Towards Modelling and Verifying Dynamic Access Control Policies for
Web-based Collaborative Systems

Hasan Qunoo, Masoud Koleini and Mark Ryan

School of Computer Science, University of Birmingham, UK

Abstract. We propose a modelling language and verification tool, called X-Policy, for web-based collaborative
systems with dynamic access control policies. The access to resources in these systems depends on the state
of the system and its configuration. The X-Policy language expresses systems as a set of programs. Those
programs can model system operations which are executed by users. The X-Policy language allows us to specify
execution permissions on each program using complex access conditions which can depend on data values, other
permissions, and agent roles. We also discuss the challenges to design and implement the verification tool.

1 Introduction

In the recent years, there has been an ever increasing use of web-based systems for managing collaborative
work. Systems like social networking websites, conference reviewing systems, document development tools,
and application processing systems are all examples of central systems that gives users the ability to create
and control access to their data using a set of configuration and a predefined policy. Access to resources
in these systems is dynamic; it depends on the state of the system and its configuration.

For instance, large conference management systems like EasyChair[6], iChair[I], HotCRP[4] are widely
used to manage academic conferences. However, the size and the complexity of the system policy makes
it difficult to analyse its security and correctness properties. Those systems are designed to preserve the
system integrity and serve their desired purpose. Systems might not always succeed; users can circumvent
the system to gain illegitimate access usually by interactions of rules, co-operations between agents and
multi-step actions.

Example: Consider the conference paper review system EC'. It consists of a set of agents which are
program chair(s) or programme-committee (PC) members and a set of papers to be reviewed by the PC
members. The following rules apply:

1. PC chair can assign PC members to review a paper.

2. PC members can invite another user to sub-review a paper that is assigned to them. Sub-reviewers
may accept or reject the invitation.

3. Sub-reviewers send their reviews (outside the conference management system) to the reviewer.

4. Once the reviewer receives the paper review from the subreviewer, the reviewer can submit the review
to the system.

The purpose of these rules is to collect a number (usually between 3 and 4) of reviewer’s opinions of a
submitted paper. Those opinions determine whether a paper should be accepted or rejected. For these rules
to be fair, no single reviewer should be able to determine the outcome of a paper reviewing process by
writing all the three reviews of that paper. However, as we can see in the following strategy the intention
of these rules can be breached by interaction of rules to allow a single user to write all the three reviews

of the paper. Our analysis of the system only requires one agent to be acting intentionally to circumvent
the system.

Strategy:

Chair assigns three PC members, Alice, Charlie and Bob, to review the paper pl.
Alice assigns Eve as her sub-reviewer.

Bob assigns Eve as his sub-reviewer.

Charlie assigns Eve as his sub-reviewer.

Eve accepts both roles and send Alice, Charlie and Bob three similar reviews.
Alice, Charlie and Bob receive Eve’s reviews and submit it to the system.

SOt W=

As we can see in this strategy, Eve manages to write all the three paper reviews while all the agents
still comply with the system rules. This example shows how hard it is to reason about dynamic policies
because it is not enough that each rule is sound by itself. The interaction of rules in the live system can
cause an unforeseen behaviour which highlight the need to model these systems and analyse their security
properties in a formal and automated way.

In this paper, we propose a modelling and verification framework, called X-Policy, to model and verify
large web-based collaborative management systems. X-Policy framework should be able to model these
systems. The X-Policy modelling language allows users to specify systems as a set of atomic programs
which can change one or multiple variables at the same time. Program execution permissions are specified
as preconditions which the user has to satisfy to execute the program. The program execution update the
system state.

We have used X-Policy to model an existing conference management systems, EasyChair, as a case study
for our framework. X-Policy is expressive enough to model such a system operations and we report on the
result of our security properties analysis.

This paper is structured as following: related work goes in section 2. We discuss our X-Policy modelling
language in section 3. We discuss the model checking issues and challenges in section 4. Conclusion and
future work is in section 5.

2 Related Work

Mark-up Languages like eXtensible Access Control Mark-up Language (XACML)[5] has been standardised
to express access control policies. Although XACML can express access control policies, the correctness of
these policies are remained unproven. Model Checking based verification frameworks like RW[7J89] and
Margrave[3] answer this question. They have the advantages of model checking approach which has the
ability to:

— build a model M, based on the policy, which enables us to understand the policy as a whole. Any
change made to a single rule or caused by adding/deleting a rule will be reflected in M. This makes
the study of interactions of rules easier.

— explore possible consequences of multi-step actions by performing temporal reasoning.

RW and Margrave have proved successful on small sized examples. However, there is still a long way to
producing a scalable and expressive access control policy verification framework for large collaboration
systems which is guaranteed to match the high-level policies which is the aim of X-Policy.

3 X-Policy framework

3.1 Modelling and Verifying EasyChair Conference Management System using X-Policy:

EasyChair is a web-based centralised conference management system. The system is implemented as a
database back-end with a web based front end. Users are presented with a web page which contains links.
Clicking on these links executes a program, with certain parameters. The program execution may result
in an update of the database and will result in a new page being displayed.

We have built a model EC, which is based on our understanding of a fragment of EasyChair within a
single conference system which we model using X-Policy below. We specify system operations as X-Policy
programs which can be either write programs that change the state of the system or read programs that
give the user/agent the knowledge about the state of the system. Programs in X-Policy can not read and
change the state of the system at the same time. Although this is formally a restriction, most actions
in collaborative web-based systems are indeed either a read or write and rarely both. This is true for
EasyChair in particular. We believe that this is a sensible heuristic for modelling web-based systems.
Users are only enabled to perform only one operation per time.

A read program allows the user to know the value of a ground proposition by returning the value of that
proposition to the user who executed the program. A write program allows the user to assert the value of a
set of ground propositions using assignment statements in the form p(%) := T; or p(%) := L; where p(%)
is a ground proposition. We allow a proposition to occur at most once at the left of ":=". The assignment
statements within the same program can be written in any order. Such an assumption result in making
the programs effect independent from the state of the system and each program has the same effect at
all the time. A program permission statement exec(g,u) defines the conditions for an agent u to execute
a program g. These conditions are defined as propositional logic formulae using the ground propositions
and logical connectors.

In the following, we encode the example in the introduction which is a fragment of the EC policy in
X-Policy:
Program AddReview (p:Paper,a:Agent,b:Agent):—

{

Submitted—review (p,a,b) :=T;

}

exec (AddReview (p:Paper,a:Agent,b:Agent), u): ((Chair (u) or PCmember(u))
and Reviewer(p,u))

Program AddReviewerAssignment (p,a):—

{
reviewer (p,a):=T;
}
exec (AddReviewerAssignment (p:Paper,a:Agent) ,u) : (Chair(u)

and (PCmember(a) or Chair(a)));

Program RequestReviewing (p:Paper,a:Agent,b:Agent):—

{

Requested—subreviewing (p,a,b):= T;

}

exec (RequestReviewing (p: Paper ,a:Agent,b:Agent) ,u) : (Chair(u)
or (PCmember(u) and Reviewer(p,u)

or (PCmember(u) and not Reviewer(p,u))));
Program AcceptReviewingRequest (p:Paper,a:Agent,b:Agent):—

Decided—subreviewing (p,a,b):=T;
Subreviewer (p,a,b):=T;

}

exec (AcceptReviewingRequest (p: Paper ,a: Agent,b:Agent) ,u) : (Requested—subreviewing(p,a,b)
and (not Decided—subreviewing(p,a,u) or u = a);

Each write program will transfer the model from a pre-execution state m; in which the program is executed
at to a post-execution state m;yi. Executing a write program will update the model state. It updates the
values of the set of ground propositions which are changed by the program to true or false from the state
m;. All the other ground propositions in the state m; will remain unchanged. Read programs do not change
the state of the system. However, we model it to represent the process of reading a sensitive data which
can be part of an attack strategy.

4 Model Checking: Abstraction and Refinement

Once the model is defined, we define a query which consist of a coalition of users, an initial condition
and a goal condition. X-Policy model-checking algorithm searches for a strategy which is a sequence of
programs that the users in the coalition can execute to drive the model from the initial state to the goal
state. The verification method we use is based on backward reachability algorithm. Model-checking begins
from the goal states. It performs a backwards search by finding pre-states based on programs permissions
and their effects. The algorithm analyses the found pre-states and checks whether specification is satisfied.
This process will continue until it reaches the initial states or no more states are found.

However, model checkers suffer from the state explosion problem when the number of propositions grows
in the model. The number of states in the system grows exponentially as the number of propositions in
the model increases. A number of techniques are used to help model-checkers to handle large systems with
huge number of variables. Abstraction is one of the techniques which reduces the number of states in the
abstracted model compared to the original model. This enables the abstracted model to be analysed by
regular model-checkers. CEGARJ2] is a framework for counter-examples guided abstraction and refinement.
The CEGAR abstraction methodology consists of three steps: generate the initial abstraction, model check
the abstract structure and refine the abstraction. We propose to use CEGAR in our model checking
technique.

4.1 Model Abstraction and Refinement

Our proposed abstraction technique is based on variable hiding methods by existentially removing proposi-
tions from the concrete model to construct the abstract model. The initial abstraction begins with removing
all the propositions from the concrete model except those that were contained in the specification formula
¢ where ¢ is an ACTL* formula. If a specification ¢ is not satisfied in a model M, then ¢ is an invariant
of M. Let prop(¢) be the set of propositions in the formula ¢, the number of propositions in the initial
abstract model is |prop(¢)]|.

As many abstraction methods, our method satisfies the property: If the abstracted model M’ is constructed
from the concrete model M, then the following property holds:

M ME o

where ¢ is an ACTL* specification formula. We verify whether the goal specification is satisfied in the
model. If the specification is satisfiable in the abstract model, the model checker will output a strategy. We
check whether the found strategy can exist in the concrete model. We apply the programs in the strategy
sequentially starting from the initial state in the concrete model. This process determines which state in
the concrete model is the failure state. It also determines which transition is a spurious transition. If the
strategy is spurious, we refine the abstract model to make the abstract model more precise.

The refinement process puts back some of the propositions that were removed from the model in abstraction
process. Additions of new propositions will split the failure state. The failure state should be split in such
a way that the spurious transition can not happen in the refined model.

We propose a proposition ranking method based on the analysis of the execution permissions. All propo-
sitions start with the rank one. Every time a proposition appears in a program execution permission
statement, we increase the proposition rank. We apply this to all the permission statements. At each
refinement step we add a proposition from the set of propositions with the highest rank. We then model
check the refined model against the specification. If the model checker outputs another strategy, we apply
the refinement process again. We recursively apply this process until the model checker yell no strategy
or a valid strategy in the concert model. Our refinement process has the maximum number of refinement
steps as |P| — |prop(¢)| where P is the set of the concrete model propositions.

5 Conclusion and Future Work

In this paper we present a modelling language, X-Policy framework, to model the dynamic execution policy
of large web-based collaborative systems. We demonstrate the applicability of X-Policy to model real life
web based collaborative systems like EasyChair. We discuss the challenges to solve the state explosion
problems in our model checking method.

In future work, we are planning to adapt the model checking algorithm for X-Policy model. We are also
working to develop the abstraction and refinement technique as discussed in section 4. We also plan to
develop a tool which implements our framework.

References

1. Thomas Baigneéres and Matthieu Finiasz. iChair conference management system. http://lasecwww.epfl.ch/iChair//.

2. Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample guided abstraction refinement
for symbolic model checking. Journal of the ACM (JACM), 50:752-794, Sep 2003.

3. Michael Matthew Greenberg, Casey Marks, Leo Alexander Meyerovich, and Michael Carl Tschantz. The soundness and
completeness of margrave with respect to a subset of xacml. Technical Report CS-05-05, Computer Science Department,
Brown University, April 2005.

4. Eddie Kohler. Hotcrp conference management software. http://www.cs.ucla.edu/ kohler/hotcrp/index.html.

5. Sun Microsystems. Sun’s XACML implementation, Aug 2003. Information about this implementation can be found at
http://sunxacml.sourceforge.net/.

6. Andrei Voronkov. EasyChair conference system. http://www.easychair.org//|

7. Nan Zhang, Mark Ryan, and Dimitar P. Guelev. Synthesising verified access control systems in XACML. In 2004 ACM
Workshop on Formal Methods in Security Engineering, pages 56—65, Washington DC, USA, Oct 2004. ACM Press.

8. Nan Zhang, Mark Ryan, and Dimitar P. Guelev. Synthesising verified access control systems through model checking.
Journal of Computer Security (in print), 2005.

9. Nan Zhang, Mark D. Ryan, and Dimitar P. Guelev. Evaluating access control policies through model-checking. In 8th
Information Security Conference (ISC’05), Singapore, Sep 2005. Springer-Verlag.

http://lasecwww.epfl.ch/iChair//
http://www.cs.ucla.edu/~kohler/hotcrp/index.html
http://sunxacml.sourceforge.net/
http://www.easychair.org//

	Towards Modelling and Verifying Dynamic Access Control Policies for Web-based Collaborative Systems

