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Abstract. The Trusted Platform Module (TPM) is a hardware chip
designed to enable computers to achieve greater security. Proof of pos-
session of authorisation values known as authdata is required by user
processes in order to use TPM keys. If a group of users are to be autho-
rised to use a key, then the authdata for the key may be shared among
them. We show that sharing authdata between users allows a TPM im-
personation attack, which enables an attacker to completely usurp the
secure storage of the TPM. The TPM has a notion of encrypted transport
session, but it does not fully solve the problem we identify.
We propose a new authorisation protocol for the TPM, which we call
Session Key Authorisation Protocol (SKAP). It generalises and replaces
the existing authorisation protocols (OIAP and OSAP). It allows auth-
data to be shared without the possibility of the impersonation attack,
and it solves some other problems associated with OIAP and OSAP. We
analyse the old and the new protocols using ProVerif. Authentication
and secrecy properties (which fail for the old protocols) are proved to
hold of SKAP.

1 Introduction

The Trusted Platform Module (TPM) specification is an industry standard [14]
and an ISO/IEC standard [6] coordinated by the Trusted Computing Group
(TCG), for providing trusted computing concepts in commodity hardware. TPMs
are chips that aim to enable computers to achieve greater levels of security than
is possible in software alone. There are 100 million TPMs currently in existence,
mostly in high-end laptops. Application software such as Microsoft’s BitLocker
and HP’s HP ProtectTools use the TPM in order to guarantee security proper-
ties.

The TPM stores cryptographic keys and other sensitive information in shielded
locations. Keys are organised in a tree hierarchy, with the Storage Root Key

(SRK) at its root. Each key has associated with it some authorisation data,
known as authdata. It may be thought of as a password to use the key. Processes
running on the host platform or on other computers can use the TPM keys in
certain controlled ways. To use a key, a user process has to prove knowledge
of the relevant authdata. This is done by accompanying the command with an
HMAC (a hash-function-based message authentication code, as specified in [5]),



keyed on the authdata or on a shared secret derived from the authdata. When
a new key is created in the tree hierarchy, its authdata is chosen by the user
process, and sent encrypted to the TPM. The encryption is done with a key
that is derived from the parent key authdata. The TPM stores the new key’s
authdata along with the new key. Creating a new key involves using the parent
key, and therefore an HMAC proving knowledge of the parent key’s authdata
has to be sent.

If a group of users are to be authorised to use a key, then the authdata for the
key may be shared among them. In particular, the authdata for SRK (written
srkAuth) is often assumed to be a widely known value, in order to permit anyone
to create child keys of SRK. This is analogous to allowing several people to share
a password to use a resource, such as a database.

We show that sharing authdata between users has some significant undesir-
able consequences. For example, an attacker that knows srkAuth can fake all the

storage capabilities of the TPM, including key creation, sealing, unsealing and
unbinding. Shared authdata completely breaks the security of the TPM stor-
age functions. Some commentators to whom we have explained our attack have
suggested the TPM’s encrypted transport sessions as a way of mitigating the
attack. We show that they are not able to do that satisfactorily (section 2.4).

We solve this problem by proposing a new authorisation protocol for the
TPM, which we call Session Key Authorisation Protocol (SKAP). It generalises
and replaces the existing authorisation protocols (OIAP and OSAP). In contrast
with them, it does not allow an attacker that knows authdata to fake a response
by the TPM. SKAP also fixes some other problems associated with OIAP and
OSAP. To demonstrate its security, we analyse the old and the new protocols
using the protocol analyser ProVerif [8, 9], and prove authentication and secrecy
properties of SKAP.

Related work Other attacks of a less significant nature have been found against
the TPM. The TPM protocols expose weak authdata secrets to offline dictio-
nary attacks [11]. To fix this, we proposed to modify the TPM protocols by
using SPEKE (Simple Password Exponential Key Exchange [1]). However, the
modifications proposed in [11] do not solve the problem of shared authdata.

An attacker can in some circumstances illegitimately obtain a certificate on
a TPM key of his choice [12]. Also, an attacker can intercept a message, aiming
to cause the legitimate user to issue another one, and then cause both to be
received, resulting in the message being processed twice [10]. Some verification
of certain aspects of the TPM is done in [13]. Also in [13], an attack on the
delegation model of the TPM is described; however, experiments with real TPMs
have shown that the attack is not possible [7].

Paper overview Section 2 describes the current authorisation protocols for the
TPM, and in Sections 2.2 and 2.3 we demonstrate our attack. In Section 2.4 we
explain why the TPM’s encrypted transport sessions don’t solve the problems.
Section 3 describes our proposed protocol, SKAP, that replaces OIAP and OSAP.



In section 4, we use ProVerif to demonstrate the security of SKAP compared
with OIAP and OSAP. Conclusions are in Section 5.

2 TPM authorisation

A TPM command that makes use of TPM keys requires the process issuing the
command to be authorised. A process demonstrates its authorisation by proving
knowledge of the relevant authdata. Since the TPM is a low-power device, its
design minimises the use of heavy-weight cryptography, preferring light-weight
solutions (such as hashes and HMACs) where possible. Demonstration of autho-
risation is done by accompanying a TPM command with such an HMAC of the
command parameters, keyed on the authdata or on a shared secret derived from
the authdata. We note the result of the HMAC by hmacad(msg), where ad is
the authdata, and msg is a concatenation of selected message parameters.

The response from the TPM to an authorised command is also accompanied
by an HMAC of the response parameters, again keyed on the authdata or the
shared secret. This is intended to authenticate the response to the calling process.

The TPM provides two kinds of authorisation sessions, called object inde-

pendent authorisation protocol (OIAP) and object specific authorisation protocol

(OSAP). OIAP allows multiple keys to be used within the same session, but
it doesn’t allow commands that introduce new authdata, and it doesn’t allow
authdata for an object to be cached for use over several commands. An OSAP
session is restricted to a single object, but it does allow new authdata to be
introduced and it creates a session secret to securely cache authorisation over
several commands. If a command within an OSAP session introduces new au-
thdata, then the OSAP session is terminated by the TPM (because the shared
secret is contaminated by its use in XOR encryption).

In order to prevent replay attacks, each HMAC includes two nonces, respec-
tively from the user process and TPM, as part of msg. The nonces created by
the calling process are called “odd”, denoted no, and the nonces created by the
TPM are called “even”, denoted by ne. The nonces are sent in the clear, and
also included in the msg part of the HMAC. Both the process and TPM use a
fresh nonce in each HMAC computation, and they verify the incoming HMACs
to check integrity and authorisation. For example, the process sends the first
nonce odd no1 to the TPM and receives the first nonce even ne1 along with
mac1 = hmacad(no1, ne1, ...), and then sends mac2 = hmacad(ne1, no2, ...) with
no2 and receives ne2 along with mac3 = hmacad(no2, ne2, ...), and so on. This is
sometimes called a rolling nonce protocol.

2.1 Authorisation example

In this subsection, we will take a look at an authorisation example, in which
a user process first asks the TPM create a new key as part of the storage key
tree, then loads this key into the TPM internal memory, and finally uses this



key to encrypt some arbitrary data. These three functions are demonstrated in
Figure 1 in three separated sessions.

Session 1 shows the exchange of messages between the user process and the
TPM when a child key of another loaded key (called the parent key) is created
using the TPM command TPM CreateWrapKey. The TPM returns a blob, con-
sisting of the newly created key and some other data, encrypted with the parent
key. The user and TPM achieve this function by performing the following steps:

1. First, the user process sets up a OSAP session based on the currently loaded
parent key. The parent key handle is pkh, and its authdata is ad(pkh). The
TPM OSAP command includes pkh and the nonce nosap

o .
2. Upon receipt of the TPM OSAP command, the TPM assigns a new session

authorisation handle ah, generates two nonces ne and nosap
e , and sends these

items back as the response.
3. The user process and the TPM each calculate the shared secret S derived

from ad(pkh), and the two nonces for OSAP by using the HMAC algorithm.
4. Then, the user process calls TPM CreateWrapKey, providing arguments in-

cluding authdata newauth for the key being created, some other parameters
about the key, and the HMAC keyed on S demonstrating knowledge of SRK
authdata. To protect the new authdata, it is XOR-encrypted with a key
derived from ad(pkh) and ne using the hash-function SHA1.

5. After receiving this command, the TPM checks the HMAC and creates the
new key. The TPM returns a blob, keyblob, consisting of the public key and
an encrypted package containing the private key and the new authdata. The
returned message is authenticated by accompanying it with an HMAC with
the two nonces keyed on S.

6. Because the shared secret S has been used as a basis for an authdata en-
cryption key, the OSAP session is terminated by the TPM. Later commands
will have to start a new session.

In order to be used, the newly created key must be loaded into the TPM.
For this, an OIAP session may be used. Session 2 shows the messages exchanged
between the user process and the TPM during the creation of the OIAP session
and the TPM LoadKey2 command. The following steps are performed:

1. The user process sends the TPM OIAP command to the TPM.
2. The TPM assigns the session authorisation handle ah′ and sends it back

along with the newly created nonce n′′

e . ,
3. The process calls TPM LoadKey2, providing arguments including the parent

key handle pkh and keyblob. The authorisation of this command is achieved
using the authdata of the parent key, ad(pkh).

4. The TPM checks the HMAC, and if the check passes, decrypts keyblob and
loads the key into its internal memory. The TPM finally creates a key handle
for the loaded key kh and a nonce n′′′

e and sends them back together with
an HMAC keyed on the authdata of the parent key ad(pkh).

After the key is loaded, it can be used to encrypt data using TPM Seal. As
well as encrypting the data, TPM Seal binds the encrypted package to particular



User TPM

Session 1:

TPM OSAP( pkh, nosap
o )

ah, ne, nosap
e

S = hmacad(pkh)(n
osap
e , nosap

o ) S = hmacad(pkh)(n
osap
e , nosap

o )

TPM CreateWrapKey( ah, pkh, no, . . . ,
SHA1(S, ne) ⊕ newauth ), hmacS(ne, no, . . .)

keyblob, n′

e, hmacS(n′

e, no, . . .)

Session 2:

TPM OIAP( )

ah′, n′′

e

TPM LoadKey2( ah′, pkh, n′

o, keyblob, . . . ),
hmacad(pkh)(n

′′

e , n′

o, . . .)

kh, n′′′

e , hmacad(pkh)(n
′′′

e , n′

o, . . .)

Session 3:

TPM OSAP( kh, nosap
o

′ )

ah′′, n′′′′

e , nosap
e

′

S′ = hmacad(kh)(n
osap
e

′, nosap
o

′) S′ = hmacad(kh)(n
osap
e

′, nosap
o

′)

TPM Seal( ah′′, kh, n′′

o , info of sealed data, PCR, . . . ,
SHA1(S′, n′′′′

e ) ⊕ newauth′ ), hmacS′(n′′′′

e , n′′

o , . . .)

sealedblob, n′′′′′

e , hmacS′(n′′′′′

e , n′′

o , . . .)

Fig. 1. Session 1: Creating a key on the TPM. TPM OSAP creates an OSAP session
and the shared secret S by both parties. TPM CreateWrapKey requests the TPM to
create a key. The command and the response are authenticated by the shared secret
S. Session 2: Loading a key on the TPM. TPM OIAP creates an OIAP session for the
TPM LoadKey2 command. Session 3: Using the key to seal data. TPM OSAP creates
an OSAP session and its corresponding shared secret S′ for the TPM Seal command.
The seal command and the response are authenticated by S′.



Platform Configuration Registers (PCRs) specified in the TPM Seal command.
The TPM will later unseal the data only if the platform is in a configuration
matching those PCRs. TPM Seal requires a new OSAP session based on the
newly created key. The details are shown in Session 3, where the user process
and TPM perform the following steps:

1. The first three steps are identical to Session 1, except they use the key handle
kh and authdata ad(kh) belonging to the newly loaded key, instead of pkh

and ad(pkh).
2. After setting up the OSAP session, the user process calls TPM Seal, pro-

viding arguments including the information of the sealed data, a PCR and
the new authdata for the corresponding unseal process. The new authdata is
again XOR-encrypted with a key derived from the encryption key authdata.
The message is authenticated by accompanying it with an HMAC keyed on
the secret S′.

3. The TPM responds the command with a sealed blob sealedblob, which con-
sists of an encrypted package containing the sealed data, the PCR value and
the new authdata. Again the returned message is authenticated by accom-
panying it with an HMAC keyed on the secret S′.

2.2 The problem of shared authdata

If authdata is a secret shared only between the calling process and the TPM,
then the HMACs serve to authorise the command and to authenticate the TPM
response. However, as mentioned earlier, authdata may be shared between sev-
eral users, in order to allow each of them to use the resource that the authdata
protects. In particular, the authdata of SRK is often assumed to be a well-known
value. E.g., in Design Principles of the TPM specification [6, 14], sections 14.5,
14.6 refer to the possibility that SRK authdata is a well-known value, and sec-
tions 30.2, 30.8 refer to other authorisation data being well-known values.

The usage model is that a platform has a single TPM, and the TPM has
a single SRK, which plays the role of the root of a trusted key hierarchy tree.
If the platform has multiple users, each of them can build their own branches
of the tree on the top of the same root. In order to let multiple users access
SRK, the authdata of SRK is made available to all of them. The goal is that
although these users share the same SRK and its authdata, they are only able to
access their own key branches but not anyone else’s. We will show how the idea
of sharing SRK authdata fails to achieve the design principle of the protected
storage functionality of the TPM.

Suppose one of these users who knows an authdata value is malicious and he
can intercept a command from another user to the TPM (the TPM protocols
involving encryption and HMACs are clearly designed on the assumption that
such interception is possible). He can use knowledge of the authdata to decrypt
any new authdata that the command is introducing; and he can fake the TPM
response that is authenticated using the shared authdata.

It follows that an attacker that knows the authdata for SRK can fake the
creation of child keys of SRK. Those keys are then keys made by the attacker



in software, and completely under his control. He can intercept requests to use
those keys, and fake the response. Therefore, all keys intended to be descendants
of SRK can be faked by the TPM. An attacker with knowledge of SRK authdata
can completely usurp the storage functionality of the TPM, by creating all the
keys in software under his own control, and faking all the responses by the TPM.

2.3 The attack in practice

We suppose that Alice is in possession of a laptop owned by her employer,
that has an IT department which we call ITadmin. The TPM TakeOwnership
command has been performed by ITadmin when the laptop was first procured;
thus, the TPM has created SRK and given its authdata to ITadmin. When Alice
receives the laptop, she is also provided with SRK authdata so that she can use
the storage functions of the TPM.

Alice now decides to create a key on the TPM with authdata of her own
choosing, and wants to encrypt her data using that key. She invokes the com-
mands of Figure 1 of Section 2.1. Unknown to her, ITadmin has configured the
laptop so that commands intended to go to the TPM go instead to software
under ITadmin’s control. This software responds to all the commands that Alice
sends. ITadmin’s software creates the necessary nonces and fakes the response
to TPM OSAP. Next, it fakes the creation of the key and fakes all the responses
to the user (again creating all the necessary nonces). In particular, in the case
of TPM CreateWrapKey, ITadmin’s software

– is able to calculate the session secret S, since it is based on SRK authdata
and other public values (namely, the OSAP nonces that are sent in the clear);

– is able to decrypt the new authdata, since it is XOR encrypted with a key
based on SRK authdata and other public values (namely, the command
nonces that are sent in the clear);

– is able to create an RSA key in software, according to the parameters spec-
ified in the command;

– is able to create the message returned to the user process. This involves
encrypting the “secret” package with SRK, and creating the HMAC that
“authenticates” the TPM.

Next, ITadmin’s software fakes the response to TPM LoadKey2 (using its knowl-
edge of SRK authdata to create the necessary HMAC). Finally, it fakes the re-
sponse to TPM Seal (using its knowledge of the new key’s authdata to create
the necessary HMAC). Therefore, the ITadmin can successfully impersonate the
TPM just because it knows the authdata of SRK.

The attack scenario given in this example, in which ITadmin is the attacker,
is similar to that illustrating the TPM CertifyKey attack in [12]. Many other
scenarios are possible. For example, TPMs are now common in servers, and
many interesting use cases involve remote clients accessing TPM functionality
on a server (for instance, to achieve guarantees about the server behaviour). In
that scenario, our attack means that the server is able to spoof all the responses



from the TPM. Another class of scenarios which illustrate this attack revolve
around virtualisation; there too, independent virtual environments share a TPM
and share knowledge of SRK authdata, allowing one such environment to spoof
TPM replies to another.

2.4 Encrypted transport sessions

The OIAP and OSAP sessions are intended to provide message integrity, but not
message confidentiality. The TPM has a notion of encrypted transport session
[14, 6] which is intended to provide message confidentiality. Encrypted transport
sessions are initiated with the TPM EstablishTransport command, which allows
a session key to be established, using a public storage key of the TPM. Since
the security of the session is anchored in a public key, and that public key can
be certified, this does indeed defeat the TPM spoofing attack we have described
above.

However, encrypted transport sessions are not an ideal solution to be used
as an alternative of the OIAP and OSAP sessions for the purpose of providing
robust TPM authorisation, because the encrypted transport sessions do not solve
the problem of weak authdata, reported in [11]. In that paper, it is shown that
the TPM protocols expose authdata to the possibility of offline guessing attacks.
If authdata is based on a weak secret, then an attacker that tries to guess the
value of the authdata is able to confirm his guess offline. Encrypted transport
sessions do not resist against this attack because they do not encrypt the high-
entropy values (the rolling nonces) that are used in the authorisation HMACs.

Therefore, changes to OIAP and OSAP are necessary, to avoid the attack of
[11]. Unfortunately, the changes proposed in [11] do not solve the attack we have
identified in this paper. The solution proposed in [11] is based on the SPEKE
protocol, which relies on a secret being shared between the two participants,
whereas shared authdata precisely invalidates that assumption.

Thus, there is no alternative to a thorough re-design of the authorisation
protocols of the TPM.

3 A new TPM authorisation protocol

Our aim is to design an authorisation protocol that solves both the weak auth-
data problem of [11] and the shared authdata problem reported in this paper.
Moreover, we aim to avoid the complexity and cost of the encrypted transport
session. (We showed above that the encrypted transport session doesn’t solve
both attacks anyway.) Our solution relies on public-key cryptography; the TPM
designers wanted to avoid that, since it is expensive, but it seems impossible
to achieve proper authentication with shared authdata without it. We design
our protocol to minimise the frequency with which public key operations are
required.

We propose Session Key Authorisation Protocol (SKAP), which has the fol-
lowing advantages over the existing OIAP and OSAP protocols:



– It generalises OIAP and OSAP, providing a session type that offers the
advantages of both. In particular, it can cache a session secret to avoid
repeatedly requesting the same authdata from a user (like OSAP), and it
allows different objects within the same session (like OIAP).

– It is a long-lived session. In contrast with OSAP, it is not necessary to
terminate the session when a command introduces new authdata.

– It allows authdata to be shared among users, without allowing users that
know authdata to impersonate the TPM.

– In contrast with existing TPM authorisation, it does not expose low-entropy
authdata to offline dictionary attacks [11].

User TPM

TPM SKAP( kh, {S}pk(kh) )

ah, ne

K1 = hmacS(ad(kh), ne, 1)
K2 = hmacS(ad(kh), ne, 2)

K1 = hmacS(ad(kh), ne, 1)
K2 = hmacS(ad(kh), ne, 2)

TPM Command1( ah, kh, no, . . . ), encK2
(newauth),

hmacK1
(null, ne, no, . . .)

response, n′

e, hmacK1
(null, n′

e, no, . . .)

TPM Command2( ah, kh′, n′

o, . . . ), encK2
(newauth),

hmacK1
(ad(kh′), n′

e, n
′

o, . . .)

response, n′′

e , hmacK1
(ad(kh′), n′′

e , n′

o, . . .)

Fig. 2. Establishing a session using Session Key Authorisation Protocol, and executing
two commands in the session. The session is established relative to a loaded key with
handle kh. Command1 uses that key, and therefore does not need to cite authdata.
Command2 uses a different key, and cites authdata in the body of the authorisation
HMAC.



The message exchanges between a user process and the TPM in the SKAP
protocol is illustrated in Figure 2. Similarly to OSAP, an SKAP session is es-
tablished relative to a loaded key with handle (say) kh. The secret part of this
key sk(kh) is known to the TPM and the public part pk(kh) is known to all user
processes which want to use the key. At the time the session is established, the
user process generates a high-entropy session secret S, which could be created as
a session random number, and sends the encryption {S}pk(kh) of S with pk(kh)
to the TPM. Theoretically any secure asymmetric encryption algorithm can be
used for this purpose; in the TPM Specification uses RSA-OAEP [2] throughout,
so we propose to use that too. The TPM responds with an authorisation handle
ah and the first of the rolling nonces, ne, as usual. Then each side computes two
keys K1,K2 from S by using a MAC function keyed on S. The authdata ad(kh)
for the key and the nonce ne are cited in the body of the MAC. Any secure MAC
function is suitable for our solution, but the TPM specification uses HMAC [5]
for other purposes so we use that too.

Command1 in the illustrated session uses the key (sk(kh), pk(kh)) for which
the session was established. The authorisation HMAC it sends is keyed on K1, a
secret known only to the user process and the TPM. In contrast with OSAP, this
secret is not available to other users or processes that know the authdata for the
key. Moreover, K1 is high-entropy even if the underlying authdata is low entropy
(thanks to the high-entropy session secret S). New authdata (written newauth)
that Command1 introduces to the TPM is encrypted using K2. In the figure,
encK2

(newauth) denotes the result of encrypting newauth with a symmetric
encryption algorithm using the secret key K2. In general, any secure symmetric
encryption scheme can be used in this solution. More specifically, in order to
guarantee against not only eavesdropping but also unauthorised modification,
we suggest using authenticated encryption as specified in [4]. One example is
AES Key Wrap with AES block cipher [3].

In contrast with OSAP, SKAP sessions may use keys other than the one
relative to which the session was established. Command2 in Figure 2 uses a
different key, whose handle is kh′. Authdata for that key is cited in the body of
the HMAC that is keyed on S.

3.1 The example revisited

We revisit the authorisation example described in Section 2.1, where the user
wants to perform three commands, TPM CreateWrapKey, TPM LoadKey2 and
TPM Seal in a short period. We briefly demonstrate how these commands can be
run in a single session (Figure 3). Suppose that the user starts from a parent key
whose handle is pkh, and whose authdata ad(pkh) is well-known. (This parent
key might be SRK, for example.) By following the SKAP protocol, the user first
establishes a session for the parent key. To do this, he chooses a 160-bit random
number as the session secret S, then encrypts S with the public part of the
parent key and sends {S}pk(pkh) to the TPM.

After that both sides compute two keys K1 and K2 based on the values S

and ad(pkh). Then the user sends TPM CreateWrapKey as TPM Command1



User TPM

TPM SKAP( pkh, {S}pk(pkh) )

ah, ne

K1 = hmacS(ad(pkh), ne, 1)
K2 = hmacS(ad(pkh), ne, 2)

K1 = hmacS(ad(pkh), ne, 1)
K2 = hmacS(ad(pkh), ne, 2)

TPM CreateWrapKey( ah, pkh, no, . . . , encK2
(newauth)),

hmacK1
(null, ne, no, . . .)

keyblob, n′

e, hmacK1
(null, n′

e, no, . . .)

TPM LoadKey2( ah, pkh, n′

o, . . . ), hmacK1
(null, n′

e, n
′

o, . . .)

kh, n′′

e , hmacK1
(null, n′′

e , n′

o, . . .)

TPM Seal( ah, kh, n′′

o , . . . , encK2
(newauth′) ),

hmacK1
(ad(kh), n′′

e , n′′

o , . . .)

sealedblob, n′′′

e , hmacK1
(ad(kh′), n′′′

e , n′′

o , . . .)

Fig. 3. An example of SKAP, showing creating a key, loading the key, and sealing with
the key in a single SKAP session. Compare Figure 1.



in Figure 2 along with an encrypted new authorisation data for the requested
key and HMAC for integrity check. The TPM responds the command with a
key blob for the newly created key. When receiving any message which shows
either of these two keys K1 and K2 has been used, the user is convinced that
he must be talking to the TPM and the TPM knows that its communication
partner knows ad(pkh).

When the user wants to use this key (for example, for the sealing function),
he sends the TPM the second command TPM LoadKey2 in the same session.
Since this also uses the parent key, it is again an example of Command1. The
user and the TPM carry on using K1 for authentication. Since TPM LoadKey2
does not introduce new authdata, K2 is not used. After the loading key process
succeeds, the user sends the last command TPM Seal. This command uses the
newly created and loaded key, which is not the key for which the session is cre-
ated. Therefore it is an example of Command2 in the figure, and the authdata
for the key is required. The command uses the session keys K1 and K2 for au-
thentication and protection of the sealed blob authdata, as before. So as we have
seen that a single session of the SKAP protocol can handle multiple commands
comfortably. The commands are shown in Figure 3. Comparison with Figure 1
shows a reduction from 12 to 8 messages, showing that that our protocol is more
efficient as well as more secure.

4 Verification

We have modelled the current OSAP authorisation protocol using ProVerif [8,
9]. ProVerif is a popular and widely-used tool that checks security properties
of protocols. It uses the Dolev-Yao model; that is, it assumes the cryptography
is perfect, and checks protocol errors against an active adversary that can cap-
ture and insert messages, and can perform cryptographic operations if it has the
relevant keys. ProVerif is particularly good for secrecy and authentication prop-
erties, and is therefore ideal for our purpose. ProVerif is easily able to find the
shared authdata attack of section 2.3. It shows both failure of secrecy and failure
of authentication. We have also modelled the new proposed protocol SKAP, and
ProVerif confirms the secrecy and authentication properties.

Our ProVerif code scripts for OSAP and SKAP are shown in Appendixes
1 and 2 respectively. In both models, there are two processes, representing the
user process and the TPM. The user process requests to start a new session
(respectively OSAP or SKAP) and then requests the execution of a command,
such as TPM CreateWrapKey to create a new key. The user process then checks
the response from the TPM, and (in our first version) declares the event successU.

The TPM process provides the new session, executes the requested command
(after checking correct authorisation), and provides the response to the calling
user process. It declares the event successT.

The properties we verify are

– query attacker:newauth
– query ev:successU(x̃) ==> ev:successT(x̃)



The first one checks if newauth is available to the attacker. The second one stip-
ulates that if the user declares success (i.e. the user considers that the command
has executed correctly) for parameters x̃, then the TPM also declares success
(i.e. it has executed the command) with the same parameters. (Here, the param-
eters include the agreed session key.) If this property is violated, then potentially
an attacker has found a means to impersonate the TPM.

We expect the secrecy property (first query) to fail for OSAP and succeed for
SKAP, and this is indeed the case. The correspondence property (second query)
is also expected to expected to fail OSAP and succeed for SKAP. Unfortunately
the second query fails for both models, for the trivial reason that the TPM can
complete the actions in its trace and then stop just before it declares success. To
avoid this trivial reason, we extend the user process so it asks the TPM to prove
knowledge of the new authdata introduced by the command, before it declares
success. Now if the user declares success, the TPM should have passed the point
at which it declares success too. If it has not, then an attacker has found a means
to impersonate the responses of the TPM.

With this modification, we find an attack for each of the properties for OSAP,
demonstrating the attack of section 2.3. ProVerif proves that SKAP satisfies both
properties, demonstrating its security. See the appendix for the ProVerif code.

5 Conclusion

Sharing authorisation data between several users of a TPM key is a practice
endorsed by the Trusted Computing Group [6, 14, Design principles, §14.5, §14.6,
§30.2, §30.8], but it makes the TPM vulnerable to impersonation attacks. An
attacker in possession of the authorisation data for the storage root key (which
is the authdata most likely to be shared among users) can completely usurp the
secure storage functionality of the TPM.

The encrypted transport sessions of the TPM solve this problem, but they
do not solve the related problem of guessing attacks (also known as dictionary
attacks) on weak authdata, reported in [11]. The solution proposed for guessing
attacks does not solve the problem of shared authdata. Therefore, a re-design of
the TPM authorisation sessions is necessary.

We propose SKAP, a new authorisation session, to replace the existing au-
thorisation sessions OIAP and OSAP. It generalises both of them and improves
them in several ways, in particular by avoiding the TPM impersonation attack
and the weak authdata attack.

We have analysed the old authorisation sessions and the new proposed one
in ProVerif, the protocol analyser. The results show the vulnerability of the old
sessions, and the security of the new one.
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Appendix 1: ProVerif script for OSAP

free null, c, one, two.

fun enc/2. fun dec/2. fun senc/2. fun sdec/2.

fun hmac/2. fun pk/1. fun handle/1.

equation dec(sk, enc(pk(sk), m)) = m.

equation sdec(k, senc(k, m)) = m.

query attacker:newauth. (* ATTACK FOUND *)

query ev:successU(x,y,z) ==> ev:successT(x,y,z). (* ATTACK FOUND *)

let User =

(* request an OSAP session *)

new no;

new noOSAP;

out(c, (kh, noOSAP));

in(c, (ah, ne, neOSAP) );

let K = hmac(authdata, (neOSAP, noOSAP)) in

(* request execution of a command, e.g. TPM_CreateWrapKey *)

new newauth;

out(c, no);

out(c, senc(K,newauth) );

out(c, hmac(K,(ne,no)) );

(* receive the response from the TPM, and check it *)

in(c, (r, hm) );

if hm = hmac( K , r) then

(* check that the TPM has newauth *)

new n;

out(c, n);

in(c, hm2);

if hm2=hmac(newauth,n) then

event successU(K, r, newauth).

let TPM =

(* handle the request for an OSAP session *)

new ne;

new neOSAP;

in(c, noOSAP );

out(c, (ne, neOSAP) );

let K = hmac(authdata, (neOSAP, noOSAP)) in

(* execute a command from the user, e.g. TPM_CreateWrapKey *)

in(c, (no, encNewAuth, hm));

if hm = hmac(K, (ne,no)) then

let newauth = sdec(K, encNewAuth) in



(* return a response to the user *)

new response;

out(c, ( response, hmac( K , response) ));

event successT(K, response, newauth);

(* if asked, prove knowledge of newauth *)

in(c, n);

out(c, hmac(newauth,n)).

process

new skTPM; (* secret part of a TPM key *)

let pkTPM = pk(skTPM) in (* public part of a TPM key *)

new authdata; (* the shared authdata *)

let kh = handle(pkTPM) in

out(c, (pkTPM, authdata, kh) );

( !User | !TPM )

Appendix 2: ProVerif script for SKAP

free null, c, one, two.

fun enc/2. fun dec/2. fun senc/2. fun sdec/2.

fun hmac/2. fun pk/1. fun kdf/2. fun handle/1.

equation dec(sk, enc(pk(sk), m)) = m.

equation sdec(k, senc(k, m)) = m.

query attacker:newauth. (* SECRECY HOLDS *)

query ev:successU(w,x,y,z) ==> ev:successT(w,z,y,z). (* CORRESPONDENCE HOLDS *)

let User =

(* request an OSAP session *)

new K;

new no;

out(c, (kh, enc(pkTPM, K)) );

in(c, (ah, ne));

let K1 = hmac(K, (authdata, ne, one)) in

let K2 = hmac(K, (authdata, ne, two)) in

(* request execution of a command, e.g. TPM_CreateWrapKey *)

new newauth;

out(c, ( no, senc(K2,(ne,no,newauth)), hmac(K1,(null,ne,no)) ) );

(* receive the response from the TPM, and check it *)

in(c, (response, hm) );

if hm = hmac( kdf(K1,newauth), response) then



(* check that the TPM has newauth *)

new n;

out(c, n);

in(c, hm2);

if hm2=hmac(newauth,n) then

event successU(K1, K2, response, newauth).

let TPM =

(* handle the request for an OSAP session *)

new ne;

in(c, encSessKey );

let K = dec(skTPM, encSessKey) in

out(c, ne);

let K1 = hmac(K, (authdata, ne, one)) in

let K2 = hmac(K, (authdata, ne, two)) in

(* execute a command from the user, e.g. TPM_CreateWrapKey *)

in(c, (no, encNewAuth, hm));

if hm = hmac(K1, (null,ne,no)) then

let (ne’,no’,newauth) = sdec(K2, encNewAuth) in

if ne’=ne then

if no’=no then

(* return a response to the user *)

new reponse;

out(c, ( response, hmac( kdf(K1,newauth), response) ));

event successT(K1, K2, response, newauth);

(* if asked, prove knowledge of newauth *)

in(c, n);

out(c, hmac(newauth,n)).

process

new skTPM; (* secret part of a TPM key *)

let pkTPM = pk(skTPM) in (* public part of a TPM key *)

new authdata; (* the shared authdata *)

let kh = handle(pkTPM) in

out(c, (pkTPM, authdata, kh) );

( !User | !TPM )


