
A Trusted Infrastructure for P2P-Based Marketplaces

Tien Tuan Anh Dinh, Tom Chothia, Mark Ryan
School of Computer Science, University of Birmingham, United Kingdom

{ttd,tpc,mdr}@cs.bham.ac.uk

Abstract

Peer-to-peer (P2P) based marketplaces have a number
of advantages over traditional centralized systems (such as
eBay). Peers form a distributed hash table and store sale
offers for other peers. A key problem in such a system is
ensuring that the peers store and report all sale offers fairly,
and do not for instance favor their own offers. We give a
solution to this problem based on Trusted Computing, but
unlike other approaches we do not measure and restrict all
firmware and software running on a peer. Instead, we tie
offers to monotonic counters in such a way that any attempt
to not report an offer, or report it falsely, will be detected.

1 Introduction
P2P-based marketplaces offer a number of advantages

over centralized systems. First, they scales better and has
no single point of failure, thanks to the P2P infrastructure.
Second, there would be no limitation on the types of items
being exchanged in the market. In other words, the P2P in-
frastructure overcomes censorship problems found in cen-
tralized systems. Third, no single point of authority means
a monopoly cannot arise.

Our system is based on a Distributed Hash Table (DHT)
[12, 14]. In particular, each user (a buyer, a seller or both)
runs a node in the overlay. An item being sold in the mar-
ket is listed at a pre-determined node in the network. The
description of the item is used as the key, and the node re-
sponsible for that key in the overlay will become thelisting
node. As DHTs support the locating of the listing nodes in a
deterministic way they make a better choice for P2P-based
marketplaces that unstructured networks. In a traditional
marketplace, one item may be sold by many different sell-
ers so it is important for a buyer to find offers from all the
sellers (to find the one with lowest price, for example). This
feature is not easily implemented in P2P infrastructure with
undeterministic (and broadcasting) search.

An essential consequence of using DHTs is that a seller
will need to trust the listing node to truthfully store and re-
port his item to any potential buyers. There are economic
incentives for the listing node to misbehave in this way. For

example, if it gets a percentage of the value of each item
sold, it will earn more profit by reporting the items with
the highest price. If it is also selling the same item, the ra-
tional choice is just to report its own item. Therefore, we
believe this is an important problem to be addressed if the
P2P-based marketplaces are to be realized.

In our proposed infrastructure, the decision of whether to
trust another peer is simple. Two parties engage in a proto-
col; if it is completed successfully, then one party can trust
another. Any misbehavior from one party will result in the
protocol being terminated prematurely, and hence will be
detected by the other party. In particular, we make use of
the monotonic countersoffered by the Trusted Computing
infrastructure (and TPM devices [2]). As these counters can
only be read or incremented, we tie sale items to their values
so that the peer cannot lie, without being detected.

In related work, Balfe et al. [4] propose a secure iden-
tity assignment scheme in which the identity of a peer is
bound to the underlying trusted device (TPM). Zhang et al.
[13] propose a P2P system that uses Trusted Computing to
guarantee that all peers are running the correct software.
This requires exact knowledge of all software running on
a machine and a trusted, immutable BIOS [2] making it im-
practical in many cases. It is also vulnerable to alterations
made to the computers memory after the software has been
checked [5]. Our approach on the other hand only requires
the presence of a standard TPM and places no restrictions
on the software stack. Independently to us, Levin et al. [8]
propose an abstraction of a trusted monotonic counter ser-
vices that can be used to combat equivocation in distributed
systems. The main contributions of this paper are:

1. We present a model of P2P-based marketplace infras-
tructure and state the problem of trust in this model.

2. We propose an implementation using Trusted Comput-
ing, which can be readily implemented using current
trusted computing devices like the TPMs.

In the next section, we describe the system model and
the problem being tackled. In Section 3, we explain our
solution and sketch a proof of correctness. More efficient
solutions are proposed in Section 4. Lastly, we discussion
future work and open issues.

1

P � tp1, p2, .., pN u set of peers in the network
D � td1, d2, .., dMu set of data keywords to be stored
S : D Ñ PpPq returns the set of sellers of a given item
vpp, dq P R

� price thatp (p P Spdq) set on the itemd
∆ : D Ñ PpPq returns the destination/replicas set for a given item
W

p is the set of data items stored atp. In particular:
W

p � tpd, s, cq| d P D, p P ∆pdq, s P Spdq, c P R
�u

W
p

d
defined as follows:Wp

d
� tpd1, s1, c1q P W

p | d � d1u
f P R

�, r P p0, 1q flat-rate and variable payment
pi Ñ pj : m peerpi sends the messagem to pj

Table 1. Summary of notations used in the model

2 Model and Problem Description

System Model

The P2P-based marketplace is built on top of a structured
overlay [12, 14]. Regarding the overlay, we make three as-
sumptions: (1) the network is static1 (2) the assignment of
peers’ identifiers is secure [4] (3) the routing protocol al-
ways returns correct identities of the destinations. Table1
shows notations used in the model. Two main protocols
used in the system are:

1. publish(d): a sellerp (p P Spdq) executes this by first
finding the set of listing nodes∆pdq for their itemd,
relying on the routing protocol of the P2P overlay.p

chooses a node in this setpd P ∆pdq, and sends the
messagep Ñ pd : pd, p, vpd, pqq. The listing node
updates its state (Wp ::�Wp Y tpd, p, vpd, pqqu) and
p also makes a flat-rate payment of valuef to pd.

2. retrieve(d): a buyerpr (pr R Spdq) executes this proto-
col by first finding∆pdq, in same way aspublish(d). pr

starts a sessiont with each peerpd (pd P ∆pdq), from
which it receives the set of offersρt (ρt � tdu�S�R).
If ρt � H, pr then selectsps such thatpd, ps, vq P ρt

(e.g. by lowest price). The buyerpr makes the pay-
ment of valuev to ps for the itemd. If listing nodepd

takes a commission at rater from sellingd at then its
total profit from the sale will ber.v � f .

Problem Description

The problem we are tackling is that listing nodepd would
not tell a buyerpr all the information it stores aboutd. In
other words,

ρt �Wpd

d

There are a number of reasons why this problem arises.
First, the variable profit thatpd gets in the transactiont isr.v

wherepd, ps, vq P ρt. Therefore, if bothe � pd, ps, vq and
e1 � pd, p1s, v1q are inWpd

d andv ¡ v1, pd will be likely to
gain more profit by not includinge1 in ρt. Second, ifvpp, dq
is the same for allp P Spdq andpd P Spdq, pd would gain
the most profit by sending backρt � tpd, pd, vppd, dqqu.

1We discuss how to relax this in the last section

Third, whenpd R Spdq, pd may choose to only includepd, p1d, v1q in ρt, wherep1d is colluding with pd or pays
higher fees. In this paper, we propose an implementation
of this model that satisfies:�d, p, v
 pd, p, vq P ρt ðñ pd, p, vq PWpd

d (1)

This property implies that ifpublish(d) andretrieve(d) op-
erations are successful,pr will get all the information re-
garding the itemd stored atpd.

3 Proposed Solution
Our solution require a number of trusted operations that

can be executed at any peer. In particular, we assume an un-
derlying Trusted Computing infrastructure [1], which sup-
ports the following features:

• Monotonic counter: onlyread and incrementopera-
tions are permitted. The counter value cannot be re-
verted.

• Signing key: unique for each peer. Its validity can be
checked by any other peers in the system.

• ReadSign(n) returns (t, Signpread, t, nq) wheret

is the latest counter value. The signatureSignpt, nq is
generated with the signing key and noncen.

• IncSign(n) returns (t, Signpinc, t, nq). This incre-
ments the counter, then signs the latest value using the
signing key and noncen.

• Under the standard Dolve-Yao attacker model, these
operations are secure. More specifically, one cannot
obtain a valid signature without having executed the
ReadSign or IncSign command.

These features can be realized with the Trusted Plat-
form Module (TPM) [2]. A typical TPM supports at least
4 monotonic counters, accessed viaTPM ReadCounter
andTPM IncrementCounter commands. The Attes-
tation Identity Key (AIK), generated and protected by the
TPM, can be used as the signing key. Signatures are ver-
ified using Privacy Certificate Authority (CA) or Direct
Anonymous Attestation (DAA) protocol. To implemented
IncSign(n) the owner: (1) establishes a transport session
l with the TPM, usingTPM EstablishTransport (2)

wrapsTPM IncrementCounter command intowc and
then executesTPM ExecuteTransport(wc, l) (3) exe-
cutesTPM ReleaseTransportSigned(l, n). The re-
sult of this is a signature on the transport session log (includ-
ing new counter value). The implementation ofReadSign
is similar. An AIK is used for signing andn is the non-
replaying nonce. These operations are securely executed
inside the TPM, hence the signature cannot be faked.

Using ReadSign andIncSign, we modify publish
andretrieveoperations as follows:

• publish(d): p first findspd P ∆pdq:
1. p Ñ pd : (e � pd, p, vpp, dqq). pd executes

IncSign(SHA1peq) and updates its state, i.e.
Wpd �Wpd Y teu.

2. pd Ñ p : (t, σt). p verifies thatpt, σtq is the
result ofpd.IncSignpSHA1peqq. In the imple-
mentation using TPMs, it checks that theσt was
generated on a log of a transport session, inside
which only the TPM IncrementCounter
command was executed.p then makes the flat-
rate payment of valuef to pd,

• retrieve(d): pr first findspd P ∆pdq:
1. pr Ñ pd : n. n is a random nonce
2. pd Ñ pr : (t, σt). pr verifies thatpt, σtq is the

result ofpd.ReadSignpnq. If successfully,pr

can acceptt as the latest counter value ofpd.
3. pd Ñ pr : (wi, σi) for all i P r1, ts. pr verifies

thatσi is the correct signature frompd, i.e. σi �
Signpinc, i, SHA1pwiqq.

4. After step 3,pr has receivedUt � twi | i Pr1, tsu. Then, it can constructρt as below:

ρt � tpd1, s1, v1q P Ut | d1 � du (2)

The proof that Eq.1 holds goes as follows. It can be seen
that|W pd | � |Ut| � t, as allpublishoperations were com-
pleted successful. Furthermore, for allwi P Ut, it follows
that wi P W pd . If this is not true,pd must be able find
w1

i � wi such that SHA1pwiq � SHA1pw1
iq (so that the

verification ofσi still succeeds). This contradicts the non-
collision property of the SHA1 hash function. Therefore,
we haveUt � W pd . Combining with Eq.2 and the defini-
tion of W pd

d in Table 1, we can conclude that Eq.1 holds.

4 More Efficient Solutions
The retrieve protocol in Section 3 involves sending

(wi, σi) for all 1 ¤ i ¤ t. This will not scale well, as|Wpd | can be very large. In this section, we describe briefly
two implementations which are more efficient. One is prob-
abilistic, i.e. it only guarantees Eq.1 holds with a specified
probabilityπ. The other relies on more advanced features
of the Trusted Computing infrastructure.

4.1 Probabilistic Solution
In this implementation,pd builds ahash treeon top of

Wpd . We use 2-3 Merkle trees [10], in which leaves are or-
dered and the insertion and update operations only involve
nodes in the hash path, i.e.Ophq whereh is the height of the
(balanced) tree. The hash value ofd (W pd

d � H) is stored
at a leaf of the tree. The latest root hash is included inσt

wheret is the latest counter value.
To check if the hash tree was constructed correctly at

pd, pr starts achallenge - responseprotocol. In the lit-
erature, such a protocol is used for generatinginteractive
zero-knowledgeproofs [7]. Due to space constraint, we will
not explain this in more details. Inpublish(d), pr verifies
if the new root hash is updated correctly by comparing it
with its own calculation on the hash path given bypd. Be-
cause leaves in the tree are ordered, inretrieve(d) pr can
efficiently count the number of itemd stored in the leaf set,
then askspd for all the valid tuples of the form (wi, σi)
whered is included inwi. There is a clear trade-off be-
tween communication (and computation) overhead and the
probability that Eq.1 holds.

4.2 Extra Counters
In the previous implementations, only one monotonic

counter is used totime-stampelements inWpd . Let C be
the number of counters available. HavingC ¡ 1 will effec-
tively reduce the communication and computation overhead
to the order ofOp |Wpd |

C
q. If C is large, significant improve-

ment can be achieved.
The current TPM devices support a small number of

monotonic counters. It is primarily due to the limited
amount of permanent storage and possibly limited compu-
tation power. There are a number of approaches that help
increase the number of counters. One is to have a small
trusted software stack running on top of the TPM (a trusted
hypervisor, for example). Another approach is to have hard-
ware extension to the current TPM with USB devices or
smart-cards [6]. In our case, we assume a small extension
to the current specification of the TPM [11].

More specifically, all counters are organized into a bi-
nary Merkle tree [9] withC � 2h leaves, each of them
stores an integer value. Theidentifier of a countercid is
from 0 to C� 1 and can be derived from the hash path. The
TPM stores value of the root hashrh in permanent storage,
which can only be read byTPM ReadHashRoot and up-
dated byTPM IncrementCounterTree(path). When
the latter is executed, the TPM computes the root hash from
the givenpath, which includes a current counter valuetid.
If the result matchesrh, it updates the leaf with the new
valuetid � 1 as well as other values inpath. As a conse-
quence, the new root hash is stored at the permanent stor-
age. We will not describe the implementation with TPMs
due to the space constraint.

With more counters, peers can now make use of
ReadSign(cid, n) andIncSign(cid, n) operations that
read or increment countercid and produce signatures with
a noncen. They return (X � ptid, cidq, Signpread, X, nq)
or (Y � ptid, cidq, Signpinc, X, nq) wheretid is the latest
value of countercid. AssumingC counters at every peer,
a data itemd will be associated to a countercid, such that
cid � SHA1pdq module C. cid is included in the messages
in step 3 of thepublish(d) operation as well as in step 2 and
3 of theretrieve(d) operation. The peer receiving the mes-
sage will need to verify, among other things, thatcid is the
assigned counter ford.

5 Discussion and Future Work
We have presented our early ideas of a trusted infras-

tructure for P2P market places. We detailed implemen-
tations that address the problem of peers not fulfilling re-
quests truthfully. However, there is much room left for fu-
ture work.

As time passes (t increases) theretrieveoperation will
only send more (irrelevant) data. Even with the improve-
ment proposed in Section 4, because the amount of data
grows without bound. We plan to address this issue using
sliding windows, which can regulate maximum numbers of
items stored at any given time.

In this paper, we use the flat-rate paymentf as incen-
tive for peers to accept publishing sale items. In practice,
it may not be effective enough to stop peers from denying
the publish operation and potentially denying a seller from
publishing its items. Incentives are also needed to discour-
age sellers from refusing payment to the publishing peers.
In future work, we plan to investigate different incentive
schemes (such as utilizing a reputation system) to address
this problem.

One of the most important assumptions we made is re-
garding the underlying Trusted Computing infrastructure.
Both the original and the probabilistic solutions could be
readily implemented using current TPMs, which come with
many machines. One may question whether a large-scale
P2P system with all peers having their TPMs switched on is
a reasonable assumption. It is partly due to past controversy
about the TPM [3] and its being in early stages of develop-
ment. However, in Section 3, we stressed that our system
would not be bound to any specific implementation of the
Trusted Computing infrastructure. In particular, any infras-
tructure supporting the five features listed in section 3 can
be used. It could be in the form of smart-cards [8] or online
services. If available in large scale, such devices or services
could be better choices than TPMs because of their flexibil-
ity and wider range of trusted functionalities (for example,
support for large number of monotonic counters is a built-in
feature).

Our model of the system could be made more realistic in

a number of ways. First, we are working on solutions using
Trusted Computing to realize the secure routing assumption
of structured P2P overlays, under dynamic network condi-
tions. Second, lettingpd remove the itemd from Wpd af-
ter the successful transaction betweenpr andps regarding
d would be desirable. The protocols must ensure thatpd

could not arbitrarily remove items without being detected.
One solution would be to use the monotonic counters to im-
plement a time-out mechanism such that buyers only query
items that have not expired.

References

[1] https://www.trustedcomputinggroup.org/home.
[2] https://www.trustedcomputinggroup.org/specs/tpm/.
[3] R. Anderson. Trusted computing FAQ.

http://www.cl.cam.ac.uk/ rja14/tcpa-faq.html.
[4] S. Balfe, A. D. Lakhani, and K. G. Paterson. Trusted com-

puting: providing security for peer-to-peer networks. In
Fifth International Conference on Peer-to-Peer Computing,
pages 117–24, 2005.

[5] S. Bratus, N. D’Cunha, E. Sparks, and S. W. Smith. Toctou,
traps, and trusted computing. InTrust ’08: Proceedings of
the 1st International Conference on Trusted Computing and
Trust in Information Technologies, pages 14–32, 2008.

[6] P. England and T. Tariq. Towards a programmable TPM. In
Trust, pages 1–13, 2009.

[7] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of
identity. In19th ACM Symposium on Theory of Computing,
pages 210–17, 1987.

[8] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda.
Trinc: Small trusted hardware for large distributed systems.
In USENIX Symposium on Networked Systems Design and
Implementation, 2009.

[9] R. C. Merkle. A certified digital signature. InAdvances in
Cryptology, pages 218–38, 1989.

[10] M. Naor and K. Nissim. Certificate revocation and certificate
update. In7th USENIX Security Symposium, pages 217–28,
1998.

[11] L. F. Sarmenta, M. van Dijk, C. W. O’Donnell, J. Rhodes,
and S. Devadas. Virtual monotonic counters and count-
limied objects using a TPM without a trusted OS. InWork-
shop on Scalable Trusted Computing, pages 27–42, 2006.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: a scalable peer-to-peer lookup service for
internet applications. InSIGCOM, pages 149–60, 2001.

[13] X. Zhang, S. Chen, and R. Sandhu. Enhancing data authen-
ticity and integrity in p2p systems.IEEE Internet Comput-
ing, 9(6):42–49, 2005.

[14] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
an infrastructure for fault-tolerant wide-area location and
routing. Technical report, Berkeley, 2001.

