
Towards a Verified Reference Implementation
of a Trusted Platform Module

Aybek Mukhamedov1,2, Andrew D. Gordon1, and Mark Ryan2

1 Microsoft Research
2 University of Birmingham

Abstract. We develop a reference implementation for a fragment of the
API for a Trusted Platform Module. Our code is written in a functional
language, suitable for verification with various tools, but is automatically
translated to a subset of C, suitable for interoperability testing with pro-
duction code, and for inclusion in a specification or standard for the
API. One version of our code corresponds to the widely deployed TPM
1.2 specification, and is vulnerable to a recently discovered dictionary
attack; verification of secrecy properties of this version fails producing
an attack trace and highlights an ambiguity in the specification that
has security implications. Another version of our code corresponds to a
suggested amendment to the TPM 1.2 specification; verification of this
version succeeds. From this case study we conclude that recent advances
in tools for verifying implementation code for cryptographic APIs are
reaching the point where it is viable to develop verified reference imple-
mentations. Moreover, the published code can be in a widely understood
language like C, rather than one of the specialist formalisms aimed at
modelling cryptographic protocols.

1 Introduction

The Trusted Platform Module (TPM) is designed to enable trustworthy com-
putation and communication over open networks by realizing robust platform
integrity measurement and reporting, secure platform attestation, secure stor-
age and other security mechanisms. TPM is part of the Trusted Computing
Base and interacts with applications via a pre-defined set of commands (an
API). To guarantee its reliability it is important that the TPM commands are
defined unambiguously and do not give rise to subtle interactions and function-
ality unforeseen by its designers. Design failures can lead to expensive recalls of
computers and costly replacements of the embedded TPMs.

Since the TPM 1.2 specification defines more than 90 commands (and the
next version is expected to have even more functionality), it is not feasible to
reliably check the API for the absence of such issues by manual inspection alone.
Indeed, several security vulnerabilities have already been identified in the liter-
ature [12, 18, 19, 13]. The API’s security analysis needs to be automated with
computer-aided verification techniques. Formal methods from the security pro-
tocols verification domain appear appropriate.

The underlying motivation for employing formal security protocols analysis
methods is that security APIs such as that of the TPM can be seen as two-party
protocols between a user and the security module. The aim of the attacker is to
compose a sequence of messages that breaks the expected security property (e.g.
divulges a secret data stored in the module). However, analysis of security APIs is
different from that of standard protocols, as security modules maintain mutable
states across sessions and may exhibit subtle interactions via error messages and
conditions.

We have developed a reference implementation for the TPM’s authorization
and encrypted transport session protocols in the F# programming language [21].
Our implementation is based on data structures and command instructions taken
from the specification of the TPM commands [22]. We subsequently performed
formal verification of the protocols using the verification toolchain fs2pv [8] and
ProVerif [9], for the secrecy of weak authorization data (authdata). The analysis
captured the weak authdata attacks on the authorization protocols recently un-
covered by Chen and Ryan [13] and highlighted an ambiguity in the specification
of the encrypted transport session protocol that has security implications. Our
analysis also pointed us towards a simple amendment to the encrypted transport
session protocol that allows it to protect authorization protocols against weak
authdata attacks. Lastly, we have implemented a translator that converts TPM
commands and data structure specification written in an F# fragment into ex-
ecutable C code. We have coded up a sample TPM client in C++ in order to
demonstrate executability of the generated C specification.

Our contributions. In summary, the contributions of this work are:

– A reference implementation of the TPM’s authorization and encrypted trans-
port session protocols in the F# programming language.

– A formal analysis of the implementation code with the fs2pv/ProVerif
toolchain against weak authdata secret attacks, that captures a known at-
tack[13], highlights an ambiguity in the specification document[22], and proves
correctness of our proposed amendment.

– A translator f2c that generates executable C code from an implementation
written in a functional fragment of F#.

Related work. The research into API security analysis has been instigated by
Bond et al. [11, 10], who thoroughly examined interfaces of several security de-
vices, including IBM’s 4758 hardware security module (HSM) and uncovered
many pernicious attacks. Although fruitful, the analysis was ad hoc and con-
sisted only of manual API inspection. Such an approach clearly can neither
guarantee that all attacks are discovered nor prove the absence of them. A sim-
ilar study by Berkman et al. [5] uncovered PIN derivation attacks on financial
PIN processing APIs.

Subsequently, a joint MIT/Cambridge research group attempted to perform a
formal analysis of 4758 API with general purpose verification tools: the theorem
prover Otter [20] and the model checker Failures-Divergence Refinement (FDR)

[17]. They were able to uncover some unknown attacks with Otter (with human
guidance) [19], but analysis with FDR did not prove to be so fruitful.

In another approach Steel et al. [14] performed a formal analysis of the re-
vised IBM 4758 HSM with a model checker CL-AtSe from the AVISPA tool set
[1]. They found a weakness in a symmetric key importing operation, and proved
correctness of other revisions. The authors also proposed a class of protocols
that includes the IBM HSM API, in which they showed secrecy to be decidable
for an unbounded number of sessions, and developed an ad hoc decision proce-
dure that can perform such analysis. More recently, Steel et al. [15] using the
NuSMV model checker to perform the first verification of the PKCS#11 API to
account for mutable states, albeit with a bounded number of nonces and other
restrictions.

Contents of this Paper. Section 2 gives an overview of the TPM architecture, its
authorisation mechanisms, a recent vulnerability (due to Chen and Ryan [13])
that we use as motivation for this work, and a brief overview of the fs2pv frame-
work we use in our formal analysis. Section 3 explains our reference implementa-
tion of a fragment of the TPM API, its formal analysis and C code generation.
Our verification tools confirm the Chen/Ryan vulnerability, and verify a poten-
tial amendment to the API. Section 4 concludes and sketches some potential
future work.

2 Background

2.1 TPM overview

The Trusted Platform Module (TPM) specification is an international standard
coordinated by the Trusted Computing Group (TCG), for realizing the Trusted
Platform in commodity hardware [22, 3, 4]. TPMs are chips that aim to enable
computers to achieve greater levels of security than is possible in software alone.
There are over 100 million TPMs currently in existence, mostly in high-end
laptops. Application software such as Microsoft BitLocker and HP ProtectTools
use the TPM in order to guarantee security properties.

The Trusted Platform provides three features: protected storage, platform
integrity measurement and integrity reporting. Security guarantees that these
features provide rely on three components that implement critical operations of
the trusted platform. They are called roots of trust and they must be trusted
to function correctly: Root of Trust for Measurement (RTM), Root of Trust for
Reporting (RTR) and Root of Trust for Storage (RTS). In the current imple-
mentations, the TPM acts as RTR and RTS.

Authorization. TPM objects that do not allow “public” access have authori-
sation data, authdata for short, associated with them (such objects include TPM
keys, encrypted blobs and owner privileged commands). Authdata is a 20 byte

secret that may be thought of as a password required to access such TPM ob-
jects. A process requesting access needs to demonstrate that it knows the relevant
authdata. This is realized via authorization protocols, where a TPM command
is accompanied with an hmac [2] keyed on the authdata or on a shared secret
derived from the authdata. When a new object is created the client chooses its
authdata, which ideally should be a high-entropy value.

The TPM provides two kinds of authorisation protocols, called object inde-
pendent authorisation protocol (OIAP) and object specific authorisation protocol
(OSAP). OIAP allows multiple objects to be used within the same session, but
it does not allow commands that introduce new authdata, and it does not allow
authdata for an object to be cached for use over several commands. An OSAP
session is restricted to a single object, but it does allow new authdata to be
introduced and it creates a session secret to securely cache authorisation over
several commands. Figures 1 and 2 below demonstrate sample message flows in
OIAP and OSAP executions with TPM OwnerClear command, which resets the
TPM to un-initialized and un-owned state and clears its internal secret values
(ownerAuth, tpmProof, SRK, etc.).

!"#$%&'"!"#$%$&'($))$*'+',-./0$))$1+2.3'4$

!"#$%()*+,-*.+!"#$%$$&'($))$*'+',-./0$))$1+2.3'4$))$'5&67'3240$))$31380922$))$813&.350:5&6-0;;.13$))$.3:5&6$

!"#$%&'"!9<=$%$&'($))$*'+',-./0$))$+0&5+3>120$))$'5&67'3240$))$31380?@03$

!"#$%()*+,-*.+!9<=%$$&'($))$*'+',-./0$))$+0&5+3>120$))$31380?@03A$))$813&.350:5&6-0;;.13$))$+0;:5&6B$

$.3:5&6$C$6,'8;6'D$'5&6E'&'$F8138'&D$))$8138'&GB$
$$H.&6$
$$$$$$$$$8138'&DC$;6'DF1+2.3'4B$
$$$$$$$$$8138'&GC$31380?@03$))31380922))$813&.350:5&6-0;;.13$

$+0;:5&6C6,'8;6'D$'5&6E'&'$F8138'&D$))$8138'&GB$
$$H.&6$
$$$$$$$$$8138'&DC;6'DF+0&5+3>120$))$1+2.3'4B$
$$$$$$$$$8138'&GC$31380?@03I$))31380922))$813&.350:5&6-0;;.13$

$
>4.03&$

Fig. 1. TPM OwnerClear executed in a session initiated using Object Independent
Authorisation Protocol (OIAP).

!
"#$%&'!

!"#$%&'"()*!+!!',-!..!/,0,12$3%!..!405$&,#!..!%&'$'676/%!..!%&'$'68,#9%!..!&4&:%;55;2<=>!

!"#$%()*+,-*.+()*!+!',-!..!/,0,12$3%!..!405$&,#!..!,9'?@,&5#%!..!&4&:%;55!..!!:4&'$&9%<9'?2%AA$4&!..!$&<9'?!

!"#$%&'"(;B7!+!',-!..!/,0,12$3%!..!0%'90&"45%!..!,9'?@,&5#%!..!&4&:%CD%&!..!&4&:%CD%&;2<=!

!"#$%()*+,-*.+(;B7!+!!',-!..!/,0,12$3%!..!0%'90&"45%!..!&4&:%CD%&E!..!:4&'$&9%<9'?2%AA$4&!..!0%A<9'?!

!$&<9'?!F!?1,:A?,G!A?,0%52%:0%'!H:4&:,'G!..!:4&:,'I>!
!!J$'?!!A?,0%52%:0%'!F!?1,:A?,G!,9'?K,',!H&4&:%;55;2<=!..!&4&:%CD%&;2<=>!
!!!!!!!!!!!:4&:,'GF!A?,GH405$&,#>!
!!!!!!!!!!!:4&:,'IF!&4&:%CD%&!..!&4&:%;55!..!:4&'$&9%<9'?2%AA$4&!

!0%A<9'?F?1,:A?,G!A?,0%52%:0%'!H:4&:,'G!..!:4&:,'I>!
!!J$'?!!A?,0%52%:0%'!F!?1,:A?,G!,9'?K,',!H&4&:%;55;2<=!..!&4&:%CD%&;2<=>!
!!!!!!!!!!!!:4&:,'GFA?,GH0%'90&"45%!..!405$&,#>!
!!!!!!!!!!!!:4&:,'IF!&4&:%CD%&L!..!&4&:%;55!..!:4&'$&9%<9'?2%AA$4&!

Fig. 2. TPM OwnerClear executed in a session initiated using Object Specific Autho-
risation Protocol (OSAP).

2.2 Weak secrecy

Weak secrets are secret values that have low entropy, such as those derived from
memorable passwords and short PIN numbers. The domain that such secrets
are chosen from can be efficiently enumerated by the attacker and therefore
protocols that make use of weak secrets need to ensure they are obfuscated with
high entropy values when sent in messages on the open network.

Guessing attacks on weak secrets can be either on-line or off-line. In the
former case, the attacker is able to interact with other agents to verify all their
guesses. On-line guessing attacks can be mitigated, for example, by limiting the
number of successive failures allowed in protocol execution. Such mechanism,
in particular, needs to be employed by the TPM as stated in the specification
documents (the details are manufacturer specific). In off-line guessing attacks,
the attacker tries to verify their guesses with the help of intercepted messages
sent between protocol participants.

In this paper we are concerned with weak secrecy analysis against off-line
attacks. Such secrecy has been defined by Blanchet, Abadi and Fournet in [9],
which informally can be stated as follows.

Definition 1 (Weak secrecy). A protocol prevents off-line guessing attacks
against the weak secret w, if after the execution of the protocol the attacker
cannot distinguish w used in the protocol from an unrelated fresh value.

Off-line weak authdata attack. A vulnerability was uncovered by Chen and
Ryan [13], which allows the attacker to recover low-entropy authdata secrets by

off-line dictionary attack on messages exchanged between a legitimate user and
the TPM. The attacker can access the messages either by tapping the TPM’s
databus, compromising the software stack that manages communication of the
user with the TPM, or in case of a remote user, by listening in on the unprotected
traffic at any point on the network. Knowledge of authdata gives the attacker
unrestricted access to the TPM object with which it is associated (for example,
knowing authdata of a signing key will allow the attacker to create digital sig-
natures on messages of its own choice based on that key, via a call to TPM Sign
command).

Chen and Ryan observed that in OIAP and OSAP sessions all high entropy
message components (nonces) are sent out in the clear, and therefore, do not ob-
fuscate the weak authdata used as an hmac key value in constructing command
authorization digests.

For OIAP sessions the attacker tries to test their guess authdata′ by attempt-
ing to reconstruct the authorization digest sent by the user to the TPM (value
inAuth in the third message in Figure 1):

HMACauthdata′(sha1(param), nonceEven, nonceOdd)

? =

HMACauthdata(sha1(param), nonceEven, nonceOdd)

where param is a concatenation of command parameters, nonceEven and nonceOdd
are rolling session nonces. All of those message components are available to the
attacker as they are sent in clear over the network.

Similarly for OSAP sessions, the attacker tries to test their guesses by re-
constructing authorization digest sent by the user to the TPM (value inAuth in
Figure 2).

2.3 Encrypted Transport Protocol

TPM supports encrypted transport protocol to allow logging and encryption
of commands using a transport session. We studied the protocol to ascertain
whether this readily available TPM facility can protect authorization sessions
against the weak authdata attacks mentioned above.

Transport sessions can intuitively be thought of as a wrapper for other com-
mands. They proceed by establishing a shared secret that is subsequently used
to authorize and encrypt relevant commands sent and received by the TPM.
The user of the transport session can execute any command within a transport
sessions, except for a command that creates another transport session.

Transport sessions are initiated with the TPM EstablishTransport com-
mand, which exchanges transport session nonces and a secret generated by the
user. The secret is used later as an hmac key to generate authorization di-
gests and as a part of the symmetric encryption key for wrapped commands.
TPM ExecuteTransport delivers a wrapped command to the TPM and its out-
put returns the result of the execution back to the user.

Transport sessions do not encrypt all components of the wrapped commands
and some commands stipulate further exceptions as to the encryption of their
parameters [22]. A schematic presentation of a transport session is given in Figure
3. DATAw in the figure denotes encryption of the components of the wrapped
command with transEncKey, and Enc{secret,pk(KTS)} stands for asymmetric
encryption of the transport session secret by the public key whose corresponding
private key is KTS .

!
"#$%&'!

!"#$%&'()*&+!,'-&./,0()*!+!!%&,-.&/#%!00!1&,23%,4%'5672KTS88!00!.9':-.&/#%!00!7%;<9':!

!"#$%123402!,'-&./,0()*!+!5,'..267865!'4.&3-.&/#%!00!'4.&3*=&,%>//!00!'4.&3<9':!

!"#$%&0'()*&+!,'&./,0(>?@!+!'4.&3-.&/#%!00!'4.&3*=&,%1A%&!00!4%3<9':!

!"#$%123402!,'-&./,0(>?@!+!!5,'..269&.5!'4.&3-.&/#%!00!'4.&3*=&,%1A%&B!00!'4.&3<9':!

!'4.&31&,C%;!D!'4.&3*=&,%1A%&!00!'4.&3*=&,%>//!00!E$&F!00!3%,4%'!

Start auth session, load secret decryption key KTS 

!'4.&31&,C%;!D!'4.&3*=&,%1A%&B!00!'4.&3*=&,%>//!00!E=9'F!00!3%,4%'!

!"#$%123402!,'-&./,0()*!+!5,'..267865!'4.&3-.&/#%!00!'4.&3*=&,%>//!00!'4.&3<9':!

!"#$%123402!,'-&./,0(>?@!+!!5,'..269&.5!'4.&3-.&/#%!00!'4.&3*=&,%1A%&B!00!'4.&3<9':!

!
<9':!
3%33$=&!
3%'96!

"=GG.&/!
%H%,9'$=&!

!

:5,'..26786::D!!@<IJ!00!K1*J!00!>LMJ!00!-<*MK1NJ!00!;<!<5!00!<?@-J!
!
:5,'..269&.::=:@<IJ!00!K1*J!00!L"J!00!-<*MK1NJ!00!;<!<5!00!<?@-J!

Fig. 3. Encrypted transport session execution.

2.4 fs2pv Verification Framework

We utilize the fs2pv toolkit developed by Bhargavan et al. [8] for the verifica-
tion of our F# implementation. fs2pv accepts programs written in a first-order
subset of F# and outputs a model that can be analyzed with the automated
theorem prover ProVerif [9].

The toolkit provides cryptographic, communication and other auxiliary li-
braries that programs need to use for cryptography, network communication,
message composition and other operations. Each operation provided by the
framework has dual concrete and symbolic implementations. Concrete libraries
are used for compilation of an executable of the protocol, whereas the symbolic

counterparts are employed in the ProVerif model extraction. In this work, we
only utilize fs2pv’s symbolic library and generate executable code with our f2c
translator.

fs2pv’s symbolic implementation of cryptographic and network operations
encodes strong black-box assumptions on cryptography, which are assumed to
be safe abstractions (in the style of Dolev and Yao [16]). To model cryptographi-
cally constructed byte arrays there is an algebraic datatype bytes equipped with
symbolic constructors and pattern-matching to represent message manipulation
and cryptographic primitives. For example, a value sym encrypt(m, k) stands
for a symmetric encryption of m with key k. An operation sym decrypt unpacks
such a value, and is defined by pattern-matching. There is no other way to obtain
partial information about m.

Two substantial case studies using fs2pv are analyses of the Information
Card [7] and TLS [6] protocols.

3 Reference Implementation and Analysis

Our F# implementation comprises four modules: TPM, TPM data structs,
TPM internal structs, and TPM command structs. These modules represent TPM
commands and data types. Client behaviour and auxiliary operations are speci-
fied in other modules. Our implementation makes use of fs2pv’s symbolic library
(Crypto, Net, Db) for cryptographic, network and state maintenance operations.
We introduced small extensions to the library to include new data types used
by the TPM.

Before embarking on verification, we first perform a symbolic execution of
the implementation by generating an executable with the F# compiler. The code
is appended with instructions that launch instances of the TPM and a client,
e.g. as follows:

do Pi.fork(fun() −> Client())
do TPM()

Symbolic execution pretty-prints messages exchanged between the parties in
the console. We found this facility of fs2pv invaluable in debugging the im-
plementation code, as well as making sure that the formal verification is not
carried out on vacuous models (that is, models that are trivially secure because
no messages are accepted).

3.1 Formal analysis

We use the fs2pv/ProVerif toolchain to verify our reference implementation
for authorization protocols OIAP and OSAP, and for the encrypted transport
session protocol.

In our threat model, we assume there is an active attacker on the network
between the client and the TPM that can intercept, manipulate and inject new

messages constrained by the perfect cryptography assumption [16]. fs2pv frame-
work formalizes the attacker as an arbitrary program that is able to call interfaces
defined by our implementation code and the symbolic libraries.

The TPM and a client maintain state during authorization and transport
sessions protocols, which stores latest session nonces, shared secrets, handles
and other information. In our implementation of authorization sessions we have
used databases from fs2pv’s Db module to store the state data, which fs2pv
translates into message passing over private channels.

The underlying verification engine ProVerif, however, encountered difficulties
verifying and reconstructing attack traces for larger models that make use of
private channels, so we had to tweak our handling of state information and
the client code. In the encrypted transport session protocols, instead of using
Db, we have extended the datatype bytes with private data constructors TSD
and CSD to store the session state. In this approximation, the state data is
wrapped with these constructors that the attacker cannot deconstruct and the
state is output into and read in from the open network. This allowed ProVerif to
reconstruct non-trivial attack traces. The verification of the corrected version of
the encrypted transport session protocols, however, still did not succeed causing
ProVerif to run out of memory (2GB) due to the amount of state information. We
further approximated our model by allowing the attacker to access the client’s
state information, removing some of the client’s integrity checks, and allowing
transport session nonce generation function used by the TPM to produce free
names instead of fresh ones (this is akin to having a faulty random number
generator that produces known values). This allowed us to prove correctness
of the fixed version of the encrypted transport session protocol, which implies
correctness of the fix without such approximations.

We have expressed secrecy of weak authdata in the following form, so that
the name used for authdata in the query file and the source code is propagated
into ProVerif script generated by fs2pv:
(∗∗∗ Declaration in an implementation file ∗∗∗)
let ownerAuthData = Pi.name "broccoli"
let fOwnerAuthData = Fresh ownerAuthData

(∗∗∗ Query file ∗∗∗)
weaksecret ownerAuthData.

(∗∗∗ Resulting declaration in the ProVerif script generated by fs2pv ∗∗∗)
private free ownerAuthData.
...
weaksecret ownerAuthData.

Authorization sessions. Our verification of authorization protocols (OSAP
and OIAP) found Chen and Ryan’s attacks on the secrecy of weak authdata and
produced attack traces.

Encrypted Transport Sessions. We have written a concrete F# implementa-
tion of the transport session protocol with the aim of formally verifying whether
it can protect authorization sessions OIAP and OSAP against weak authdata

attacks. The analysis highlighted an ambiguity in TPM ExecuteTransport com-
mand’s specification that had security implications in our analysis.

The specification of TPM ExecuteTransport command states that for au-
thorization session initiation commands TPM OSAP, TPM OIAP no parameters are
encrypted in the request sent from the client, but it does not specify any caveats
for the output sent back to the client. Therefore, following the specification of the
command, the responses of TPM OSAP and TPM OIAP are sent back in encrypted
form. Our analysis showed that in this case weak authdata leak is prevented for
OSAP sessions, but not for OIAP sessions. Intuitively, OIAP sessions are not
protected, since each command executed within OIAP produces an hmac digest
keyed on authdata, and all other data included in the digest are sent out in clear.

The specification of TPM OIAP and TPM OSAP commands, however, stipulates
that no input or output parameters are encrypted when wrapped in a transport
session. In this case, clearly wrapping OSAP sessions with encrypted transport
protocol does not stop weak authdata leaks.

Our verification highlighted the following simple amendments to the en-
crypted transport protocol that will protect the weak authdata:

– for the wrapped OSAP session, encrypt nonceEvenOSAP sent to the client
in the response of TPM OSAP command;

– for the wrapped OIAP session, encrypt the rolling nonceEven in each response
of a command executed in the session.

These amendments correspond to including nonces in the DATAw compo-
nent in Figure 3, instead of sending them out in clear as part of AUTHw. The
verification proved correctness of these fixes.

Our analysis also revealed a potential weakness in the encrypted transport
protocol when a key of type TPM KEY LEGACY is used as an encryption key for the
transport session’s secret. If such key is not used with RSA OAEP encryption
scheme and has a weak authdata associated with it, then an attacker can ac-
quire the transport session secret by invoking the TPM UnBind command, which
decrypts the secret without checking decrypted message structure. To avoid this
weakness, a client needs to ensure that a high-entropy authdata is chosen for
the transport secret encryption key, or choose a key that is either a storage key
(TPM KEY STORAGE) or is used with RSA OAEP encryption. The TPM commands
specification states that use of the key type TPM KEY LEGACY in general is not
recommended, and our finding corroborates the recommendation.

3.2 F2C: translation into an executable C specification

We have implemented a tool that generates executable C code from the TPM
implementation written in an F# fragment. It is developed on top of fs2pv’s
library that builds the AST of the F# input code. We apply the translator to
TPM, TPM data structs, TPM internal structs, TPM command structs modules
to generate executable C code for commands and data structures of the TPM.

Figure 5 below shows a sample C code generated from the corresponding F#
code in Figure 4.

let TPM OSAP (input:TPM OSAP IN) : TPM OSAP OUT =
if (input.tag osapIn = TPM TAG RQU COMMAND) then

if (input.ordinal osapIn = TPM ORD OSAP) then begin
let nonceEven : TPM NONCE = mkNonce() in
let nonceEvenOSAP : TPM NONCE = mkNonce() in
let xNonceOddOSAP : TPM NONCE = input.nonceOddOSAP osapIn in
let hmac data : BYTES = dconcatSK nonceEvenOSAP xNonceOddOSAP in
let handle : TPM AUTHHANDLE = allocHandle() in
let entityType : TPM ENTITY TYPE = input.entityType osapIn in
if (entityType=TPM ET OWNER) then begin

let pd : TPM PERMANENT DATA = loadPermData() in
let authData : TPM SECRET = pd.ownerAuth in
let tsharedSecret : TPM HMAC =

tpm hmacsha1((key authData.digest),hmac data,sizeof(hmac data)) in
let s1:TPM SESSION DATA = {

sHandle=handle;
pid=TPM PID OSAP;
nonceEven=nonceEven;
sharedSecret=tsharedSecret;
entityValue = input.entityValue osapIn

} in saveState s1;
let res : TPM OSAP OUT = {

tag osapOut = TPM TAG RSP COMMAND;
paramSize osapOut = UINT32 0;
returnCode osapOut = TPM SUCCESS;
authHandle osapOut = handle;
nonceEven osapOut = nonceEven;
nonceEvenOSAP osapOut = nonceEvenOSAP } in

setSize(res , res .paramSize osapOut); res
end else failwith (string TPM FAIL);

end else failwith (string TPM BAD ORDINAL)
else failwith (string TPM FAIL)

Fig. 4. Sample TPM command code (fTPM.fs).

TPM OSAP OUT TPM OSAP (TPM OSAP IN input) {
if (input.tag osapIn == TPM TAG RQU COMMAND) {

if (input.ordinal osapIn == TPM ORD OSAP) {
TPM NONCE nonceEven = mkNonce();
TPM NONCE nonceEvenOSAP = mkNonce();
TPM NONCE xNonceOddOSAP = input.nonceOddOSAP osapIn;
struct {TPM NONCE nonceEvenOSAP sf; TPM NONCE xNonceOddOSAP sf;}

hmac data st={nonceEvenOSAP, xNonceOddOSAP};
BYTES hmac data = (BYTE∗)& hmac data st;
TPM AUTHHANDLE handle = allocHandle();
TPM ENTITY TYPE entityType = input.entityType osapIn;
if (entityType == TPM ET OWNER) {

TPM PERMANENT DATA pd = loadPermData();
TPM SECRET authData = pd.ownerAuth;
TPM HMAC tsharedSecret = tpm hmacsha1(authData.digest,hmac data,sizeof(hmac data st));
TPM SESSION DATA s1 = {0,nonceEven,TPM PID OSAP,handle,tsharedSecret};
saveState(s1);
TPM OSAP OUT res = {handle,nonceEvenOSAP,nonceEven,0,TPM SUCCESS,TPM TAG RSP COMMAND};
res .paramSize osapOut=sizeof(res);
return res;
}
else {mkErrorReturn TPM OSAP(TPM FAIL);}
}
else {mkErrorReturn TPM OSAP(TPM BAD ORDINAL);}
}
else {mkErrorReturn TPM OSAP(TPM FAIL);}
}

Fig. 5. Generated sample C code.

LoC
F#

LoC
C

Verification of the secrecy of
weak auhdata

OIAP session 250 260 attack found
OSAP session 265 275 attack found
OIAP wrapped in an encrypted transport
session

780 660 attack found

OSAP wrapped in an encrypted transport
session

800 680 attack found if TPM OSAP command re-
sponse is not encrypted

OIAP, OSAP wrapped in the amended en-
crypted transport session

800 680 correctness proved

Table 1. Summary of the verification results.

4 Conclusion and Future Work

We have implemented concrete F# specifications for OIAP, OSAP and encrypted
transport session protocols and were able to perform their formal verification us-
ing fs2pv, as well as to generate corresponding C specification with f2c. For
authorization protocols, we have implemented a TPM client in C++ to demon-
strate executability of the generated C specification. In our formal analysis, we
have captured the weak authdata attacks on the authorization sessions and ver-
ified that our enhancements to the encrypted transport sessions thwart such
attacks.

It would be desirable to demonstrate interoperability between our reference
implementation and existing software for communicating with a TPM; this has
not yet been attempted. Another future direction is to develop our tools to the
point where they could be used to define a reference implementation for the
whole TPM or some other cryptographic token. Our results so far suggest this
goal is probably within reach with the current generation of verification tools.

Acknowledgements The research described in this paper was performed dur-
ing Aybek Mukhamedov’s internship at Microsoft Research. We thank Karthik
Bhargavan, Johannes Borgström, and Cédric Fournet for useful discussions about
this work. We also thank Paul England and David Wooten, Microsoft represen-
tatives on the Trusted Computing Group, for their support and advice.

References

1. AVISPA Tool Set. http://www.avispa-project.org/.
2. ISO/IEC 9797-2: Information technology – Security techniques – Message authen-

tication codes (MACs) – Part 2: Mechanisms using a dedicated hash-function.
3. ISO/IEC PAS DIS 11889: Information technology – Security techniques – Trusted

platform module.
4. Ross Anderson. Trusted Computing FAQ. http://www.cl.cam.ac.uk/rja14/tcpa-

faq.html, 2003.
5. O. Berkman and O. M. Ostrovsky. The unbearable lightness of pin cracking. In

Financial Cryptography and Data Security, Trinidad and Tobago, 2007.
6. K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu. Cryptographically verified

implementations for tls. In CCS’08, 2008.

7. K. Bhargavan, C. Fournet, A. D. Gordon, and N. Swamy. Verified implementations
of the Information Card federated identity-management protocol. In ASIACCS’08,
2008.

8. K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Verified interoperable imple-
mentations of security protocols. In IEEE Computer Security Foundations Work-
shop (CSFW’06), pages 139–152, 2006.

9. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming, 75(1):3–
51, 2008.

10. Mike Bond. Understanding Security APIs. PhD thesis, University of Cambridge,
2005.

11. Mike Bond and Ross Anderson. API-level attacks on embedded systems. Computer,
34(10):67–75, 2001.

12. Danilo Bruschi, Lorenzo Cavallaro, Andrea Lanzi, and Mattia Monga. Replay
attack in TCG specification and solution. In ACSAC ’05: Proceedings of the 21st
Annual Computer Security Applications Conference, pages 127–137, Washington,
DC, USA, 2005. IEEE Computer Society.

13. L. Chen and M. D. Ryan. Offline dictionary attack on TCG TPM weak authori-
sation data, and solution. In D. Grawrock, H. Reimer, A. Sadeghi, and C. Vishik,
editors, Future of Trust in Computing. Vieweg & Teubner, 2008.

14. Véronique Cortier, Gavin Keighren, and Graham Steel. Automatic analysis of the
security of xor-based key management schemes. In Orna Grumberg and Michael
Huth, editors, TACAS, volume 4424 of Lecture Notes in Computer Science, pages
538–552. Springer, 2007.

15. Stéphanie Delaune, Steve Kremer, and Graham Steel. Formal analysis of
PKCS#11. In CSF, pages 331–344. IEEE Computer Society, 2008.

16. D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, IT–29(2):198–208, 1983.

17. Michael Goldsmith. FDR2 User’s Manual version 2.82. Formal Systems (Europe)
Ltd., 2005.

18. Sigrid Gürgens, Carsten Rudolph, Dirk Scheuermann, Marion Atts, and Rainer
Plaga. Security evaluation of scenarios based on the TCG’s TPM specification. In
ESORICS, pages 438–453, 2007.

19. Amerson H. Lin. Automated Analysis of Security APIs. Master’s thesis, MIT,
2005. http://sdg.csail.mit.edu/pubs/theses/amerson-masters.pdf.

20. William McCune. OTTER 3.3 Reference Manual. Aragonne National Laboratory,
2003.

21. D. Syme, A. Granicz, and A. Cisternino. Expert F#. Apress, 2007.
22. Trusted Computing Group. TPM Specification version 1.2. Parts 1–3.

www.trustedcomputinggroup.org/specs/TPM/, 2007.

