
Verification of Integrity and Secrecy Properties of a
Biometric Authentication Protocol

A. Salaiwarakul and M.D.Ryan

School of Computer Science,
University of Birmingham, UK

{A.Salaiwarakul, M.D.Ryan}@cs.bham.ac.uk

Abstract. In this paper, we clarify and verify an established biometric authenti-
cation protocol. The selected protocol is intended to have three properties: effec-
tiveness (integrity checks are carried out on all hardware before enabling trans-
mission of biometric data), correctness (the user is satisfied that integrity checks
have been executed correctly before transmission of biometric data occurs), and
secrecy (unauthorized users cannot obtain biometric data by intercepting mes-
sages between the system’s hardware components). We analyse the clarified pro-
tocol using applied pi calculus and the ProVerif tool, and demonstrate that it sat-
isfies the intended properties of the protocol. Moreover, this paper shows that the
verification result between the naive interpretation and the clarified interpretation
is different.

1 Introduction

1.1 Biometric Authentication Protocols

Biometric authentication complements other methods of authentication such as pass-
words or smartcards. It may be used as an alternative to these, or in combination. Pass-
words used on their own are known to have certain weaknesses:users are liable to
choose easily guessable passwords, transfer passwords between each other in ways not
desired by the system owners, use the same password on multiple systems, or forget
their passwords. Authentication using smart cards also hassome of these weaknesses,
such as undesired transfer between, or theft from, users. Biometric user authentication
can be utilised in a variety of applications, from logging into a local PC, to passenger
identification at a border control, to authentication on a remote server in e-commerce
transactions or online banking.

Potential biometric techniques include fingerprint and hand geometry, as well as
voice, retina, face and behavioural characteristics. The rapid move towards the use of
biometrics in user authentication comes from the method’s promise to offer secure and
reliable authentication. In well-designed and engineeredsystems for biometric authen-
tication, user A cannot authenticate as another user B, evenwith B’s cooperation. In
contrast to other types of credential, such as password or smartcard, which can be
transferred or stolen, biometric authentication promisesa ”non-transferability” prop-
erty, which means that users cannot lose their credentials or acquire those belonging to
others.

2

However, there are many obstacles to overcome before this potential can be re-
alised. Biometric authentication depends on biometric protocols, i.e. the way biometric
data is transmitted and stored. But protocol design is knownto be very difficult. The
well-known paper that identified attacks on the Needham-Schroeder protocol that was
believed to be invulnerable and had been used successfully for more than a decade [1]is
one example of how accurate protocol verification is crucial. The focus of this paper
concerns the handling and storage of biometric data. Biometric data cannot be consid-
ered a secret in the way that private keys or passwords can. Incontrast with private keys,
biometric data is given to potentially hostile hosts when a user wishes to authenticate
herself, and unlike passwords, biometric data cannot be replaced - a user cannot con-
veniently choose different biometric data to present to different hosts in the way that
one might use a different (and lower security) password for awebmail account as for
a bank account. Moreover, in contrast with keys and passwords, biometric data such as
the user’s facial characteristics and fingerprints should be considered to be in the public
domain, and can be captured without the user’s consent or knowledge.

In spite of this, we take the view that biometric data should be kept private as a
matter of good practice. In this respect, it is rather like credit card numbers; they are
not really private, as we voluntarily cite them on the phone and by unencrypted email
and allow restaurant and other retail staff to handle the cards, often in our absence.
Nevertheless, it seems sensible not to allow such data to be spread around without
restriction. The same idea applies to biometric data; even if a user’s biometric data could
be captured by agents having access to smooth surfaces the user touches, or agents to
whom the user authenticates, it should not be made unnecessarily easy for malicious
agents to acquire it. However, biometric authentication methods cannot assume that
biometric data is secret. Such an assumption is false.

+Long version.The full paper that presents the ProVerif model is availableat
http://www.cs.bham.ac.uk/˜mdr/research/papers/

1.2 Our Contribution

To demonstrate verification of biometric authentication protocols, we use an established
protocol, CPV02 [2], as a case study, and prove whether its intended properties are
satisfied.

In order to verify the properties of the biometric authentication protocol, we need
to clarify the operation of the protocol. We show that it is easy to interpret the protocol
incorrectly, and that this would affect the security properties. An example of a naive
interpretation and its verification result is given in a later section.

We set out and formalise the intended properties of the protocol. We present the
verification result of the naive interpretation, and clarification of the protocol’s detail
that is necessary in order to achieve successful verification. Moreover, we show that the
verification outcome of the naive interpretation of the protocol identifies an attack while
the result of the clarified one is different.

To obtain our findings, we use the verification tool ProVerif [5]. We explain the
protocol, clarify it, and provide a formal model of the protocol and its properties. We
then give the outcome of the verification, and some analysis.

3

2 The CPV02 Protocol

In [2], Chen, Pearson and Vamvakas present a protocol for biometric authentication that
we call CPV02. This protocol prevents disclosure of biometric data both during data
transmission and within all system hardware. This is achieved through integrity metric
checking. The protocol is a generic protocol for biometric authentication. It can be used
as a protocol in applications that require authentication before the user is allowed to
proceed.

The system under consideration is composed of three connected components: a
smartcard (SC), a trusted computing platform (TCP) and a trusted biometric reader
(TBR).

The SC is used for storing credential information such as theuser’s biometric code
or the user’s signature. The TBR is a device for reading the user’s biometric data for
use later in the matching process. In this protocol, the TBR and the SC generate session
keys to transfer the user’s submitted biometric data (BD) and the user’s stored biometric
code (BC).

A TCP is a device that behaves in an expected manner for the intended purpose and
is resistant to attacks by application software or viruses [3]. This is achieved because the
TCP contains a Trusted Platform Module (TPM), which stores keys and can perform
cryptographic operations. The TPM can check the integrity of the TCP. Specifically,
it can create an unforgeable summary of the software on the TCP, allowing a third
party to verify that the software has not been compromised. This can be accomplished
by presenting a certificate to the third party to confirm that it is communicating with
a valid TPM. Table 1 summarises notations and meanings that will be used through
out the paper. Figure 1 shows the basic system for this model.Informally, it can be

Table 1.Notations and Meanings

Notation Meaning
BC User’s stored biometric code
BD User’s submitted biometric data

TPM Trusted Platform Module
TCP Trusted Computing Platform
TBR Trusted Biometric Reader

described as a user holding a smart card that contains her previously stored biometric
code, e.g. fingerprint code. To authenticate herself to the system, she first inserts the
smart card into a smart card reader. This triggers part of theprotocol during which
the integrity of the computing platform and the biometric reader are checked and the
result is returned to the smart card. If the smart card is satisfied that the computing
platform and biometric reader have not been tampered with, it indicates this to the user,
e.g. by releasing a special image to be displayed by the computing platform. The user
recognises that image as an indication that the integrity checks have been successful
and proceeds to the second step, which is biometric authentication. To achieve that,
she submits her biometric data, e.g. by placing her fingerprint on a biometric reader.

4

Fig. 1. The basic setup for CPV02 consists of a trusted biometric reader (TBR), a trusted com-
puting platform (TCP) that supports a trusted platform module(TPM), and a smart card device
(SC)

The biometric code stored on the smart card and the submittedbiometric data from the
biometric reader are then sent to the computing platform, which will validate whether
they match. If they match, the smart card will release the user’s credential data, e.g. her
signature on a message, to the computing platform.

The BC is stored in the SC and will be transferred to the TPM forcomparison with
the BC. However, before this transmission is performed, theTPM and the SC must
authenticate each other by sending an authentication message, which includes a nonce
and integrity metric. The integrity metric is a measurementof the trustworthiness of the
component. Depending on its policy, the challenger will decide, based on this value,
whether to trust or allow any action to be performed.

The SC sends a nonce n1 and its identity to the TPM. The TPM generates a nonce
n2 and a message including n1, n2, the identity of the SC and integrity metric D3. The
integrity metric D3 is used to trigger the components involved in the communication to
do the integrity checking. The message sent back to the SC will be signed by the TPM
so that the SC can check its origin and the correctness of n1. After the authentication’s
success, the SC generates the session key SK1, shared by the SC and the TPM, for
encrypting the BC, before sending it together with the authentication messages. After
the TPM has verified the message, it then stores the BC.

When the TBR is presented to the system, it also performs mutual authentication
with the TPM and generates a session key to share between the TBR and the TPM.
In the same way as that in which the TPM and the SC authenticated each other, the
TBR sends an integrity metric D7 to the TPM. If the TPM has successfully verified the
message it receives, it will send back a message MF5. The TBR verifies the message.
After the authentication has succeeded, the TBR generates asession key SK2, shared
by the TBR and the TPM, for use in encrypting the BD from the TBRto the TPM.

The BD is encrypted by using the session key created in the previous stage to the
TPM. This data will be compared with the BC. After the messageis verified, the TPM
decrypts the encrypted message and verifies the validity of the BD. If they match, the

5

user is allowed to use the system or perform the request. For example, the SC releases
the user’s signature. The message sequence of this protocolis shown in Figure 2.

2.1 Intended Properties of CPV02 Protocol

The protocol has the following intended properties:

1. Effectiveness.The accessed computing platform is given neither the user’sstored
biometric code nor the user’s submitted biometric data until the integrity of both
the computing platform and biometric reader are checked by the smart card.

2. Correctness.The biometric reader is not given the user’s submitted biometric data
until the user is convinced of the correctness of both the computing platform and
biometric reader integrity checking.

3. Secrecy.An unauthorised entity that can listen to a message between the smart card
and computing platform, or between the biometric reader andcomputing platform,
cannot obtain either the user’s stored biometric code or theuser’s submitted bio-
metric data.

2.2 Problem Encountered

To verify the three protocol properties presented in 2.1, weneed to gain a detailed
understanding of how the protocol works and the sequence of messages.

If a naive verifier were to interpret the CPV02 protocol as it is presented in [2]
(page 7-9), it would identify an attack. The sub-protocols are presented in a sequence
order, and since nothing is said about the order in which theyshould be run, the reader
can assume they are run in the order presented. We performed the verification on that
assumption. The result of the verification shows that one of the properties does not hold:
the biometric data is released before the TPM is checked.

The ProVerif model of this interpretation is shown in the full paper+. Let us briefly
describe this model. The code consists of 4 processes (excluding the main process):
TPM, TBR, SC and ProcessK. Processes TPM, TBR and SC perform the operations of
the TPM, TBR and SC respectively (as mentioned in section 2).ProcessK distributes the
verification key certificates to the three processes TPM, TBRand SC. The main process
generates private keys for each component and distributes them via private channels,
running these processes concurrently.

The result of the verification shows that the TCP is sent the BCbefore the TBR is
checked. This breaks one of the intended properties of the protocol:effectiveness.

2.3 The Clarified CPV02 Protocol

Email discussion with one of the authors of [2], Liqun Chen, has given us further vital
information about CPV02. We have learnt that the four sub-protocols can run at any
time and in any order. Moreover, the result from one sub-protocol may affect the other
sub-protocols. For example, sub-protocol (S1) cannot be run successfully without also
running sub-protocol (S2). These facts cannot be easily extracted from the paper with-
out the discussion and they are important in order to successfully verify the protocol.

6

Fig. 2.Message Sequence Chart for CPV02 Protocol

7

Let us consider the message sequence chart of CPV02 in Figure2. The protocol
consists of four sub-protocols (S1), (S2), (S3), and (S4) which can run in any order and
at any time. In (S1), the encrypted BC is sent from the SC to theTPM. In (S2), a session
key is created for use between the TPM and the TBR when the BD isencrypted. In (S3),
the encrypted BD is sent from the TBR to the TPM. In (S4), a matching result on the
BC and BD is sent from the TPM to the SC.

The detailed ProVerif model for verifying the properties according to the clarified
protocol is presented in section 4.

3 Applied Pi Calculus and ProVerif

3.1 Applied Pi Calculus

Applied pi calculus is a language for describing concurrentprocesses and their interac-
tions [4]. It is based on pi calculus, but is intended to be less pure and therefore more
convenient to use. Properties of processes described in applied pi calculus can be proved
by employing either manual techniques or automated tools such as ProVerif [5]. As well
as reachability properties that are typical of model-checking tools, ProVerif can in some
cases prove that processes are observationally equivalent[6].

To describe processes in applied pi calculus, one starts with a set of names (which
are used to name communication channels or other constants), a set of variables, and
a set of function symbol which will be used to define terms. In the case of security
protocols, typical function symbols will includeenc for encryption (which takes plain-
text x and a key k, and returns the corresponding cipher text)anddec for decryption
(which takes cipher text and a key k and returns the plaintextx). One can also describe
equations which hold on terms constructed from the function. For example:

dec(enc(x,k),k) = x

Terms are defined as names, variables, and function symbols applied to other terms.
Terms and function symbols are sorted, and of course function symbol application must
respect sorts and arities. In the applied pi calculus, one has (plain) proceses and ex-
tended processes. Plain processes are built up in a similar way to processes in the pi
calculus, except that messages can contain terms (rather than just names) [4, 7].

3.2 ProVerif

ProVerif is a protocol verifier developed by Bruno Blanchet [8]. This tool has been
used to prove the security properties of various protocols [7, 9]. It can be used to prove
secrecy, authenticity and strong secrecy properties of cryptographic protocols. It can
handle an unbounded number of sessions of the protocol and anunbounded message
space. The grammar of processes accepted by ProVerif is described in the long version
of the paper.

In order to verify properties of a protocol, query commands may be made. The
query ‘attacker: m’ is satisfied if an attacker may obtain themessage m by observing
the messages on public channels and by applying functions tothem. The queryev :

8

f(x1, . . . , xn)⇒ ev : f ′(y1, . . . , ym) is satisfied if the eventf ′(y1, . . . , ym) must have
been executed before any occurrence of the eventf(x1, . . . , xn).

An advantage of using ProVerif as a verfier is it models an attacker which is compli-
ant with the Dolev-Yao model [10] automatically. We do not need to explicitly model
the attacker.

4 Modelling the Clarified CPV02 in ProVerif

Now we model the CPV02 protocol based on the derived message sequence chart
(shown in Figure 2) from clarification and the following assumptions:

1. All the components, TPM, SC and TBR, hold the public key of certificate authority.
2. The integrity metric measurements have been made and are stored in the tamper-

resistant storage. Therefore we model it, as it is a stored secret value, and verify its
correctness with the challenger’s stored value.

The ProVerif code consists of signature and equational theory, a main process, a
process for certificate distribution, S1 process, S2 process, S3 process, and S4 process.
A detailed description of each process will be given in a later section.

4.1 Signature and Equational Theory

Our ProVerif model involves public key and host functions. We model cryptographic
function asencand dec. Similarly, the symmetric cryptography is modelled assenc
andsdec. In order to introduce digital signature, functionsign is added and function
checksignis used to verify the origin of messages.

The public key cryptography is represented in the first equation. To decrypt mes-
sages from symmetric cryptography, the second equation permits us to do so. In the
interest of verifying the origin of messages; the checksignequation is introduced in our
model.

equation dec(enc(x,pk(y)),y) = x.
equation sdec(senc(x,k),k) = x.
equation checksign(sign(x,y),pk(y)) = x.

4.2 Main Process

In the main process, the public keys, private keys, and the identities of each component
are created and distributed in the public channel. Moreover, the components can run at
any time and in any order.

process

(* create secret keys *)
new skCA;

9

new skSC;
new skTPM;
new skTBR;

(* public keys *)
let pkCA = pk(skCA) in
out(ch,pkCA);
let hostSC = host(skSC) in
let hostTPM = host(skTPM) in
let hostTBR = host(SKTBR) in
out(ch,hostSC);
out(ch,hostTPM);
out(ch,hostTBR);
!(TPM1) | !(TPM2) | !(TPM3) | !(TPM4)|
!(SC1) | !(SC4) |
!(TBR2) | !(TBR3) |
!(processK)

4.3 Certificate Distribution

This process is intended to distribute the certificates of verification keys for the integrity
checking process and distribute them through the private channel to guarantee that each
identity will obtain them correctly.

let processK =
out(privChCertTPM1,sign((host(skTPM),pk(skTPM)),skCA))|
out(privChCertTPM2,sign((host(skTPM),pk(skTPM)),skCA))|
out(privChCertTPM3,sign((host(skTPM),pk(skTPM)),skCA))|
out(privChCertTPM4,sign((host(skTPM),pk(skTPM)),skCA))|
out(privChCertSC1,sign((host(skSC),pk(skSC)),skCA))|
out(privChCertSC4,sign((host(skSC),pk(skSC)),skCA))|
out(privChCertTBR2,sign((host(skTBR),pk(skTBR)),skCA)).

4.4 (S1) Sending the Encrypted Biometric Code

This sub-protocol includes two processes: TPM1 and SC1. Themutual authentication
between the TPM and the SC is performed before the encrypted BC is transmitted.
Firstly, the TPM and the SC obtain their certificates. The TPMgenerates a fresh random
nonce. Then it sends its integrity metric with this nonce to the SC. The SC checks
the certificate it receives from the TPM and retrieves the public key of the TPM. The
SC verifies the validity of messages and generates a session key and then sends the
BC encrypted by the key to the TPM. The TPM verifies the accuracy of the received
message, decrypts it, and stores the BC in its secure storage. Moreover, from email
discussion, we have learnt that (S1) cannot run successfully before (S2) has run. So we
add state checking to check that (S2) has run.

10

let TPM1 =
(* Receive certificate of the verification keys for

the integrity checking purpose *)

in(pState2,P2);
if P2 <> success then 0
else
(
in(privChCertTPM1,D2);
in(ch1,(nx1,hostSCx,=D1));
new n2;
out(ch2,(n2,sign((nx1,n2,hostSCx,D3),skTPM),D2));
in(ch3,(m2,m3,m4));
let(SK1Received,=hostSCx,=D4) = dec(m2,skTPM) in
let(=nx1,=n2,BCReceived,Dx5) = sdec(m3,SK1Received) in
let(=hostSCx,pkSCx) = checksign(Dx5,pkCA) in
let(=nx1,=n2,=hostTPM,m5,=D6) = checksign(m4,pkSCx) in
let(=SK1Received,=hostSCx,=D4) = dec(m5,skTPM) in
event tpmgetBC()
).

let SC1 =
(* Receive certificate of the verification keys for

the integrity checking purpose *)
in(privChCertSC1,D5);
new n1;
out(ch1,(n1,hostSC,D1));
in(ch2,(nx2,m1,Dx2));
let(hostTPMx,pkTPMx) = checksign(Dx2,pkCA) in
let(=n1,=nx2,=hostSC,imtpmReceived) = checksign(m1,pkTPMx) in
if imtpmReceived <> D3 then 0
else
(
event tpmChecked();
new SK1;
new BC;
out(ch3,(enc((SK1,hostSC,D4),pkTPMx),senc((n1,nx2,BC,D5),SK1),

sign((n1,nx2,hostTPMx,enc((SK1,hostSC,D4),pkTPMx),D6),skSC)));
out(pState1,success)
).

11

4.5 (S2) Creating a Session Key for Encrypting the User’s Submitted Biometric
Data

This sub-protocol represents mutual authentication between the TPM and the TBR. It
also creates a session key for sharing between the TPM and theTBR. This sub-protocol
runs when a TBR has been introduced to the system.

This sub-protocol includes the two processes TPM2 and TBR2.The certificates are
obtained via the private channels. Note that the TPM has already obtained this certificate
in the previous sub-protocol. TPM1 and TPM2 are indeed the same trusted platform
modules but they are run in different sub-protocols and therefore require distinct names.
So we model TPM2 to receive the certificate again but the certificate it receives is the
same certificate as that received by TPM1.

The TBR has to authenticate itself to the TPM using an integrity checking mecha-
nism. It creates a fresh random number and sends it with its integrity metric. If the TPM
is satisfied with the checking result, it will send its certificate along with the authentica-
tion message to the TBR. The TBR retrieves the public key of the TPM. It then checks
the correctness of the message. If it is valid, the TBR will create a session key SK2 for
the encryption and decryption of the BD.

While the processes TPM1, TPM2, TPM3, and TPM4 are on the sametrusted plat-
form module, as seen in section 2, in order to fit the CPV02 protocol they need to run
as separate sub-protocols. This fact also applies to TBR2 and TBR3. All variables cre-
ated or received in one TPM process should be known to others.Hence, in the process
TPM2, two private channels are set up. One is used for acknowledging that S2 has run
and the other is used for transferring the session key SK2 from the process TPM2 to the
process TPM3. Similarly, a private channel is set up in process TBR2 to transmit the
session key from the process TBR2 to the process TBR3.

let TPM2 =
in(privChCertTPM2,D8);
in(ch4,(nx3,Dx7));
let(hostTBRx,pkTBRx) = checksign(Dx7,pkCA) in
if hostTBRx = hostTBR then
event tbrChecked();
new n4;
out(ch5,(n4,D8,sign((nx3,n4,hostTBRx,D9),skTPM)));
in(ch6,(m7,=D10,m8));
let(SK2) = dec(m7,skTPM) in
let(=nx3,=n4,=hostTPM,m9,=D11) = checksign(m8,pkTBRx) in
let(=SK2) = dec(m9,skTPM) in
out(pState2,success);
out(privSK2TPM2,SK2).

let TBR2 =
(* Receive certificate of the verification keys for

the integrity checking purpose*)

12

in(privChCertTBR2,D7);
new n3;
out(ch4,(n3,D7));
in(ch5,(nx4,Dx8,m11));
let(hostTPMz,pkTPMz) = checksign(Dx8,pkCA) in
let(=n3,=nx4,=hostTBR,Dx9) = checksign(m11,pkTPMz) in
if Dx9 <> D9 then 0
else
(
new SK2;
out(ch6,(enc((SK2),pkTPMz),D10,sign((n3,nx4,hostTPMz,enc((SK2),pkTPMz),

D11),skTBR)));
out(privSK2,SK2)

).

4.6 (S3) Sending Encrypted User’s Submitted Biometric DataFrom the
Biometric Reader to the Trusted Platform Module

The processes TPM3 and TBR3 run in sub-protocol (S3). Firstly, the TPM obtains the
session key SK2 via the private channel. The TBR also obtainsthe identity of the TPM
and the session key via the private channels from TBR2.

The TPM generates a fresh random nonce and sends it to the TBR.Again, from
email discussion about the sequence of the processes, (S3) cannot run successfully be-
fore (S1) has run. The TBR verifies the message and sends back the BD encrypted by
the session key created in the previous stage. The TPM verifies the received message
and decrypts it to retrieve the BD. In order to check protocolproperties later, after the
BD is received, anevent tcpgetBD()is launched.

let TPM3 =
in(privChCertTPM3,D12);
in(privSK2TPM2,SK2TPM2);
new n5;
out(ch7,(n5,D12));
in(ch8,(nx6,Dx13,m10));
let(hostTBRxx,pkTBRxx) = checksign(Dx13,pkCA) in
let(=n5,=nx6,=hostTBRxx,=hostTPM,BDReceived,=D14) =

sdec(m10,SK2TPM2) in
event tpmgetBD().

let TBR3 =
in(pState1,P1);
if P1 <> success then 0
else

13

(
in(privChCertTBR3,D13);
in(privSK2,SK2TBR3);
in(ch7,(nx5,Dx12));
let(hostTPMzz,pkTPMzz) = checksign(Dx12,pkCA) in
new n6;
new BD;
out(ch8,(n6,D13,senc((nx5,n6,hostTBR,hostTPMzz,BD,D14),SK2TBR3)))
).

4.7 (S4) Sending a Matching Result

The last sub-protocol (S4) represents the transfer of a matching result on the BC and
BD from the TPM to the SC. This sub-protocol includes processTPM4 and process
SC4. We model it to check the correctness of the messages received.

The TPM acquires its certificate via the private channel. TheSC creates a fresh
random number and sends it with a request. The TPM verifies themessage. It then
signs the match result message and sends it to the SC. We modela match result as a
fresh value since we are not concerned with the mechanism by which the TPM carries
out the matching process. The SC will check the signature andthe correctness of the
message. If it is correct, the SC may release the user’s credential to the TPM. We do
not model how the SC releases this credential since it goes beyond the definition of the
protocol.

let TPM4 =
in(privChCertTPM4,D17);
in(ch9,(nx7,Dx15));
let(hostSCxx,pkSCxx) = checksign(Dx15,pkCA) in
new matchResult;
out(ch10,(sign((nx7,hostSCxx,matchResult,D16),skTPM),D17)).

let SC4 =
in(privChCertSC4,D15);
new n7;
out(ch9,(n7,D15));
in(ch10,(m12,Dx17));
let(hostTPMxx,pkTPMxx) = checksign(Dx17,pkCA) in
let(=n7,=hostSC,matchResultReceived,=D16) = checksign(m12,pkTPMxx) in
out(ch,secret).

5 Analysis

As described in section 2.2, if a naive interpretation of theprotocol is applied, an attack
is found. After the clarification of the protocol is introduced, we intend to analyse the
properites of the protocol to see if the result of the verification is different.

14

We have analysed the three properties of CPV02,effectiveness, correctnessand
secrecy, using ProVerif. All three properties of the protocol are satisfied.

Using ProVerif as a verification tool means we can model a Dolev-Yao style at-
tacker that can compose and decompose messages (provided ithas relevant crypto-
graphic keys), and has full control over messages that pass over public interfaces and
networks.

In the case of the CPV02 protocol, the USB cables are considered part of the public
network, since an attacker can interfere with them. The smart card interfaces are also
considered public. A prototype device is presented in [11] that can listen to the signal
between smart card and smart card reader. This sort of devicecould be used by an
attacker to try to capture a user’s biometric code.

5.1 Effectiveness

The TCP will not be given either the BC or the BD unless the integrity of the TPM and
TBR has been checked by the SC.

According to the protocol, the BC is transferred from the SC to the platform, and the
BD is read from the TBR and sent to the platform; then the two are compared. To protect
the BD from a malicious attacker, the device holding this data has to be convinced that
the destination to which it will transfer the data can be trusted before the transmission
is carried out. This is done by means of integrity checks.

To analyse this property, we use theeventandquerycommand. These two com-
mands are used to check the correctness of sequences of events. While theeventcom-
mand is used for launching an event when a certain action is executed, thequerycom-
mand is used to prompt ProVerif to verify the correctness of the sequence of events that
we specify. If the sequence is not correct, an attack is identified.

In order to verify this property in ProVerif, we encode the integrity check which
ensures that the SC is satisfied with the integrity metric of the TCP and the TBR before
the trusted platform module receives the user’s stored biometric code and user’s sub-
mitted biometric data. The eventtcpChecked()is inserted after the SC has checked the
integrity of the TCP via the TPM, and the eventtcpgetBC()is inserted after the TCP
has received the BC+.

Similarly, to verify that the integrity metric of the TBR is checked by the SC before
the BD is transferred, an eventtbrChecked()is launched after the SC has checked the
integrity metric of the TBR.

It should be noted that there is no direct communication between the TBR and the
SC, so the TPM is responsible for checking the integrity metric of the TBR on behalf
of the SC. To model this situation, we code it in such a way thatif the TPM is satisfied
with the integrity metric of the TBR, an eventtbrChecked()is triggered. The TBR then
sends the encrypted BD to the TPM. The TPM verifies the message, stores the BD, and
then an eventtcpgetBD()is inserted+.

We need to check that these events are executed in the correctorder, i.e. that the
TPM’s integrity metric and the TBR’s integrity metric have been examined before the
TPM receives the BD. This should be the case even in the presence of an attacker that
can control the order of the subprotocols and the messages onthe network. This check
is implemented using ProVerif’squerycommand:

15

query ev: tcpgetBD()⇒ ev: tcpChecked() & ev : tbrChecked().
query ev: tcpgetBC()⇒ ev: tcpChecked() & ev : tbrChecked().

5.2 Correctness

The TBR is not given the BD until the user is satisfied with the integrity checks on both
the TCP and TBR.

This property aims to protect the BD from being read by a malicious biometric
reader, the user places her biometric data only on the biometric reader that she trusts.
This property is important because if the BD is stolen or accidentally disclosed, it cannot
be altered, replaced or regenerated.

To verify this property, we check that the biometric reader (TBR) receives the BD
after the integrity metric of the TCP and the integrity metric of the TBR have been
checked.

To achieve this, we launch an eventtbrgetBD()after the BD is created in the process
TBR3+.The event would not be triggered without satisfactory integrity checking. To
check the correct order of events, we use the query command:

query ev: tbrgetBD()⇒ ev: tcpChecked() & ev : tbrChecked().

5.3 Secrecy

An unauthorised entity that can listen to a message between the SC and TCP, or between
the TBR and TCP, cannot obtain either the BC or the BD.

As we remarked in section 1, the secrecy of biometric data cannot be relied upon.
The security of a protocol should not depend on the secrecy ofbiometric data. Indeed,
this protocol does not depend on it, since it uses a trusted biometric reader to guard
against disclosure. Nevertheless, it is good practice to prevent widespread dissemina-
tion, and this property verifies that the protocol does not give an attacker easy access to
that data.

To model this property we use thequerycommand to ask ProVerif whether an at-
tacker can access the BC or the BD. The commands for this verification are

query attacker : BC.
query attacker : BD.

Using these commands to check whether the specified arguments are secret, ProVerif
will exhaustively check whether there is any way that an attacker could obtain the in-
formation, BD and BC, that we want to protect. If an attacker can obtain the data, then
a potential attack has been identified.

6 Conclusion and Future Work

We have presented a specification of the CPV02 biometric authentication protocol,
obtained after clarifying details of the protocol through email discussion with one of
the authors. We modelled the clarified protocol using the applied pi calculus and the

16

ProVerif verification tool. We have encoded three intended properties of the protocol,
namelyeffectiveness, secrecyandcorrectness. The positive results from the verification
show that the properties of the protocol hold.

The protocol is successfully verified against the properties. Without this clarifica-
tion, verification of one of the properties fails.

The CPV02 protocol uses trusted computing platform and involves integrity check-
ing. The trusted computing platform module is an essential part of the protocol in order
to guarantee that the components that involved in biometricauthentication data can-
not be tampered by an intruder. Similar to other classical protocols, nonces are used
for checking the freshness of message received and encryption and decryption are also
used for the secrecy of message content.

In future work, we will select other protocols with different properties and verify
that they hold in a similar way. We would also like to investigate biometric authenti-
cation protocol which can be used for unsupervised remote authentication, such as in
online banking.

Acknowledgement. Many thanks to Liqun Chen, one of the authors of [2], for
detailed email discussion, which was crucial in clarifyingthe protocol and our under-
standing of it.

References

1. Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol.Informa-
tion Processing Letters 56(1995) 131-133

2. Chen, L., Pearson, S., Vamvakas, A.: Trusted Biometric System. Available from
http://www.hpl.hp.com/techreports /2002/HPL-2002-185.pdf. (2002)

3. Pearson. S.: How Can You Trust the Computer in Front of You?
http://www.hpl.hp.com/techreports/2002/HPL-2002-222.pdf (2002)

4. Abadi, M., Fournet, C.: Mobile values, new names, and secure communications. Proceedings
of the 28th Annual ACM Symposium on Principles of Programming Languages (2001) 104-
115

5. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In Steve
Schneider, editor, 14th IEEE Computer Security Foundations Workshop, IEEE Computer So-
ciety Press (2001) 82-96

6. Blanchet, B.: Automatic Proof of Strong Secrecy for Security Protocols. In IEEE Symposium
on Security and Privacy (2004) 86-100

7. Kremer, S., Ryan, M.: Analysis of an Electronic Voting Protocol in the Applied Pi Calcu-
lus. Proceedings of the European Symposium on Programming.Lecture Notes in Computer
Science 3444. Springer Verlag (2005) 186-200

8. Blanchet, B.: ProVerif Automatic Cryptographic Protocol Verifier User Manual (2005)
9. Delaune, S., Kremer, S., Ryan, M.: Coercion-resistance and Receipt-freeness in Electronic

Voting. In 19th Computer Security oundations Workshop. IEEE Computer Society Press
(2006)

10. Dolev, D. and Yao, A.C.: On the Security of Public Key Protocols. Proceedings of 22nd IEEE
Symposium on Foundations of Computer Science (1981) 350-357

11. Bond, M.: Chip and Pin (EMV) Point-of-Sale Terminal Interceptor. Available from
http://www.cl.cam.ac.uk/˜mkb23/interceptor/). (2007)

