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Abstract. In this paper, we clarify and verify an established biontetithenti-
cation protocol. The selected protocol is intended to hbhxeet properties: effec-
tiveness (integrity checks are carried out on all hardwafere enabling trans-
mission of biometric data), correctness (the user is sadisfiat integrity checks
have been executed correctly before transmission of biaerddta occurs), and
secrecy (unauthorized users cannot obtain biometric daiatbrcepting mes-
sages between the system’s hardware components). We auttadyslarified pro-
tocol using applied pi calculus and the ProVerif tool, anthdastrate that it sat-
isfies the intended properties of the protocol. Moreoveés, paper shows that the
verification result between the naive interpretation arddharified interpretation
is different.

1 Introduction

1.1 Biometric Authentication Protocols

Biometric authentication complements other methods dfenttcation such as pass-
words or smartcards. It may be used as an alternative to,tbesecombination. Pass-
words used on their own are known to have certain weaknegsess are liable to
choose easily guessable passwords, transfer passwowsnetach other in ways not
desired by the system owners, use the same password onImsitgiems, or forget
their passwords. Authentication using smart cards alssbae of these weaknesses,
such as undesired transfer between, or theft from, usessad@ric user authentication
can be utilised in a variety of applications, from loggintpia local PC, to passenger
identification at a border control, to authentication on ma&e server in e-commerce
transactions or online banking.

Potential biometric techniques include fingerprint andchgeometry, as well as
voice, retina, face and behavioural characteristics. Bjp&drmove towards the use of
biometrics in user authentication comes from the methaamise to offer secure and
reliable authentication. In well-designed and enginesyestiems for biometric authen-
tication, user A cannot authenticate as another user B, witbnB’s cooperation. In
contrast to other types of credential, such as password artsand, which can be
transferred or stolen, biometric authentication promeéaon-transferability” prop-
erty, which means that users cannot lose their credentiasquire those belonging to
others.



However, there are many obstacles to overcome before thénti@ can be re-
alised. Biometric authentication depends on biometri¢quais, i.e. the way biometric
data is transmitted and stored. But protocol design is knmne very difficult. The
well-known paper that identified attacks on the Needhanmr<ater protocol that was
believed to be invulnerable and had been used succesduliydre than a decade [1]is
one example of how accurate protocol verification is crudiaie focus of this paper
concerns the handling and storage of biometric data. Bioongdta cannot be consid-
ered a secret in the way that private keys or passwords caantrast with private keys,
biometric data is given to potentially hostile hosts whersarwishes to authenticate
herself, and unlike passwords, biometric data cannot bageg - a user cannot con-
veniently choose different biometric data to present tfedint hosts in the way that
one might use a different (and lower security) password faebmail account as for
a bank account. Moreover, in contrast with keys and passybidmetric data such as
the user’s facial characteristics and fingerprints shoalddnsidered to be in the public
domain, and can be captured without the user’s consent avikdge.

In spite of this, we take the view that biometric data showddkbpt private as a
matter of good practice. In this respect, it is rather likedir card numbers; they are
not really private, as we voluntarily cite them on the phoné By unencrypted email
and allow restaurant and other retail staff to handle thes;asften in our absence.
Nevertheless, it seems sensible not to allow such data tetead around without
restriction. The same idea applies to biometric data; eheenser’s biometric data could
be captured by agents having access to smooth surfacesahiushes, or agents to
whom the user authenticates, it should not be made unneitgssesy for malicious
agents to acquire it. However, biometric authenticatiothmés cannot assume that
biometric data is secret. Such an assumption is false.

TLong version. The full paper that presents the ProVerif model is available
http://www.cs.bham.ac.uk/"mdr/research/papers/

1.2 Our Contribution

To demonstrate verification of biometric authenticatiostpcols, we use an established
protocol, CPV02 [2], as a case study, and prove whether iended properties are
satisfied.

In order to verify the properties of the biometric autheatiich protocol, we need
to clarify the operation of the protocol. We show that it isy#o interpret the protocol
incorrectly, and that this would affect the security prdjgs: An example of a naive
interpretation and its verification result is given in a tatection.

We set out and formalise the intended properties of the pobtdVe present the
verification result of the naive interpretation, and clagfion of the protocol’s detail
that is necessary in order to achieve successful verifitatloreover, we show that the
verification outcome of the naive interpretation of the poui identifies an attack while
the result of the clarified one is different.

To obtain our findings, we use the verification tool ProVes}. [We explain the
protocol, clarify it, and provide a formal model of the prodband its properties. We
then give the outcome of the verification, and some analysis.



2 The CPVO02 Protocol

In [2], Chen, Pearson and Vamvakas present a protocol fandstidc authentication that
we call CPV02. This protocol prevents disclosure of biomedata both during data
transmission and within all system hardware. This is acddtirough integrity metric
checking. The protocol is a generic protocol for biomettith@ntication. It can be used
as a protocol in applications that require authenticatiefot® the user is allowed to
proceed.

The system under consideration is composed of three cahedmponents: a
smartcard (SC), a trusted computing platform (TCP) and steédibiometric reader
(TBR).

The SC is used for storing credential information such asities’s biometric code
or the user’s signature. The TBR is a device for reading tlee’sibiometric data for
use later in the matching process. In this protocol, the TB&Rthe SC generate session
keys to transfer the user’s submitted biometric data (Bl)tae user’s stored biometric
code (BC).

A TCP is a device that behaves in an expected manner for thedatl purpose and
is resistant to attacks by application software or viru8gsiis is achieved because the
TCP contains a Trusted Platform Module (TPM), which storegskand can perform
cryptographic operations. The TPM can check the integritthe TCP. Specifically,
it can create an unforgeable summary of the software on the albwing a third
party to verify that the software has not been compromisbi @an be accomplished
by presenting a certificate to the third party to confirm thas communicating with
a valid TPM. Table 1 summarises notations and meanings ttiabevused through
out the paper. Figure 1 shows the basic system for this madekmally, it can be

Table 1. Notations and Meanings

Notation Meaning
BC User’s stored biometric code
BD User’s submitted biometric ddta

TPM Trusted Platform Module
TCP Trusted Computing Platform
TBR Trusted Biometric Reader

described as a user holding a smart card that contains hdopséy stored biometric
code, e.g. fingerprint code. To authenticate herself to yistem, she first inserts the
smart card into a smart card reader. This triggers part ofptbéocol during which
the integrity of the computing platform and the biometriader are checked and the
result is returned to the smart card. If the smart card isfeadi that the computing
platform and biometric reader have not been tampered withdicates this to the user,
e.g. by releasing a special image to be displayed by the ctingppiatform. The user
recognises that image as an indication that the integrigckh have been successful
and proceeds to the second step, which is biometric autagiath. To achieve that,
she submits her biometric data, e.g. by placing her fingetrpn a biometric reader.
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Fig. 1. The basic setup for CPV02 consists of a trusted biometrideie@l BR), a trusted com-
puting platform (TCP) that supports a trusted platform me¢itPM), and a smart card device
(SC)

The biometric code stored on the smart card and the subnbiibecktric data from the
biometric reader are then sent to the computing platformchvivill validate whether
they match. If they match, the smart card will release the'siseedential data, e.g. her
signature on a message, to the computing platform.

The BC is stored in the SC and will be transferred to the TPMc@amparison with
the BC. However, before this transmission is performed,tR& and the SC must
authenticate each other by sending an authentication gessaich includes a nonce
and integrity metric. The integrity metric is a measurenuéitihe trustworthiness of the
component. Depending on its policy, the challenger willidecbased on this value,
whether to trust or allow any action to be performed.

The SC sends a nonce nl and its identity to the TPM. The TPMrgtasea nonce
n2 and a message including n1, n2, the identity of the SC andrity metric D3. The
integrity metric D3 is used to trigger the components inedlin the communication to
do the integrity checking. The message sent back to the S®@evligned by the TPM
so that the SC can check its origin and the correctness of itdr. he authentication’s
success, the SC generates the session key SK1, shared bg thedShe TPM, for
encrypting the BC, before sending it together with the aniication messages. After
the TPM has verified the message, it then stores the BC.

When the TBR is presented to the system, it also performsahatuithentication
with the TPM and generates a session key to share betweerBtReafd the TPM.
In the same way as that in which the TPM and the SC authendiesteh other, the
TBR sends an integrity metric D7 to the TPM. If the TPM has ssstully verified the
message it receives, it will send back a message MF5. The EBiRes the message.
After the authentication has succeeded, the TBR generatession key SK2, shared
by the TBR and the TPM, for use in encrypting the BD from the TiBRhe TPM.

The BD is encrypted by using the session key created in thaqu® stage to the
TPM. This data will be compared with the BC. After the messagerified, the TPM
decrypts the encrypted message and verifies the validityeoBD. If they match, the



user is allowed to use the system or perform the request.Xeonge, the SC releases
the user’s signature. The message sequence of this pradadawn in Figure 2.

2.1 Intended Properties of CPV02 Protocol
The protocol has the following intended properties:

1. EffectivenessThe accessed computing platform is given neither the usterted
biometric code nor the user’s submitted biometric datal timi integrity of both
the computing platform and biometric reader are checkethéginart card.

2. CorrectnessThe biometric reader is not given the user’s submitted btomdata
until the user is convinced of the correctness of both theprding platform and
biometric reader integrity checking.

3. SecrecyAn unauthorised entity that can listen to a message betvihessntart card
and computing platform, or between the biometric readercamaputing platform,
cannot obtain either the user’s stored biometric code ousiee’s submitted bio-
metric data.

2.2 Problem Encountered

To verify the three protocol properties presented in 2.1,n@ed to gain a detailed
understanding of how the protocol works and the sequences$ages.

If a naive verifier were to interpret the CPV02 protocol assifpresented in [2]
(page 7-9), it would identify an attack. The sub-protocoks presented in a sequence
order, and since nothing is said about the order in which gheyild be run, the reader
can assume they are run in the order presented. We perfohreedttification on that
assumption. The result of the verification shows that one@ptoperties does not hold:
the biometric data is released before the TPM is checked.

The ProVerif model of this interpretation is shown in thd fidper. Let us briefly
describe this model. The code consists of 4 processes (Brglthe main process):
TPM, TBR, SC and ProcessK. Processes TPM, TBR and SC perferoperations of
the TPM, TBR and SC respectively (as mentioned in sectioRr@cessK distributes the
verification key certificates to the three processes TPM, aB&RSC. The main process
generates private keys for each component and distriblggs via private channels,
running these processes concurrently.

The result of the verification shows that the TCP is sent thebBfore the TBR is
checked. This breaks one of the intended properties of thtequl; effectiveness

2.3 The Clarified CPV02 Protocol

Email discussion with one of the authors of [2], Liqun Cheas lyiven us further vital
information about CPV02. We have learnt that the four sultgmols can run at any
time and in any order. Moreover, the result from one subguatmay affect the other
sub-protocols. For example, sub-protocol (S1) cannot hesmgcessfully without also
running sub-protocol (S2). These facts cannot be easihaeted from the paper with-
out the discussion and they are important in order to sufidgsserify the protocol.
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Fig. 2. Message Sequence Chart for CPV02 Protocol



Let us consider the message sequence chart of CPV02 in Rgdree protocol
consists of four sub-protocols (S1), (S2), (S3), and (S4¢wban run in any order and
at any time. In (S1), the encrypted BC is sent from the SC td #id. In (S2), a session
key is created for use between the TPM and the TBR when the BBciypted. In (S3),
the encrypted BD is sent from the TBR to the TPM. In (S4), a matg result on the
BC and BD is sent from the TPM to the SC.

The detailed ProVerif model for verifying the propertiesaiing to the clarified
protocol is presented in section 4.

3 Applied Pi Calculus and ProVerif

3.1 Applied Pi Calculus

Applied pi calculus is a language for describing concurpeatesses and their interac-
tions [4]. It is based on pi calculus, but is intended to be lesre and therefore more
convenientto use. Properties of processes describedliedppcalculus can be proved
by employing either manual techniques or automated toals as ProVerif [5]. As well
as reachability properties that are typical of model-clvegtools, ProVerif can in some
cases prove that processes are observationally equiy&lent

To describe processes in applied pi calculus, one startsanset of names (which
are used to name communication channels or other constargsj of variables, and
a set of function symbol which will be used to define terms.Ha tase of security
protocols, typical function symbols will includencfor encryption (which takes plain-
text x and a key k, and returns the corresponding cipher sxd3dec for decryption
(which takes cipher text and a key k and returns the plaindexdne can also describe
equations which hold on terms constructed from the functt@n example:

dedendx,k),k) = x

Terms are defined as names, variables, and function symyaliedto other terms.
Terms and function symbols are sorted, and of course fumsgimbol application must
respect sorts and arities. In the applied pi calculus, ose(plain) proceses and ex-
tended processes. Plain processes are built up in a sim@lartavprocesses in the pi
calculus, except that messages can contain terms (ratrejust names) [4, 7].

3.2 ProVerif

ProVerif is a protocol verifier developed by Bruno Blanch@} [This tool has been
used to prove the security properties of various protocgl8]f It can be used to prove
secrecy, authenticity and strong secrecy properties gdtegraphic protocols. It can
handle an unbounded number of sessions of the protocol andtzounded message
space. The grammar of processes accepted by ProVerif iglikxd the long version
of the paper.

In order to verify properties of a protocol, query commandsyrbe made. The
query ‘attacker: m’ is satisfied if an attacker may obtainnessage m by observing
the messages on public channels and by applying functiotisetn. The queryv :



flx1,...,zy) = ev: f'(y1,...,ynm) is satisfied if the event’ (y1, . . . , ) Must have
been executed before any occurrence of the efent, . .., z,,).

An advantage of using ProVerif as a verfier is it models arckéawhich is compli-
ant with the Dolev-Yao model [10] automatically. We do noedeo explicitly model
the attacker.

4 Modelling the Clarified CPV02 in ProVerif

Now we model the CPV02 protocol based on the derived messageesce chart
(shown in Figure 2) from clarification and the following asgutions:

1. Allthe components, TPM, SC and TBR, hold the public keyesfiicate authority.

2. The integrity metric measurements have been made andoaeel $n the tamper-
resistant storage. Therefore we model it, as it is a storesealue, and verify its
correctness with the challenger’s stored value.

The ProVerif code consists of signature and equationalrfheomain process, a
process for certificate distribution, S1 process, S2 p&3 process, and S4 process.
A detailed description of each process will be given in arlagetion.

4.1 Signature and Equational Theory

Our ProVerif model involves public key and host functionse YWodel cryptographic
function asencanddec Similarly, the symmetric cryptography is modelled senc
andsdec In order to introduce digital signature, functisignis added and function
checksigns used to verify the origin of messages.

The public key cryptography is represented in the first aqnaffo decrypt mes-
sages from symmetric cryptography, the second equatiamifgeus to do so. In the
interest of verifying the origin of messages; the checksigmation is introduced in our
model.

equation dec(enc(x, pk(y)),y) = x.
equat i on sdec(senc(x, k), k) = x.
equat i on checksign(sign(x,y), pk(y)) = x.

4.2 Main Process

In the main process, the public keys, private keys, and thetities of each component
are created and distributed in the public channel. Moredlrercomponents can run at
any time and in any order.

process

(* create secret keys *)
new skCA;



new skSC,
new skTPM
new skTBR;
(* public keys *)
| et pkCA = pk(skCA) in
out (ch, pkCA) ;
| et host SC = host (skSC) in
| et host TPM = host (skTPM in
| et host TBR = host (SKTBR) in
out (ch, host SC) ;
out (ch, host TPM ;
out (ch, host TBR) ;
F(TPML) | '(TPMR) | '(TPMB) | ! (TPM4)|
F(SC1) | '(sc4) |
I(TBR2) | !'(TBR3) |
I (processKk)

4.3 Certificate Distribution

This process is intended to distribute the certificates ofigation keys for the integrity
checking process and distribute them through the priveaamél to guarantee that each
identity will obtain them correctly.

| et processK =

out (privChCert TPML, si gn( (host (skTPM, pk(skTPM ), skCA)) |
out (privChCert TPM2, si gn( (host (skTPM, pk(skTPM ), skCA)) |
out (privChCert TPMB, si gn( (host (skTPM, pk(skTPM ), skCA)) |
out (privChCert TPM4, si gn( (host (skTPM, pk(skTPM ), skCA)) |
out (privChCert SC1, si gn((host (skSC), pk(skSC)), skCA)) |
out (privChCert SC4, si gn((host (skSC), pk(skSC)), skCA)) |
out (privChCert TBR2, si gn( (host (skTBR), pk(skTBR)), skCA)).

4.4 (S1) Sending the Encrypted Biometric Code

This sub-protocol includes two processes: TPM1 and SC1niteial authentication
between the TPM and the SC is performed before the encrypfeds Bransmitted.
Firstly, the TPM and the SC obtain their certificates. The TgMerates a fresh random
nonce. Then it sends its integrity metric with this noncehe 8C. The SC checks
the certificate it receives from the TPM and retrieves thdipley of the TPM. The
SC verifies the validity of messages and generates a sessyoank then sends the
BC encrypted by the key to the TPM. The TPM verifies the acquadche received
message, decrypts it, and stores the BC in its secure stavéareover, from emalil
discussion, we have learnt that (S1) cannot run succegsfefbre (S2) has run. So we
add state checking to check that (S2) has run.
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let TPML =
(* Receive certificate of the verification keys for
the integrity checki ng purpose *)

i n(pState2, P2);

if P2 <> success then O

el se

(

i n(privChCertTPML, D2);

i n(chl, (nx1, host SCx, =D1) ) ;

new n2;

out (ch2, (n2, si gn((nx1, n2, host SCx, D3) , skTPM , D2) ) ;
in(ch3, (n2, N8, m));

| et (SK1Recei ved, =host SCx, =D4) = dec(n2, skTPM in

| et (=nx1, =n2, BCRecei ved, Dx5) = sdec(nB, SK1lRecei ved) in
| et (=host SCx, pkSCx) = checksi gn(Dx5, pkCA) in

| et (=nx1, =n2, =host TPM nb, =D6) = checksi gn(m4, pkSCx) in
| et (=SK1Recei ved, =host SCx, =D4) = dec(nb, skTPM in
event tpnget BC()

).

let SC1 =
(* Receive certificate of the verification keys for
the integrity checki ng purpose *)
i n(privChCertSCl, D5);
new nl,
out (chl, (nl, host SC, D1) ) ;
i n(ch2, (nx2, mL, Dx2));
| et (host TPMK, pkTPMk) = checksi gn(Dx2, pkCA) in
| et (=n1, =nx2, =host SC, i nt pnmRecei ved) = checksi gn(ml, pkTPMW) in
if impnReceived <> D3 then 0
el se
(
event tpnChecked();
new SK1;
new BC,
out (ch3, (enc((SK1, host SC, D4) , pkTPW) , senc((nl, nx2, BC, D5), SK1),
sign((nl, nx2, host TPMK, enc( ( SK1, host SC, D4) , pkTPM) , D6) , skSC) ) ) ;
out (pSt at el, success)

).
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4.5 (S2) Creating a Session Key for Encrypting the User’s Suhitted Biometric
Data

This sub-protocol represents mutual authentication batvee TPM and the TBR. It
also creates a session key for sharing between the TPM aA@ReThis sub-protocol
runs when a TBR has been introduced to the system.

This sub-protocol includes the two processes TPM2 and TBR2 certificates are
obtained via the private channels. Note that the TPM haadyrebtained this certificate
in the previous sub-protocol. TPM1 and TPM2 are indeed theestusted platform
modules but they are run in different sub-protocols andfoee require distinct names.
So we model TPM2 to receive the certificate again but thefumte it receives is the
same certificate as that received by TPM1.

The TBR has to authenticate itself to the TPM using an intgghecking mecha-
nism. It creates a fresh random number and sends it withtégiity metric. If the TPM
is satisfied with the checking result, it will send its cectifie along with the authentica-
tion message to the TBR. The TBR retrieves the public key®fftAM. It then checks
the correctness of the message. If it is valid, the TBR willate a session key SK2 for
the encryption and decryption of the BD.

While the processes TPM1, TPM2, TPM3, and TPM4 are on the sarsted plat-
form module, as seen in section 2, in order to fit the CPV02qualtthey need to run
as separate sub-protocols. This fact also applies to TBRZBIR3. All variables cre-
ated or received in one TPM process should be known to otHersce, in the process
TPM2, two private channels are set up. One is used for acladmirg that S2 has run
and the other is used for transferring the session key SK2 fne process TPM2 to the
process TPM3. Similarly, a private channel is set up in pgeCEBR2 to transmit the
session key from the process TBR2 to the process TBR3.

let TPMR =
i n(privChCert TPM2, D8) ;
i n(ch4, (nx3, Dx7));
| et (host TBRx, pkTBRx) = checksi gn(Dx7, pkCA) in
i f host TBRx = host TBR t hen
event tbr Checked();
new n4,
out (ch5, (n4, D8, si gn((nx3, n4, host TBRx, D9), skTPM) ) ) ;
i n(ché, (n7, =D10, nB) ) ;
| et (SK2) = dec(n¥,skTPM in
| et (=nx3, =n4, =host TPM B, =D11) = checksi gn(nB, pkTBRx) in
| et (=SK2) = dec(nB, skTPM in
out (pSt at e2, success) ;
out (pri vSK2TPM2, SK2) .

let TBR2 =
(* Receive certificate of the verification keys for
the integrity checki ng purposex*)
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i n(privChCertTBR2, D7) ;
new ng3;
out (ch4, (n3, D7));
i n(chb, (nx4, Dx8, mL.1));
| et (host TPMz, pkTPMz) = checksi gn(Dx8, pkCA) in
| et (=n3, =nx4, =host TBR, Dx9) = checksi gn(mL1, pkTPMz) in
if Dx9 <> D9 then 0
el se
(
new SK2;
out (ch6, (enc((SK2), pkTPMz), D10, si gn((n3, nx4, host TPMz, enc( ( SK2), pkTPMz) ,
D11), skTBR)));
out (pri vSK2, SK2)
).

4.6 (S3) Sending Encrypted User’'s Submitted Biometric Dat&rom the
Biometric Reader to the Trusted Platform Module

The processes TPM3 and TBR3 run in sub-protocol (S3). Fitste TPM obtains the
session key SK2 via the private channel. The TBR also obtha&lentity of the TPM
and the session key via the private channels from TBR2.

The TPM generates a fresh random nonce and sends it to the Agd, from
email discussion about the sequence of the processes,d@3)taun successfully be-
fore (S1) has run. The TBR verifies the message and sends &8Ot encrypted by
the session key created in the previous stage. The TPM etiifiereceived message
and decrypts it to retrieve the BD. In order to check protquoberties later, after the
BD is received, amvent tcpgetBD(s launched.

let TPMB =
i n(privChCertTPM, D12);
i n(privSK2TPM2, SK2TPMR) ;
new n5;
out (ch7, (n5, D12));
i n(ch8, (nx6, Dx13, mL0) ) ;
| et (host TBRxx, pkTBRxx) = checksi gn(Dx13, pkCA) in
| et (=n5, =nx6, =host TBRxx, =host TPM BDRecei ved, =D14) =
sdec(ml0, SK2TPM2) in
event tpnget BDY).

|l et TBR3 =
in(pStatel, P1);
if P1 <> success then 0
el se
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(

i n(privChCert TBR3, D13);

i n(privSK2, SK2TBR3) ;

i n(ch7, (nx5, Dx12));

| et (host TPMzz, pkTPMzz) = checksi gn(Dx12, pkCA) in

new no;

new BD,

out (ch8, (n6, D13, senc( ( nx5, n6, host TBR, host TPMzz, BD, D14) , SK2TBR3) ) )

).

4.7 (S4) Sending a Matching Result

The last sub-protocol (S4) represents the transfer of ammaieesult on the BC and
BD from the TPM to the SC. This sub-protocol includes procEBM4 and process
SC4. We model it to check the correctness of the messageasadce

The TPM acquires its certificate via the private channel. $kecreates a fresh
random number and sends it with a request. The TPM verifiesneénesage. It then
signs the match result message and sends it to the SC. We maakgich result as a
fresh value since we are not concerned with the mechanismhimhvthe TPM carries
out the matching process. The SC will check the signaturettidorrectness of the
message. If it is correct, the SC may release the user’s mtiati®o the TPM. We do
not model how the SC releases this credential since it gogmblghe definition of the
protocol.

let TPMA =
i n(privChCert TPM4, D17) ;
i n(ch9, (nx7, Dx15));
| et (host SCxx, pkSCxx) = checksi gn(Dx15, pkCA) in
new mat chResul t ;
out (ch10, (sign((nx7, host SCxx, mat chResul t, D16) , skTPM, D17) ) .

let SC4 =
i n(privChCert SC4, D15) ;
new nv,
out (ch9, (n7, D15));
in(chl0, (m2, Dx17));
| et (host TPMkx, pkTPMkx) = checksi gn(Dx17, pkCA) in
| et (=n7, =host SC, mat chResul t Recei ved, =D16) = checksi gn(nl2, pkTPMkx) in
out (ch, secret).

5 Analysis

As described in section 2.2, if a naive interpretation offihetocol is applied, an attack
is found. After the clarification of the protocol is introded; we intend to analyse the
properites of the protocol to see if the result of the verifarais different.
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We have analysed the three properties of CP\&ifctivenesscorrectnessand
secrecyusing ProVerif. All three properties of the protocol arésfeed.

Using ProVerif as a verification tool means we can model a B¥®o style at-
tacker that can compose and decompose messages (proviuesl rielevant crypto-
graphic keys), and has full control over messages that passpablic interfaces and
networks.

In the case of the CPV02 protocol, the USB cables are coresigeart of the public
network, since an attacker can interfere with them. The spaad interfaces are also
considered public. A prototype device is presented in [hdf tan listen to the signal
between smart card and smart card reader. This sort of devige be used by an
attacker to try to capture a user’s biometric code.

5.1 Effectiveness

The TCP will not be given either the BC or the BD unless thagiitseof the TPM and
TBR has been checked by the SC.

According to the protocol, the BC is transferred from the 8@ platform, and the
BD is read from the TBR and sent to the platform; then the tveaccampared. To protect
the BD from a malicious attacker, the device holding thisadeds to be convinced that
the destination to which it will transfer the data can beteddefore the transmission
is carried out. This is done by means of integrity checks.

To analyse this property, we use theentand querycommand. These two com-
mands are used to check the correctness of sequences of.akrile theeventcom-
mand is used for launching an event when a certain actioreisut®d, theuerycom-
mand is used to prompt ProVerif to verify the correctnestiefsequence of events that
we specify. If the sequence is not correct, an attack is ifiett

In order to verify this property in ProVerif, we encode théegrity check which
ensures that the SC is satisfied with the integrity metritefiCP and the TBR before
the trusted platform module receives the user’s stored &idoncode and user’s sub-
mitted biometric data. The evettpChecked(js inserted after the SC has checked the
integrity of the TCP via the TPM, and the evaopgetBC()is inserted after the TCP
has received the BC

Similarly, to verify that the integrity metric of the TBR isiecked by the SC before
the BD is transferred, an evethitrChecked()s launched after the SC has checked the
integrity metric of the TBR.

It should be noted that there is no direct communication betwthe TBR and the
SC, so the TPM is responsible for checking the integrity ioetf the TBR on behalf
of the SC. To model this situation, we code it in such a way iftthe TPM is satisfied
with the integrity metric of the TBR, an evetiiirChecked()s triggered. The TBR then
sends the encrypted BD to the TPM. The TPM verifies the messtges the BD, and
then an eventcpgetBD()is inserted .

We need to check that these events are executed in the cordest i.e. that the
TPM'’s integrity metric and the TBR's integrity metric havedn examined before the
TPM receives the BD. This should be the case even in the pressdran attacker that
can control the order of the subprotocols and the messagiearetwork. This check
is implemented using ProVerifguerycommand:
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query ev: tcpgetBD( ev: tcpChecked() & ev : tbrChecked().
query ev: tcpgetBC@E> ev: tcpChecked() & ev : tbrChecked().

5.2 Correctness

The TBR is not given the BD until the user is satisfied withrikegrity checks on both
the TCP and TBR.

This property aims to protect the BD from being read by a nmali€ biometric
reader, the user places her biometric data only on the bicowetder that she trusts.
This property is important because if the BD is stolen or@ewctally disclosed, it cannot
be altered, replaced or regenerated.

To verify this property, we check that the biometric readeBR) receives the BD
after the integrity metric of the TCP and the integrity mewnf the TBR have been
checked.

To achieve this, we launch an evéioigetBD()after the BD is created in the process
TBR3".The event would not be triggered without satisfactorydrity checking. To
check the correct order of events, we use the query command:

query ev: tbrgetBD(}= ev: tcpChecked() & ev : thrChecked().

5.3 Secrecy

An unauthorised entity that can listen to a message betviree®@ and TCP, or between
the TBR and TCP, cannot obtain either the BC or the BD.

As we remarked in section 1, the secrecy of biometric dataatne relied upon.
The security of a protocol should not depend on the secrebjoafietric data. Indeed,
this protocol does not depend on it, since it uses a trustehdtric reader to guard
against disclosure. Nevertheless, it is good practice et widespread dissemina-
tion, and this property verifies that the protocol does net¢ gin attacker easy access to
that data.

To model this property we use tlygierycommand to ask ProVerif whether an at-
tacker can access the BC or the BD. The commands for thisocadidn are

query attacker : BC.
query attacker : BD.

Using these commands to check whether the specified argaarergecret, ProVerif
will exhaustively check whether there is any way that ancktacould obtain the in-
formation, BD and BC, that we want to protect. If an attaclar obtain the data, then
a potential attack has been identified.

6 Conclusion and Future Work

We have presented a specification of the CPV02 biometriceatittation protocol,
obtained after clarifying details of the protocol throughadl discussion with one of
the authors. We modelled the clarified protocol using thdiegmpi calculus and the
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ProVerif verification tool. We have encoded three intendexpprties of the protocol,
namelyeffectivenessecrecyandcorrectnessThe positive results from the verification
show that the properties of the protocol hold.

The protocol is successfully verified against the properWithout this clarifica-
tion, verification of one of the properties fails.

The CPV02 protocol uses trusted computing platform andimsgintegrity check-
ing. The trusted computing platform module is an essenédl@f the protocol in order
to guarantee that the components that involved in biomatribentication data can-
not be tampered by an intruder. Similar to other classicatqmols, nonces are used
for checking the freshness of message received and eramygoid decryption are also
used for the secrecy of message content.

In future work, we will select other protocols with diffeteproperties and verify
that they hold in a similar way. We would also like to investigg biometric authenti-
cation protocol which can be used for unsupervised remdtesatication, such as in
online banking.

Acknowledgement Many thanks to Liqun Chen, one of the authors of [2], for
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standing of it.

References

1. Lowe, G.: An attack on the Needham-Schroeder public-kélyemtication protocolnforma-
tion Processing Letters 5@995) 131-133

2. Chen, L., Pearson, S., Vamvakas, A.: Trusted Biometricste3y. Available from
http://www.hpl.hp.com/techreports /2002/HPL-2002-188. (2002)

3. Pearson. S.: How Can You Trust the Computer in Front of You?
http://www.hpl.hp.com/techreports/2002/HPL-2002-22f (2002)

4, Abadi, M., Fournet, C.: Mobile values, new names, andrgecommunications. Proceedings
of the 28th Annual ACM Symposium on Principles of Programgnimnguages (2001) 104-
115

5. Blanchet, B.: An efficient cryptographic protocol verifigased on prolog rules. In Steve
Schneider, editor, 14th IEEE Computer Security Foundatvorkshop, IEEE Computer So-
ciety Press (2001) 82-96

6. Blanchet, B.: Automatic Proof of Strong Secrecy for SégiRrotocols. In IEEE Symposium
on Security and Privacy (2004) 86-100

7. Kremer, S., Ryan, M.: Analysis of an Electronic Voting &l in the Applied Pi Calcu-
lus. Proceedings of the European Symposium on Programrmauwgure Notes in Computer
Science 3444. Springer Verlag (2005) 186-200

8. Blanchet, B.: ProVerif Automatic Cryptographic Protb¥Werifier User Manual (2005)

9. Delaune, S., Kremer, S., Ryan, M.: Coercion-resistamceReceipt-freeness in Electronic
Voting. In 19th Computer Security oundations Workshop. EEEomputer Society Press
(2006)

10. Dolev, D. and Yao, A.C.: On the Security of Public Key Bomils. Proceedings of 22nd IEEE
Symposium on Foundations of Computer Science (1981) 3%0-35

11. Bond, M.: Chip and Pin (EMV) Point-of-Sale Terminal Irteptor. Available from
http://www.cl.cam.ac.uk/"mkb23/interceptor/). (2007)



