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Abstract

We investigate the composition of protocols that
share a common secret. This situation arises when
users employ the same password on different services.
More precisely we study whether resistance against
guessing attacks composes when the same password is
used. We model guessing attacks using a common def-
inition based on static equivalence in a cryptographic
process calculus close to the applied pi calculus. We
show that resistance against guessing attacks composes
in the presence of a passive attacker. However, com-
position does not preserve resistance against guessing
attacks for an active attacker. We therefore propose
a simple syntactic criterion under which we show this
composition to hold. Finally, we present a protocol
transformation that ensures this syntactic criterion and
preserves resistance against guessing attacks.

1 Introduction

Security protocols are small programs that aim at
securing communications over a public network like
the Internet. Considering their increasing ubiquity a
high level of assurance is needed in the correctness
of such protocols. Developments in formal methods
have produced considerable success in analysing secu-
rity protocols. Automated tools such as Avispa [5] and
ProVerif [10] are now capable of analysing large pro-
tocols involving several or even an unbounded num-
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ber of sessions. However, these analyses usually con-
sider that the protocol is executed in isolation, ignoring
other protocols that may be executed in parallel. The
assumption that another parallel protocol cannot in-
terfere with the protocol under investigation is valid if
the two protocols do not share any secret data (such as
cryptographic keys or passwords). But if such data is
shared between protocols, then this assumption is not
valid.

While the absence of shared keys between different
protocols is obviously desirable, it is not always possi-
ble or realistic. For example, password-based protocols
are those in which a user picks a password which forms
one of the secrets used in the protocol. It is unreal-
istic to assume that users never share the same pass-
words between different applications. In this paper,
we consider the situation in which secret data may be
shared between protocols, and we particularly focus on
password-based protocols. We investigate under what
conditions we can guarantee that such protocols will
not interfere with each other. Under certain condi-
tions, we may have that

if P1 and P2 are secure then P1 | P2 is secure.

For example, in the context of cryptographic pi calculi
(e.g. spi calculus [3], applied pi calculus [2]), “is secure”
is often formalised as observational equivalence to some
specification. We have that P1 ≈ S1 and P2 ≈ S2 imply
P1 | P2 ≈ S1 | S2, where S1 and S2 are specifications,
and therefore the security of the composition follows
from the security of each protocol. Here, the composi-
tion of security relies on two facts. First, as mentioned,
security means observational equivalence to a specifica-
tion; the attacker is an arbitrary context, and Pi ≈ Si

means P1 and S1 are equivalent in any environment.
Second, by forming the composition P1 | P2 we have
made the assumption that P1 and P2 do not share any
secret.



Now suppose that P1 and P2 do share a secret w.
To prove that their security composes, one would like
to show that

if νw.P1 and νw.P2 are secure
then νw.(P1 | P2) is secure.

Note in particular that νw.(P1 | P2) is different from
(νw.P1) | (νw.P2) because the later refers to two dif-
ferent secrets as they have different scope. In contrast
with the previously mentioned composition result, this
one does not hold in general.

Additionally, the notion of security we consider in
this paper is resistance to guessing attacks, which is
not expressible as observational equivalence to some
specification. Guessing attacks are a kind of dictionary
attack in which the password is supposed to be weak,
i.e. part of a dictionary for which a brute force attack
is feasible. A guessing attack works in two phases. In
a first phase the attacker eavesdrops or interacts with
one or several protocol sessions. In a second offline
phase, the attacker tries each of the possible passwords
on the data collected during the first phase. To re-
sist against a guessing attack, the protocol must be
designed such that the attacker cannot discover on the
basis of the data collected whether his current guess of
the password is the actual password or not. If the at-
tacker’s interaction with the protocol during the first
phase is limited to eavesdropping, then the attack is
called passive; if the attacker can participate fully with
the protocol, then it is active.

Several attempts have been made, based on the ini-
tial work of Lowe [19], to characterize guessing at-
tacks [12, 14, 17]. In [13], Corin et al. proposed an
elegant definition of resistance to passive guessing at-
tacks, based on static equivalence in the applied pi
calculus. A similar definition has also been used by
Baudet [7] who uses constraint solving techniques to
decide resistance against guessing attacks for an ac-
tive attacker and a bounded number of sessions. Re-
cent versions of the ProVerif tool also aim at proving
resistance against guessing attacks for an active at-
tacker and an unbounded number of sessions (at the
price of being incomplete and not guaranteeing termi-
nation) [11]. Moreover, Abadi et al. further increase
the confidence in this definition by showing its compu-
tational soundness for a given equational theory in the
case of a passive attacker [1].

In this paper, we study whether resistance against
guessing attacks composes when the same password is
used for different protocols. Protocols are modelled in
a cryptographic process calculus inspired by the ap-
plied pi calculus. We use the definition introduced by
Corin et al. (see [13]). This allows us to provide re-

sults for protocols involving a variety of cryptographic
primitives represented by means of an arbitrary equa-
tional theory. First we show that in the case of a pas-
sive attacker, resistance against guessing attacks com-
poses (Section 4). In the case of an active attacker we
prove that as expected, resistance against guessing at-
tacks does compose when no secrets are shared. How-
ever, resistance against active guessing attacks does not
compose in general when the same password is shared
between different protocols. Nevertheless, we present
a simple syntactic criterion, which we call well-tagged,
which ensures that security composes even when the
same password is reused for different protocols (Sec-
tion 5). To provide an effective design methodology
we also propose a simple transformation to ensure that
the protocol is well-tagged. We prove that this trans-
formation preserves resistance against guessing attacks
(Section 6).

Related work. The problem of secure composition
has been approached by several authors. Datta et al.
provide a general strategy [16] whereas our composition
result identifies a specific class of protocols that can be
composed. In [18, 15], some criteria are given to ensure
that parallel composition is safe. Andova et al. pro-
vide conditions to allow a broader class of composition
operations [4].

However, none of these works deal with composing
resistance against guessing attacks. They consider se-
crecy in term of deducibility or authentication prop-
erties. To the best of our knowledge only Malladi et
al. [20] have studied composition w.r.t. guessing at-
tacks. They point out vulnerabilities that arise when
the same password is used for different applications and
develop a method to derive conditions that a protocol
has to follow in order to be resistant against guessing
attacks. However, applying their methods to particu-
lar protocols is not always straightforward. Moreover,
their work relies on the definition of guessing attack
due to Lowe [19] which relies on a particular set of
cryptographic primitives. Our results are general and
independent of the underlying equational theory.

2 Preliminaries

2.1 Messages

A protocol consists of some agents communicating
on a network. The messages sent by the agents are
formed from data that the agents hold, as well as cryp-
tographic keys and messages that the agent has previ-
ously received. We assume an infinite set of names N ,
for representing keys, data values, nonces, and names
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of agents, and we assume a signature Σ, i.e. a finite
set of function symbols such as senc and sdec, each
with an arity. Messages are abstracted by terms, and
cryptographic operations are represented by function
symbols. Given a signature Σ and an infinite set of
variables X , we denote by T (Σ) (resp. T (Σ,X )) the
set of terms over Σ ∪ N (resp. Σ ∪ N ∪ X ). The for-
mer is called the set of ground terms over Σ, while the
latter is simply called the set of terms over Σ. We
write fn(M) (resp. fv(M)) for the set of names (resp.
variables) that occur in the term M . A substitution σ
is a mapping from a finite subset of X called its domain
and written dom(σ) to T (Σ,X ). Substitutions are ex-
tended to endomorphisms of T (Σ,X ) as usual. We use
a postfix notation for their application. Similarly, we
allow replacement of names: the term M{N/n} is the
term obtained from M after replacing any occurrence
of the name n by the term N .

As in the applied pi calculus [2], we use equational
theories for modelling the algebraic properties of the
cryptographic primitives. An equational theory is de-
fined by a finite set E of equations U = V with
U, V ∈ T (Σ,X ) and U, V without names. We define =E

to be the smallest equivalence relation on terms, that
contains E and that is closed under application of con-
texts and substitutions of terms for variables. Since
the equations in E do not contain any names, we have
that =E is also closed by substitutions of terms for
names.

Example 1 Consider the signature Σenc =
{sdec, senc, adec, aenc, pk, 〈 〉, proj1, proj2}. The sym-
bols sdec, senc, adec, aenc, and 〈 〉 are functional
symbols of arity 2 that represent respectively the
symmetric and asymmetric decryption and encryption
as well as pairing functions whereas pk, proj1 and
proj2 are functional symbols of arity 1 that represent
public key and projection functions on respectively
the first and the second component of a pair. A
typical example of an equational theory useful for
cryptographic protocols is Eenc, defined by the following
equations:

sdec(senc(x, y), y) = x
senc(sdec(x, y), y) = x

adec(aenc(x, pk(y)), y) = x
proji(〈x1, x2〉) = xi (i ∈ {1, 2})

Let T1 = sdec(senc(senc(n, k1), k2), k2) and
T2 = senc(n, k1). In this theory, we have that the
terms T1 and T2 are equal modulo Eenc, written
T1 =Eenc

T2, while obviously the syntactic equality
T1 = T2 does not hold.

2.2 Assembling Terms into Frames

At some moment, while engaging in one or more ses-
sions of one or more protocols, an attacker may have
observed a sequence of messages M1, . . . , Mℓ. We want
to represent this knowledge of the attacker. It is not
enough for us to say that the attacker knows the set of
terms {M1, . . . , Mℓ}, since he also knows the order that
he observed them in. Furthermore, we should distin-
guish those names that the attacker knows from those
that were freshly generated by others and which re-
main secret from the attacker; both kinds of names
may appear in the terms. We use the concept of frame
from the applied pi calculus [2] to represent the knowl-
edge of the attacker. A frame φ = νñ.σ consists of a
finite set ñ ⊆ N of restricted names (those that the
attacker does not know), and a substitution σ of the
form {M1/x1

, . . . , Mℓ/xℓ
}. The variables enable us to

refer to each Mi. We always assume that the terms Mi

are ground. The names ñ are bound and can be re-
named. We denote by =α the α-renaming relation on
frames. The domain of the frame φ, written dom(φ),
is defined as {x1, . . . , xℓ}.

2.3 Deduction

Given a frame φ that represents the information
available to an attacker, we may ask whether a given
ground term M may be deduced from φ. Given an
equational theory E on Σ, this relation is written
φ ⊢E M and is formally defined below.

Definition 1 (deduction) Let M be a ground term
and νñ.σ be a frame. We have that νñ.σ ⊢E M if and
only if there exists a term N ∈ T (Σ,X ) such that
fn(N) ∩ ñ = ∅ and Nσ =E M . Such a term N is a
recipe of the term M .

Intuitively, the deducible messages are the messages
of φ and the names that are not protected in φ, closed
by equality in E and closed by application of function
symbols. When νñ.σ ⊢E M , any occurrence of names
from ñ in M is bound by νñ. So νñ.σ ⊢E M could be
formally written νñ.(σ ⊢E M).

Example 2 Consider the theory Eenc given in Exam-
ple 1. Let φ = νk, s1.{senc(〈s1,s2〉,k)/x1

, k/x2
}. We have

that φ ⊢Eenc
k, φ ⊢Eenc

s1 and φ ⊢Eenc
s2. Indeed x2,

proj1(sdec(x1, x2)) and s2 are recipes of the terms k,
s1 and s2 respectively.

2.4 Static Equivalence

The frames we have introduced are a bit too fine-
grained as representations of the attacker’s knowledge.
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For example, νk.{senc(s0,k)/x} and νk.{senc(s1,k)/x} rep-
resent a situation in which the encryption of the public
name s0 (resp. s1) by a randomly-chosen key has been
observed. Since the attacker cannot detect the differ-
ence between these situations, the frames should be
considered equivalent. To formalise this, we note that
if two recipes M, N on the frame φ produce the same
term, we say they are equal in the frame, and write
(M =E N)φ. Thus, the knowledge of the attacker can
be thought of as his ability to distinguish such recipes.
If two frames have identical distinguishing power, then
we say that they are statically equivalent. Formally:

Definition 2 (static equivalence [2]) We say that
two terms M and N are equal in the frame φ, and
write (M =E N)φ, if there exists ñ and a substitution
σ such that φ =α νñ.σ, Mσ =E Nσ, and ñ∩ (fn(M)∪
fn(N)) = ∅. We say that two frames φ1 and φ2 are
statically equivalent, φ1 ≈E φ2, when:

• dom(φ1) = dom(φ2), and

• for all terms M, N we have that (M =E N)φ1 if
and only if (M =E N)φ2.

Note that by definition of ≈, we have that φ1 ≈ φ2

when φ1 =α φ2 and we have also that νn.φ ≈ φ when n
does not occur in φ.

Example 3 Consider again the equational theory Eenc

provided in Example 1. Let

• φ = νk.{senc(s0,k)/x1
, k/x2

}, and

• φ′ = νk.{senc(s1,k)/x1
, k/x2

}.

Intuitively, s0 and s1 could be the two possible (pub-
lic) values of a vote. We have (sdec(x1, x2) =Eenc

s0)φ
whereas (sdec(x1, x2) 6=Eenc

s0)φ
′. Therefore we have

that φ 6≈ φ′. However, we have that

νk.{senc(s0,k)/x1
} ≈ νk.{senc(s1,k)/x1

}.

The following lemma is a consequence of some lem-
mas stated in [2] and will be useful later on to establish
our composition result.

Lemma 1 Let φ1 = νñ1.σ1 and φ2 = νñ2.σ2 be two
frames such that φ1 ≈ φ2.

1. νn.φ1 ≈ νn.φ2 when n 6∈ ñ1 ∪ ñ2,

2. φ1{s/n} ≈ φ2{s/n} when n 6∈ ñ1 ∪ ñ2 and s is a
fresh name.

3 Modelling Protocols and Guessing

Attacks

We now define our cryptographic process calculus
for describing protocols. This calculus is inspired by
the applied pi calculus [2] but we prefer a simplified
version which is sufficient for the purpose of this pa-
per. In particular we only consider one channel, which
is public (i.e. under the control of the attacker). More-
over, we only consider closed processes: all variables
appearing in terms are under the scope of an input.
Finally, we only consider finite processes, i.e., without
replication. As we will argue at the end of Section 5
this is not a restriction and our composition result car-
ries over to an unbounded number of sessions.

3.1 Protocol Language

The grammar for processes is given below. One has
plain processes P, Q, R and extended processes A, B, C.
Plain processes are formed from the grammar

P, Q, R := plain processes
0 null process
P | Q parallel composition
in(x).P message input
out(M).P message output
if M = N then P else Q conditional

such that a variable x appears in a term only if the term
is in the scope of an input in(x). The null process 0 does
nothing; P | Q is the parallel composition of P and Q.
The condition if M = N then P else Q is standard,
but M = N represents equality modulo the underlying
equational theory E. We omit else Q when Q is 0. The
process in(x).P is ready to input on the public channel,
then to run P with the actual message instead of x,
while out(M).P is ready to output M , then to run P .
Again, we omit P when P is 0.

Further, we extend processes with active substitu-
tions and restrictions:

A, B, C := P
∣∣ A | B

∣∣ νn.A
∣∣ {M/x}

where M is a ground term. As usual, names and
variables have scopes, which are delimited by restric-
tions and by inputs. We write fv (A), bv(A), fn(A),
bn(A) for the sets of free and bound variables (resp.
names). Moreover, we require processes to be name
and variable distinct, meaning that bn(A)∩ fn(A) = ∅,
bv(A)∩fv(A) = ∅, and also that any name and variable
is bound at most once in A. Note that the only free
variables are introduced by active substitutions (the x
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in {M/x}). Lastly, in an extended process, we require
that there is at most one substitution for each vari-
able. We also extend replacements of names {M/n}
from terms to processes when the names fn(M) ∪ {n}
are not bound by the process. An evaluation context
is an extended process with a hole instead of an ex-
tended process. Extended processes built up from the
null process, active substitutions using parallel compo-
sition and restriction are called frames (extending the
notion of frame introduced in Section 2.2). Given an
extended process A we denote by φ(A) the frame ob-
tained by replacing any embedded plain processes in it
with 0.

Example 4 Consider the following process:

A = νs, k1.(out(a) | {senc(s,k1)/x} | νk2.out(senc(s, k2))).

We have that φ(A) = νs, k1.(0 | {senc(s,k1)/x} | νk2.0).

3.2 Semantics

Structural equivalence. We consider a basic struc-
tural equivalence, i.e. the smallest equivalence relation
closed by application of evaluation contexts and such
that

Par-0 A | 0 ≡ A
Par-C A | B ≡ B | A
Par-A (A | B) | C ≡ A | (B | C)

New-Par A | νn.B ≡ νn.(A | B) n 6∈ fn(A)
New-C νn1.νn2.A ≡ νn2.νn1.A

Using structural equivalence, every extended pro-
cess A can be rewritten to consist of a substitution
and a plain process with some restricted names, i.e.

A ≡ νñ.({M1/x1
} | . . . | {Mk/xk

} | P ).

In particular any frame can be rewritten as νn.σ
matching the notion of frame introduced in Sec-
tion 2.2. Note that static equivalence on frames co-
incides with [2] (even though our process calculus is
different). We note that unlike in the original applied
pi calculus, active substitutions cannot “interact” with
the extended processes. As we will see in the follow-
ing active substitutions record the outputs of a pro-
cess to the environment. The notion of frames will be
particularly useful to define resistance against guessing
attacks.

Example 5 Note that in Example 4, we have that
φ(A) ≡ νs, k1, k2.{senc(s,k1)/x}.

We have the following useful lemma which comes
from [2].

Lemma 2 Let φ1 = νñ1.σ1 and φ2 = νñ2.σ2 be two
frames. Let s 6∈ ñ1 ∪ ñ2.

1. νs.νñ1.(σ1 | {s/x}) ≈ νs.νñ2.(σ2 | {s/x}) if and
only if φ1 ≈ φ2;

2. Let φ be another frame such that φ1 | φ and φ2 | φ
are frames (this can always been obtained by α-
renaming φ). If φ1 ≈ φ2, then φ1 | φ ≈ φ2 | φ.

Operational semantics. We now define the seman-
tics of our calculus. The labelled semantics defines a
relation A

ℓ
−→ A′ where ℓ is a label of one of the follow-

ing forms:

• a label in(M), where M is a ground term such
that φ(A) ⊢E M . This corresponds to an input
of M ;

• a label out(M), where M is a ground term, which
corresponds to an output of M ;

• a label τ corresponding to a silent action.

Labelled operational semantics (
ℓ
−→) is the smallest

relation between extended processes which is closed un-
der structural equivalence (≡) and such that

In in(x).P
in(M)
−−−−→ P{M/x}

Out out(M).P
out(M)
−−−−−→ P | {M/x}

where x is a fresh variable

Then if M = N then P else Q
τ
−→ P

where M =E N

Else if M = N then P else Q
τ
−→ Q

where M 6=E N

Cont.
A

ℓ
−→ B

C[A]
ℓ
−→ C[B]

where C is an evaluation context, and
if ℓ = in(M) then φ(C[A]) ⊢E M

These rules use standard ideas known from pi calcu-
lus derivatives. Note that the in(M) label has as pa-
rameter the closed term being input, unlike in the ap-
plied pi calculus where the input term may contain
variables. The side condition on Cont. ensures that
the environment can deduce the input message M even
though the context may restrict some names in M .
The output of a message M adds an active substitu-
tion. Note that an output M may contain restricted
names without revealing these names. As explained
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previously, some of the design choices of the seman-
tics differ slightly from the applied pi calculus. Our
choices allow us to consider a very simple structural
equivalence and avoid unnecessary complications in the
proofs of our main results. We denote by → the rela-

tion
⋃ { ℓ

−→ | ℓ ∈ {in(M), out(M), τ}, M ∈ T (Σ)
}

and
by →∗ its reflexive and transitive closure.

Example 6 We illustrate our syntax and semantics
with the well-known handshake protocol.

A → B : senc(n, w)
B → A : senc(f(n), w)

The goal of this protocol is to authenticate B from A’s
point of view, provided that they share an initial se-
cret w. This is done by a simple challenge-response
transaction: A sends a random number (a nonce) en-
crypted with the shared secret key w. Then, B decrypts
this message, applies a given function (for instance
f(n) = n + 1) to it, and sends the result back, also en-
crypted with w. Finally, the agent A checks the validity
of the result by decrypting the message and checking the
decryption against f(n). In our calculus, we model the
protocol as νw.(A | B) where

• A = νn.out(senc(n, w)). in(x).
if sdec(x, w) = f(n) then P

• B = in(y). out(senc(f(sdec(y, w)), w)).

where P models an application that is executed when B

has been successfully authenticated The derivation de-
scribed in Figure 1 represents a normal execution of
the protocol. For simplicity of this example we suppose
that x 6∈ fv (P ).

3.3 Guessing Attacks

The idea behind the definition is the following. Sup-
pose the frame φ represents the information gained by
the attacker by eavesdropping one or more sessions and
let w be the weak password. Then, we can represent re-
sistance against guessing attacks by checking whether
the attacker can distinguish a situation in which he
guesses the correct password w and a situation in which
he guesses an incorrect one, say w′. We model these
two situations by adding {w/x} (resp. {w′

/x}) to the
frame. We use static equivalence to capture the no-
tion of indistinguishability. This definition is due to
Baudet [7], inspired from the one of [13]. In our defini-
tion, we allow multiple shared secrets, and write w̃ for
a sequence of such secrets.

Definition 3 Let φ ≡ νw̃.φ′ be a frame. We say that
the frame φ is resistant to guessing attacks against w̃
if

νw̃.(φ′ | {w̃/x̃}) ≈ νw̃′.νw̃.(φ′ | {w̃′

/x̃})

where w̃′ is a sequence of fresh names and x̃ a sequence
of variables such that x̃ ∩ dom(φ) = ∅.

Note that this definition is general w.r.t. to the
equational theory and the number of guessable data
items. Now, we can define what it means for a proto-
col to be resistant against guessing attacks.

Definition 4 Let A be a process and w̃ ⊆ bn(A). We
say that A is resistant to guessing attacks against w̃ if,
for every process B such that A →∗ B, we have that the
frame φ(B) is resistant to guessing attacks against w̃.

Example 7 Consider the handshake protocol de-
scribed in Example 6. An interesting problem arises
if the shared key w is a weak secret, i.e. vulnerable to
brute-force off-line testing. In such a case, the protocol
has a guessing attack against w. Indeed, we have that

νw.(A | B) →∗ D

with φ(D) = νw.νn.({senc(n,w)/x1
} | {M/x2

}).
The frame φ(D) is not resistant to guessing attacks

against w. The test f(sdec(x1, x))
?
= sdec(x2, x) allows

us to distinguish the two associated frames:

• νw.νn.({senc(n,w)/x1
} | {M/x2

} | {w/x}), and

• νw′.νw.νn.({senc(n,w)/x1
} | {M/x2

} | {w′

/x}).

4 Composition Result – Passive Case

The goal of this section is to establish a composition
result in the passive case for resistance against guessing
attacks. We first show the equivalence of three defini-
tions of resistance against guessing attacks: the first
definition is due to Baudet [7] and the second one is
due to Corin et al. [13]. The last definition is given
in a composable way and establishes our composition
result (see Corollary 1).

Proposition 1 Let φ be a frame such that φ ≡ νw̃.φ′.
The three following statements are equivalent:

1. φ is resistant to guessing attacks against w̃ (ac-
cording to Definition 3),

2. φ′ ≈ νw̃.φ′,

3. φ′ ≈ φ′{w̃′

/w̃} where w̃′ is a sequence of fresh
names.
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νw.(A | B)
out(senc(n,w))
−−−−−−−−−→ νw.νn.(B | {senc(n,w)/x1

} | in(x). if sdec(x, w) = f(n) thenP )
in(senc(n,w))
−−−−−−−−→ νw.νn.(out(M) | {senc(n,w)/x1

} | in(x). if sdec(x, w) = f(n) thenP )
out(M)
−−−−−→ νw.νn.({senc(n,w)/x1

} | {M/x2} | in(x). if sdec(x, w) = f(n) thenP )
in(senc(f(n),w))
−−−−−−−−−−→ νw.νn.({senc(n,w)/x1

} | {M/x2} | if sdec(senc(f(n), w), w) = f(n) thenP )
τ

−−→ νw.νn.({senc(n,w)/x1
} | {M/x2

} | P )

where M = senc(f(sdec(senc(n, w), w)), w) =E senc(f(n), w).

Figure 1. Example 6

Proof. Let φ be a frame such that φ ≡ νw̃.φ′. We first
establish that the two first statements are equivalent.
Indeed, we have that:

φ′ ≈ νw̃.φ′

⇔ φ′ ≈ νw̃′.φ′{w̃′

/w̃} by α-renaming

⇔ νw̃.(φ′ | {w̃/x̃}) ≈ νw̃.νw̃′.(φ′{w̃′

/w̃} | {w̃/x̃})
by Lemma 2 (item 1.)

⇔ νw̃.(φ′ | {w̃/x̃}) ≈ νw̃′.νw̃.(φ′ | {w̃′

/x̃})
by α-renaming

Now, we show that 3 ⇒ 2. We have the following
implications.

φ′ ≈ φ′{w̃′

/w̃}

⇒ νw̃.φ′ ≈ νw̃.φ′{w̃′

/w̃} by Lemma 1 (item 1.)

⇒ νw̃.φ′ ≈ φ′{w̃′

/w̃}

since w̃ does not occur in φ′{w̃′

/w̃}
⇒ νw̃.φ′ ≈ φ′

since φ′ ≈ φ′{w̃′

/w̃} by hypothesis

Finally, we prove that 2 ⇒ 3.

φ′ ≈ νw̃.φ′

⇒ φ′ ≈ νw̃′.φ′{w̃′

/w̃} by α-renaming

⇒ φ′{w̃′

/w̃} ≈ νw̃′.φ′{w̃′

/w̃} by Lemma 1 (item 2.)

⇒ φ′{w̃′

/w̃} ≈ νw̃.φ′ by α-renaming

⇒ φ′{w̃′

/w̃} ≈ φ′

since φ′ ≈ νw̃.φ′ by hypothesis �

Now, by relying on Proposition 1 (item 3.), it is easy
to show that resistance to guessing attack against w̃ for
two frames that share only the names w̃ is a composable
notion. This is formally stated in the corollary below:

Corollary 1 Let φ1 ≡ νw̃.φ′
1 and φ2 ≡ νw̃.φ′

2 be two
frames such that νw̃.(φ′

1 | φ′
2) is also a frame (this can

be achieved by using α-renaming).
If φ1 and φ2 are resistant to guessing attacks

against w̃ then νw̃.(φ′
1 | φ′

2) is also resistant to guessing
attacks against w̃.

Proof. By relying on Proposition 1 (point 3.), we have
that φ′

1 ≈ φ′
1{

w̃′

/w̃} and also that φ′
2 ≈ φ′

2{
w̃′

/w̃}.

Now, thanks to Lemma 2 (item 2.), we have that

• φ′
1 | φ′

2 ≈ φ′
1{

w̃′

/w̃} | φ′
2, and

• φ′
1{

w̃′

/w̃} | φ′
2 ≈ φ′

1{
w̃′

/w̃} | φ′
2{

w̃′

/w̃}.

This allows us to conclude that

φ′
1 | φ′

2 ≈ (φ′
1 | φ′

2){
w̃′

/w̃}

which means that the frame νw̃.(φ′
1 | φ′

2) is resistant
to guessing attacks against w̃. �

Note that a similar result does not hold for de-
ducibility (see Definition 1): even if w is neither de-
ducible from φ1 nor from φ2, it can be deducible
from φ1 | φ2. Such an example is given below.

Example 8 Consider again the equational the-
ory Eenc. Consider the two following frames:
φ1 = {senc(w,senc(w,w))/x1

} and φ2 = {senc(w,w)/x2
}.

We have that νw.φi 6⊢E w for i = 1, 2 whereas
νw.({senc(w,senc(w,w))/x1

} | {senc(w,w)/x2
}) ⊢E w. In-

deed, the term sdec(x1, x2) is a recipe of the term w.

In the case of password-only protocols, i.e., protocols
that only share a password between different sessions
and do not have any other long-term shared secrets we
have the following direct consequence. We can prove
resistance against guessing attacks for an unbounded
number of parallel sessions by proving only resistance
against guessing attacks for a single session. An exam-
ple of a password-only protocol is the well-known EKE
protocol [9], which has also been analysed in [13].

Example 9 The EKE protocol [9] can be informally
described by the following 5 steps. A formal description
of this protocol in our calculus is given in Figure 2.

A → B : senc(pk(k), w) (EKE.1)
B → A senc(aenc(r, pk(k)), w) (EKE.2)
A → B senc(na, r) (EKE.3)
B → A senc(〈na, nb〉, r) (EKE.4)
A → B senc(nb, r) (EKE.5)
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A = νk, na. B = νr, nb.
out(senc(pk(k), w)). in(y1).
in(x1). out(senc(aenc(r, sdec(y1, w)), w)).
let ra = adec(sdec(x1, w), k). in(y2).
out(senc(na, ra)) out(senc(〈sdec(y2, r), nb〉, r)).
in(x2). in(y3)
if proj1(sdec(x2, ra)) = na then if sdec(y3, r) = nb then
out(sdec(proj2(sdec(x2, ra)), ra)) 0

We use the construction let x = M to enhance readability. The semantics of this construction is to simply replace x
by M in the remaining of the process.

Figure 2. Modelling of the EKE protocol

In the first step (EKE.1) A generates a new private
key k and sends the corresponding public key pk(k)
to B, encrypted (using symmetric encryption) with the
shared password w. Then, B generates a fresh session
key r, which he encrypts (using asymmetric encryp-
tion) with the previously received public key pk(k). Fi-
nally, he encrypts the resulting ciphertext with the pass-
word w and sends the result to A (EKE.2). The last
three steps (EKE.3-5) perform a handshake to avoid
replay attacks. One may note that this is a password-
only protocol. A new private and public key are used
for each session and the only shared secret between dif-
ferent sessions is the password w.

We use the equational theory Eenc presented in Ex-
ample 1 to model this protocol. An execution of this
protocol in the presence of a passive attacker yields the
frame νw.φ where

φ = νk, r, na, nb.{senc(pk(k),w)/x1
,senc(aenc(r,pk(k)),w) /x2

,
senc(na,r)/x3

,senc(〈na,nb〉,r) /x4
,senc(nb,r) /x5

}

We have that νw.(φ | {w/x}) ≈ νw, w′.(φ | {w′

/x}).
We have verified this static equivalence using the YAPA
tool [6].

Corin et al. [13] also analysed one session of this pro-
tocol (with a slight difference in the modelling). It di-
rectly follows from our previous result that the protocol
is secure for any number of sessions as the only secret
shared between different sessions is the password w.

5 Composition Result – Active Case

In the active case, contrary to the passive case, resis-
tance against guessing attacks does not compose: even
if two protocols separately resist against guessing at-
tacks on w, their parallel composition under the shared
password w may be insecure. Consider the following
example.

Example 10 Consider the processes defined in Fig-
ure 2 where the occurrence of 0 in B has been replaced
by out(w). Let A′ and B′ these two processes. The
process νw.(A′ | B′) models a variant of the EKE pro-
tocol where B′ outputs the password w if the authenti-
cation of A′ succeeds. We have that νw.A′ and νw.B′

resist against guessing attacks on w. We have veri-
fied these statements by using the ProVerif tool [11].
However, νw.(A′ | B′) trivially leaks w. More gener-
ally any secure password only authentication protocol
can be modified in this way to illustrate that resistance
against guessing attacks does not compose in the active
case.

The previous example may not be entirely convinc-
ing, since there is no environment in which either of
the separate processes νw.A′ and νw.B′ is executable.
We do not give a formal definition of what it means for
a process to be executable. Therefore we present a sec-
ond example in which each of the constituent processes
admits a complete execution by interacting with the en-
vironment. However, the example requires a somewhat
contrived equational theory.

Example 11 Consider the following processes A1

and A2:

A1 = νn1.out(f1(w, n1)).in(x).out(f3(x, n1))
A2 = νn2.in(y).out(f2(y, w, n2))

and the equational theory induced by the equation
f3(f2(f1(x, y), x, z), y) = x. We indeed have that w re-
sists against guessing attacks in νw.A1 and in νw.A2;
we have verified this using the ProVerif tool [10].
However, the name w is subject to a guessing attack
in νw.(A1 | A2). Indeed, we have that

νw.(A1 | A2) →∗ νw, n1, n2.({f1(w,n1)/x1
} |

{f2(f1(w,n1),w,n2)/x2
} | {M/x3

})

where M =E w. The obtained frame νw.φ′ is not resis-
tant to guessing attack against w. We indeed have that
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νw.φ′ ⊢ w, and hence φ′ 6≈ φ′{w′

/w}. The see this,

consider for instance the test x3
?
= w.

This example shows that there is no hope to obtain a
general composition result that holds for an arbitrary
equational theory. Thus, to reach our goal, we need
to consider a restricted class of protocols: the class of
well-tagged protocols.

5.1 Well-tagged Protocols

Intuitively, a protocol is well-tagged w.r.t. a secret w
if all the occurrences of w are of the form h(α, w). We
require that h is a hash function (i.e., has no equations
in the equational theory), and α is a name, which we
call the tag. The idea is that if each protocol is tagged
with a different name (e.g. the name of the protocol)
then the protocols compose safely. Note that a proto-
col can be very easily transformed into a well-tagged
protocol (see Section 6). In the remainder, we will con-
sider an arbitrary equational theory E, provided there
is no equation for h.

Definition 5 (well-tagged) Let M be a term and w
be a name. We say that M is α-tagged w.r.t. w if
there exists M ′ such that M ′{h(α,w)/w} =E M .

A term is said well-tagged w.r.t. w if it is α-tagged
w.r.t. w for some name α. An extended process A is
α-tagged if any term occurring in it is α-tagged. An ex-
tended process is well-tagged if it is α-tagged for some
name α.

Other ways of tagging a protocol exist in the liter-
ature. For example, in [15] encryptions are tagged to
ensure that they cannot be used to attack other in-
stances of the protocol. That particular method would
not work here; on the contrary, that kind of tagging is
likely to add guessing attacks.

Example 12 Let A = νw, s.out(senc(s, w)). We have
that A is resistant to guessing attacks against w. How-
ever, the corresponding well-tagged protocol, according
to the definition given in [15], is not. Indeed,

A′ = νw, s.out(senc(〈α, s〉, w))

is not resistant to guessing attack against w. The tag α
which is publicly known can be used to mount such an
attack.

Another tagging method we considered is to replace w
by 〈α, w〉 (instead of h(α, w)), which has the advantage
of being computationally cheaper. This transformation
does not work, although the only counterexamples we

have are rather contrived. For example, this transfor-
mation does not preserve resistance against guessing
attacks as soon as the equational theory allows one to
test whether a given message is a pair. In particular
this is possible in the theory Eenc by testing whether
〈proj1(x), proj2(x)〉 =Eenc

x.

Example 13 Consider the equational theory Eenc.

Let A = νw, k.out(senc(w, k)).in(x). if
proj1(dec(x, k)) = α then out(w).

The process A is resistant to guessing attacks against w
since the last instruction can never been executed.
However, the protocol obtained by replacing w by 〈α, w〉
is clearly not.

Note that we can built a similar example without us-
ing α in the specification of A. We can simply compare
the first component of two ciphertexts issued from the
protocols. This should lead to an equality (i.e. a test)
which does not necessarily exist in the original proto-
col. Some non-executable protocols also cause some
trouble for the simple tagging method 〈α, w〉.

5.2 Composition Theorem

We show that any two well-tagged protocols that are
separately resistant to guessing attacks can be safely
composed provided that they use different tags. The
following theorem formalizes the intuition that replac-
ing the shared password with a hash parametrized by
the password and a tag is similar to using different
passwords which implies composition.

Theorem 1 (composition result) Let A1 and A2

be two well-tagged processes w.r.t. w such that the pro-
cess A1 (resp. A2) is α-tagged (resp. β-tagged) and
νw.(A1 | A2) is a process (this can be achieved by us-
ing α-renaming).

If νw.A1 and νw.A2 are resistant to guessing attacks
against w and α 6= β, then we have that νw.(A1 | A2)
is also resistant to guessing attacks against w.

Theorem 1 is proved by contradiction in two main
steps. First, we show that separately secure proto-
cols compose safely when no secret is shared, i.e.,
νw1.A1{w1/w} | νw2.A2{w2/w} resists against guess-
ing attacks on w1, w2. This is rather easy to establish
since these two protocols do not share any secret data
(Proposition 2). The proof is given in Appendix.

Proposition 2 Let A1 and A2 be two extended pro-
cesses such that A1 (resp. A2) is resistant to guessing
attack against w1 (resp. w2) and A1 | A2 is a process.
We have that A1 | A2 is resistant to guessing attack
against w1, w2.
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Now, we show how to map an execution of
νw.(A1{w/w1

} | A2{w/w2
}) (same password) to an ex-

ecution of νw1.A1 | νw2.A2 (different password) by
maintaining a strong connection between these two
derivations. Intuitively, as A1 is α-tagged and A2 is β-
tagged we can simply replace h(α, w) by h(α, w1) and
h(β, w) by h(β, w2) in any execution. The proof of the
following proposition is given in Appendix.

Proposition 3 Let A be an extended process with no
occurrence of w in it and such that w1, w2, α, β 6∈ bn(A)
and A′{h(α,w1)/w1

}{h(β,w2)/w2
} =E A for some A′.

Let B be such that νw.(A{w/w1
}{w/w2

})
ℓ
−→ B. More-

over, when ℓ = in(M̃) we assume that w1, w2 6∈ fn(M̃).
Then there exists B and B′ such that

• B ≡ νw.(B{w/w1
}{w/w2

}) with no occurrence
of w in B, and

• B′{h(α,w1)/w1
}{h(β,w2)/w2

} =E B, and

• νw1.νw2.A → νw1.νw2.B.

Finally, we show that if a frame, obtained by execut-
ing two protocols sharing a same password, is vulnera-
ble to guessing attacks then the frame obtained by the
corresponding execution of the protocols with different
passwords is also vulnerable to guessing attacks. The
proof of the lemma is technical because mapping w1

and w2 on the same password can introduce additional
equalities between terms. Again, the lemma holds be-
cause the frames are well-tagged. The proof is given in
Appendix A.

Lemma 3 Let φ1 = νñ.σ1 and φ2 = νñ.σ2 be two
frames such that φ1 ≈ φ2, w1, w2, α, β 6∈ ñ and
such that φi =E φ′

i{
h(α,w1)/w1

}{h(β,w2)/w2
} for some

frame φ′
i (i = 1, 2). Let w be a fresh name. We have

that
φ1{

w/w1
}{w/w2

} ≈ φ2{
w/w1

}{w/w2
}

Now, we can prove Theorem 1.

Proof. We prove our composition result by contradic-
tion. Assume that the process νw.(A1 | A2) is not re-
sistant to guessing attacks against w. We show that
the process νw1.A1{w1/w} | νw2.A2{w2/w} is not re-
sistant to guessing attack against w1, w2. This means,
by Proposition 2, that νwi.Ai{wi/w} is not resistant to
guessing attacks against wi for i = 1 or i = 2. Thus, by
α-renaming, νw.Ai is not resistant to guessing attacks
against w for i = 1 or i = 2. Hence, a contradiction.

By definition of guessing attacks, we have that there
exists an extended process A such that:

• νw.(A1 | A2) →∗ A, and

• the frame φ(A) is not resistant to guessing attacks
against w.

We assume w.l.o.g. that the free names w1, w2, which
do not occur in νw.(A1 | A2), are not used along the
derivation. By iterating Proposition 3, we have that
there exist two extended processes A and A′ such that:

• A ≡ νw.A{w/w1
}{w/w2

},

• A′{h(α,w1)/w1
}{h(β,w2)/w2

} =E A, and

• νw1.νw2.(A1{w1/w} | A2{w2/w}) →∗ νw1.νw2.A.

It remains to show that φ(A) 6≈ φ(A){w′

1/w1
}{w′

2/w2
}.

Suppose that φ(A) ≈ φ(A){w′

1/w1
}{w′

2/w2
}. Apply-

ing Lemma 3 with the replacements {w/w1
}{w/w2

} and
{w′

/w′

1
}{w′

/w′

2
}, we obtain that:

• φ(A){w/w1
}{w/w2

} ≈ φ(A){w′

1/w1
}{w′

2/w2
}, and

• φ(A) ≈ φ(A){w′

/w1
}{w′

/w2
}.

Since φ(A) ≈ φ(A){w′

1/w1
}{w′

2/w2
}, by transitivity

of ≈, we obtain that

φ(A){w/w1
}{w/w2

} ≈ (φ(A){w/w1
}{w/w2

}){w′

/w}.

Hence, φ(A) is resistant to guessing attacks
against w. Thus, we obtain a contradiction and con-
clude the proof. �

One may note that our composition result holds for
an unbounded number of sessions (even though our
protocol language does not include replication). This is
because our proof is done by contradiction and the fact
that any attack only uses a finite number of sessions.
Indeed, suppose that two protocols are separately resis-
tant against guessing attacks for an unbounded number
of sessions and that their parallel composition allows a
guessing attack. As any attack only requires a finite
number of sessions, by Theorem 1, we have that one of
the protocols admits an attack leading to a contradic-
tion.

6 Transformation to Obtain Well-

Tagged Protocols

In the previous section, we proved a composition re-
sult for protocols that resist against guessing attacks.
Unfortunately, it only applies to protocols that are
well-tagged. This is indeed a restriction, since most of
the existing protocols are not well-tagged. In this sec-
tion, we give a simple, syntactic transformation which
allows us to transform any protocol into a well-tagged
one. If νw.A is a process resistant to guessing attacks
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against w, then the transformed process is defined as
νw.(A{h(α,w)/w}): any occurrence of the password w
in A is replaced by h(α, w). In this section, we show
that this transformation is safe in the sense that if a
process is resistant to guessing attacks against w, then
the transformed process is also resistant to guessing at-
tack against w. Theorem 2, stated below, is proved by
contradiction in two main steps by relying on Proposi-
tion 4 and Lemma 4.

Theorem 2 Let A ≡ νw.A′ be a process resistant
to guessing attacks against w, then we have that
νw.(A′{h(α,w)/w}) is also resistant to guessing attacks
against w.

Theorem 2 is proved by contradiction in two main
steps by relying on Proposition 4 and Lemma 4. In
Proposition 4, we show how to map an execution of
a well-tagged protocol to an execution of the original
(not well-tagged) protocol. We maintain a strong con-
nection between the two executions.

Proposition 4 Let A be a process with w, α 6∈ bn(A)
and A′{h(α,w)/w} =E A for some A′. If νw.A → B,
then B ≡ νw.B and there exists a process B′ such that
B′{h(α,w)/w} =E B and νw.A′ → νw.B′.

Then, we show that static equivalence is preserved
by the transformation {h(α,w)/w}. This is crucial to do
not introduce guessing attack.

Lemma 4 Let φ1 and φ2 be two frames such that
φ1 ≈ φ2. Let w, α be such that w, α 6∈ bn(φ1)∪ bn(φ2).
We have that

φ1{
h(α,w)/w} ≈ φ2{

h(α,w)/w}.

Now, we are able to prove Theorem 2.

Proof. Assume that νw.(A′{h(α,w)/w}) is not resistant
to guessing attacks on w. This means that there exists
a process B such that:

• νw.(A′{h(α,w)/w}) →∗ B, and

• the frame φ(B) is not resistant to guessing attacks
against w.

By applying Proposition 4, we easily obtained that
B ≡ νw.B for some process B and there exists B′

such that B′{h(α,w)/w} =E B and νw.A′ →∗ νw.B′.
To conclude, it remains to show that

φ(B′) 6≈ φ(B′){w′

/w}.

Assume that φ(B′) ≈ φ(B′){w′

/w}, thanks to
Lemma 4, we easily obtain that

• φ(B) =E φ(B′){h(α,w)/w}
≈ (φ(B′){w′

/w}){h(α,w)/w} = φ(B′){w′

/w},
and

• φ(B′) = φ(B′){h(α,w′)/w′}
≈ (φ(B′){w′

/w}){h(α,w′)/w′} =E φ(B){w′

/w}.

Since φ(B′) ≈ φ(B′){w′

/w}, and by transitivity of ≈,
we obtain φ(B) ≈ φ(B){w′

/w} which contradicts the
fact that φ(B) is not resistant to guessing attacks
against w. �

We have shown that resistance against guessing at-
tacks is preserved by our transformation. The simplic-
ity of our transformation should also ensure that the
functionalities of the protocol are preserved as well. A
rigorous proof of this would require a formal definition
of what it means to “preserve the functionalities” of a
protocol.

7 Conclusion

We investigated the composition of protocols that
share a common secret, and answered the question
of whether such composition preserves resistance to
guessing attacks. In the passive case (where the at-
tacker cannot interact with the protocol but can anal-
yse the transcript of messages it generated), we showed
that if the two protocols individually resist guessing
attacks, then the composition does too. In the active
case, we showed that this result does not hold in gen-
eral, but we showed that one could tag the protocols in
such a way that they compose without compromising
the resistance to guessing attacks.

An alternative direction of research would be to in-
vestigate whether there are conditions on the equa-
tional theory and a suitable condition of executability
that would make the composition result hold without
tagging for the active case. In particular we do not
have an individually-executable counterexample for the
common equational theory Eenc given in Example 1. It
would also be interesting to consider the case where ad-
ditional long term keys are shared. Broader directions
for future research include composition of other secu-
rity properties, such as observational equivalence for
processes that share secrets, and different composition
operators, e.g. sequential composition.

Acknowledgments. Our paper benefited from com-
ments and discussions with Véronique Cortier, Cédric
Fournet and Bogdan Warinschi.
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A Combination

A.1 Proof of Lemma 3

The goal of this section is to prove Lemma 3. Be-
fore to prove it, we introduce the following splitting
function.

Definition 6 Given a frame φ, two terms h(α, w1)
and h(β, w2) such that w1 and w2 are two different
names and let w be another name. The splitting func-
tion splitφ w.r.t. φ, h(α, wa), h(β, w2) and w is defined
recursively as splitφ(u) = u when u is a name or a vari-
able and splitφ(f(T1, . . . , Tk)) is defined as follows:

− h(α, w1) if f = h, k = 2, (α =E T1)φ, (w =E T2)φ
− h(β, w2) if f = h, k = 2, (β =E T1)φ, (w =E T2)φ
− f(splitφ(T1), . . . , splitφ(Tk)) otherwise

When dom(φ) = ∅, we denote it as split0. In this
case, the function split0 is a replacement modulo E as
defined in [8]. Hence, we have the following lemma.

Lemma 5 ([8]) Let h(α, w1) and h(β, w2) be two
terms such that w1, w2 are different names and let w
be another name. We have that

M =E N ⇒ split0(M) =E split0(N)

for any term M and N .

Lemma 6 Let φs = νñ.σs be a frame with w1, w2 6∈ ñ
and such that σs =E σ{h(α,w1)/w1

}{h(β,w2)/w2
} for

some substitution σ. Let w be a fresh name. Let
split be the splitting function w.r.t. φs{w/w1

}{w/w2
},

h(α, w1), h(β, w2) and w. Let split0 be the splitting
function w.r.t. h(α, w1), h(β, w2) and w. Let M be a
term such that fn(M) ∩ ñ = ∅. We have that

split0(M(σs{
w/w1

}{w/w2
})) =E split(M)σs.

Proof. We prove this result by structural induction
on M . If M is a name or a variable such that
M 6∈ dom(φs), we have that

split0(M(σs{
w/w1

}{w/w2
})) = split(M)σs = M.

Now, assume that M is a variable, say x, such that
x ∈ dom(φs) and let T = xσs. We have that T =E

T ′{h(α,w1)/w1
}{h(α,w2)/w2

} for some T ′ and w does not
occur in T . Hence, we have that

split0(x(σs{w/w1
}{w/w2

})) = split0(T {w/w1
}{w/w2

})
=E T
= split(x)σs

Now, we can deal with the induction step, i.e.
M = f(M1, . . . , Mk). We distinguish three cases.

1. f = h, k = 2, (M1 =E α)(φs{w/w1
}{w/w2

}) and
(M2 =E w)(φs{w/w1

}{w/w2
}). In such a case,

we have that split(M)σs = h(α, w1). Moreover,
since we have that M1(σs{w/w1

}{w/w2
}) =E α

and M2(σs{
w/w1

}{w/w2
}) =E w, we have that

split0(M(σs{w/w1
}{w/w2

})) = h(α, w1).

2. f = h, k = 2, (M1 =E β)(φs{w/w1
}{w/w2

}),
(M2 =E w)(φs{

w/w1
}{w/w2

}). This case is sim-
ilar to the previous one.

3. Otherwise, we have that split(f(M1, . . . , Mk)) =
f(split(M1), . . . , split(Mk)). Hence, we have that

split0(M(σs{w/w1
}{w/w2

}))

= f(split0(M1(σs{w/w1
}{w/w2

})), . . . ,
split0(Mk(σs{w/w1

}{w/w2
})))

=E f(split(M1)σs, . . . , split(Mk)σs) by ind. hyp.

= f(split(M1), . . . , split(Mk))σs

= Mσs �

Now, we are able to prove Lemma 3.

Lemma 3 Let φ1 = νñ.σ1 and φ2 = νñ.σ2 be two
frames such that φ1 ≈ φ2, w1, w2, α, β 6∈ ñ and
such that φi =E φ′

i{
h(α,w1)/w1

}{h(β,w2)/w2
} for some

frame φ′
i (i = 1, 2). Let w be a fresh name. We have

that
φ1{

w/w1
}{w/w2

} ≈ φ2{
w/w1

}{w/w2
}

Proof. To prove this, we have to show that for all terms
M and N , we have

1. (M =E N)(φ1{
w/w1

}{w/w2
})

⇒ (M =E N)(φ2{w/w1
}{w/w2

})

2. (M =E N)(φ2{w/w1
}{w/w2

})
⇒ (M =E N)(φ1{

w/w1
}{w/w2

}).

Actually, it is sufficient to establish this result for all
terms M and N such that w1, w2 6∈ fn(M)∪fn(N) since
w1, w2 do not occur neither in φ1{w/w1

}{w/w2
} nor

in φ2{w/w1
}{w/w2

}. Moreover, we can assume w.l.o.g.
that ñ ∩ (fn(M) ∪ fn(N)) = ∅. We have that

• φ1{w/w1
}{w/w2

} = νñ.σ1{w/w1
}{w/w2

}, and

• φ2{w/w1
}{w/w2

} = νñ.σ2{w/w1
}{w/w2

}.

Let split be the splitting function w.r.t.
φ1{w/w1

}{w/w2
}, h(α, w1), h(β, w2) and w. Let

split0 be the splitting function w.r.t. h(α, w1),
h(β, w2), w. We show by induction on max(|M |, |N |)1

that

1The size |M | of a term M is defined by |u| = 1 when u is a

name or a variable and |f(M1, . . . , Mk)| = 1 +
P

k

i=1
|Mi|.
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• (split(M)σ2){w/w1
}{w/w2

} =E M(σ2{w/w1
}{w/w2

}),
• (M =E N)(φ1{w/w1

}{w/w2
})

⇒ (M =E N)(φ2{w/w1
}{w/w2

}).

Base case: max(|M |, |N |) = 1. This means that M
and N are names or variables.

• If M is a name or a variable such that M 6∈ dom(φ2),
we have that (split(M)σ2){w/w1

}{w/w2
} = M since

w1, w2 6∈ fn(M). Moreover, we have that
M(σ2{w/w1

}{w/w2
}) = M . If M is a variable, say x,

such that x ∈ dom(φ2), then we have that

(split(x)σ2){
w/w1

}{w/w2
} = (xσ2){

w/w1
}{w/w2

}
= x(σ2{w/w1

}{w/w2
}).

• The second point can be proved as follows:

(M =E N)(φ1{w/w1
}{w/w2

})

⇒ M(σ1{w/w1
}{w/w2

}) =E N(σ1{w/w1
}{w/w2

})

⇒ split0(M(σ1{w/w1
}{w/w2

})) =E

split0(N(σ1{w/w1
}{w/w2

})) by Lemma 5

⇒ split(M)σ1 =E split(N)σ1 by Lemma 6

⇒ (split(M) =E split(N))φ1

⇒ (split(M) =E split(N))φ2 since φ1 ≈ φ2

⇒ (split(M)σ2){w/w1
}{w/w2

} =E

(split(N)σ2){w/w1
}{w/w2

}

Since, |M | = |N | = 1, we can apply our previous result
to obtain that
• (split(M)σ2){w/w1

}{w/w2
} =E M(σ2{w/w1

}{w/w2
}),

• (split(N)σ2){w/w1
}{w/w2

} =E N(σ2{w/w1
}{w/w2

}).
This allows us to conclude that

M(σ2{
w/w1

}{w/w2
}) =E N(σ2{

w/w1
}{w/w2

}),

and thus (M =E N)(φ2{w/w1
}{w/w2

}).

Induction step: max(|M |, |N |) ≥ 2. We assume w.l.o.g.
that |M | ≥ |N |, thus M = f(M1, . . . , Mk).

• To establish the first point, we distinguish three
cases:

1. f = h, k = 2, (M1 =E α)(φ1{w/w1
}{w/w2

})
and (M2 =E w)(φ1{w/w1

}{w/w2
}). In such a

case, we have that split(M) = h(α, w1), hence we
have that (split(M)σ2){w/w1

}{w/w2
} = h(α, w).

Since |M1| + |α| < |M | + |N | and |M2| + |w| <
|M | + |N |, by induction hypothesis, we have
that (M1 =E α)(φ2{w/w1

}{w/w2
}) and also that

(M2 =E w)(φ2{w/w1
}{w/w2

}).

Hence, we have that

M(σ2{w/w1
}{w/w2

})
= h(M1(σ2{w/w1

}{w/w2
}), M2(σ2{w/w1

}{w/w2
}))

=E h(α, w)

2. f = h, k = 2, (M1 =E β)(φ1{w/w1
}{w/w2

}) and
(M2 =E w)(φ1{w/w1

}{w/w2
}). This case is similar

to the previous one.

3. Otherwise, split(M) = f(split(M1), . . . , split(Mk)).
Thus,

(split(M)σ2){w/w1
}{w/w2

}
= (f(split(M1), . . . , split(Mk))σ2){

w/w1
}{w/w2

}
= f((split(M1)σ2){w/w1

}{w/w2
}, . . . ,

(split(Mk)σ2){w/w1
}{w/w2

})
=E f(M1(σ2{w/w1

}{w/w2
}), . . . ,
Mk(σ2{w/w1

}{w/w2
}))

by ind. hyp.
= f(M1, . . . , Mk)(σ2{w/w1

}{w/w2
})

= M(σ2{w/w1
}{w/w2

})

• To prove the second point, we first establish, as
in the base case, that (M =E N)(φ1{w/w1

}{w/w2
})

implies that

(split(M)σ2){
w/w1

}{w/w2
} =E (split(N)σ2){

w/w1
}{w/w2

}.

Now, thanks to our previous result, we have that
• (split(M)σ2){w/w1

}{w/w2
} =E M(σ2{w/w1

}{w/w2
}),

• (split(N)σ2){w/w1
}{w/w2

} =E N(σ2{w/w1
}{w/w2

}).
This allows us to conclude that

M(σ2{
w/w1

}{w/w2
}) =E N(σ2{

w/w1
}{w/w2

}),

thus (M =E N)(φ2{w/w1
}{w/w2

}).

The second implication, (M =E N)(φ2{w/w1
}{w/w2

})
implies (M =E N)(φ1{

w/w1
}{w/w2

}) can be proved in
a similar way. This allows us to conclude the proof. �

A.2 Proof of Proposition 2

To establish this proposition, we need an additional
lemma on static equivalence.

Lemma 7 Let φ ≡ νw.νñ.σ be a frame resistant to
guessing attacks against w and M̃ be a sequence of
ground terms deducible from φ. Then we have that the

frame νw.νñ.(σ | {
fM/ỹ}) is also resistant to guessing

attacks against w.

Proof. We will first establish this result for a sequence
of ground terms of length 1. Then, it is easy to gen-
eralize the result to a sequence of an arbitrary length.
Let M be a ground term deducible from φ. We assume
w.l.o.g. that w′ 6∈ fn(M). Let ζ be a recipe of M , i.e. a
term such that fn(ζ)∩ ñ = ∅ and ζσ =E M . Moreover,
we assume that w, w′ 6∈ fn(ζ). By hypothesis, we have
that νñ.σ ≈ νñ.σ{w′

/w}. Our goal is to show that

νñ.(σ | {M/y}) ≈ νñ.(σ | {M/y}){
w′

/w}.

Let U, V be two terms such that
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• (fn(U) ∪ fn(V )) ∩ ñ = ∅, and

• (U =E V )(σ | {M/y}).

Let U ′ = U{ζ/y} and V ′ = V {ζ/y}. We
have that (fn(U ′) ∪ fn(V ′)) ∩ ñ = ∅. Moreover,
U(σ | {M/y}) =E U ′σ and V (σ | {M/y}) =E V ′σ.
Thanks to our hypothesis, we deduce
that (U ′ =E V ′)(σ{w′

/w}) and (U{ζ/y} =E

V {ζ/y})(σ{w′

/w}), i.e. (U =E V )(σ | {M/y}){w′

/w}.
The other direction can be shown in a similar way. �

Proposition 2 Let A1 and A2 be two extended pro-
cesses such that A1 (resp. A2) is resistant to guessing
attack against w1 (resp. w2) and A1 | A2 is a process.
We have that A1 | A2 is resistant to guessing attack
against w1, w2.

Proof. We prove this result by contradiction. We have
that A1 ≡ νw1.νñ1.P1 and A2 ≡ νw2.νñ2.P2 for some
sequences of names ñ1, ñ2 and some plain processes P1

and P2. Suppose that there exists a guessing attack on
A1 | A2 against w1, w2. This means that there exists
two plain processes P ′

1 and P ′
2 and two substitutions σ1

and σ2 such that

• A1 | A2 →∗ νw1.νw2.νñ1.νñ2.(P
′
1 | P ′

2 | σ1 | σ2),

• νw1.νw2.νñ1.νñ2.(σ1 | σ2) is not resistant to
guessing attacks against w1, w2,

where σ1 = {M1/x1
} | . . . | {Mp/xp

} and σ2 = {N1/y1
} |

. . . | {Nq/yq
}. Intuitively, the active substitution in σ1

comes from A1 whereas those in σ2 comes from A2.

Clearly, we have A1 | P2 →∗ νw1.νñ1.(P
′
1 | P ′

2 | σ1 | σ2)
and hence A1 →∗ νw1.νñ1.(P

′
1 | σ1). Similarly,

A2 →∗ νw2.νñ2.(P
′
2 | σ2). Since by hypothesis Ai is

resistant to guessing attacks against wi, we have that
νwi.νñi.σi is resistant to guessing attack against wi

for i = 1 and i = 2.

We have also that img(σ2) (resp. img(σ1)) is a
sequence of ground terms deducible from νw1.νñ1.σ1

(resp. νw2.νñ2.σ2). By applying Lemma 7, we obtain
that νwi.ñi.(σ1 | σ2) is resistant to guessing attacks
against wi (for i = 1 and i = 2), i.e.

• νñ1.(σ1 | σ2) ≈ νñ1.(σ1 | σ2){w′

1/w1
}, and

• νñ2.(σ1 | σ2) ≈ νñ2.(σ1 | σ2){w′

2/w2
}.

Thanks to Lemma 1 (item 1), we deduce that

• νñ1.νñ2.(σ1 | σ2) ≈ νñ1.νñ2.(σ1 | σ2){w′

1/w1
},

• νñ1.νñ2.(σ1 | σ2) ≈ νñ1.νñ2.(σ1 | σ2){w′

2/w2
}.

By applying Lemma 1 (item 2) on the first equivalence,
we obtain that

νñ1.νñ2.(σ1 | σ2){w′

2/w2
}

≈

νñ1.νñ2.(σ1 | σ2){w′

1/w1
}{w′

2/w2
}

Then, by transitivity of ≈, we deduce that

νñ1.νñ2.(σ1 | σ2)
≈

νñ1.νñ2.(σ1 | σ2){w′

1/w1
}{w′

2/w2
}

which means that νw1.νw2.νñ1.νñ2.(σ1 | σ2) is resis-
tant to guessing attacks against w1, w2. Hence we reach
a contradiction which concludes the proof. �

A.3 Proof of Proposition 3

The two following lemmas will be useful to deal with
the cases of an input (Lemma 8) and a conditional
(Lemma 9) in the proof of Proposition 3.

Lemma 8 Let φ, φ̃ and φ′ be three frames such that w
does not occur in φ̃ and α, β are free names. Moreover,
we assume that

• φ{w/w1
}{w/w2

} = φ̃, and

• φ′{h(α,w1)/w1
}{h(β,w2)/w2

} =E φ.

If νw.φ̃ ⊢E M̃ and w1, w2 6∈ fn(M̃) then there
exist M, M ′ such that M{w/w1

}{w/w2
} = M̃ ,

M ′{h(α,w1)/w1
}{h(β,w2)/w2

} =E M , νw1.νw2.φ ⊢E M .

Proof. Let φ = νñ.σ for some sequence of names ñ and
some substitution σ. We have that

• φ̃ = νñ.σ̃ where σ̃ = σ{w/w1
}{w/w2

},

• φ′ = νñ.σ′ where σ′{h(α,w1)/w1
}{h(β,w2)/w2

} =E σ.

Let M̃ be a term such that νw.φ̃ ⊢E M̃ and
w1, w2 6∈ fn(M̃). This means that there exists a term ζ
such that fn(ζ) ∩ (ñ ∪ {w, w1, w2}) = ∅ and ζσ̃ =E M̃ .
Let M ′ = ζσ′ and M = split0(M̃) where split0 is the
splitting function w.r.t. h(α, w1), h(β, w2) and w.
Clearly, we have that M{w/w1

}{w/w2
} = M̃ . By hy-

pothesis, we have that ζσ̃ =E M̃ . Thus, thanks
to Lemma 5, we have split0(ζσ̃) =E split0(M̃) = M .
Now, thanks to Lemma 6, we deduce that
split(ζ)σ =E M where split is the splitting func-
tion w.r.t. φ̃, h(α, w1), h(β, w2) and w. Ac-
tually, since φ′{h(α,w1)/w1

}{h(β,w2)/w2
} =E φ and

φ̃ = φ{w/w1
}{w/w2

}, we have that w is not deducible
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from νw.φ̃. This allows us to show that split(ζ) = ζ.
Hence, we have that ζσ =E M . Lastly, we have that

M ′{h(α,w1)/w1
}{h(β,w2)/w2

}
= (ζσ′){h(α,w1)/w1

}{h(β,w2)/w2
}

=E ζσ
=E M.

This allows us to conclude the proof. �

Lemma 9 Let M1, M2, M̃1 and M̃2 be four terms
such that

• M̃i = Mi{w/w1
}{w/w2

} for i = 1, 2, and

• M ′
i{

h(α,w1)/w1
}{h(β,w2)/w2

} =E Mi for some term
M ′

i , (i = 1, 2).

Then, we have M1 =E M2 if and only if M̃1 =E M̃2.

Proof. As =E is closed under substitution of terms
for names M1 =E M2 implies M̃1 =E M̃2. Now, let
M1 and M2 be two terms such that M̃1 =E M̃2 where
M̃i = Mi{w/w1

}{w/w2
} for i = 1, 2. Thus, according

to Lemma 5, we have that

split0(M1{
w/w1

}{w/w2
}) =E split0(M2{

w/w1
}{w/w2

})

where split0 represents the splitting function w.r.t.
h(α, w1), h(β, w2) and w. Now, it is easy to establish,
by structural induction on Mi (i = 1, 2) and by relying
on the fact that M ′

i{
h(α,w1)/w1

}{h(β,w2)/w2
} =E Mi for

some M ′
i , that split0(Mi{w/w1

}{w/w2
}) =E Mi. This

allows us to conclude. �

We will prove Proposition 3 by induction on the
prooftree witnessing the derivation. Since → is closed
by structural equivalence, we have first to establish a
similar result for ≡.

Lemma 10 Let A be an extended process with no oc-
currence of w in it and such that w1, w2, α, β 6∈ bn(A)
and A′{h(α,w1)/w1

}{h(β,w2)/w2
} =E A for some A′.

Suppose that A{w/w1
}{w/w2

} ≡ B for some process B.
Then there exist some processes B and B′ such that

• B = B{w/w1
}{w/w2

} with no occurrence of w in
B, and

• B′{h(α,w1)/w1
}{h(β,w2)/w2

} =E B, and

• A ≡ B.

Proof. Let A = A{w/w1
}{w/w2

}. We prove this result
by induction on the proof tree showing that A ≡ B.
All the base cases are easy to prove. The only inter-
esting inductive case is the case of an application of an

evaluation context. Suppose that the proof tree show-
ing that A ≡ B ends with an instance of such a rule,
i.e.

A1 ≡ B1

C[A1] ≡ C[B1]

where A = C[A1] and B = C[B1]. As
A = A{w/w1

}{w/w2
} we have that there ex-

ist A1, C such that A1{w/w1
}{w/w2

} = A1

and C{w/w1
}{w/w2

} = C. Moreover there ex-
ists A′ such that A′{h(α,w1)/w1

}{h(β,w2)/w2
} =E

A = C[A1]. Hence there also exist C′, A′
1

such that C′{h(α,w1)/w1
}{h(β,w2)/w2

} =E C and
A′

1{
h(α,w1)/w1

}{h(β,w2)/w2
} =E A1. We can therefore

apply our induction hypothesis and we obtain that
there exist processes B1, B

′
1 such that

• B1 = B1{w/w1
}{w/w2

};

• B′
1{

h(α,w1)/w1
}{h(β,w2)/w2

} =E B1;

• A1 ≡ B1.

Let B = C[B1] and B′ = C′[B′
1]. We indeed have that

• B = C[B1] = (C{w/w1
}{w/w2

})[B1{
w/w1

}{w/w2
}]

= B{w/w1
}{w/w2

}

• B′{h(α,w1)/w1
}{h(β,w2)/w2

}
= C′[B′

1]{
h(α,w1)/w1

}{h(β,w2)/w2
} =E C[B1] = B

• A = C[A1] ≡ C[B1] = B. �

Proposition 3 Let A be an extended process with no
occurrence of w in it and such that w1, w2, α, β 6∈ bn(A)
and A′{h(α,w1)/w1

}{h(β,w2)/w2
} =E A for some A′.

Let B be such that νw.(A{w/w1
}{w/w2

})
ℓ
−→ B. More-

over, when ℓ = in(M̃) we assume that w1, w2 6∈ fn(M̃).
Then there exists B and B′ such that

• B ≡ νw.(B{w/w1
}{w/w2

}) with no occurrence
of w in B, and

• B′{h(α,w1)/w1
}{h(β,w2)/w2

} =E B, and

• νw1.νw2.A → νw1.νw2.B.

Proof. We have νw.(A{w/w1
}{w/w2

}) → B. It is easy
to see that w ∈ bn(B). Indeed, according to our cal-
culus, we can always by using structural equivalence
move a restriction in front of the process. Thus we
have that B ≡ νw.B̃ for some process B̃. Let ℓ be the
label involved in νw.(A{w/w1

}{w/w2
}) → B. It is easy

to see that A{w/w1
}{w/w2

}
ℓ
−→ B̃ and when ℓ = in(M̃),

we have νw.(φ(A){w/w1
}{w/w2

}) ⊢E M̃ . Moreover, by
hypothesis, we have w1, w2 6∈ fn(M̃). By Lemma 8, we
deduce that νw1.νw2.φ(A) ⊢E M for some M such that
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M{w/w1
}{w/w2

} = M̃ and we also know that there
exists M ′ such that M ′{h(α,w1)/w1

}{h(α,w2)/w2
} =E M

This allows us, in particular, to ensure that, in the
case of an input, the side condition corresponding to
an application of evaluation context is satisfied. Now,
we show by induction on the proof tree showing that
A{w/w1

}{w/w2
} → B̃ that there exist B, B′ such that

• B̃ = B{w/w1
}{w/w2

} with no occurrence of w in
B, and

• B′{h(α,w1)/w1
}{h(β,w2)/w2

} =E B, and

• A → B

This will allows us to conclude that νw1, w2.A →
νw1.νw2.B.

Base cases.

• In. In such a case, we have A{w/w1
}{w/w2

} =

in(x).P̃ and B̃ = P̃{M̃/x} for some process
P̃ and some term M̃ . From this, we deduce
that A = in(x).P for some process P such that
P{w/w1

}{w/w2
} = P̃ . We have also that

A = out(M).P =E A′{h(α,w1)/w1
}{h(α,w2)/w2

}.

Thus, there exists P ′ such that
P ′{h(α,w1)/w1

}{h(α,w2)/w2
} =E P . Moreover,

we have already seen that there exists M and M ′

such that

– M{w/w1
}{w/w2

} = M̃ , and

– M ′{h(α,w1)/w1
}{h(α,w2)/w2

} = M .

Let B = P{M/x} and B′ = P ′{M ′

/x}. It is easy
to check that the three conditions hold.

• Out. In such a case, we have A{w/w1
}{w/w2

} =

out(M̃).P̃ and B̃ = P̃ | {M̃/x} for some process P̃
and some term M̃ . From this, we deduce that
A = out(M).P for some term M and some pro-
cess P such that M{w/w1

}{w/w2
} = M̃ , and

P{w/w1
}{w/w2

} = P̃ . We have also that

A = out(M).P =E A′{h(α,w1)/w1
}{h(α,w2)/w2

}.

Thus, there exist M ′ and P ′ such that
M ′{h(α,w1)/w1

}{h(α,w2)/w2
} =E M and

P ′{h(α,w1)/w1
}{h(α,w2)/w2

} =E P . Let
B = P | {M/x} and B′ = P ′ | {M ′

/x}. It
is easy to check that the three conditions hold.

• Then. In such a case, we have A{w/w1
}{w/w2

} =
if M̃1 = M̃2 then P̃ else Q̃ for some terms M̃1

and M̃2 and some processes P̃ and Q̃ such that

M̃1 =E M̃2 and B̃ = P̃ . From this, we de-
duce that A = if M1 = M2 then P else Q for
some terms M1, M2 and some processes P, Q
such that Mi{w/w1

}{w/w2
} = M̃i (i = 1, 2),

P{w/w1
}{w/w2

} = P̃ , and Q{w/w1
}{w/w2

} = Q̃.
We have also that

A = if M1 = M2 then P

else Q =E A′{h(α,w1)/w1
}{h(α,w2)/w2

}.

Thus, there exist M ′
1, M ′

2, P ′ and Q′ such
that M ′

i{
h(α,w1)/w1

}{h(α,w2)/w2
} =E Mi (i =

1, 2), P ′{h(α,w1)/w1
}{h(α,w2)/w2

} =E P and
Q′{h(α,w1)/w1

}{h(α,w2)/w2
} =E Q. Let B = P and

B′ = P ′. It is easy to see that the two first con-
ditions hold. For the last one, we have to show
that M1 =E M2. This can be easily done thanks
to Lemma 9.

• Else. This case is similar to the previous one.

Inductive cases. The inductive case corresponding to
application of structural equivalence directly follows
from Lemma 10. It remains to show the case of an
application of an evaluation context. In such a case,
we have A{w/w1

}{w/w2
} → B̃ finishes by an applica-

tion of the following rule

Ã1 → B̃1

C̃[Ã1] → C̃[B̃1]

where A{w/w1
}{w/w2

} = C̃[Ã1] and B̃ = C̃[B̃1]. From
this, we deduce that A = C[A1] for some context C
and some process A1 such that C{w/w1

}{w/w2
} = C̃

and A1{w/w1
}{w/w2

} = Ã1. We have A = C[A1] =E

A′{h(α,w1)/w1
}{h(α,w2)/w2

}. Thus, there exist C′ and
A′

1 such that C′{h(α,w1)/w1
}{h(α,w2)/w2

} =E C, and
A′

1{
h(α,w1)/w1

}{h(α,w2)/w2
} =E A1. Hence we can ap-

ply our induction hypothesis to obtain that there exist
B′

1 and B1 such that

• B̃1 ≡ B1{w/w1
}{w/w2

}, and

• B′
1{

h(α,w1)/w1
}{h(α,w2)/w2

} =E B1, and

• A1 → B1.

Let B = C[B1] and B′ = C′[B′
1]. The three conditions

hold and this allows us to conclude the proof. �

B Transformation

B.1 Proof of Lemma 4

The goal of this section is to prove Lemma 4. Before
to prove it, we introduce the following cutting function.
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Definition 7 Given a frame φ, a term U = h(U1, U2)
and a name a, the cutting function cut w.r.t. φ, U and
a is defined recursively as cutφ(u) = u when u is a
name or a variable and cutφ(f(T1, . . . , Tk)) is defined
as follows:

− a if f = h, k = 2, (U1 =E T1)φ and (U2 =E T2)φ
− f(cutφ(T1), . . . , cutφ(Tk)) otherwise

When dom(φ) = ∅, we denote it at cut0. In this
case, the function cut0 is a replacement modulo E as
defined in [8]. Hence, we have the following lemma.

Lemma 11 Let U = h(U1, U2) be a term and a be a
name. We have that:

M =E N ⇒ cut0(M) =E cut0(N) for any term M, N .

Lemma 12 Let φ =α νñ.σ be a frame. Let w, w
and α be three names such that w, α 6∈ ñ and w is
a fresh name. Let cut be the cutting function w.r.t.
φ{h(α,w)/w}, h(α, w), w and cut0 be the cutting func-
tion w.r.t. h(α, w) and w. Let M be a term such that
fn(M) ∩ ñ = ∅. We have that

cut0(M(σ{h(α,w)/w})) = cut(M)σ.

Proof. We prove this result by structural induction
on M . If M is a name or a variable such that M 6∈
dom(φ), we have that

cut0(M(σ{h(α,w)/w})) = cut(M)σ = M.

Now, assume that M is a variable, say x, such that
x ∈ dom(φ). Let T = xσ. Note that w does not occur
in T since w is fresh w.r.t. σ. Hence, we have that2:

cut0(M(σ{h(α,w)/w})) = cut0(T {h(α,w)/w})
= T
= xσ
= cut(M)σ.

Now, we can deal with the induction step:
M = f(M1, . . . , Mk). We distinguish two cases:

1. f = h, k = 2, (M1 =E α)(φ{h(α,w)/w}) and
(M2 =E w)(φ{h(α,w)/w}). In such a case, we have
that cut(M)σ = w. Moreover, we have also that
M1σ{h(α,w)/w} =E α and M2σ{h(α,w)/w} =E w.
Hence, we have that

cut0(M(σ{h(α,w)/w}))
= cut0(h(M1(σ{

h(α,w)/w}), M2(σ{
h(α,w)/w})))

= w.

2The second step can be easily shown by structural induction
on T .

2. Otherwise, we have that cut(f(M1, . . . , Mk)) =
f(cut(M1), . . . , cut(Mk)) and

cut0(M(σ{h(α,w)/w})) =

f(cut0(M1(σ{h(α,w)/w})), . . . , cut0(Mk(σ{h(α,w)/w}))).

Indeed, otherwise we will have that f = h,
(M1 =E α)(φ{h(α,w)/w}) and also that (M2 =E

w)(φ{h(α,w)/w}). This situation corresponds to
our first case. Hence, we have that

cut0(M(σ{h(α,w)/w}))

= f(cut0(M1(σ{h(α,w)/w})), . . . ,
cut0(Mk(σ{h(α,w)/w})))

= f(cut(M1)σ, . . . , cut(Mk)σ)
by induction hypothesis

= f(cut(M1), . . . , cut(Mk))σ

= cut(M)σ �

Lemma 4 Let φ1 and φ2 be two frames such that
φ1 ≈ φ2. Let w, α be such that w, α 6∈ bn(φ1)∪ bn(φ2).
We have that

φ1{
h(α,w)/w} ≈ φ2{

h(α,w)/w}.

Proof. We will show that φ1{h(α,w)/w} ≈ φ2{h(α,w)/w}
for some fresh names w. This will allow us to con-
clude that φ1{h(α,w/w} ≈ φ2{h(α,w)/w} by simply re-
naming w with w Lemma 1 (item 2). For this we have
to show that for all terms M and N

1. (M =E N)φ1{h(α,w)/w} ⇒ (M =E N)φ2{h(α,w)/w},
and

2. (M =E N)φ2{h(α,w)/w} ⇒ (M =E N)φ1{h(α,w)/w}.

Actually, it is sufficient to establish this result for all
terms M and N such that w 6∈ fn(M) ∪ fn(N) since w
does not occur in φ1{h(α,w)/w} and φ2{h(α,w)/w}. Let
σ1 and σ2 be two substitutions such that φ1 =α νñ1.σ1

and φ2 =α νñ2.σ2 for some sequences of names ñ1

and ñ2 such that (fn(M)∪fn(N))∩(ñ1∪ñ2) = ∅. More-
over, we can assume that w, w, α 6∈ ñ1 ∪ ñ2. Hence, we
have that

• φ1{h(α,w)/w} =α νñ1.σ1{h(α,w)/w}, and

• φ2{h(α,w)/w} =α νñ2.σ2{h(α,w)/w}.

Let cut be the cutting function w.r.t. φ1{h(α,w)/w},
h(α, w) and w, and cut0 be the cutting function
w.r.t. h(α, w) and w. We show by induction on
max(|M |, |N |)3 that

3The size |M | of a term M is defined by |u| = 1 when u is a

name or a variable and |f(M1, . . . , Mk)| = 1 +
P

k

i=1
|Mi|.
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• (cut(M)σ2){h(α,w)/w} =E M(σ2{h(α,w)/w}), and
• (M =E N)(φ1{h(α,w)/w}) ⇒ (M =E N)(φ2{h(α,w)/w}).

Base case: max(|M |, |N |) = 1

• If M is a name (note that M 6= w)
or a variable such that M 6∈ dom(φ2), we
have that (cut(M)σ2){h(α,w)/w} = M and
M(σ2{h(α,w)/w}) = M . If M is a variable, say x,
such that x ∈ dom(φ2), then we have that

(cut(M)σ2){
h(α,w)/w} = (xσ2){

h(α,w)/w}
= x(σ2{h(α,w)/w})
= M(σ2{h(α,w)/w}).

• The second point can be proved as follows:

(M =E N)(φ1{h(α,w)/w})

⇒ M(σ1{
h(α,w)/w}) =E N(σ1{

h(α,w)/w})

⇒ cut0(M(σ1{h(α,w)/w})) =E cut0(N(σ1{h(α,w)/w}))
by Lemma 11

⇒ cut(M)σ1 =E cut(N)σ1 by Lemma 12

⇒ (cut(M) =E cut(N))φ1

⇒ (cut(M) =E cut(N))φ2 since φ1 ≈ φ2

⇒ cut(M)σ2 =E cut(N)σ2

⇒ (cut(M)σ2){h(α,w)/w} =E (cut(N)σ2){h(α,w)/w}

The last step comes from the fact that =E is
closed by substitutions of terms for names. Since,
|M | = |N | = 1, we can apply our previous result to ob-
tain that

• (cut(M)σ2){h(α,w)/w} =E M(σ2{h(α,w)/w}), and

• (cut(N)σ2){h(α,w)/w} =E N(σ2{h(α,w)/w}).

This allows us to conclude that M(σ2{h(α,w)/w}) =E

N(σ2{h(α,w)/w}), and thus (M =E N)(φ2{h(α,w)/w}).

Induction step: max(|M |, |N |) ≥ 2. We assume
w.l.o.g. that |M | ≥ |N |. Hence, we have that M =
f(M1, . . . , Mk).

• To establish the first point, we distinguish two
cases:

• f = h, k = 2, (M1 =E α)(φ1{h(α,w)/w}) and
(M2 =E w)(φ1{h(α,w)/w}). In such a case, we have
that cut(M) = w, thus (cut(M)σ2){h(α,w)/w} =
h(α, w). Since |M1| + |α| < |M | + |N | and
|M2| + |w| < |M | + |N |, we have that (M1 =E

α)(φ2{h(α,w)/w}) and (M2 =E w)(φ2{h(α,w)/w}).

Hence, we have that

M(σ2{h(α,w)/w})
= h(M1(σ2{h(α,w)/w}), M2(σ2{h(α,w)/w}))
=E h(α, w)

• Otherwise, cut(M) = f(cut(M1), . . . , cut(Mk)).
Thus,

(cut(M)σ2){h(α,w)/w}
= (f(cut(M1), . . . , cut(Mk))σ2){h(α,w)/w}
= f((cut(M1)σ2){h(α,w)/w}, . . . ,

(cut(Mk)σ2){h(α,w)/w})
=E f(M1(σ2{h(α,w)/w}), . . . , Mk(σ2{h(α,w)/w}))

by induction hypothesis

= f(M1, . . . , Mk)(σ2{h(α,w)/w})
= M(σ2{h(α,w)/w})

• To prove the second point, it is easy to establish
(as in the base case) that

(M =E N)(φ1{h(α,w)/w})
⇒ (cut(M)σ2){h(α,w)/w} =E (cut(N)σ2){h(α,w)/w}

Thanks to our previous result, we have that

• (cut(M)σ2){h(α,w)/w} =E M(σ2{h(α,w)/w}), and

• (cut(N)σ2){h(α,w)/w} =E N(σ2{h(α,w)/w}).

This allows us to conclude that M(σ2{h(α,w)/w}) =E

N(σ2{
h(α,w)/w}), and thus (M =E N)(φ2{

h(α,w)/w}).

The 2nd implication, i.e.

(M =E N)(φ2{
h(α,w)/w}) ⇒ (M =E N)(φ1{

h(α,w)/w}),

can be proved in a similar way. This allows us to con-
clude the proof. �

B.2 Proof of Proposition 4

The two following lemmas will be useful to deal with
the cases of an input (Lemma 13) and a conditional
(Lemma 14) in the proof of Proposition 4.

Lemma 13 Let φ be a frame such that w 6∈ bn(φ)
and φ′{h(α,w)/w} =E φ for some φ′. If νw.φ ⊢E M
then there exists M ′ such that M ′{h(α,w)/w} =E M
and νw.φ′ ⊢E M ′.

Proof. Let φ = νñ.σ and φ′ = νñ.σ′ for some sequence
of names ñ and some substitutions σ and σ′. We have
that σ′{h(α,w)/w} =E σ. Let M be such that νw.φ ⊢E

M , i.e. there exists ζ such that fn(ζ)∩(ñ∪{w}) = ∅ and
ζσ =E M . Let M ′ = ζσ′. We have that νw.φ′ ⊢E M ′

and also that

M ′{h(α,w)/w} = (ζσ′){h(α,w)/w}
= ζ(σ′{h(α,w)/w})
=E ζσ =E M.

This allows us to conlude. �
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Lemma 14 Let M , N , M ′ and N ′ be four terms such
that M =E M ′{h(α,w)/w} and N =E N ′{h(α,w)/w}.
Then, we have M =E N if, and only if, M ′ =E N ′.

Proof. As =E is closed by substitutions of terms for
names M ′ =E N ′ implies M =E N . Now, let M and
N be two terms such that M =E N . We have that
M ′{h(α,w)/w} =E N ′{h(α,w)/w}. Thus, according to
Lemma 11, we have that

cut0(M
′{h(α,w)/w}) =E cut0(N

′{h(α,w)/w})
where cut0 represents the cutting function w.r.t.
h(α, w) and w. Now, it is easy to establish, by struc-
tural induction on M ′ that cut0(M

′{h(α,w)/w}) = M ′.
This allows us to conclude. �

We will prove Proposition 4 by induction on the
prooftree witnessing the derivation. Since → is closed
by structural equivalence, we have first to establish a
similar result for ≡.

Lemma 15 Let A be a process such that w 6∈ bn(A)
and A′{h(α,w)/w} =E A for some A′. Suppose that A ≡
B for some process B. Then w 6∈ bn(B) and there
exists a process B′ such that B′{h(α,w)/w} =E B and
A′ ≡ B′.

Proof. We prove this result by induction on the proof
tree showing that A ≡ B. All the base cases are easy to
prove. The only interesting inductive case is the case
of an application of an evaluation context. Suppose
that the proof tree showing that A ≡ B ends with an
instance of such a rule, i.e.

A1 ≡ B1

C[A1] ≡ C[B1]

where A = C[A1] and B = C[B1]. By hypothesis, we
know that there exists A′ such that A′{h(α,w)/w} =E

C[A1]. Hence we have that A′ = C′[A′
1] where

C′{h(α,w)/w} =E C and A′
1{

h(α,w)/w} =E A1 for some
evaluation context C′ and some process A′

1. Hence
we can apply our induction hypothesis and we ob-
tain that w 6∈ bn(B1) and there exists B′

1 such that
B′

1{
h(α,w)/w} =E B1, and A′

1 ≡ B′
1. We have that

w 6∈ bn(C[B1]). Let B′ = C′[B′
1]. We have that

(C′[B′
1]){

h(α,w)/w} =E C[B1] = B and A′ ≡ B′. �

Now, we can prove the following proposition.

Proposition 4 Let A be a process with w, α 6∈ bn(A)
and A′{h(α,w)/w} =E A for some A′. If νw.A → B,
then B ≡ νw.B and there exists a process B′ such that
B′{h(α,w)/w} =E B and νw.A′ → νw.B′.

Proof. We have that νw.A → B and it is easy to
see that w ∈ bn(B). According to our calculus, we
can always by using structural equivalence move a re-
striction in front of the process, thus we have that

B ≡ νw.B for some process B. Let ℓ be the label
involved in the transition νw.A → B. It is easy to

see that A
ℓ
−→ B and when ℓ = in(M), we have that

νw.φ(A) ⊢E M . As νw.φ(A) ⊢E M , by Lemma 13,
we have that νw.φ(A′) ⊢E M ′ for some M ′ such that
M ′{h(α,w)/w} =E M . This allows us to ensure that, in
the case of an input, the side condition correspond-
ing to an application of evaluation context is satis-
fied. Now, we show that there exists B′ such that
B′{h(α,w)/w} =E B and A′ → B′ by induction on the
proof tree showing that A → B. This will allows us to
conclude that νw.A′ → νw.B′.

Base cases.

• In. We suppose that A = in(x).P , B = P{M/x}.
We have that A′ = in(x).P ′ and P ′{h(α,w)/w} =E P .
Let B′ = P ′{M ′

/x}. We indeed have that
B′{h(α,w)/w} = (P ′{M ′

/x}){h(α,w)/w} =E P{M/x} =
B, and A′ → B′.

• Out. We suppose that A = out(M).P and B =
P | {M/x}. We have that A′ = out(M ′).P ′ where
P ′{h(α,w)/w} =E P and M ′{h(α,w)/w} =E M . Let
B′ = P ′ | {M ′

/x}. We have B′{h(α,w)/w} = (P ′ |
{M ′

/x}){h(α,w)/w} =E B, and A′ → B′.

• Then. We suppose that A = “if M1 =
M2 then P else Q” and B = P . By definition of =E

we have that A′ = “if M ′
1 = M ′

2 then P ′ else Q′”
where P ′{h(α,w)/w} =E P , Q′{h(α,w)/w} =E Q and
M ′

i{
h(α,w)/w} =E Mi (i = 1, 2). Let B′ = P ′. As

M1 =E M2, by Lemma 14 we have that M ′
1 =E

M ′
2. Hence, we indeed have that B′{h(α,w)/w} =

P ′{h(α,w)/w} =E P = B, and A′ → B′.

• Else. This case is similar to the previous one.

Inductive cases. The inductive case corresponding to
an application of structural equivalence directly follows
from Lemma 15. Hence, it remains to show the case
of an application of an evaluation context. Suppose
that the proof A → B finishes by an application of the
following rule

A1 → B1

C[A1] → C[B1]

where A = C[A1] and B = C[B1]. By hypothesis, we
know that there exists A′ such that A′{h(α,w)/w} =E A.
By definition of =E we have that A′ = C′[A′

1] where
C′{h(α,w)/w} =E C and A′

1{
h(α,w)/w} =E A1 for some

evaluation context C′ and some process A′
1. Hence we

can apply our induction hypothesis to obtain that there
exist B′

1 such that B′
1{

h(α,w)/w} =E B1, and A′
1 → B′

1.
Let B′ = C′[B′

1]. We have that B′{h(α,w)/w} =
(C′[B′

1]){
h(α,w)/w} =E B, and A′ → B′. This last

result is obtained by application of the evaluation con-
text C′ on A′

1 → B′
1. �
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