 .νsT,1 . νsT,2 . νsT,3 . νsR,1 . νk.0BBB@

!R | !T | !K |
!(νs.(outT 〈aenc(idT,1 , pbk(k))〉) |
!(νs. in(x)) |
{aenc(idT,1 , pbk(k))/y1} |
{aenc(idT,1 , pbk(k))/y2}

1CCCA
Fig. 2. Three valid traces of P

adversary cannot learn them. (This condition is important,
since annotations are added just for checking conditions on
the initiator of some actions; an output f〈M〉 doesn’t reveal
M to the adversary). Hence, the execution of the process P
after inserting annotations f〈M〉 is the execution of P without
annotations, plus the recording of annotations using labels f〈`〉
and active substitutions {M/`}.

Definition 6 (Annotated traces): Let A be an annotated
process using the particular channel f for annotations. The
set TA is the set of traces tr such that

tr = A⇒ α1−→ β1−→⇒ A1 . . . An−1 ⇒
αn−−→ βn−−→⇒ An

where ∀i ∈ {1, . . . , n}
1) αi = ν`. f〈`〉. for some variable `;
2) (fn(βi) ∪ bn(βi)) ∩ {f} = ∅;
3) (fv(βi)∪bv(βi))∩V = ∅ where V is the set of variables

occurring in the αs, i.e. V = ∪
j∈{1,...,n}

bv(αj).

Intuitively, TA restricts the non-silent actions of traces to
alternate between an action on the channel f and an action on
some other channel. It also requires that annotation variables
do not occur in input actions, which corresponds to the fact
that the intruder cannot access those variables.

Definition 7 (Augment operation): The augment opera-
tion annotates all actions on channels in the set C with a term L
(not already used in the process), using the particular channel
f 6∈ Chan(A) as depicted in Figure 3. For an extended process
A, the augmented process is A′ = aug(A, C, f, L).

We note that we do not allow channel names to be passed,
therefore a broadcast of the label L on the channel f will be
added before every use of the channels in the set C. We also
note that the coupling between an action and the broadcast of
the label for that action is quite loose. Only when we augment
all public channels and restrict the non-silent actions of traces
to alternate between an action on the channel f and an action
on some other channel do we get a direct correspondence
between an action and its label.

Assume we have a p-Party protocol A and we augment
this process so that it broadcasts the label L on the channel
f before every use of a public channel, giving us A′. Then
for all annotated traces of A′, as formalised in Definition 6,
the erasure of that trace is equivalent to some trace of A.
In the other direction, for every trace of A there exists an
equivalent erased trace of A′. We note that this only holds
because we restrict ourselves to annotated traces, as defined
in Definition 6, and we do not allow processes to output and
input on the same public name.

We illustrate the intuition behind the augment operation in
this example:

Example 4: Returning to our running example (Exam-
ple 2), we can use the augment operation to indicate the
initiator of each action. Our purpose is to accompany the
first transition of tr1 with a message that informs us that
the initiator of this transition is a tag with identity id

T,1 and
executing session s

T,1 . In the same way we want to accompany
the second transition of this trace with a message indicating
that the initiator of this transition is the same tag id

T,1 but
executing session s

T,2 this time. To do so, we consider a
new ternary function symbol from and a constant T with no
equational theory associated with it, and we accompany each
action initiated by a tag with identity id executing session s
with the message from(T, id, s). If we use the channel cfr to
augment the process T of our running example, we obtain the
following process:

T ′ = aug(T, {in, outT , outK}, cfr, from(T, id, s))
= νid. !(νs. cfr〈from(T, id, s)〉. outT 〈aenc(id, pbk(k))〉)

In doing so, we enforce that, before each transition initiated
by a tag t, t outputs a message indicating its identity and its
current session. By restricting the set of considered traces for

aug(0, C, f, L) , 0

aug(!P, C, f, L) , !aug(P, C, f, L)

aug(if M = N then P else Q, C, f, L) , if M = N then f〈L〉.aug(P, C, f, L)
else f〈L〉.aug(Q, C, f, L)

aug(u(x).P, C, f, L) ,

f〈L〉.u(x).aug(P, C, f, L) if u ∈ C
u(x).aug(P, C, f, L) otherwise

aug(u〈M〉.P, C, f, L) ,

f〈L〉.u〈M〉.aug(P, C, f, L) if u ∈ C
u〈M〉.aug(P, C, f, L) otherwise

aug(A | B, C, f, L) , aug(A, C, f, L) | aug(B, C, f, L)

aug(νu.A, C, f, L) , νu.aug(A, C, f, L)

aug({M/x}, C, f, L) , {M/x}
Fig. 3. The augment operation

the resulting process, we force these two outputs to happen
consecutively.

Notation 1: For an annotated process A using channel f
for the annotations, we define A

(id,s,R):α
=⇒ B to mean the trace

tr ∈ TA of the form

tr = A⇒ C1
ν`.f〈`〉→ C2

α→ C3 ⇒ B,
for some C1, C2, C3 where φ(C2) ≡ νp̃.σ and `σ =
from(id, s, R), and α 6= ν`. f〈`〉 for any `.

We now introduce the complementary operation erase,
that in some cases is the inverse of the augment operation.
Informally, given a set of channels C and a set of variables V ,
applying the erase operation to a process A results in a process
A′, similar to A, but with its communications restricted to
the ones not taking place on channels in C, and its active
substitutions restricted to the ones not in V . In other words,
this operation erases the actions occurring on channels of C
as well as the active substitutions defining variables in V .

Definition 8: Let A be an extended process, C a set of
channels, and V a set of variables. From A we build the erased
process A′ = erase(A, C,V) as defined in Figure 4.

Example 5: In Example 4, the augment operation added
actions on the channel cfr to the process T to make the process
T ′. If we erase the channel cfr from the process T ′ we obtain
T again: erase(T ′, {cfr}, ∅) = T.

Proposition 1: Given a process A, a set of channels C, a
new channel f 6∈ (C ∪ Chann(A)), and a term L

erase(aug(A, C, f, L), {f}, ∅) = A

Proof: By structural induction over A.

We extend the operation erase() to traces of an annotated
process.

Definition 9: Let P be an annotated process using the
annotation channel f (not used in the original process), and
the annotation variables L (not used in the original process).

The erased trace erase(tr,L) is the same trace but with all
the actions on the channel f removed:

erase(P
ν`. f〈l〉→ tr, L) = erase(tr, L ∪ {`})

erase(P α→ tr, L) = erase(P, {f}, L) α→ erase(tr, L)
if (bn(α) ∪ fn(α)) ∩ {f} = ∅

When the set L is clear from the context, we will drop the L
and write erase(tr) for erase(tr, L); and with a slight abuse
of notion, we define erase(P) = erase(P, {f},L).

B. Formalising unlinkability

Unlinkability is informally defined by the ISO/IEC standard
15408 [1] as ensuring that a user may make multiple uses of
a service or resource without others being able to link these
uses together. In terms of the applied pi calculus, this means
that an attacker cannot tell when two transitions of a trace tr
are initiated by the same user. This will be the case if there
exists another trace tr′ of the system that looks the same to
the attacker, and in which the two corresponding observable
transitions are initiated by different users.

We consider the standard Dolev-Yao attacker that can inter-
cept and replay messages, although we allow the possibility
of private channels, which are not observable to the attacker.
We define two notions of unlinkability. For our definition of
“weak unlinkability” we consider an attack to be one in which
the attacker can directly link two particular messages as being
part of different sessions executed by the same principal. I.e.,
if an attacker can tell that a principal has used a service twice,
but not when the service was used, we do not consider this a
linkability attack. On the other hand, our definition of “strong
unlinkability” places a much higher burden on the protocol; it
requires that a system in which agents execute multiple times
always looks the same as a system in which no agent executes
more than once. Therefore, if the attacker learns anything
about users repeating sessions strong unlinkability will fail.

To give a formal definition of unlinkability, we first need
to augment the protocol we consider, in such a way that in
any trace each observable transition will be accompanied with
information on its initiator. We will then define unlinkability
in terms of conditions on the traces of the augmented protocol
(also called annotated or augmented traces hereafter).

erase(0, C,V) , 0

erase(!P, C,V) , !(erase(P, C,V))

erase(if M = N then P else Q, C,V) , if M = N then erase(P, C,V) else erase(Q, C,V)

erase(u(x).P, C,V) ,

erase(P, C,V)
u(x).erase(P, C,V)

if u ∈ C
otherwise

erase(u〈M〉.P, C,V) ,

erase(P, C,V)
u〈M〉.erase(P, C,V)

if u ∈ C
otherwise

erase(A | B, C,V) , erase(A, C,V) | erase(B, C,V)

erase(νu.A, C,V) , νu. erase(A, C,V)

erase({M/x}, C,V) ,

0
{M/x}

if x ∈ V
otherwise

Fig. 4. The restrict operation

Definition 10 (Protocol transformation P): Let Σ be a
signature and E an equational theory for this signature. Let P
be a well-formed p-party protocol over Σ of the form described
in Definition 5. Let C be the set of public channels of P
and cfr a channel not occurring in P . We now consider the
signature Σ′ = Σ]{from/3, init/0,R1/0, . . . ,Rn/0} and keep
the equational theory E. We build the protocol P over Σ′ as
follows:

P , νñ.(!R′
1 | . . . | !R′

p)

∀i ∈ {1, . . . , p} R′
i , νid. νm̃. init′i. (!νs. main′

i)

init′i , aug(initi, C, cfr, from(Ri, id, init))
main′

i , aug(maini, C, cfr, from(Ri, id, s))

In P the roles are modified as follows: each atomic action
of role R′

i (i ∈ {1, . . . , p}) is preceded by an output on the
channel cfr of a message from(Ri, id, s) that will dynamically
be instantiated to correspond to the identity of the particular
user and its current session.

Example 6: If we consider our protocol of Example 2 and
apply the transformation we have just described, we obtain the
following protocol:

P , νk. (!R′ | !T ′ | !K′)

R′ , νid. !(νs. cfr〈from(R, id, s)〉. in(x))

T ′ , νid. !(νs. cfr〈from(T, id, s)〉. outT 〈aenc(id, pbk(k))〉)
K′ , νid. cfr〈from(K, id, init)〉. outK〈pbk(k)〉

We can now give a formal definition of unlinkability in the
applied pi calculus.

Definition 11 (Unlinkability): Let P be a well-formed
protocol of the form given in Definition 5. For R ∈
{R1, . . . , Rp}, P is said to preserve R’s unlinkability if for
all traces tr ∈ TP of the form:

tr = P
(id1,s1,R1):α1

=⇒ A1 . . . An−1
(idn,sn,Rn):α1

=⇒ An

and for i, j ∈ {1, . . . , n} it holds that Ri = Rj = R and
si 6= init 6= sj , there exists a trace tr′ ∈ TP

tr′ = P
(id′1,s′1,R′

1):α1
=⇒ A′

1 . . . A′
m−1

(id′n,s′n,R′
n):αn

=⇒ A′
n

such that

• erase(tr) ∼ erase(tr′), and
• R′

i 6= R or R′
j 6= R or id′i 6= id′j or s′i = s′j .

This definition captures the following intuition: for all
observable transitions of tr (αi and αj) that are part of the
role we are interested in (R) and not part of the initial setup
phase (init), there should exist a trace that looks the same
to the attacker (erase(tr) ∼ erase(tr′)) in which the two
actions are performed by different agents (id′i 6= id′j) or they
are not the role we are interested in (R′

i 6= R or R′
j 6= R)

or the two actions in question turn out to be part of the same
session (s′i = s′j). Hence, an intruder facing a trace tr cannot
be sure that the ith and the jth observable actions are initiated
by different sessions of the same user, taking role R, because
the attacker could equally well be observing the trace tr′.

Example 7: Our running example doesn’t satisfy unlink-
ability because a tag identifies itself by sending the same,
distinct message in every session. If we consider the trace
tr1 of Example 3, any matching trace tr′1 that we might try
to find to for fill the definition of unlinkability will have to
perform the same outputs on the channel outT , in order to
be trace equivalent. If we look at the protocol’s specification
all the outputs on channel outT are initiated by tags, and of
the form aenc(id, pbk(k)) for some id distinct for each tag.
In our augmented process each observable output on channel
outT of the form aenc(id, pbk(k)) will be preceded by an
observable output on cfr of the form from(T, id, s) for some
s. Hence, in the augmented traces corresponding to tr′1 and
tr1 the two outputs on channel outT will be preceded by two
outputs on channel cfr stating that the initiator is the same
tag. Hence, this protocol does not satisfy the second condition
of the above definition of unlinkability.

Our definition of unlinkability is the direct translation from
the informal definition of the ISO/IEC standard 15408 [1] to
the applied pi calculus. However, it requires us to augment
the processes we analyse and uses trace equivalence, which
means that it does not lend itself to automated checking with
the existing applied pi-calculus tools. This definition is also

relatively weak, the attacker may still learn some linkability
information from an unlinkable protocol, e.g., if an attacker
could tell that two out of four actions where performed by
the same user, but not which two, the protocol would still
be unlinkable. To address these concerns we give a stronger
characterisation of unlinkability based on observational equiv-
alence.

Informally, a protocol preserves strong unlinkability of the
users taking the role R if each session of R looks to an outside
observer as if it has been initiated by a different user. In
other words, an ideal version of the protocol, with respect
to, unlinkability would allow users to execute role R at most
once. An outside observer should then not be able to tell the
difference between the original protocol and the ideal version
of this protocol.

Definition 12 (Strong unlinkability): Let Σ be a signa-
ture and E an equational theory for this signature, and let P be
a well-formed p-party protocol over Σ of the form described
at Definition 5. For all i ∈ {1, . . . , p}, we build the protocol
PRi over Σ as follows:

P Ri , νñ. (!R1 | . . . | !Ri−1 | !R′′
i | !Ri+1 | . . . , | !Rp)

R′′
i , νid. νm̃. initi. maini

P preserves strong unlinkability of Ri if

P ≈l PRi

In the ideal version of the protocol PRi , users can only
take the role Ri at most once, i.e., they can execute at most
one session of Ri (maini); this is enforced by removing the
replication in front of maini. The other roles of PRi (Rj with
j 6= i) are those of the original protocol P , hence allowing
users to take them an unbounded number of times.

Note that unlinkability is trivially satisfied for Ri in the ideal
protocol PRi . As each user executes at most one session of
role Ri, there are never two sessions of the same user taking
role Ri in the system that could be linked. Hence, if P ≈l P

Ri ,
P will necessarily preserve Ri’s unlinkability.

Example 8: In the ideal version of our running example we
allow tags to execute themselves at most once. Consider again
the trace tr1 of the protocol given in Example 3. If P and PT

were observationally equivalent then, there would be a trace
tr′1 of PT equivalent to tr1. However, this is not the case; in
any trace of PT all observable outputs on channel outT are
initiated by tags and of the form aenc(id, pbk(k)) for some
id. Since each tag executes itself at most once, all outputs on
channel outT of any trace of PT contain a different identity in
the place of id and hence are distinct. In other words, there is
no trace of PT with two equal observable outputs on channel
outT , and thus there is no trace of PT equivalent to tr1.

In order to support our observational-equivalence-based
definition we need to compare the two given definitions of

unlinkability. We will show that unlinkability is strictly weaker
than strong unlinkability.

Theorem 1 (Unlinkability 6⇒ Strong unlinkability): Let
P be a well-formed p-party protocol of the form described
in Definition 5, such that P preserves Ri’s unlinkability. It is
not necessarily the case that P preserves strong unlinkability
of Ri.

Proof: To prove this we show that there exists a role of
a protocol P preserving unlinkability but not strong unlinka-
bility. Consider the following protocol:

P , νcpv. (!R | !T)

R , νid. !(νs. cpv(x). cpv(y). if x = y then cpb〈beep〉)
T , νid. !(νs. cpv〈id〉)

Informally this protocol works as follows: tags (T) identify
themselves to readers (R) by sending their identity id on the
private, unobservable channel cpv . When a reader identifies
the same tag twice it may beep.

The role T preserves unlinkability. Indeed, since all the
messages output by tags, are output on the private channel
cpv , an outside observer cannot see and thus cannot link any
two messages sent by the same tag. More precisely, let tr
be a trace of P . And let’s consider tr itself for the trace tr′

in the Definition 11. The second condition of the definition of
unlinkability only concerns observable actions initiated by tags
in tr, and since messages output by tags are not observable
(they all occur on the private channel cpv), we have that tr
and tr′(= tr) satisfy the second condition. Moreover, since we
have considered tr′ = tr the first condition of this definition
trivially holds (tr′ = tr ∼ tr).

However, T doesn’t preserve strong unlinkability. While in
the real protocol the reader can beep (after seeing the same
tag twice), in the ideal version readers never beeps (as they
will never see the same id more than once).

This counter-example also shows that, in some cases, strong
unlinkability may be stronger than would be desired. Although
an outside observer can learn that a tag has identified itself to
a reader at least twice it cannot identify the actions of the tags.

Theorem 2 (Strong unlinkability ⇒ Unlinkability): Let
P be a well-formed p-party protocol of the form described at
Definition 5, and such that P preserves strong unlinkability
of the role Ri, then P also preserves unlinkability of Ri.

Proof: Due to lack of space, we only present a sketch of
the proof. Let tr1 be a trace of TP , and tr′1 = erase(tr) its
corresponding trace in Traces(P). By strong unlinkability we
know that there exists a trace tr′2 ∈ Traces(PRi) such that
tr′2 ∼ tr′1. By construction of the augmented protocol PRi

and by definition of T
P Ri

, we have that the corresponding
trace tr2 of tr′2 is such that if two messages of the form
from(Ri, id, s1) and from(Ri, id, s2) are outputted on channel
cfr, then s1 = s2. Now because each trace of PRi can be
mimicked by an equivalent trace of P , we know that there
exists a trace tr3 of P such that tr3 ∼ tr2 and such that if two

messages of the form from(Ri, id, s1) and from(Ri, id, s2)
are output on channel cfr, then s1 = s2; hence tr1 and tr3
satisfy the second condition of Definition 11. Finally since
tr2 ∈ T

P Ri
and tr3 ∼ tr2, we can conclude that tr3 ∈ TP

and erase(tr) ∼ erase(tr)(∼ erase(tr)). Thus tr1 and
tr3 also satisfy the first condition.

C. Formalising anonymity

Anonymity is informally defined by the ISO/IEC standard
15408 [1] as ensuring that a user may use a service or resource
without disclosing the user’s identity. In this sense, anonymity
is not intended to protect the subject’s identity, but rather
the link between a use of a service and the identity of the
user. In terms of the applied pi calculus, this means that an
attacker should not be able to tell when a transition of a trace
is initiated by one user or by another. This will be the case if,
for every trace, there exists another trace of the system that
looks the same to the attacker, and in which the corresponding
observable transitions are initiated by a different user.

To give a formal definition of anonymity, we need to
augment the considered protocol with information on the
initiator of each action. However we will proceed in a slightly
different way, because in order for anonymity to be broken
for a user u, the intruder needs to have known u’s identity.
Hence, to express that the role Ri preserves anonymity we
need to give the intruder access to the identity of a particular
user taking this role.

Definition 13 (Protocol Transformations PRi): Let Σ be
a signature and E an equational theory for this signature. Let P
be a well-formed p-party protocol over Σ of the form described
above in Definition 5. From P , we build the protocol PRi over
Σ as follows:

PRi , νñ. (!R1 | . . . | !Rp | Rw)

Rw , νm̃. initw. !(νs. mainw)

initw , initi{idw/id}
mainw , maini{idw/id}

where idw is a name not occurring in P .

Rw models a user with identity idw taking role Ri. This
identity idw is public. Intuitively, P will be said to preserve
anonymity of Ri if in any trace of PRi , an outside observer
cannot distinguish idw’s actions.

Definition 14 (Protocol Transformations: PRi): Let Σ
be a signature and E an equational theory for this signature.
Let P be a well-formed p-party protocol over Σ, let C be its set
of public channels, and cfr a channel not occurring in P . We
consider the signature Σ′ = Σ] {from/3, init/0,R1, . . . ,Rp}
and keep the equational theory E. We extend the · operation

to processes of the form PRi as follows:

PRi , νñ.(!R′
1 | . . . | !R′

p | R′
w)

R′
w , νm̃.init′w.!(νs. main′

w)

init′w , aug(initw, C, cfr, from(Ri, idw, init))
mainw , aug(mainw, C, cfr, from(Ri, idw, s))

where R′
j for all j ∈ {1, . . . , p} are as defined in Definition 10.

Example 9: Continuing with our running example:

PT , νk. (!R′ | !T ′ | !K′ | T ′
w)

T ′
w , !(νs. cfr〈from(T, idw, s)〉. outT 〈aenc(idw, pbk(k))〉)

with R′, T ′, and K ′ are as defined in Example 6.

Definition 15 (Anonymity): Let P be a well-formed p-
party protocol of the form described at Definition 5. Let
R ∈ {R1, . . . , Rp}, P is said to preserve R’s anonymity if
for all traces tr ∈ TPR

tr = PR
(id1,s1,R1):α1

=⇒ A1 . . . An−1
(idn,sn,Rn):α1

=⇒ An

and for all j ∈ {0, . . . , n} such that idj = idw, sj 6= init and
Rj = R there exists a trace tr′ ∈ TPR

:

tr′ = PR
(id′1,s′1,R′

1):α1
=⇒ A′

1 . . . A′
m−1

(id′n,s′n,R′
n):αn

=⇒ A′
n

such that erase(tr) ∼ erase(tr′), and id′j 6= idw.

This definition captures the following: for all observable
transitions (αj) originating from a session (s) of the user with
identity idw taking role R, there exists another trace of the
system tr′ which looks the same to the attacker (erase(tr) ∼
erase(tr′)) but in which the matching action was initiated by
some other user (id′j 6= idw). Hence, attackers faced with the
trace erase(tr) cannot be sure that it is idw initiating the jth

transition; as they could just as well be facing trace erase(tr′).

Example 10: We illustrate this definition by showing that
our running example does not preserve a tag’s anonymity.
Consider the trace tr where the intruder gets pbk(k) on outK ,
and then the tag with identity idw executes one session of the
protocol:

tr = PT

νz1. outK〈z1〉−−−−−−−−−→ A1 =
νidK . νk.„

!R | !T | !K | Tw |
{pbk(k)/z1}

«

νz2. outT 〈z2〉−−−−−−−−−→ A2 =

νidK . νsw . νk.0B@ !R | !T | !K | Tw |
!(νs. outT 〈aenc(idw, pbk(k))〉) |
{pbk(k)/z1} |
{aenc(idw, pbk(k))/z2}

1CA
Figure 5 shows the corresponding augmented trace of TPT

.
If there exists a trace tr′′ ∈ Traces(PT) such that tr ∼ tr′′,
then tr′′ must contain exactly one output on the channel outK
followed by one output on channel outT . By inspecting the

tr′ = PT

−−−−−−−−−→ νidK . νk.0B@ !R′ | !T ′ | !K′ | T ′
w |

!(crevoke(y). cgrant〈?〉) |
outK〈pbk(k)〉.

cfrom〈from(K, idK , init)〉. crevoke〈?〉

1CA
νz1. outK〈z1〉−−−−−−−−−→ νidK . νk.0B@ !R′ | !T ′ | !K′ | T ′

w |
!(crevoke(y). cgrant〈?〉) |
cfrom〈from(K, idK , init)〉. crevoke〈?〉 |
{pbk(k)/z1}

1CA
νz2. cfrom〈z2〉−−−−−−−−−−→ νidK . νk.0B@ !R′ | !T ′ | !K′ | T ′

w |
!(crevoke(y). cgrant〈?〉) |
crevoke〈?〉 |
{pbk(k)/z1} | {from(K, idK , init)/z2}

1CA
−−−−−−−−−→ νidK . νk.„

!R′ | !T ′ | !K′ | S | T ′
w |

{pbk(k)/z1} | {from(K, idK , init)/z2}

«
−−−−−−−−−→ νidK . νsw .νk.0BBB@

!R′ | !T ′ | !K′ | T ′
w |

outT 〈aenc(idw, pbk(k))〉.
cfrom〈from(Ri, idw, sw)〉. crevoke〈?〉 |

!(crevoke(y). cgrant〈?〉) |
{pbk(k)/z1} | {from(K, idK , init)/z2}

1CCCA
νz3. outT 〈z3〉−−−−−−−−−→ νidK . νsw .νk.0BBB@

!R′ | !T ′ | !K′ | T ′
w |

cfrom〈from(Ri, idw, sw)〉. crevoke〈?〉 |
!(crevoke(y). cgrant〈?〉) |
{pbk(k)/z1} | {from(K, idK , init)/z2} |
{aenc(idw, pbk(k))/z3}

1CCCA
νz4. cfrom〈z4〉−−−−−−−−−−→ νidK . νsw .νk.0BBBBB@

!R′ | !T ′ | !K′ | T ′
w |

crevoke〈?〉 |
!(crevoke(y). cgrant〈?〉) |
{pbk(k)/z1} | {from(K, idK , init)/z2} |
{aenc(idw, pbk(k))/z3} |
{from(Ri, idw, sw)/z4}

1CCCCCA
−−−−−−−−−→ νidK . νsw .νk.0B@ !R′ | !T ′ | !K′ | S | T ′

w |
{pbk(k)/z1} | {from(K, idK , init)/z2} |
{aenc(idw, pbk(k))/z3} |
{from(Ri, idw, sw)/z4}

1CA
Fig. 5. Augmented trace of Example 10

specification of the PT we know that all traces tr′′ would then
be of the form:

tr′′ = PT

⇒ νz1. outK〈z1〉−−−−−−−−−→ A′
1 ≡ νñ. (Q | {pbk(k)/z1})

⇒ νz2. outT 〈z2〉−−−−−−−−−→ A′
2 ≡ νm̃.

„
R | {pbk(k)/z1} |
{aenc(id, pbk(k))/z2}

«
If id = idw then the corresponding augmented trace will not
satisfy the second condition of Definition 15, and otherwise
tr′′ 6∼ tr because φ(A2) 6≈s φ(A′

2). Indeed, if we consider
z2 and aenc(idw, z1), these two terms are equal in the frame
φ(A2) but not in the frame φ(A′

2) if id 6= idw.

Now, for the same reasons that lead us to the stronger
definition of unlinkability, we give a stronger characterisation
of anonymity in terms of observational equivalence.

Definition 16 (Strong anonymity): Let P be a well-
formed p-party protocol of the form described at Definition 5.
P is said to preserve strong anonymity of Ri’s if

P ≈l PRi

where PRi is as defined at Definition 15.

Defined in this way, strong anonymity ensures that an
outside observer does not see the difference between the
system PRi (with user idw taking role Ri) and the original
system P (where the user idw is not present). In this case, P
is the ideal version of the protocol for user idw. Indeed, since
idw is not present in the system P , her anonymity is trivially
preserved.

Example 11: To illustrate this definition, we will show
that our protocol P of Example 2 does not preserve strong
Anonymity for tags. For this, consider the trace tr from
Example 10. If P did preserve strong anonymity of tags, there
would be a trace tr′ of P such that tr′ ∼ tr. However, all
traces tr′ of P with exactly one observable output on channel
outK followed by an observable output on channel outT are
of the form of tr′′ presented in the previous Example 10. We
are thus faced with the same situation as in Example 10, and
can mimic the same argument to conclude that there exists no
trace tr′ of P such that tr′ ∼ tr. In consequence, PT 6≈l P
and strong anonymity does not hold.

To support our observational-equivalence-based definition
we compare the two given definitions of anonymity. We show
that anonymity is strictly weaker than strong anonymity:

Theorem 3 (Anonymity 6⇒ Strong anonymity): Let P
be a well-formed p-party protocol of the form described at
Definition 5, such that P preserves Ri’s anonymity. It is not
necessarily the case that P preserves Ri’s strong anonymity.

Proof: To prove this we show that there exists a role of
a protocol P preserving anonymity but not strong anonymity.
Consider the following protocol:

P , νcpv. (!R | !T)

R , νid. !(νs. cpv(x).cpb〈x〉)
T , νid. !(νs. cpv〈id〉)

Informally this protocol works as follows: tags (T) identify
themselves to readers (R) by sending their identity id on the
private channel cpv . Readers can output the identity of tags
they have previously identified.

Tags’ anonymity is preserved by this protocol. Indeed, since
all the messages output by the tags, are outputted on the private
channel cpv , an outside observer cannot see and thus cannot
link any message sent by a tag to its identity. More precisely,

let tr be a trace of TPT
and we consider tr as the trace tr′

in the Definition 15. The second condition of the definition of
anonymity only concerns observable actions initiated by tags
in tr, and since messages output by tags are not observable
(they all occur on the private channel cpv), it is necessary
that tr and tr′ = tr satisfy the second condition. Moreover,
since we have considered tr′ = tr, the first condition of this
definition trivially holds.

However, T doesn’t preserve strong anonymity. While in PT

the readers can output idw, in P they can output any identity
except idw. Hence the traces outputting idw on cpb cannot
be mimicked by any trace of P , and since idw is public, an
outside observer can detect this. In consequence, PT 6≈l P
and strong anonymity does not hold.

Theorem 4 (Strong anonymity ⇒ Anonymity): Let P
be a well-formed p-party protocol of the form described
in Definition 5, and such that the role P preserves strong
anonymity of Ri, then P also preserves Ri’s anonymity.

Proof: Due to lack of space, we only present a sketch of
the proof. Let tr1 be a trace of TPRi

, and tr′1 = erase(tr)
its corresponding trace in Traces(PRi). By strong anonymity
we know that there exists a trace tr′2 ∈ Traces(P) such that
tr′2 ∼ tr′1. By construction of the augmented protocol P we
have that the corresponding trace tr2 of tr′2 is such that if a
message is of the form from(Ri, id, s) is output on channel
cfr, then id 6= idw. Now, because each trace of P can be
mimicked by an equivalent trace of PRi , we know that there
exists a trace tr3 of PRi such that tr3 ∼ tr2 and such that if a
messages of the form from(Ri, id, s) is output on channel cfr,
then id 6= idw; hence tr1 and tr3 satisfy the second condition
of Definition 15. Finally since tr2 ∈ TP and tr3 ∼ tr2, we
can conclude that tr3 ∈ TPRi

and erase(tr) ∼ erase(tr)(∼
erase(tr)). Thus tr1 and tr3 also satisfy the first condition
of anonymity.

D. Unlinkability vs. Anonymity

Having shown that unlinkability (resp. anonymity) is strictly
weaker than strong unlinkability (resp. strong anonymity), we
now complete the picture by comparing unlinkability (resp.
strong unlinkability) with anonymity (resp. strong anonymity).
In particular, we show that unlinkability does not imply
anonymity, contradictory to what had been suggested by other
authors [13].

Theorem 5 (Unlinkability 6⇒ Anonymity): Let P be a
well-formed p-party protocol of the form described at Defi-
nition 5, and such that P preserves (strong) unlinkability of
Ri. It is not necessarily the case that P preserves Ri’s (strong)
anonymity.

Proof: To prove this, we show that there exists a protocol
P preserving strong unlinkability (and unlinkability by The-
orem 2) of one of its roles R, but not their anonymity (nor
their strong anonymity, by Theorem 4). Consider the following

protocol:

P , νcpv. νdpv. (!T | !R)

R , νid. !(νs. cpv(x). dpv〈x〉)
T , νid. cpv〈id〉. !(νs. dpv(x). if x = id then c〈id〉)

Informally, this protocol works as follows: tags (T) register
themselves to a reader (R) through channel cpv . The readers
grant permission through channel dpv to tags that have previ-
ously registered themselves to publicly output their identity.
However, each tag gets permission to publicly output its
identity only once.

Now, let’s consider a trace of the protocol. What an intruder
observes is a sequence of distinct tag identifiers output on
channel cpb. All these outputs are distinct and are initiated by
distinct tags. Hence this protocol preserves strong unlinkability
(and hence unlinkability by Theorem 2). However, since tags
publicly output their identity (only once in their whole life),
tags’ anonymity (and tags’ strong anonymity by Theorem 4)
is not preserved by this protocol.

In consequence unlinkability does not imply anonymity.

Theorem 6 (Anonymity 6⇒ Unlinkability): Let P be a
well-formed p-party protocol of the form described in Def-
inition 5 such that P preserves (strong) anonymity of Ri.
It is not necessarily the case that P preserves Ri’s (strong)
unlinkability.

Proof: To prove this, we show that there exists a protocol
P preserving strong anonymity (and hence anonymity by
Theorem 4) of one of its roles R, but not their unlinkability
(nor their strong unlinkability, by Theorem 2). Consider the
following protocol:

P , νk. !T T , νid. !(νs. c〈senc(id, k)〉)

Informally, this protocol works as follows: tags T share a
common symmetric key k, and identify themselves by publicly
outputting their identity symmetrically encrypted with k.

It is obvious that this protocol doesn’t preserve strong un-
linkability of tags (and by Theorem 2 nor their unlinkability).
Indeed, in each session, tags identify themselves with the a
distinct message.

However, this protocol preserves strong anonymity (and
thus anonymity) since the considered intruder in this example
doesn’t control any tag and hence doesn’t know the key k.
Therefore, although it knows when two messages come from
the same tag, it can not infer the tag’s identity.

We conclude this section with the following picture that
summarises our results on anonymity and unlinkability.

Strong Unlinkability
6⇒
6⇐ Strong Anonymity

⇓ 6⇑ ⇓ 6⇑

Unlinkability
6⇒
6⇐ Anonymity

Passport Reader
(ke, km) (ke, km)

Get C←−−−−
NT ∈R {0, 1}64

NT−−−→
NR, KR ∈R {0, 1}64

E1 = {NR, NT , KR}ke

M1 = MACkm(E1)
E1,M1←−−−−

Verify Mac,Verify NT

KT ∈R {0, 1}64
E2 = {NT , NR, KT }ke

M2 = MACkm(E2)
E2,M2−−−−→

Verify Mac,Verify NR

Kseed = KT ⊕KR Kseed = KT ⊕KR

Reader ,
ck(xk). let ke = π1(xk)

in let km = π2(xk)
in c〈get challenge〉. d(nt). νnr. νkr.

let m = enc((nr, nt, kr), ke)
in c〈m, mac(m, km)〉. d(y)

MainFR ,
ck〈(ke, km)〉.
d(x). if x = get challenge

then νnt. c〈nt〉. d(y).
let me = π1(y)
in let mm = π2(y)

in if mm = mac(me, km)
then let nr = π1(dec(me, ke))

in let nt′ = π1(π2(dec(me, ke)))
in if nt′ = nt

then νkt.
let m = enc((nt, nr, kt), ke)
in c〈(m, mac(m, km))〉

else c〈6A80〉
else c〈6300〉

SystemFR , νck. (!Reader | !νke. νkm. !MainFR)

a) In Alice & Bob notation b) In applied pi calculus

Fig. 6. The Basic Access Control Protocol

IV. CASE STUDY: THE E-PASSPORT

An e-Passport is a passport with an embedded RFID tag;
over 40 countries have, together, issued many millions of e-
Passports. The RFID tag stores the information printed on the
passport and a JPEG copy of the picture. The tags also have
the capacity to store fingerprints and iris scans, although these
are rarely used. The ICAO publishes the specification for e-
Passports [21] and each nation has implemented their own
version. As the specification is not completely comprehensive,
each nation’s passport has subtle differences.

RFID tags use a unique identifier (UID) to establish a
communication channel. The French passport randomises its
UID for each new session. Read access to the data on the
passport is protected by the Basic Access Control (BAC)
protocol. This protocol produces a session key by using
another key derived from the date of birth, date of expiry and
the passport number printed on the document. The aim of this
design is to make the passport unlinkable and to ensure that
only parties with physical access to the passport can read the
data.

BAC is a three-pass key establishment protocol, as shown in
Figure 6.a. Here {−}K denotes Triple-DES encryption with
the key K and MACK(−) denotes a cryptographic checksum
Message Authentication Code. The passport stores two keys:
ke and km. The reader derives these keys using the machine-
readable information on the passport, which has, in theory,
been scanned before the wireless communication begins. The
reader initiates the protocol by sending a challenge to the
tag and the tag replies with a random 64-bit string NT . The

reader then creates its own random nonce and some new
random key material, both 64-bits. These are encrypted, along
with the tag’s nonce and sent back to the reader. A MAC is
computed using the km key and sent along with the message,
to ensure the message is received correctly. The tag receives
this message, verifies the MAC, decrypts the message and
checks that its nonce is correct; this guarantees to the tag that
the message from the reader is not a replay of an old message.
The tag then generates its own random 64-bits of key material
and sends this back to the reader in a similar message, except
this time the order of the nonces is reversed, this stops the
reader’s message being replayed directly back to the reader.
The reader checks the MAC and its nonce, and both the tag
and the reader use the xor of the key material as the seed for
a session key, with which to encrypt the rest of the session.

The ICAO e-Passport standard [21] specifies that the pass-
port must reply with an error message to every ill formed
or incorrect message from the reader, but it does not specify
what the error message should be. To find the error messages,
we experimented with a French passport and found that it
responded to an incorrect MAC with the error code “6300”,
which means “no information given”. If the MAC was correct,
and the passport went on to find that the nonce did not
match then it responded with an error code “6A80”, meaning
“incorrect parameters”.

In Figure 6.b we give our applied pi-calculus model of
the French implementation of the BAC protocol. We used
the notation let u = M in P for the process obtained by
substituting in P all the free occurrences of the name or
variable u by the term M , i.e. for P{M/u}. The process

Intruder Passport Reader
(ke, km) (ke, km)

Get C←−−−−
NT ∈R {0, 1}64

NT−−−→
NR, KR ∈R {0, 1}64

E1 = {NR, NT , KR}ke

M1 = MACkm(E1)
E1,M1←−−−−

Verify Mac,Verify NT

KT ∈R {0, 1}64
E2 = {NT , NR, KT }ke

M2 = MACkm(E2)
E2,M2−−−−→

Verify Mac,Verify NR

Kseed = KT ⊕KR Kseed = KT ⊕KR
Get C−−−−→

N ′
T ∈R {0, 1}64

N′T←−−−

Replay of the third message
E1,M1−−−−→

Verify Mac succeeds,Verify N ′
T fails

6A80←−−−−

Fig. 7. Attack on the French implementation of BAC

SystemFR represents an arbitrary number of passports each
being read an arbitrary number of times. The tag starts off
by passing its encryption and MAC keys to the reader on a
private channel, this represents the reader generating the keys
from the machine readable information on the passport, which,
when done correctly, should not be observable by the attacker.
All following messages between the tag and the reader are
sent on the public channel c, reflecting that these messages
are sent wirelessly. In this model we are looking at just the
BAC protocol, a more comprehensive model for the e-passport
could include the transfer of data that happens after the BAC
protocol, so allowing an attacker to see if the reader has
accepted the last message from the tag.

A. Attack on the French implementation of the BAC protocol

Due to lack of space, we only give an informal description
of the unlinkability attack on the French implementation of
the BAC protocol. According to Definition 11, such an attack
consists in a trace of SystemFR with two of its observable
actions initiated by the same passport tag, but which isn’t
equivalent to any trace of SystemFR with the corresponding
observable actions not initiated by the same passport tag. The
attack trace is given in Alice & Bob notation in Figure 7, and
works as follows.

First, the protocol runs, and all the messages generated
by the passport and the reader are recorded by the intruder.
Then, in the SystemFR process, the attacker starts another
run of the protocol with the same tag. After sending the
get challenge message, the message from the reader in the
previous round is replayed to the passport. At this point the

SystemFR process broadcasts the 6A80 error code. In this trace
the 3rd message is received by the same passport tag that has
sent the error message at the 8th step. However, there is no
possible equivalent trace of SystemFR with the corresponding
two actions not initiated by the same passport tag.

This failing of unlinkability in our framework leads directly
to a real life attack on anyone carrying a French e-Passport.
To detect a particular French e-Passport the attacker must
first record the encrypted message sent to the passport by a
legitimate reader. That passport can then be distinguished from
any other passport by first sending a get challenge message
and then replaying the recorded message, if the passport
replies with a 6300 error code then we know that the MAC
check, which uses the passport’s unique MAC key failed, and
therefore it’s not the target passport. If the attacker sees the
6A80 error code, they know that the MAC check passed and
then the nonce check failed, meaning that the passport is using
the targets unique MAC key. We have tested this attack and
found that it works in practice, as well as in theory. The range
of our RFID reader was only 9cm meaning that the danger of
the attack is limited, however work by Juels et al. [20] shows
that more powerful readers can have a much greater range.

B. Thwarting the attack of the French e-passport

We also tested e-passports from the UK, Germany, Ireland
and Russia. All of these passports replied with the same error
code for a failed nonce and a failed MAC check (usually a
6300 message, never a 6A80 message). We can model these
passports by changing the error codes in Figure 6.b to both

be 6300, leading to the process SystemUK:

MainUK , let A680 = 6300 in MainFR

SystemUK , νck. (!Reader | !νke. νkm. !MainUK)

and its idealised version SystemUK’:

SystemUK′ , νck. (!Reader | !νke. νkm. MainUK)

Checking the bisimulation by hand, we find that
SystemUK ≈l SystemUK

′ holds: A repeating tag in the
SystemUK process is matched by a new tag in the idealised
SystemUK’ version of the system. As both error messages
are the same, these processes are now indistinguishable to
the attacker for all possible inputs. Therefore, SystemUK
≈l SystemUK’ and the protocol is safe since the stronger
definition of unlinkability holds.

Finding that unlinkability holds for the protocol does not
rule out faults introduced by the implementation. Many authors
have written about implementational flaws in e-Passports;
problems include low entropy keys, the inability to revoke
access, the ability to detect the country that issued the passport,
and time-based linkability attacks. We give more details on
these in a previous paper [11].

V. CONCLUSION

We have presented an analysis framework for unlinkability
and anonymity. Our use of the applied pi-calculus as the basis
for this framework has made our definitions precise and our
analysis of these definitions rigorous. We defined weak and
strong versions of unlinkability and anonymity and shown that
anonymity and unlinkability are independent properties. The
strong versions hold if a system is bisimilar to an idealised
version of itself, and are easy to check automatically. The weak
versions are harder to check but a failure of the weak versions
implies a practical attack against the system. We show that
our strong definitions imply the weak versions. This means
that when checking a system we can try to check the strong
definitions first, and if they fail we can go on to use the weak
definitions to look for attacks.

As with any framework, the true test of our definitions is
how useful they are when it comes to analysing real systems.
We demonstrate the utility of our framework with case study
on the French e-passport. In the course of this work we found
a new linkability attack that makes it possible to detect the
presence of a particular French e-Passport.

For further work, we intend to use our framework to analyse
a range of devices and look for new linkability attacks, we also
speculate that it is possible to define “anonymity with a single
failure” and show that unlinkability implies at most one failure
of anonymity.

ACKNOWLEDGEMENT

This work has been partially supported by the EPSRC
project Verifying Interoperability Requirements in Pervasive
Systems (EP/F033540/1).

REFERENCES

[1] ISO 15408-2: Common Criteria for Information Technology Security
Evaluation - Part 2: Security functional components. Final draft,
ISO/IEC, July 2009.

[2] Martı́n Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. SIGPLAN Not., 36(3):104–115, 2001.

[3] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Untrace-
ability in the applied pi-calculus. In RISC09: Proceedings the 1st
International Workshop on RFID Security and Cryptography. IEEE,
2009.

[4] Gildas Avoine. Cryptography in Radio Frequency Identification and
Fair Exchange Protocols. PhD thesis, EPFL, Lausanne, Switzerland,
December 2005.

[5] Gildas Avoine, Etienne Dysli, and Philippe Oechslin. Reducing time
complexity in RFID systems. In Bart Preneel and Stafford Tavares,
editors, Selected Areas in Cryptography – SAC 2005, volume 3897 of
Lecture Notes in Computer Science, pages 291–306, Kingston, Canada,
August 2005.

[6] Michael Barbaro and Tom Zeller Jr. A face is exposed for aol searcher
no. 4417749. The New York Times, August 9, 2006.

[7] Bruno Blanchet. An efficient cryptographic protocol verifier based on
prolog rules. In CSFW ’01: Proceedings of the 14th IEEE workshop on
Computer Security Foundations, page 82, Washington, DC, USA, 2001.
IEEE Computer Society.

[8] Mike Burmester, Tri van Le, and Breno de Medeiros. Provably Secure
Ubiquitous Systems: Universally Composable RFID Authentication Pro-
tocols. In Conference on Security and Privacy for Emerging Areas in
Communication Networks – SecureComm, Baltimore, Maryland, USA,
August-September 2006. IEEE.

[9] Christopher Caldwell. A pass on privacy? The New York Times, July
17, 2005.

[10] Tom Chothia. Analysing the MUTE anonymous file-sharing system
using the pi-calculus. In FORTE, volume 4229 of LNCS, pages 115–
130. Springer, 2006.

[11] Tom Chothia and Vitaliy Smirnov. A traceability attack against e-
passports. In FC10: Proceedings of the 14th International Conference
on Financial Cryptography and Data Security 2010. LNCS, Springer-
Verlag, 2010.

[12] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-
type properties of electronic voting protocols. Journal of Computer
Security, 2009.

[13] Ton van Deursen, Sjouke Mauw, and Saša Radomirović. Untraceability
of RFID protocols. In Information Security Theory and Practices. Smart
Devices, Convergence and Next Generation Networks, volume 5019.
5019 of Lecture Notes in Computer Science, page 115. Springer, 2008.

[14] Ton van Deursen and Saša Radomirović. Algebraic attacks on rfid
protocols. In WISTP ’09: Proceedings of the 3rd IFIP WG 11.2
International Workshop on Information Security Theory and Practice.
Smart Devices, Pervasive Systems, and Ubiquitous Networks, pages 38–
51. Springer-Verlag, 2009.

[15] Flavio D. Garcia, Ichiro Hasuo, Wolter Pieters, and Peter van Rossum.
Provable anonymity. In Proceedings of the 3rd ACM Workshop on
Formal Methods in Security Engineering (FMSE05), Alexandria, VA,
USA, November 2005.

[16] Simson L. Garfinkel, Ari Juels, and Ravi Pappu. RFID privacy: An
overview of problems and proposed solutions. IEEE Security and
Privacy, 3(3):34–43, 2005.

[17] Dan Goodin. Defects in e-passports allow real-time tracking. The
Register, 26th January 2010.

[18] Ari Juels. RFID security and privacy: a research survey. IEEE Journal
on Selected Areas in Communications, 24(2):381–394, 2006.

[19] Ari Juels and Stephen A. Weis. Defining strong privacy for RFID. In
PERCOMW ’07: Proceedings of the Fifth IEEE International Confer-
ence on Pervasive Computing and Communications Workshops, pages
342–347, Washington, DC, USA, 2007. IEEE Computer Society.

[20] Karl Koscher, Ari Juels, Vjekoslav Brajkovic, and Tadayoshi Kohno.
Epc rfid tag security weaknesses and defenses: passport cards, enhanced
drivers licenses, and beyond. In ACM Conference on Computer and
Communications Security, pages 33–42, 2009.

[21] PKI Task Force. PKI for machine readable travel documents offering
icc read-only access. Technical report, International Civil Aviation
Organization, 2004.

[22] Steve Schneider and Abraham Sidiropoulos. Csp and anonymity. In In
European Symposium on Research in Computer Security, pages 198–
218. Springer-Verlag, 1996.

[23] Serge Vaudenay. On privacy models for RFID. In Advances in
Cryptology ASIACRYPT 2007, pages 68–87, 2007.

[24] Stephen A. Weis, Sanjay E. Sarma, Ronald L. Rivest, and Daniel W.
Engels. Security and privacy aspects of low-cost radio. In Hutter, D.,
Müller, G., Stephan, W., Ullman, M., eds.: International Conference on
Security in Pervasive Computing - SPC 2003, volume 2802 of LNCS,
Boppard, Germany, pages 454–469. Springer-Verlag, march 2003.

