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Abstract. Verifiable trust is a desirable property for computing plat-
forms. Current trusted computing systems developed by Trusted Com-
puting Group (TCG) provide verifiable trust by taking immutable snap-
shots of the whole set of platform components. It is, however, difficult
to use this technology directly in virtualized platforms because of com-
plexity and dynamic changes of platform components. In this paper,
we introduce a novel integrity management solution based on a small
Software-based Root of Trust for Measurement (SRTM) that provides a
trusted link to the integrity measurement chain in the TCG technology.
Our solution makes two principal contributions: The first is a key man-
agement method, by which a verifier can be convinced that the SRTM is
a trusted delegatee of a Trusted Platform Module (TPM). The second is
two integrity management services, which provides a novel dependency
relation between platform components and enables reversible changes to
measured components. This extended abstract of the paper focuses on
the key management method and shows the high level idea of these two
services. Details of the dependency relation, the reversible changes, and
the Xen implementation may be found in the full version of the paper.
Keywords. Integrity measurement and reporting, platform virtualiza-
tion, software-based root of trust for measurement

1 Introduction

Trusted Computing has been proposed as a means of providing verifiable trust
in a computing platform. The basic idea of TCG integrity measurement and
reporting solution is an integrity measurement chain refered to as the chain
of trust. The root of the chain is a Trusted Platform Module (TPM), which
maintains a number of Platform Configuration Registers (PCRs) that are the
cryptographic hash values of every component code in the chain, and then reports
the PCR values to a local or remote user (also called verifier) by using digital
signatures. By verifying the signatures the verifier obtains a trusted report of
the platform configuration.



In the past ten years virtualization has gradually become a popular technol-
ogy to achieve security and performance requirements on computing platforms.
In essence, virtualization enables simple consolidation and isolation of multiple
virtual machines (VMs) on the same platform. Virtualization has also introduced
new challenges to platform measurement and reporting systems. In particular,
such a system now needs to retain more information about the state of the
platform and keep track of complex trust dependencies between platform com-
ponents. Consider a web appliance that comprises a web server and a database
server that run on different compartments on the same physical host. The cor-
rect (i.e., expected) operation of this appliance depends on the correct operation
of each component that runs in its own isolated execution environment. To ver-
ify the expected behavior, thus, requires the integrity service to keep track of
the integrity measurements of each component including the virtualization layer
and also understand the logical trust dependency between the web server and its
database counterpart. In this paper, we refer to this logical dependency between
platform components as a hierarchical dependency.

Existing TCG solutions use the TPM as the sole repository for integrity
measurements and reporting of single systems.They take immutable snapshots
of a whole platform, which are then used as proof of trustworthiness [6, 7, 11,
21]. They do not, however, provide granular verifications of platform compo-
nents such as individual VMs and applications. Further, current solutions do
not support authorized changes to be made to measured components and deem
all such changes to be malicious [24]. This is impractical for modern comput-
ing environments, which undergo a constant bombardment of security patches
and policy changes. As a result, a new challenge is to use existing TCG
integrity measurement and reporting solutions in virtualized platforms. An in-
tegrity measurement and reporting service now needs to retain more information
about the state of the platform and keep track of complex trust dependencies
between platform components.

Our work was intended to build a new solution extensible to the present
TCG result. In this paper, we introduce a novel integrity management solution
based on a small Software-based Root of Trust for Measurement (SRTM)1 that
provides a trusted link to the TPM-based integrity measurement chain. In the
chain, the TPM records the integrity of a small number of components only, and
SRTM does the most workload in the measurement and reporting. The SRTM is
part of the platform Trusted Computing Base (TCB), and is isolated from other
components in the virtualization manner.

We summarize our contributions as follows:

1. Our solution extends the single level of the TPM measurement functionality
to the two levels, i.e., it enables the verifier to become convinced of an
integrity report provided by two integrity measurement components, TPM
and SRTM, under the condition that the verifier has an authentic copy of
the public part of TPM’s Attestation Identity Key (AIK). This is achieved
by a novel key management method.

1 Please do not confuse this with Static Root of Trust for Measurement.
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2. We propose a novel integrity management service to improve the existing
integrity management solutions. This service explicitly represents integrity
dependencies between platform components using a dependency graph and
introduces a new distinction between reversible and irreversible changes to
measured components.

The remainder of this paper is organized as follows. We provide background
on trusted computing and virtualization in the next section. Section 3 outlines
the motivation of this work and Section 4 gives an overview of our solution.
Section 5 presents a key management method. Section 6 presents two integrity
management services. In Section 7 we discuss related work, and finally in Sec-
tion 8 we draw conclusions.

2 Background

2.1 Trusted computing

Trusted Computing technology enables third parties to remotely attest and ver-
ify the configuration of a computing platform in a secure manner. The TCG
threat model addresses unauthorized subversion of platform components (soft-
ware, logs, etc.) that can potentially result in violation of system policy. Existing
trusted platforms typically contain a component that is at least logically pro-
tected from subversion (i.e. resilient to software attacks). The implicitly trusted
components of a trusted platform – in particular, the hardware Trusted Platform
Module (TPM) – can be used to store integrity measurements, and subsequently
report these to users (or remote entities) with a cryptographic guarantee of their
veracity. Users can then compare the reported measurements with known or ex-
pected values, and thereby infer whether the platform is operating as expected
(e.g. it is running the expected software with the expected configuration while
enforcing the expected policies).

A piece of code has integrity if it has not been changed in an unauthorized
manner during a defined period of time. Any change, however small, to the
code would result in a complete change in the hash value: the hash is therefore a
concise means of representing the code. The integrity of an entire platform can be
captured by starting the boot process with a core root of trust for measurement
(CRTM), which might be a BIOS boot block, for example. The CRTM loads
the next component in the boot process, measures (hashes) it, and stores that
measurement in a secure location. That component then carries out whatever
processing is necessary before loading and measuring the next component, and
chaining the measurement to the secure log. This process repeats until all trusted
components are loaded. The integrity of the whole platform can then be proved
by induction over the log of integrity measurements.

In this architecture, every computer contains a secure co-processor, known as
a Trusted Platform Module (TPM), which enables the enforcement of security
policies by controlling access to cryptographic material and primitives. It also
provides secure storage in the form of Platform Configuration Registers (PCRs),
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which may only be reset or extended. Extension is used to represent an entire
chain of trust in a single register, and we discuss this further in Section 6.1. A
secure bootloader, such as OSLO [13], is required to ensure that the initial state
of the TPM reflects the first component that is loaded. Thereafter, all subsequent
platform components, including the operating system kernel and device drivers,
can be securely loaded by the preceding component.

A further consideration is the Trusted Computing Base (TCB). This term is
used inconsistently in the literature, and we prefer the definition from Hohmuth
et al, who refer to “the set of components on which a subsystem S depends as
the TCB of S.” [10] Therefore a single platform could contain multiple TCBs,
depending on the set of applications that runs on it. In this work, we refer to the
platform TCB as the set of components on which all other platform components
depend, and the application TCB as the set of components on which a partic-
ular application depends. This distinction can be illustrated by considering the
following scenario. A web browser depends on an HTML renderer for correct
execution: therefore the renderer is in the application TCB of the browser. How-
ever (assuming a sensible implementation), the renderer could not compromise
the entire platform: therefore it is not in the platform TCB.

2.2 Machine virtualization

Virtualization makes it possible to partition the resources of a computer plat-
form – such as memory, CPU, storage, and network connections – among sev-
eral virtual machines (VMs), which provide an interface that resembles physical
hardware. A virtual machine monitor (VMM) runs beneath the VMs and is re-
sponsible for securely (and fairly) multiplexing access to the physical resources.
In addition, to preserve isolation between the VMs, the VMM executes privileged
instructions on behalf of the guest VMs. In our work, we consider an architec-
ture whereby the VMM is the only code that runs at the highest privilege level;
alternative approaches place the VMM inside a host operating system kernel [18,
23]. In particular, we consider the Xen VMM [5].

VMMs are increasingly used in the development of secure computing sys-
tems [3, 22, 4]. The typical argument for using a VMM is that the amount of
code is relatively small by comparison to a full operating system: the Xen VMM
comprises approximately 100, 000 lines of code, while a recent version of the
Linux kernel comprises approximately over 6 million lines of code. The compact-
ness of a VMM therefore makes it more trustworthy than a monolithic kernel.
It can therefore be argued that it is feasible to include a VMM inside a minimal
TCB. Note that security flaws within a VM are not solved by a standard VMM
(although specialized VMMs, such as SecVisor, do address this problem [22]).
However, the isolation properties of a VMM ensure that the compromise of one
VM cannot affect another VM. Therefore, virtualization can be used to host ap-
plications from mutually distrusting organizations on the same physical machine,
or to provide a sand-box for executing untrusted code.

Trusted virtualization extends the concepts from Trusted Computing, such
as chains of trust, into virtual machines. These can be used to attest the state
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of a VM to a third party [7], or to provide the illusion of a physical TPM to
applications running within a VM [1].

3 Motivation of this work

The typical design for a trusted platform comprises a hardware TPM and soft-
ware integrity management services. These services measure platform compo-
nents, store integrity measurements as immutable logs and attest these mea-
surements to third parties. The services use the TPM to provide a link with the
core root of trust for measurement (CRTM). In a non-virtualized platform, with
relatively few components to be measured, this model is sufficient. However, it
does not scale to complex virtualized platforms that have a plethora of dynam-
ically created components and dependencies between these components. This
model also does not consider dynamic changes to platform configurations that
may be reversible under certain conditions; all such changes are deemed mali-
cious regardless and the particular component is untrusted until it is restarted.

A traditional integrity management system in the TCG technology employs
the TPM as the sole repository for integrity measurement and reporting (see
Section 7). Such schemes are fundamentally limited by the hardware capabilities
of a TPM and the aggregate nature of the extend function:

1. A TPM contains a small, limited amount of memory (PCRs). The TCG
specification recommends that a TPM has at least 16 PCRs [24]. For porta-
bility, we cannot assume that a TPM will have any more than 16 PCRs.
Hence, it is not feasible to store individual measurements for a large number
of virtualized platform components.

2. The limited number of PCRs is typically addressed by aggregating measure-
ments in the same register. Where two components are independent this
introduces a false dependency between them.

3. The extend function of the TPM introduces an artificial dependency on the
order in which the measurements are aggregated. As a result, n platform
components will yield n! possible integrity measurements depending on the
order they are loaded.

4. It is not possible to reverse the inclusion of a measurement in a TPM register.
It is therefore, impossible for a platform component to report a non-malicious
change to its integrity and revert back to a trusted state without restarting.

To illustrate these limitations, consider the following example. A server plat-
form hosts tens of small VMs, each of which runs a particular service. To keep
track of the platform integrity on a traditional TPM-based system, the mea-
surements must be aggregated, because there are more VMs than PCRs. For
example, it might be necessary to store measurements for a virtual network
switch and a virtual storage manager in the same PCR, which creates a false
integrity dependency between these two VMs. If a malicious change is made to
the virtual network switch, and this change is reported to the appropriate PCR,
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the integrity of the storage manager also appears to be compromised. The same
applies to all other VMs whose measurements are aggregated in that PCR.

It would be possible to extend the set of PCRs by giving a virtual TPM to
each platform component [1]. However, by allocating independent virtual PCRs
to each component, it is no longer possible to represent real dependencies be-
tween components2. Further, because virtual TPMs emulate the behavior of a
hardware TPM, it remains impossible to revert changes. Software measurement
support is required to address the limitations of the above hardware capabilities.

To illustrate a reversible change, consider a Virtual Private Network (VPN)
client on a VM that refuses to connect to the Corporate VPN when it detects
another active network connection, i.e., to prevent any bridging possibility be-
tween the two. This state can be captured with a dynamic configuration file
that is measured and reported. When all other connections are terminated, the
VPN client allows the connection, thus reverting back to the ’trusted’ state. This
would be impossible in the original TCG model without restarting the VM.

4 Overview of our solution

In this paper, we propose a novel integrity management solution based on a
small Software-based Root of Trust for Measurement (SRTM). This special VM
component is part of the platform TCB, and is isolated from other software
components. Other software VM components outside the platform TCB rely on
the SRTM to store measurements on their behalf, rather than the underlying
TPM. Figure 1 illustrates the position of the SRTM within the overall integrity
measurement chain.

In the chain, the TPM measures and records the integrity of a small number
of components only, e.g. the CRTM, BIOS, Boot Loader, Virtual Machine Mon-
itor (VMM) and the SRTM, and their configuration into its PCRs. The SRTM
measures and records integrity of the remaining VM components in the plat-
form, each of which might have a virtual TPM (vTPM), and their configuration
into its Component Configuration Register (CCR). Since the SRTM is a piece
of software, there is no limitation to the number and construction of CCRs.

Regarding to how the VM components are measured and reported, our solu-
tion includes two integrity management services, one providing static measure-
ments and a flat trust dependency relation between the components and one
providing dynamic measurements and a hierarchical trust dependency relation
between them. In a flat hierarchy, the integrity of a VM depends on the under-
lying TCB only, i.e., logical relations between the VMs cannot be represented
using this model. The hierarchical model, however, can represent logical depen-
dencies between the VMs and application that live on these VMs. As an example,
the integrity of a Java application can be represented as an aggregation of the

2 Some virtual TPM designs share a fixed number of PCRs between all virtual TPMs
and the hardware TPM, and these could be used to express dependencies. However,
the reliance on the hardware TPM leads to the same limitations as a single-TPM
scheme.
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integrity of the application, the Java Virtual Machine (JVM), the VM kernel
and the TCB.

Our solution has the following design objectives:

Fig. 1. The position of the SRTM within the integrity measurement chain.

Unlimited measurement storage It allows the storage of individual integrity
measurements for an arbitrary number of components.

Explicit dependency representation It has the explicit and unambiguous
representation of an arbitrary number of dependencies between platform
components. Therefore, there is no false or artificial dependencies introduced
by aggregation.

Static integrity management It provides a superset of the functionality of a
traditional TPM, with respect to static integrity.

Dynamic integrity management It enables the integrity state of a platform
component to revert to a previous state in a controlled and verifiable man-
ner.

Limited workload of TPM It requires very few TPM resources for measuring
and reporting a complicated platform.

Minimal TCB In order to guarantee the trustworthiness of the solution, the
SRTM and other components in the TCB should have a minimal amount
of code and size of interface. This paper does not focus on minimizing the
TCB, but a possible approach would involve using disaggregation [17] or
TCB reduction techniques as described in [10].

Platform independence The solution is not limited to a single hypervisor
technology. The implementation was carried out on both Xen and an L4
microkernel [14, 15]. The Xen version is described in the full paper. It should
also be possible to use other technologies such as VMware [23].
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5 A key management method

As mentioned before, our solution extends the single level of the TPM measure-
ment functionality to two levels, i.e., it enables a verifier to become convinced of
an integrity report provided by two integrity measurement components, one by
the TPM and one by the SRTM, under the condition that the verifier believes
the TPM is trusted, and the verifier has an authentic copy of the public part of
the TPM’s Attestation Identity Key (AIK). In order to build a strong crypto-
graphic link between the TPM and the SRTM, we create an Integrity Report Key
(IRK) for the SRTM, which is bound to the AIK. In this section, we introduce
a number of ways by which to create, store and certify the SRTM IRK.

The integrity report of an arbitrary component measured and recorded by the
SRTM is a joint report by the TPM and SRTM, e.g. a signature under the AIK
and IRK. More specifically, the TPM records and reports the PCR corresponding
to the SRTM; and the SRTM records and reports the CCR corresponding to the
individual virtualised component. There are many possible ways to create such a
joint report. We recommend an easy method, which does not require any change
to the existing TPM commands. We furnish the SRTM with abilities in relation
to the CCR similar to those that the TPM has in relation to PCRs.

The SRTM IRK is an asymmetric key pair consisting of the public IRK and
private IRK. The verifier needs to be given an authentic copy of the public IRK.
Then, the core technique of this solution is how to create, certify and store such
an IRK. The difficulty is that the SRTM is a piece of software and has no natural
capability to store any key or password secretly. To achieve this, one needs to
decide:

– Which component shall create the key. There are three possible answers:
a trusted external key management entity (“M”); the TPM (“T”); or the
SRTM itself, at runtime (“S”).

– Which component shall create the certificate for the key. Here, there are two
possibilities: M and T.

– How the key will be stored. We identify five solutions, numbered 1-5 below.

We consider all the possible cases, where each case is denoted by a three
character string letter-number-letter. For example, M1T means the IRK is cre-
ated by the key management entity (M), the private key of the IRK is held using
the storage scheme “1” below, and the key is certified by the TPM (T).

Each of our solutions works by assuming a short time period from t1 to t2

(shown in Figure 1). In this period, it may be assumed that all requests to the
TPM come from the SRTM, since the only other active software component is
the trusted VMM. The period is achieved as follows.

During the boot process, a specific set of PCRs is extended until the time
t1 when the SRTM is about to be loaded. Then the SRTM is loaded and at
some time t2 during its execution, it further extends a PCR. We call the period
t1 to t2 the SRTM-proof-period. The value of the PCRs during the time period
SRTM-proof-period is called SRTM-proof-PCR.
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The IRK can be created, retrieved or certified only during this period. The
verifier can assume that during this period, there is no mistrusted entity that
can obtain the IRK. This idea is similar to the volume encryption key retrieval
mechanism employed by Microsoft BitLocker [16]. There are five storage schemes
for holding the IRK as follows:

1. S holds the private IRK. When S shuts down, it first stores the private IRK in
T. When S restarts, it retrieves the key from T during SRTM-proof-period.

2. Same as 1, but it stores the private IRK in M. When S restarts, it retrieves
the key from M during SRTM-proof-period.

3. The IRK is a TPM key on T. The key usage password (called authdata in
TCG terminology) for IRK is stored on the TPM and is retrieved by S during
SRTM-proof-period.

4. As Scheme 3, but the authdata for the IRK is instead stored on M, and
retrieved during SRTM-proof-period.

5. The private IRK is stored by M. The authdata for the IRK is stored by T,
and retrieved during SRTM-proof-period.

Note that in order to release the private IRK (as Schemes 2 and 5) or the
authdata (as Scheme 4) in the SRTM-proof-period, we require M to be available
in this period. One possible way to achieve this is that M is represented by a
trusted device, such as a smart card or a secure USB memory drive. This device
can communicate with the TPM, request the current PCR values and verify
whether it is now in the SRTM-proof-period.

This yields 30 cases, since the first letter can be M, T, S; the second number
can be 1, 2, 3, 4, 5; the final letter can be M, T. Due to the page limited, we
explain one case only and leave the other cases to the full paper.

Case M1T. M creates the IRK, and securely transmits it to S during the
SRTM-proof-period. In order to guarantee the transmission happens in the
SRTM-proof-period, M asks T to create an encryption and decryption key pair
locked to the SRTM-proof-PCR. M then encrypts the private IRK with the
TPM public encryption key and makes it available for S. S asks T to decrypt
the private IRK, which can only be done in the SRTM-proof-period, since the
decryption key is locked to the SRTM-proof-PCR. After it obtains the private
IRK, S extends the PCR to stop anyone else to get the key. Note that after the
platform is switched off, S no longer holds the private IRK. So the key must be
decrypted during every boot process. The IRK is certified under the TPM AIK
during the SRTM-proof-period; to achieve this, S asks T to make a quote with
the public part of the IRK as an external input. The result of the quote function
is a signature under the AIK of the SRTM-proof-PCR and the public IRK.

Please note that to create and certify the IRK, the trusted external key
management entity M does not have to be available on-line in the SRTM-proof-
period. The TPM public encryption key can be required in advance. Then, the
IRK can be created, certified and encrypted off-line.
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6 Two integrity management services

In this section, we introduce two integrity management services, namely Basic
Integrity Management (BIM) and Hierarchical Integrity Management (HIM).
For reasons of limited space, we only give a high level explanation for each
service and leave details of their architecture, implementation and application
examples in the full version of this paper.

6.1 Basic integrity management
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CID PID
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VM VM VM

0

00

11 22 33

Fig. 2. Simple integrity use case – a flat hierarchy.

The basic integrity service stores static integrity measurements of VM com-
ponents that are arranged in a flat hierarchy, such as the one shown in Figure 2.
Each component has a single Component Configuration Register (CCR) associ-
ated with it. A CCR is analogous to a PCR and holds integrity measurements for
that component. The main difference is that while PCRs are shared among all
the components of a platform, each component has its own CCR. The number
of CCRs is unbounded. The measurements are held together in a global CCR
table. The BIM service has the following two features: static measurements and
simple trust dependency.

Static measurements. The BIM service mimics TPM measurement capabil-
ities but stores integrity measurements in software rather than hardware. Each
registered VM component is assigned a BIM CCR to which its measurements are
reported. This is achieved by an extend operation, which stores a new measure-
ment in a CCR by hashing it together with the current value of the CCR. VM
components use this operation to report ongoing measurements when their con-
tents change. While components are free to use their CCR, they ideally should
have a policy that guarantee the integrity of the chain of trust. In particular,
as in the TCG chain of trust, the component should extend its CCR before
performing an operation that could have an impact on its future behavior. This
usualy translates into reporting any piece of software that will be executed by
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the component in its own execution environment priori to executing it. Beyond
this immediate requierement, a component is free to use its CCR to report other
type of information that it would consider sensitive. For example, a kernel would
report the loading of device driver and configuration of critical access control lists
affecting the kernel’s security. The specifics of when or how measurements are
taken is component-dependent, but the logic that performs this activity must
be trusted to report changes faithfully. This behavior is assured by the compo-
nent that does the initial measurement. In the BIM service, this can only be the
SRTM in a static (platform TCB) component.

Simple trust dependency. The BIM service implements a flat hierarchy to
capture the integrity dependencies between platform components. In this model,
the integrity of VM components solely depends on the integrity of the underlying
platform TCB. We show an example flat hierarchy in Figure 2. The components
labeled one, two, and three are VMs running directly on the trusted platform.
Component zero is the platform TCB that includes the SRTM. Each VM depends
only on the platform TCB underneath. If the integrity of the TCB (component
zero) is compromised, then the integrity of all of the VMs is compromised.
However, the VMs are independent of one another and therefore do not have
a trust dependency.

In what follows, we depict the integrity relationships between components
using a dependency graph, and represent it using a dependency table. Figure 2
shows a simple graph and its dependency table equivalent. In such a graph,
the edges indicate trust dependencies where the integrity of the component at
the origin depends on the integrity of the component at the destination. If the
integrity of the destination component is compromised, then the integrity of the
origin component is always compromised as well. However, the reverse is not
true. For example, the integrity of the child component one (VM1) depends on
the integrity of the parent component zero (TCB) but not VM2 or VM3.

The flat hierarchy arises, because a VM component can only be started by a
trusted component. Since the TCB is static and platform-wide, it is not possible
for a VM component to start – and hence become a parent of – another VM
component. Therefore the BIM cannot manage, for example, the integrity of
an application started within a VM. The BIM serves as a basis to build the
hierarchical model which addresses this limitation.

6.2 Hierarchical integrity management

To overcome the shortcomings of the BIM service, the HIM service has the
following two new features: dynamic measurements and hierarchical trust de-
pendency.

Dynamic measurements. HIM allows multiple registers and resettable regis-
ters to be assigned to a single component. Such a component is referred to as a
dynamic component (“dynamic” because its integrity state may change multiple
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times and return to a previous state, i.e one CCR might revert to its previ-
ous value). This increases flexibility and allows a component to revert back to
a trustworthy configuration if permitted by its change policy. We propose two
types of component changes, namely irreversible changes and reversible changes.

An irreversible change is stored, computed and used the same way as for the
BIM . Such a change is suitable for the integrity-critical part of the component;
that is, to the code or other data of the component that has a potential impact
on the future ability of the component to implement its intended functionality
correctly. An example of an irreversible change is a kernel loading a device driver
as the driver may make a change to kernel memory that will persist even after
it is unloaded.

A reversible change allows a component to report a previous integrity without
having to be reinitialized. Such a change is suitable for a non-critical part of the
component; that is, to code or other data of the component that has no direct
or potential impact on the component’s future security. A component still loses
its integrity if a change is made to it. However, depending on the exact nature
of the change, we may permit the component to regain integrity (and therefore
trust) by undoing the change and returning to its previous state. As an example,
consider a use case with VMA, VMB and a Firewall VM (VMFW ), where VMFW

filters traffic for VMB. Under the unexpected rule set Rα for VMFW , VMA does
not trust VMB regardless of its state. Under the expected rule set Rβ , however,
VMA trusts VMB only if its current measured state is as expected. Note that
VMFW can alternate between rules Rα and Rβ without requiring restart.

The categorization of a change as reversible or irreversible is component-
dependent and will be set by each component’s own change-type policy. For
example, a policy stating that all changes are irreversible reduces to the static
measurement model.
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(a) Multi-level dependency.
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(b) Nested components.
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(c) Disaggregated services.
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(d) Virtual TPM binding.

Fig. 3. Hierarchical integrity use cases.
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Hierarchical trust dependency. The hierarchical model can capture any
integrity dependency between platform components using a dependency graph.
We represent this relation between components as a directed acyclic graph, as
shown in Figure 3. To illustrate these more complex trust relationships, consider
the following use cases.

Figure 3(a) shows a multi-level dependency. Component one is a service that
manages the life-cycle of components two, three, and four. All components are
VMs. The latter VMs are independent of one another, as before, but their in-
tegrity depends on that of the domain manager, whose integrity in turn depends
on the TCB.

In Figure 3(b), we see a nested dependency relationship. Components one and
two are VMs, which themselves contain further VMs: component three, which is a
Java VM, and component five, which is a VMware hypervisor. These nested VMs
support guest components: component four, a Java application, and component
six, a VMware guest. Within component one, a traditional linear chain-of-trust
applies: Java application depends on Java VM depends on operating system. A
similar chain can be found within the VMware component. However, these two
chains of trust are independent of one another, and both depend ultimately on
the underlying platform TCB.

Figures 3(c) and 3(d) illustrate more complicated use cases. In Figure 3(c),
we see a multiple dependency relationship. Component five is a VM that uses
services from components one, two, and four. These components are small VMs
that provide virtual networking, virtual storage, and virtual TPM services, re-
spectively. Further, the integrity of the virtual TPM depends on the integrity of
the virtual TPM manager domain (component three).

Figure 3(d) shows a similar VM grouping example which we intend to explore
further in future work. In this example, we use miniature virtual TPM services
to assist and enhance the integrity measurement capabilities of the framework.
In this design we bind a single virtual TPM to a component (application or
VM) and delegate component measurements to this virtual TPM. The virtual
TPM then replaces the component CCRs to provide more granular run-time
measurements for the component it is attached to. The measurements for the
virtual TPM service itself is still held by its own CCRs. As an example, the
integrity of component two now depends on the integrity of component one (its
attached virtual TPM) and the run-time measurements taken by this virtual
TPM (e.g. during authenticated VM2 bootstrap). We refer to this measurement
set as M(one). The same holds for the application component five and its at-
tached virtual TPM service component four. The present HIM implementation
does not yet support virtual TPM attachment.

When a new component is loaded, it is the responsibility of its parent com-
ponent to set up its dependencies correctly before allowing the new component
to execute. Failure to do so is incorrect behavior on the part of the parent. This
is analogous to the standard TCG case in which a parent is required to measure
a new component before transferring control to it.
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At a later time, additional dependencies may also be added which were not
known to the parent at load time. Care must be taken with this functionality
as it provides a potential avenue for a denial-of-service attack. If a malicious
party can add a spurious dependency on a component that he controls, then
by altering that component he can stop the dependee from passing an integrity
check. One solution is to only allow a component and the components that it
already depends upon to modify its dependencies.

7 Related work

Berger et al. [1] implemented a virtual TPM infrastructure in which each virtual
machine is assigned its own virtual TPM that provides multiplexed access to
the underlying hardware TPM. In comparison to their solution, our work uses
a single integrity management framework that encompasses all components in
order to explicitly represent trust dependencies between them. Our framework
is complementary to virtual TPMs in that we can use virtual TPMs to gather
more granular run-time measurements for dynamic components, and can enhance
virtual TPMs by providing a binding between them and the platform TCB
through the use of the SRTM.

The basic approach of extending the chain of trust rooted in the TPM using a
software-based measurement component like the SRTM has also been described
in [12] and is the origin of the L4 implementation of our framework. We extended
the original idea with a novel key management method and support for graph-
based dependencies among measured components that can also be dynamic. In
addition to [1, 12], Gasmi et al. [8] also describes a two-level attestation scheme
that distinguishes between static and dynamic configurations.

Several systems have been previously described that use virtual machine
monitors to isolate trusted and untrusted components. Terra [7] is an architec-
ture that uses a trusted virtual machine monitor (TVMM) to bring the security
advantages of “closed box” special-purpose platforms to general-purpose com-
puting hardware. The TVMM ensures security at the VM level, isolating VMs
from one another, providing hardware memory protection, and providing cryp-
tographic mechanisms for VMs to attest their integrity to remote parties, even
providing protection from tampering by the platform owner. Another similar sys-
tem is the Microsoft’s proprietary proposed Next-Generation Secure Computing
Base (NGSCB [6]), partitioning a platform into two parts running over a VMM:
an untrusted, unmodified legacy operating system, and a trusted, high-assurance
kernel called a nexus. Our work, in comparison to both the above models, intro-
duces two practical concepts in preserving integrity: dynamic measurement of
each component and maintaining a graph-based hierarchical trust dependency
between them. Our solution performs fine-grained policy-based integrity checks
on components with less overhead, rather than an integrity check on the entire
software stack, which is bundled with its own operating system, and requiring
frequent third-party attestation.
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Recent Intel and AMD processors support dynamic root of trust for measure-
ment, which allows a root of trust for measurement of code to be established
after an insecure boot. To launch such code, software in CPU protection ring 0
(e.g., kernel-level code) invokes the SENTER instruction on Intel (or SKINIT in-
struction on AMD). As part of the SENTER/SKINIT instruction, the processor
first causes the TPM to reset the values of the dynamic PCRs 17-23 to zero, and
then transmits the secure code to the TPM so that it can be measured (hashed)
and extended into PCR 17. This architecture can be used for late launch of a
security kernel or virtual machine monitor, and in particular, the SRTM. The
SRTM and its SRTM-proof-period is still required for the secure retrieval of the
SRTM key. We also mention that the reversible CCRs we consider are more
flexible than dynamic PCRs, since the latter can be arbitrarily reset, while the
former allow finer-grained reversal policies.

Sailer et al.’s implementation of a TCG-based integrity measurement archi-
tecture [21] was one of the earliest works to demonstrate the use of a TPM to
verify the integrity of a system software stack. In [11], Jansen et al. propose
an architecture for protection, enforcement, and verification (PEV) of security
policies based on a tree structure containing integrity log data, where each node
contains the data for one component and its children contain the data for its sub-
components. PEV approaches the problem of trust flexibility and extensibility
by defining a generalized attestation protocol. A verifier sends an attestation re-
quest containing an XML descriptor that defines a projection function returning
the subset of the integrity log of interest to the verifier. Sadeghi et al. [19] extend
the TCG notion of trust in a different direction by proposing attestation that is
not based directly on hardware/software hashes but on abstract platform prop-
erties. Rather than checking a large list of permitted platform configurations,
their system checks whether or not a given platform possesses valid certificates
attesting to the desired properties. Such property certificates are issued by a
trusted third party that associates concrete configurations with the properties
they provide. Our solution differs from these in providing a more granular verifi-
cation of components such as individual virtual machines and applications within
a platform, representing dependencies among them, and managing changes to
measured components.

Other orthogonal previous work has explored distributed trust and manda-
tory access control. Griffin et al. investigated secure distributed services with
Trusted Virtual Domains [9], which are intended to offload security analysis and
enforcement onto a distributed infrastructure. Berger et al. use this abstraction
in the Trusted Virtual Datacenter (TVDc) [2], which shares hardware resources
among virtual workloads while providing isolation with a mandatory access con-
trol policy enforced by the sHype security architecture [20].

8 Conclusions

In this paper, we have introduced a novel integrity management solution that
improves on the integrity measurement and reporting capabilities of present
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Trusted Computing solutions. In essence, our solution implements a special VM
component SRTM that provides a secure link to the CRTM. Our main contri-
butions are a key management method, by which a verifier can have confidence
in the key used by the SRTM, and two integrity management services, which
are able to cope with proliferation of measured components and dependencies
between them as well as dynamic changes to platform components. Details of
the service architectures, their Xen implementation and application examples
will be given in the full version of this paper.
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