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Abstract. The Direct Anonymous Attestation (DAA) scheme provides
a means for remotely authenticating a trusted platform whilst preserving
the user’s privacy. The protocol has been adopted by the Trusted Com-
puting Group (TCG) in the latest version of its Trusted Platform Module
(TPM) specification. In this paper we show DAA places an unnecessarily
large burden on the TPM host. We demonstrate how corrupt adminis-
trators can exploit this weakness to violate privacy. The paper provides
a fix for the vulnerability. Further privacy issues concerning linkability
are identified and a framework for their resolution is developed. In ad-
dition an optimisation to reduce the number of messages exchanged is
proposed.
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1 Introduction

1.1 Trusted Computing

Trusted computing is a mechanism by which a server can obtain cryptographically-
strong guarantees about the state of a remote platform. Such guarantees can in-
clude information about the platform’s configuration, the software it is running,
the identity of its users and its geographical location. Once in possession of such
information the server can make an informed decision as to whether to trust the
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platform. At the core of the architecture is a hardware device called a Trusted
Platform Module (TPM). This chip provides the cryptographic guarantee that
the reported data is indeed correct.

Applications for trusted computing include ad hoc networks, grid computing
and corporate digital rights management (DRM). A mobile ad hoc network con-
sists of a number of mobile nodes. Unlike traditional network topologies, ad hoc

networks do not rely upon a fixed infrastructure. Instead, hosts rely upon each
other to become and remain connected. Such technology could be deployed to
support a campus network. However nodes may cheat: a selfish user may refuse to
forward messages from others, thus becoming a ‘freeloader.’ Trusted computing
can force each node to act in a fair manner. In the Grid Computing application,
the resources of a large number of systems are used to tackle computationally
expensive problems. The M4 Message Breaking Project is an example, and has
recently deciphered two of the three previously unsolved German ciphers used
during World War II. All Grid Computing projects share a similar impediment.
The client may abuse the system by running modified software or may simply
return fictitious values. Trusted computing addresses this problem by providing
a guarantee that the client is running the legitimate program in the correct man-
ner. In the corporate DRM setting, organisations can be assured that machines
are running only authorised software which is capable of enforcing strict poli-
cies for the control of documents and electronic mail. Restrictions may prevent
printing sensitive corporate data, or forwarding it to external sources.

1.2 Privacy concerns with trusted computing

The aforementioned grid computing example relies upon the ability of a trusted
platform to provide a remote attestation. In a similar scenario a situation could
exist where the user demands that their identity be protected. The server must
therefore only learn that a platform is trusted and not which particular one.
Cryptographers and privacy advocates have voiced concerns. The Trusted Com-
puting Group (TCG) has addressed the issue.

The concept of privacy has been widely debated and several taxonomies have
been formally proposed [1–3]. For the purposes of this document a privacy pre-
serving protocol is one that satisfies anonymity and unlinkability, the definitions
of which have been adopted from Pfitzmann & Köhntopp [2]. Anonymity is the
state of not being identifiable within a set of agents with the same attributes.
The set of agents consists of all those who might cause an action and anonymity
becomes stronger as the size of the set increases. Reiter & Rubin [3] liken the
notion to “blending into a crowd.” In the presence of a large crowd, each mem-
ber of which is equally likely to have performed an action, it is impossible to
establish from whom the action originated. Unlinkability (also called relation-

ship anonymity) specifies that given two or more items originating from the
same agent it is not possible to link them. As a counterexample, two docu-
ments bearing the handwritten signature of an individual allow the items to be
linked. Unlinkability only has meaning once anonymity has been achieved, since
actions can always be linked if the identity of the agent is known. Of course,



privacy is only achievable in a communications protocol if the channel supports
anonymity [3, 4].

1.3 Addressing privacy concerns

The solution first adopted by the TCG [5] required a trusted third party, namely
a privacy certification authority (privacy CA). Each TPM has an embedded RSA
key pair called an Endorsement Key (EK) which the privacy CA is assumed to
know. In order to attest the TPM generates a second RSA key pair called an
Attestation Identity Key (AIK). It sends the AIK, signed by EK, to the privacy
CA who checks its validity and issues a certificate for the AIK. The host/TPM
is now able to authenticate itself with respect to the certificate. This approach
permits two possibilities for the detection of rogue TPMs: firstly the privacy
CA should maintain a list of EKs known to be rogue and reject requests from
them, secondly if a privacy CA receives too many requests from a particular EK
it may reject them. The number of permitted requests should be subject to a
risk management exercise and goes beyond the scope of this paper. This solution
is problematic since the privacy CA must take part in every transaction which
makes use of a new AIK, and thus must provide high availability whilst remaining
secure. Furthermore privacy requirements may be violated if the privacy CA and
verifier collude.

The Direct Anonymous Attestation (DAA) [6] scheme draws upon techniques
developed for group signatures, identity escrow and credential systems. The pro-
tocol allows the remote authentication of a trusted platform whilst preserving
the privacy of the system’s user. It eliminates the need for a trusted third party
and has been adopted by the TCG in the current TPM specification [7]. The
approach can be seen as a group signature scheme without the ability to revoke
anonymity, with an additional mechanism to detect rogue members. In broad
terms the host contacts an issuer and requests membership to a group. If the
issuer wishes to accept the request, it grants the host/TPM an attestation iden-

tity credential. The terms credential and certificate will be used interchangeably
hereafter to mean attestation identity credential. The host is now able to anony-
mously authenticate itself as a group member to a verifier with respect to the
certificate. The platform need only contact the issuer once, alleviating the pre-
viously discussed bottleneck. Note that if the host wishes to use multiple DAA
keys associated with the same issuer then multiple interactions with the issuer
will be required.

1.4 Contribution

This paper shows a weakness of the DAA protocol which allows an adversarial
issuer and verifier to collude in order to violate the user’s privacy. Subsequently,
the paper describes how the vulnerability can be fixed. Further privacy issues
with regards verifier-linkability are identified and a framework for their resolution
is developed. In addition, an optimisation to the protocol is proposed. The paper



presents the DAA protocol in an accessible format which we believe is easier to
understand than the original paper.

Structure of paper. The remainder of this paper is structured as follows. Section 2
introduces the cryptographic primitives used by this work. The DAA protocol is
explained in Section 3. In Section 4 an informal security analysis of the protocol
is conducted, as a result of which a vulnerability is discovered and subsequently
corrected. In Section 5 the privacy problems concerning verifier-linkability are
identified and a solution is presented. In Section 6 optimisations are proposed to
reduce the number of messages exchanged and to improve the efficiency of rogue
tagging. An appraisal of the work is presented in Section 7 and future research
is considered in Section 8. Finally for completion, the DAA protocol is provided
in its entirety, including the security fixes discussed, in the appendices.

2 Preliminaries

2.1 Protocols to prove knowledge

Various protocols which prove knowledge of and relations among discrete loga-
rithms are used by DAA. These protocols will be described using the notation
introduced by Camenisch & Stadler [8]. The example below has been adapted
from Camenisch et al. [6]:

PK{(α, β, γ) : y = gαhβ ∧ ỹ = g̃αh̃γ ∧ α ∈ [u, v]}

It denotes a “zero knowledge Proof of Knowledge of integers α, β, γ such that

y = gαhβ and ỹ = g̃αh̃γ holds, where α ∈ [u, v].” The values y, g, h, ỹ, g̃ and h̃
are elements of some groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉. Greek letters are
used for quantities of the knowledge that is being proved and values kept secret
by the prover, while all other values are known to the verifier.

The Fiat-Shamir heuristic [9] allows an interactive zero knowledge scheme to
be converted into a signature scheme. A signature acquired in this way is termed
a Signature Proof of Knowledge and is denoted, for example, as SPK{(α) : y =
gα}(m).

2.2 Cryptographic assumptions

Assumption 1 (RSA assumption). Given an RSA public key (n, e) and a

random ciphertext c it is hard to compute m such that me = c (mod n).

Assumption 2 (Strong RSA assumption). The strong RSA assumption al-

lows the attacker to select the public exponent e. Thus the strong RSA assumption

states, given n and a random ciphertext c it is hard to compute m and e such

that me = c (mod n), for an odd public exponent e ≥ 3.

Assumption 3 (Decisional Diffie-Hellman (DDH) assumption). Let p, q
be primes such that q - p − 1. Let g be a generator of Z∗

p of order q. Then

for sufficiently large values of p, q the tuple (g, ga, gb, bab) is computationally

indistinguishable from (g, ga, gb, bc) where a, b, c ∈R [0, q − 1].



3 High level overview

This section describes the DAA protocol at a high level. For simplicity in presen-
tation, when the TPM is said to have sent or received a value, the message should
be assumed to have been delivered by way of the host. The scheme requires that
each issuer and verifier has a unique name, termed a basename, denoted bsnI

and bsnV respectively.
The TPM is a small chip with limited resources. DAA therefore aims to

minimise the operations that it must perform. This is achieved by outsourcing
computation to the host whilst maintaining security. A corrupt host should not
of course be able to authenticate without the TPM. However, privacy properties
need only be guaranteed if the host is not corrupt. Since a corrupted host can
always reveal its identity as it controls all external communication. The low level
distinction between computation conducted by the host and TPM are described
in the appendices.

The protocol is initiated when a host wishes to obtain a credential. This
is known as the join protocol and is shown in Figure 1. The TPM creates a
secret f value and a blinding factor v′. It then constructs the blind message
U := blind(f, v′) and NI := ζf

I , where ζI := (hash(1‖bsnI))
(Γ−1)/ρ (mod Γ )

and Γ, ρ are components of the issuer’s public key. The U and NI values are
submitted to the issuer I . The issuer creates a random nonce value ne, encrypts
it with the public key PKEK of the host’s TPM and returns the encrypted
value. The TPM decrypts the message, revealing ne, and returns hash(U‖ne).
The issuer confirms that the hash is correctly formed and is convinced that it is
communicating with a valid host/TPM. The issuer checks whether the NI value
stems from a rogue TPM or if it has been seen previously (the issuer might chose
to reissue the credential in this case). Rogue tagging will be detailed later. The
issuer generates a nonce ni and sends it to the host. The host/TPM constructs a
signature proof of knowledge that the messages U and NI are correctly formed.
The issuer verifies the proof and generates a blind signature on the message U .
It returns the signature along with a proof that a covert channel, which could
violate privacy, has not been used (for more detail seeAppendix B.4). The host
verifies the signature and proof and the TPM unblinds the signature revealing
a secret credential v (the signed f).

Once the host has obtained an anonymous attestation credential from the
issuer it is able to produce a signature proof of knowledge of attestation on a
message m. This is known as the sign/verify protocol and is shown in Figure 2.
Intuitively if a verifier is presented with such a proof it is convinced that it is
communicating with a trusted platform and the message is genuine. The message
m may be either a public part of an Attestation Identity Key (AIK) produced
by the TPM or an arbitrary message. If m is an AIK, the key can later be used
to sign PCR data or to certify a non-migratable key. Where m is arbitrary its
purpose is application dependent. It may for example be a session key. To distin-
guish between these two modes of operation a variable b is defined. When b = 0
the message was generated by the TPM and when b = 1 the message was input
to the TPM. The process of convincing a verifier that a host has obtained attes-



tation will now be more precisely described. The host engages in communication
with the verifier, during which the verifier requires the host to demonstrate that
it is indeed a trusted platform. The host and verifier negotiate whether the ver-
ifier is able to link transactions and the verifier sends nonce nv to the host. The
host/TPM produce a signature proof of knowledge of attestation on the mes-
sage (nt‖nv‖b‖m), where nt is a nonce defined by the TPM and m is a message.
In addition the host computes NV := ζf , where ζ := (hash(1‖bsnV ))(Γ−1)/ρ

(mod Γ ) or ζ is chosen randomly. The value NV allows for rogue tagging. In ad-
dition, if ζ is not random the NV value can be used to link different transaction
made by the same TPM while not identifying it. Where linkable transactions
are used it is also possible to reject an NV where it has appeared too often (e.g.
the verifier may only accept a given value ten times a day).

3.1 Rogue tagging

The DAA protocol is designed so that a known rogue TPM can be prevented from
obtaining certification or making a successful claim of attestation to a verifier.
A rogue TPM is defined as an entity which has obtained an attestation identity
credential and the associated f . Once a rogue TPM is discovered, the attestation
identity credential and the f value are distributed to all potential issuers/verifiers
who add the value to their rogue list. Note that this does not involve a certificate
revocation authority since anybody can verify that the credential is indeed a
signature on the f value. On receipt of NI and NV values the issuer/verifier

can check if the originating TPM is rogue by ensuring NI

?

6≡ ζ f̃
I (mod Γ ) and

NV

?

6≡ ζ f̃ (mod Γ ) for all values f̃ that are known to stem from rogue TPMs.
This check can be done efficiently since the rogue list can be expected to be
short and the exponents are relatively small [6].

4 Security analysis

4.1 DAA security properties

The objective of DAA is to provide a mechanism for the remote authentication
of a trusted platform whilst preserving the privacy of the system’s user. The
DAA protocol [6] defines the following security properties:

1. Only a trusted platform is able to authenticate.
2. Privacy of non-corrupt host is guaranteed by the sign/verify protocol:

(a) Interactions are anonymous.
(b) Linkability (of transactions) is controlled by the user.

3. Privacy is restored to a corrupted host if malicious software is removed.

Brickell, Camenisch & Chen [6] have shown DAA to be secure in the provable se-
curity model under the decisional Diffie-Hellman and strong RSA assumption in
the random oracle model. Such proofs are an important part of protocol analysis,



Host/TPM Issuer

new f, v′

U := blind(f, v′)

NI := ζ
f
I

U, NI

new ne
{ne}PKEK

hash(U‖ne)

new ni
ni

new nt
SPK{(f, v′) : U ≡ blind(f, v′) ∧ NI ≡ ζ

f
I }(nt‖ni)

new nh
nh

sign(U, SKI), SPK{(SKI ) : sign(U, SKI)}(nh)

v := unblind(sign(U, SKI), v
′)

Fig. 1. Join Protocol

Host/TPM Verifier
Request

new nv
nv

NV := ζf

new nt
ζ, NV , nt, m, SPK{(f, v) : v ≡ sign(f, SKI) ∧ NV ≡ ζf}(nt‖nv‖b‖m)

Fig. 2. Sign/Verify Protocol



but they are insufficient. Showing that breaking the scheme is “essentially as dif-

ficult as solving a well-known and supposedly difficult problem” [10] is a limited
view of security and fails to anticipate the majority of attacks on cryptographic
systems [11, 12]. Koblitz & Menezes [12] argue that “throughout the history of

public-key cryptography almost all of the effective attacks on the most popular

systems have not [been solving difficult problems (for example integer factori-
sation)], but rather by finding a weakness in the protocol.” Koblitz & Menezes
go on to suggest that “formalistic proofs [are] so turgid that other specialists

don’t even read [them]. As a result, proof-checking [is] a largely unmet security

objective, leaving [protocols] vulnerable to attack.” This forms the motivation
for an informal security analysis of the DAA scheme.

4.2 Violation of privacy in the presence of corrupt administrators

It is now shown that a colluding issuer and verifier can conspire to break anonymity
when linkable transactions are used, violating security properties 2a and 2b. The
verifier and issuer conspire to use the same basename, i.e. bsnV = bsnI . This
will result in the host computing ζ = ζI . Recall that ζI = (hash(1‖bsnI))

(Γ−1)/ρ

(mod Γ ) and ζ = (hash(1‖bsnV ))(Γ−1)/ρ (mod Γ ). The issuer learnt the iden-
tity of the host and which NI value the host used during the join protocol. The
verifier receives NV during the execution of the sign protocol. The host identity

is revealed, since NI = NV = ζf0+f12
lf

I = ζf0+f12
lf

(mod Γ ) and the issuer is
able to link the hosts identity with NI .

The privacy violation relies upon the assumption that an issuer and verifier
share the same basename (i.e. bsnI = bsnV ). For example, this assumption
holds in the following scenario. An online service provider could act as an issuer
during the registration process and a verifier during service usage. This use
case is in fact presented3 by Camenisch et al. in earlier work on the idemix
(identity mixer) system [13, 14] which forms the basis of the DAA protocol.
Under these conditions the issuer and verifier are the same entity and thus it
makes logical sense for them to share a single basename. In fact, not doing so
could cause confusion. Requiring the user to distinguish between bsnI and bsnV

values places unnecessary burden on the user and will inevitably lead to their
incorrect use. Furthermore, putting in place a procedure for obtaining a unique
basename would ultimately require a worldwide governing body. At best this is
undesirable since interaction with an authority reintroduces the bottleneck DAA
aims to avoid. At worst, such a body is infeasible. It is simply not economic to
setup an organisation for the sole purpose of issuing basenames. In addition such
a body is likely to charge for its services.

4.3 Fix

The values ζI and ζ need not be computed in such a similar manner. It is there-
fore proposed that the join protocol uses ζI := (hash(0‖bsnV ))(Γ−1)/ρ (mod Γ )

3 See http://www.zurich.ibm.com/security/idemix/idemix-slides.pdf (slide 10).



and the sign/verify protocol uses ζ := (hash(1‖bsnV ))(Γ−1)/ρ (mod Γ ). The
collusion between issuer and verifier to break privacy is no longer possible, re-
gardless of whether bsnV = bsnI . Basenames may now be selected from a single
name space as the distinction between issuer and verifier is no longer required.

4.4 Revised DAA protocol

The appendicespresent the complete DAA protocol. The presentation attempts
to provide clarity to the reader, incorporates the security fix (Section 4.3) and
includes the observation made by Camenisch & Groth [15] for increased effi-
ciency [16]. We believe our presentation is in a more accessible format which
is easier to understand than the original paper. To avoid over-complication the
optimisations described in Section 6.1 and the construction/use of basenames
(Section 5) are not shown; making these changes is trivial.

5 Overcoming problems with DAA basenames

The DAA protocol provides user controlled linkability (security property 2b,
Section 4.1). More precisely two modes of operation are defined: verifier-linkable
and verifier-unlinkable. Verifier-linkability is controlled by the construction of
NV := ζf , where ζ is either derived from a basename or selected randomly
(see Section 3). The former construction allows linkability, whereas the latter
prevents it. By design DAA therefore provides provisions to link transactions
which use the same basename. There are three types of linkable transactions:

1. Single application linkability A verifier providing a single application is
able to link transactions.

2. Cross application linkability A verifier providing multiple applications
which share the same basename is able to link transactions between different
applications.

3. Cross verifier linkability Different verifiers offering several applications
which share the same basename are able to link transactions.

These forms of linkability are shown under various operating conditions in Fig-
ure 3. We note that cross issuer linkability - that is linkability between applica-
tions with different issuers - is not possible. Since the construction of NV contains
the TPM’s secret f value, which in turn incorporates the issuer’s public key. Dif-
ferent issuers must use different public keys, thus cross issuer linkability is not
possible.

The DAA protocol does not define the security requirements of basenames
nor does it specify how basenames should be implemented. This presents two
potential problems:

1. Security properties. In order to ensure the user controlled linkability, the
user must be assured as to which verifier(s) will use a basename and for
what application(s). DAA does not provide adequate provisions for this.
Thus the host may inadvertently allow linkability between verifiers and/or
applications, violating user controlled linkability.



(a) Single verifier

(b) Multiple verifiers

Fig. 3. Linkability in various scenarios



2. Implementation. The protocol does not specify how to implement user
controlled linkability. A näıve solution is that the host maintains a list of
basenames associated with its communicating partners, including DAA is-
suers and a DAA verifiers, who have been associated with a basename. How-
ever, if a DAA key is used for a long time and for many different applications,
which is the DAA scheme designed for, maintaining such a list is infeasible
for most ordinary users.

Subsection 5.1 defines a technique which will resolve these two issues and Sec-
tion 5.2 will discuss its use in practice.

5.1 Constructing a basename

The host must be able to uniquely identify with whom a basename should be
used and for what application. It is therefore proposed that the basename is con-
structed from application, verifier and issuer specific data. An example of such
information is shown in Table 1. The host is then able to check a basename prior
to its use, thus preserving user controlled linkability. The construction of the
basename may be undertaken by either the verifier or the host. Alternatively it
could be created through negotiation. This decision is left to application devel-
opers. When the host is responsible for construction, it may be pre-programmed
in the host’s software, or determined by the user at run-time for example.

5.2 Using a basename

The host will be required to maintain the information used for constructing
basenames as shown in Table 1 and a blacklist of basenames which the host
does not want to be used any more. When a new basename is required, the host
(and the verifier) will create it based on the particular application. When an
existing basename is given it is selected from the list and the host checks that it
matches the application specification. The host’s blacklist will then be consulted
to ensure that the basename has not previously been blacklisted. If desired the

Table 1. Information to be used for computing a basename.

Application DAA operation Issuer/verifier data Date Other

1. Specification 1. DAA key issuing 1. Issuer identity 1. Start date 1. Random data
2. URL 2. PCR signing 2. Issuer public key 2. Expiry date string∗
3. User ID 3. AIK signing 3. Verifier identity 3. Other 2. Policy
4. Password 4. External input 4. Verifier public key 3. Terms &
5. Shared key signing 5. Auth request conditions
6. Other 5. System input 6. Auth algorithm 4. Other

signing 7. Other
6. Other

∗ This item is listed in the table for completion. The data string must be freshly created
by the host and it should only be used for the construction of random basenames.



Fig. 4. The proposed solution.

verifier will be asked to authenticate to the host. This process is presented in
Figure 4.

Motivating authentication of the verifier. To ensure that a user’s affiliations are
not learnt by an adversary the host must authenticate the verifier. Although the
DAA protocol does not require verifier authentication it is expected that this
will be the case in real applications. Standard authentication techniques can be
used.

Manageability of basename list. The framework makes basenames more man-
ageable. Basenames are constructed from application specific data and prior to
use the host may authenticate the verifier. This means that the host need not
maintain a complete list of basenames, since checks can be made to ensure that
the basename is suitable for use with a specific application/verifier. This will
ensure the list is relatively short. The host need only keep a blacklist if it wishes
to avoid certain basenames. Expired basenames can be removed from either list.

6 Optimisations

6.1 Reduction in messages

An optimisation of the join protocol, which reduces the number of messages
exchanged from seven to four, is shown in Figure 5. A formal analysis of the



optimisation is beyond the scope of this paper, but an informal discussion is
given. The optimisation allows the host to learn ni earlier than the original
protocol. Since this value provides the host with no advantage the protocol is
believed to remain secure. The three subsequent messages are all passed from the
host to the issuer in succession, it therefore makes no difference to the security
of the protocol to concatenate these messages into a single message. It is claimed
the optimisation reduces the number of messages whilst maintaining security.

Host/TPM Issuer

new f, v′

U := blind(f, v′)

NI := ζ
f

I
U, NI

new ne

new ni
{ne}PKH , ni

new nt

new nh
hash(U‖ne), SPK{(f, v′) : U ≡ blind(f, v′) ∧ NI ≡ ζ

f

I }(nt‖ni), nh

sign(U, SKI), SPK{(SKI ) : sign(U, SKI)}(nh)

Fig. 5. Optimised Join Protocol

6.2 Rogue tagging

The rogue tagging checks can be optimised. Since ζI is a constant in the join

protocol the issuer is able to precompute ζ f̃0+f̃12lf

I (mod Γ ) for all (f̃0, f̃1) on
the rogue list. This technique can also be applied to the sign/verify protocol
when ζ is constant. In the case where ζ is random Brickell, Camenisch & Chen [6]
propose that a considerable speedup can be achieved using the batch verification
techniques defined by Bellare, Garay & Rabin [17, 18].



7 Conclusion

In this paper a weakness of the Direct Anonymous Attestation protocol is pre-
sented. The weakness allows an issuer and verifier to collude to violate the pri-
vacy of the host. The vulnerability is fixed by making a minor alteration to
the scheme. It is noted that the modification only affects the host part of the
protocol (i.e. no modifications need be made to the hardware TPM). The fix
is believed to be safe. Proving this formally is the topic of current research.
Further privacy issues surround verifier-linkability. The DAA protocol provides
inadequate provisions to enable the host to identify with whom, and for which
application, a basename may be used. This may result in a privacy violation.
The problem is resolved by the development of a framework which facilitates the
correct construction/use of basenames. In addition, optimisations to reduce the
number of messages exchanged and to improve the efficiency of rogue tagging
are presented.

8 Further work

This paper used informal techniques to identify an inadequacy of the DAA
scheme. Such methods are not complete and thus formal verification techniques
must be applied to give assurance that the protocol is indeed secure. The ap-
plied pi calculus is a formalism suitable for modelling DAA which allows us to
verify properties using automatic tools. The verification of the scheme remains
the topic of future research.

The strength of a security system is inversely proportional to its complexity.
DAA provides a esoteric solution to a seemingly simply problem. This work has
discovered a vulnerability in its design. Inevitably, implementation will result in
intrinsic weaknesses. Further research should aim to establish simpler solutions,
ultimately producing systems with greater security and efficiency.

Cryptographers can create secure systems which deliver provably strong secu-
rity properties. Society, however, is unwilling to accept such systems. Chaum in-
troduced digital cash in the 1980s offering powerful properties including anonymity
and unlinkability. Digital cash attracted little attention and was essentially re-
jected by society over concerns of “taxation [evasion] and money laundering,

instability of the exchange rate, disturbance of the money supply, and the possi-

bility of a Black Monday in cyberspace” [19]. DAA addresses society’s concerns
using linkability, an impurity which appears undesirable, but is demanded by the
real world. Further research should look to enable a more fine-grained approach
to the level of privacy provided to the user. Revocable unlinkability could for
example be provided. This would provide absolute privacy in normal operation
but would allow linkability to be revoked by the collaboration of the issuer and
n verifiers.



APPENDICES: The DAA Protocol

A Preliminaries

The DAA protocol draws upon a large combination of primitives from math-
ematics, which in turn form the building blocks for cryptographic techniques.
This section provides a basic overview, for a more complete coverage please refer
to [20].

A.1 Notation

The binary string of length l is denoted {0, 1}l. Concatenation of binary strings
α and β is shown as α‖β. The u least significant bits of the binary string α
is shown using LSBu(α) := α − 2ub α

2u c and the u most significant bits of the
binary string α is denoted MSBu(α) := b α

2u c. It should be noted that α =
MSBu(α)‖LSBu(α) = 2uMSBu(α) + LSBu(α).

A.2 Group theory

Definition 1 (Cyclic group). A group G is cyclic if there exists an element

g ∈ G such that for every y ∈ G there exists an integer i where y = gi. Such an

element g is called a generator of G.

Fact 1 (Subgroup generator). If G is a group and g ∈ G then the set of all

the powers of g forms a cyclic subgroup of G. The element g is called a subgroup
generator and the generated subgroup is denoted 〈g〉.

A.3 Protocols to prove knowledge

The DAA protocol applies proofs of knowledge to the group of quadratic residues
modulo a safe prime product. As a consequence the prover must demonstrate
that elements are indeed quadratic residues since the verifier is unable to do so.
The prover is therefore required to show that the square root of the element
exists, this can be achieved by executing PK{(α) : y2 = (g2)α} or PK{(α) :
y = ±gα} instead of PK{(α) : y = gα}, where α = logg2 y2 which is equivalent
to α = logg y in the case where y ∈ QRn [6].

This section only introduces the notation used to prove knowledge and rela-
tions among discrete logarithm. The reader is referred to [20] and the original
sources for complete explanations of individual protocols.

Demonstrating possession of a discrete logarithm A proof of knowledge
of an element y ∈ G with respect to base g ∈ G is denoted PK{(α) : y =
gα} [21, 22]. Furthermore it can be generalised to prove knowledge of y ∈ G with
respect to several bases g0, . . . , gv ∈ G, as denoted by PK{(α0, . . . , αv) : y =
gα0
0 · · · gαv

v }.



A proof of knowledge of a discreet logarithm y ∈ G with respect to bases
g ∈ G such that α ∈ ±{0, 1}l is denoted PK{(α) : y = gα∧(−2l < α < 2l)} [23–
25]. To enable the prover to successfully complete the protocol it is necessary
to use a tighter bound α ∈ ±{0, 1}(l−2)/lφ, where lφ controls the statistical zero
knowledge property. Since the protocol uses bit challenges it is not very efficient.
Boudot presents an enhanced solution [26] and Camenisch & Michels [23] provide
a modification which allows a proof that (b − 2l < α < b + 2l) for a fixed offset
b.

Proving equality of discrete logarithms A proof of equality of discreet
logarithms of group elements y0, y1 ∈ G with respect to bases g ∈ G and h ∈ G
(i.e. the prover knows α such that logg y0 ≡ logh y1), is denoted PK{(α) : y0 =
gα ∧ y0 = hα} [27, 28]. Generalisations to prove equalities among y0, . . . , yv ∈ G
to bases g0, . . . , gv ∈ G are trivial [8].

Proving equality of discrete logarithms in different groups A proof of
equality of discrete logarithms y0, y1 ∈ G0 to the bases g0 ∈ G0 and g1 ∈ G1,
where G0 and G1 are different groups. The orders of the groups are q0 and q1

respectively. Let l be an integer such that 2l+1 < min(q0, q1). The prover can
convince the verifier that logg0

y0 ≡ logg1
y1 if α is an element in the tighter range

{0, 1}(l−2)/lφ by executing PK{(α) : y0
G0= gα

0 ∧ y1
G1= gα

1 ∧ (−2l < α < 2l)}. The
prover and verifier engage in an initial setup during which the prover commits to
ỹ := gβhα (mod n), where G = 〈g〉 = 〈h〉 the order of which are unknown (to the

verifier) and β ∈R G. The prover then carries out PK{(α, β) : y0
G0= gα

0 ∧ y1
G1=

gα
1 ∧ ỹ

G
= gαhβ ∧ (−2l < α < 2l)} in collaboration with the verifier [24].

A.4 Camenisch-Lysyanskaya signature scheme

Direct Anonymous Attestation (DAA) is based upon the Camenisch-Lysyanskaya
(CL) signature scheme. Brickell, Camenisch & Chen [6] claim the CL scheme is
particularly suited to DAA since it allows “efficient protocols to prove knowledge

of a signature and to retrieve signatures on secret messages efficiently using dis-

crete logarithm, based proofs of knowledge”. The complete protocol is presented
in [29, 30] and is secure under the strong RSA assumption [29, 30]. A summary
of the scheme for signing blocks of L messages m0, . . . , mL−1 and a variant for
blind signatures is presented below.

Key generation On input length ln of the special RSA modulus, choose safe
primes p and q of length d ln

2 e. Let n := pq and select R0, . . . , RL−1, S, Z ∈R QRn.

Message space The message space is the set {(m0, . . . , mL−1) : mi ∈ ±{0, 1}lm},
where lm is a parameter and L is the number of blocks.



Scheme for signing blocks On input message blocks m0, . . . , mL−1 choose a ran-
dom prime e of length le ≥ lm + 1 and select a random number v of length
lv > ln + lm + lr, where lr is a security parameter. Compute A such that
Z ≡ Rm0

0 · · ·R
mL−1

L−1 SvAe (mod n). The signature on blocks (m0, . . . , mL−1) is
defined as (A, e, v).

Blind signatures on blocks On input message blocks m0, . . . , mL−1 select v′ ∈R

{0, 1}ln+lφ , where lφ is a security parameter and compute U := Rm0
0 · · ·R

mL−1

L−1 Sv′

(mod n). Send the blinded message to the signer. On receipt of U the signer
chooses a random prime e of length le ≥ lm +1, selects v′′ ∈R [2lv−1, 2lv −1] and
computes A such that Z ≡ USv′′

Ae (mod n). The blinded signature (A, e, v′′)
is returned. The blind signature on the block of messages m0, . . . , mL−1 is
(A, e, v := v′ + v′′). In order to keep m0, . . . , mL−1 secret, v must remain se-
cret, A and e can be public.

Verification algorithm To verify that the tuple (A, e, v) is indeed a signature
on the block of messages m0, . . . , mL−1 check that Z ≡ Rm0

0 · · ·R
mL−1

L−1 SvAe

(mod n) and ensure 2le > e > 2le−1.

B The Direct Anonymous Attestation (DAA) Scheme

B.1 Security parameters

The security parameters ln, lf , lv, le, l
′

e, lφ, lr, lH , lΓ , lρ are defined. The purpose of
each will now be discussed. The number in parentheses represents the proposed
values of these parameters and have been adopted from the original schema [6].
The parameter ln (2048) is the size of the RSA modulus and lf (104) is the
size of the TPM’s secret f0 and f1 values. The size of the random v part of the
certificate is specified by lv (2536) and the size of prime e is le (368); l′e (120)
is the size of the interval from which the e’s are selected. lφ (80) controls the
statistical zero knowledge proof property, lr (80) is needed for the reduction in
the proof of security and lH (160) is the length of the output from the hash
function used for the Fiat-Shamir heuristic. The parameter lΓ is the size of the
modulus Γ and finally lρ is the size of the order ρ of the sub group of Z∗

Γ that is
used for rogue tagging. The scheme requires that: le > lφ+lH +max(lf +4, l′e+2),
lv > ln+lφ+lH +max(lf +lr+3, lφ+2) and lρ = 2lf . Finally, let H(·) and HΓ (·)
be two collision resistant hash functions such that H(·) : {0, 1}∗ → {0, 1}lH and
HΓ (·) : {0, 1}∗ → {0, 1}lΓ+lφ . It should be noted that collision resistant hash
functions exist under the strong RSA assumption.

B.2 Setup for the Issuer

The description of how an issuer creates a key pair and a non-interactive proof
that the key values are correctly formed is shown below (adapted from [6]).
The latter provides an assurance to the host that privacy requirements will be
preserved.



1. Choose a special RSA modulus n = pq with p = 2p′ + 1 and q = 2q′ + 1,
where p, p′, q, q′ are all primes and n has ln bits.

2. Select a random generator g′ of QRn.
3. Choose xg , xh, xs, xz , x0, x1 ∈R [1, φ(n)] and compute:

g := g′xg mod n h := g′xh mod n S := hxs mod n

Z := hxz mod n R0 := Sx0 mod n R1 := Sx1 mod n

4. Generate a group of prime order. Pick random primes ρ and Γ such that
Γ = rρ + 1 for some r with ρ - r, 2lΓ−1 < Γ < 2lΓ and 2lρ−1 < ρ < 2lρ .
Select γ ∈R Z∗

Γ where γ(Γ−1)/ρ 6≡ 1 (mod Γ ).
5. Produce a non-interactive proof that g, h, S, Z, R0, R1 are computed cor-

rectly, i.e. g, h ∈ 〈g′〉, S, Z ∈ 〈h〉 and R0, R1 ∈ 〈S〉.
(a) Choose randoms

x̃(g,1), . . . , x̃(g,lH ) ∈R [1, φ(n)] x̃(h,1), . . . , x̃(h,lH) ∈R [1, φ(n)]

x̃(s,1), . . . , x̃(s,lH ) ∈R [1, φ(n)] x̃(z,1), . . . , x̃(z,lH) ∈R [1, φ(n)]

x̃(0,1), . . . , x̃(0,lH) ∈R [1, φ(n)] x̃(1,1), . . . , x̃(1,lH) ∈R [1, φ(n)]

(b) Compute for i = 1 to lH

g̃(g,i) := g′x̃(g,i) mod n h̃(h,i) := g′x̃(h,i) mod n

S̃(s,i) := hx̃(s,i) mod n Z̃(z,i) := hx̃(z,i) mod n

R̃(0,i) := Sx̃(0,i) mod n R̃(1,i) := Sx̃(1,i) mod n

(c) Compute

c := H(n‖g′‖g‖h‖S‖Z‖R0‖R1‖g̃(g,1)‖ . . . ‖g̃(g,lH)‖

h̃(h,1)‖ . . . ‖h̃(h,lH)‖S̃(s,1)‖ . . . ‖S̃(s,lH)‖Z̃(z,1)‖ . . . ‖Z̃(z,lH)‖

R̃(0,1)‖ . . . ‖R̃(0,lH)‖R̃(1,1)‖ . . . ‖R̃(1,lH))

(d) Compute for i = 1 to lH , where ci is the ith bit of c

x̂(g,i) := x̃(g,i) − cixg mod φ(n) x̂(h,i) := x̃(h,i) − cixh mod φ(n)

x̂(s,i) := x̃(s,i) − cixs mod φ(n) x̂(z,i) := x̃(z,i) − cixz mod φ(n)

x̂(0,i) := x̃(0,i) − cix0 mod φ(n) x̂(1,i) := x̃(1,i) − cix1 mod φ(n)

(e) Let

proof := (c, x̂(g,1), . . . , x̂(g,lH ), x̂(h,1), . . . , x̂(h,lH), x̂(s,1), . . . , x̂(s,lH ),

x̂(z,1), . . . , x̂(z,lH ), x̂(0,1), . . . , x̂(0,lH), x̂(1,1), . . . , x̂(1,lH ))

6. Finally the public key (n, g′, g, h, S, Z, R0, R1, γ, Γ, ρ) and proof are pub-
lished. The private key values p′, q′ are stored by the issuer.



B.3 Verification of the Issuer’s public key

A valid public key is essential to ensure the privacy of the host. Incorrectly formed
g, h, S, Z, R0, R1 values could potential break this property. Furthermore if γ
does not generate the subgroup Z∗

Γ the issuer can link transactions (signatures
presented to the verifier). The requirement that n is a special RSA modulus
ensures that Step 6 of the join protocol is zero knowledge. This is of concern
to the issuer and is not important to the security of the host. Verification of an
issuer’s public key is shown below (adapted from [6]). Note that this verification
need only be performed once and not necessarily by every user of a system
(i.e. in a multi-user environment it is sufficient for a single user to perform the
verification).

1. Verify the proof , that is check g, h ∈ 〈g′〉, S, Z ∈ 〈h〉 and R0, R1 ∈ 〈S〉. On
input:

proof = (c, x̂(g,1), . . . , x̂(g,lH ), x̂(h,1), . . . , x̂(h,lH), x̂(s,1), . . . , x̂(s,lH ),

x̂(z,1), . . . , x̂(z,lH ), x̂(0,1), . . . , x̂(0,lH), x̂(1,1), . . . , x̂(1,lH ))

(a) Compute for i = 1 to lH , where ci is the ith bit of c

ĝ(g,i) := gcig′x̂(g,i) mod n ĥ(h,i) := hcig′x̂(h,i) mod n

Ŝ(s,i) := Scihx̂(s,i) mod n Ẑ(z,i) := Zcihx̂(z,i) mod n

R̂(0,i) := Rci

0 Sx̂(0,i) mod n R̂(1,i) := Rci

1 Sx̂(1,i) mod n

(b) Verify

c
?
= H(n‖g′‖g‖h‖S‖Z‖R0‖R1‖ĝ(g,1)‖ . . . ‖ĝ(g,lH)‖

ĥ(h,1)‖ . . . ‖ĥ(h,lH)‖Ŝ(s,1)‖ . . . ‖Ŝ(s,lH)‖Ẑ(z,1)‖ . . . ‖Ẑ(z,lH)‖

R̂(0,1)‖ . . . ‖R̂(0,lH)‖R̂(1,1)‖ . . . ‖R̂(1,lH))

2. Check that Γ and ρ are primes. Ensure ρ | (Γ − 1), ρ - Γ−1
ρ and γρ ≡ 1

(mod Γ ).
3. Check that all public key values have the required length.

B.4 Join protocol

The purpose of the join protocol is to enable a host/TPM to acquire a blind CL-
signature on a secret f value which can later be used as an anonymous attestation
identity credential. Let PKI := (n, g′, g, h, S, Z, R0, R1, γ, Γ, ρ) be the public key
of the issuer and PK ′

I the long term public key of the issuer used to authenticate
PKI . The value bsnI is a unique basename assigned to each issuer and cnt is
an internal counter stored within the TPM. The counter records the number
of times the TPM has executed the join protocol. Prior to executing the join
protocol the host is assumed to verify that PKI is authenticated by PK ′

I .



The TPM computes f using the issuer’s public key, its secret seed DAAseed
and counter value cnt. Computing f from the secret seed DAAseed as opposed
to a random nonce reduces the computational and storage requirements of the
TPM. The counter value allows the TPM to obtain different DAA keys using
the same DAAseed, alternatively the TPM is allowed to re-run the join protocol
using the same cnt value. The TPM splits the f value into two lf bit messages,
the pair (f0, f1) allow the computation of smaller exponentials and permit the
use of a smaller prime e. The TPM commits to the message pair (f0, f1) i.e.

U := Rf0

0 Rf1

1 Sv′

(mod n), where v′ is chosen randomly to blind the fi’s. The

TPM also computes NI := ζf0+f12
lf

I (mod Γ ), for rogue tagging purposes. The
TPM forwards U, NI to the host who sends them to the issuer. The TPM and
issuer establish a one-way authentic channel to assure the issuer of the origin
of U . The issuer checks whether the f ’s stem from a rogue TPM or if NI has
been used too many times previously, in which case it aborts. The platform
convinces the issuer that U, NI are correctly formed and that the fi’s are of
the appropriate lengths. To grant a certificate the issuer executes the blind CL-
signature protocol and sends the platform (A, e, v′′). The issuer also provides
a signature proof of knowledge (Step 7) that A ∈ 〈h〉. The host verifies the
proof and is assured that A can be statistically hidden in 〈h〉, preventing an
adversarial issuer from violating privacy. Note that an adversarial issuer could

compute A := b
(

Z
USv′′

)1/e

(mod n), where be = 1 and b 6∈ 〈h〉. Since the sign

protocol contains T = ASw for some random w, the adversarial would be able
to link T to A (by testing T ∈ 〈h〉) and thus violate privacy [6]. The pair (A, e)
are stored by the host and can be publicly known. The host forwards v′′ to
the TPM, which unblinds the message revealing v := v′ + v′′, a signature on the
message pair (f0, f1). The explicit details of the join protocol are provided below
(adapted from [6]).

1. The host computes ζI := (HΓ (0‖bsnI))
(Γ−1)/ρ (mod Γ ) and sends ζI to the

TPM.

2. The TPM checks whether ζρ
I

?
≡ 1 (mod Γ ). Let i := b

lρ+lφ
lH

c (i = 1 for the
parameters specified in Section B.1). The TPM computes:

f := H
(

H
(

DAAseed‖H(PK ′

I)
)

‖cnt‖0
)

‖

. . . ‖H
(

H
(

DAAseed‖H(PK ′

I)
)

‖cnt‖i
)

(mod ρ),

f0 := LSBlf (f), f1 := MSBlf (f), v′ ∈R {0, 1}ln+lφ ,

U := Rf0

0 Rf1

1 Sv′

(mod n), NI := ζf0+f12lf

I (mod Γ )

The TPM forwards U and NI to the host who sends them to the issuer.
3. The issuer checks that the U value stems from the TPM that owns a given

public endorsement key (PKEK):



(a) The issuer chooses ne ∈R {0, 1}lφ, encrypts ne with PKEK and sends
the encryption to the TPM.

(b) The TPM decrypts the value, revealing ne, computes aU := H(U‖ne)
and returns aU to the issuer.

(c) The issuer checks aU
?
= H(U‖ne).

4. The issuer ensures for all (f̃0, f̃1) on the rogue list that NI

?

6≡ ζ f̃0+f̃12lf

I

(mod Γ ). The issuer also checks that the NI has not been used too many
times. If the issuer finds the platform to be rogue it aborts.

5. The platform proves knowledge of f0, f1 and v′. It executes:

SPK{(f0, f1, v
′) :

U ≡ Rf0

0 Rf1

1 Sv′

(mod n) ∧ NI ≡ ζf0+f12lf

I (mod Γ ) ∧

f0, f1 ∈ {0, 1}lf+lφ+lH+2 ∧ v′ ∈ {0, 1}ln+lφ+lh+2}(nt‖ni)

(a) The TPM chooses rf0 , rf1 ∈R {0, 1}lf+lφ+lH and rv′ ∈R {0, 1}ln+lφ+lH+2.

It computes Ũ := R
rf0
0 R

rf1
1 Srv′ (mod n), ÑI := ζ

rf0
+rf1

+2lf

I (mod Γ )

and sends Ũ , ÑI to the host.

(b) The issuer selects ni ∈R {0, 1}lH and sends it to the host.

(c) The host computes ch := H(n‖R0‖R1‖S‖U‖NI‖Ũ‖ÑI‖ni) and sends ch

to the TPM.

(d) The TPM picks nt ∈R {0, 1}lφ, computes c := H(ch‖nt), calculates
sf0 := rf0 + c · f0, sf1 := rf1 + c · f1 and sv′ := rv′ + c · v′. The TPM
sends (c, nt, sf0 , sf1 , sv′) to the host, who forwards to the issuer.

(e) The issuer computes:

Û := ±U−cR
sf0
0 R

sf1
1 Ssv′ (mod n) and N̂I := N−c

I ζ
sf0

+sf1
2lf

I (mod Γ )

and verifies the proof by checking:

c
?
= H

(

H(n‖R0‖R1‖S‖U‖NI‖Ũ‖ÑI‖ni)‖nt

)

,

sf0 , sf1

?
∈ {0, 1}lf+lφ+lH+1 and sv′

?
∈ {0, 1}ln+2lφ+lH+1

6. The issuer chooses v′′ ∈R [2lv , 2lv − 1], a prime e ∈R [2le−1, 2le−1 + 2l′e−1]
and computes Z := USv′′

Ae (mod n). That is, the issuer produces a blind
CL-signature on U.

7. To convince the host that A was correctly formed, the issuer runs the pro-
tocol:

SPK{(d) : A ≡ ±

(

Z

USv′′

)d

(mod n)}(nh)

(a) The host selects nh ∈R {0, 1}lφ and sends nh to the issuer.



(b) The issuer chooses re ∈R [0, φ(n)] and computes:

Ã :=

(

Z

USv′′

)re

(mod n),

c′ := H(n‖Z‖S‖U‖v′′‖A‖Ã‖nh), se := re − c′/e mod φ(n)

and sends c′, se and (A, e, v′′) to the host.
(c) The host verifies that e is prime and e ∈ [2le−1, 2le−1 +2l′e−1], computes:

Â := Ac′
(

Z

USv′′

)se

(mod n)

and checks that:

c′
?
= H(n‖Z‖S‖U‖v′′‖A‖Â‖nh)

(d) The host forwards v′′ to the TPM, which in turn stores v := v′′ + v′.

B.5 Sign protocol

The sign protocol enables the host to generate a signature proof of knowledge
of attestation on a message m. Intuitively if a verifier is presented with such a
proof it is convinced that it is communicating with a trusted platform and the
message is genuine. In addition the host must convince the verifier that it is not
rogue. The message m may be either a public part of an Attestation Identity Key
(AIK) produced by the TPM or an arbitrary message. If m is an AIK, the key
can later be used to sign PCR data or to certify a non-migratable key. Where m
is arbitrary its purpose is application dependent. It may for example be a session
key. To distinguish between these two modes of operation a variable b is defined.
When b = 0 the message was generated by the TPM and when b = 1 the message
was input to the TPM. Let nv ∈ {0, 1}lH be a nonce generated by the verifier and
bsnV the verifier’s basename. The protocol is described below (adapted from [6,
16]), as a result of which the signature σ = (ζ, T, NV , c, nt, sv̄, sf0 , sf1 , se) will
be produced. Many of the secrets involved in the process are actually known to
the host. In fact only f0, f1, v need to remain secret to the TPM.

1. (a) Depending on whether linkability is desirable the host computes ζ as
follows:

ζ ∈R 〈γ〉 or ζ := (HΓ (1‖bsnI))
(Γ−1)/ρ (mod Γ )

and sends ζ to the TPM.

(b) The TPM checks ζ
?
∈ 〈γ〉, that is it verifies ζρ ?

≡ 1 (mod Γ ).
2. (a) The host picks w ∈R {0, 1}ln+lφ and computes T := ASw (mod n).

(b) The TPM computes NV := ζf0+f12
lf

(mod Γ ) and sends NV to the
host.



3. The platform produces a signature of knowledge that T commits to an attes-
tation certificate and NV was computed using the same secret value f0, f1:

SPK{(f0, f1, v̄, e) : Z ≡ ±T eRf0

0 Rf1

1 S v̄ (mod n) ∧

NV ≡ ±ζf0+f12lf

(mod Γ ) ∧ f0, f1 ∈ {0, 1}lf+lφ+lH+2 ∧

(e − 2le) ∈ {0, 1}l′e+lφ+lH+1}(nt‖nv‖b‖m)

(a) i. The TPM chooses random integers rv ∈R {0, 1}lv+lφ+lH and
rf0 , rf1 ∈R {0, 1}lf+lφ+lH and computes:

T̃1t := R
rf0
0 R

rf1
1 Srv (mod n)

r̃f := rf0 + rf12
lf (mod ρ) ÑV := ζ r̃f (mod Γ )

The TPM sends T̃1t and ÑV to the host4.
ii. The host selects random integers:

re ∈R {0, 1}l′e+lφ+lH rv̄ ∈R {0, 1}le+ln+2lφ+lH+1

and computes T̃ := T̃tT
reSrv̄ (mod n).

(b) i. The host computes:

ch := H(n‖g‖g′‖h‖R0‖R1‖S‖Z‖γ‖Γ‖ρ‖ζ‖T‖NV ‖T̃‖ÑV ‖nv)

and sends ch to the TPM.
ii. The TPM picks nt ∈R {0, 1}lφ, computes c := H

(

H(ch‖nt)‖b‖m
)

and sends c, nt to the host.
(c) i. The TPM computes

sv := rv + c · v sf0 := rf0 + c · f0 sf1 := rf1 + c · f1

and sends sv , sf0 , sf1 to the host.
ii. The host computes:

se := re + c · (e − 2le−1) sv̄ := sv + rv − c · w · e

4. The host outputs the signature σ = (ζ, T, NV , c, nt, sv̄, sf0 , sf1 , se).

The main difference between the DAA signing protocol and the signature gen-
eration of prior schemes [13, 29] is that DAA distributes the computation be-
tween the TPM and the host. The TPM only produces a signature proof of

knowledge SPK{(f0, f1, v) : (Z/Ae) ≡ Rf0

0 Rf1

1 Sv (mod n) ∧ NV ≡ ζf0+f12lf

(mod Γ )}(nt‖nv‖b‖m), which the host extends to a full DAA signature. Note
that the signature produced by the TPM is not anonymous as the value (Z/Ae)
would fully identify the host.

4 Note that ζ r̃f ≡ ζf0+f12
lf

(mod Γ ) and the order of ρ < Γ the calculation ζ r̃f

(mod Γ ) will involve a smaller exponential thus providing a performance gain.



B.6 Verification protocol

The verification protocol defines the method by which a verifier checks a signa-
ture σ on message m with respect to the issuer’s public key (n, g′, g, h, S, Z, R0,
R1, γ, Γ, ρ). The protocol is described below (adapted from [6, 16]).

1. The verifier computes:

T̂ := Z−cT se+c2le−1

R
sf0
0 R

sf1
1 Ssv̄ (mod n) N̂V := N−c

V ζsf0
+sf1 (mod Γ )

2. The verifier checks:

c
?
= H

(

H
(

H(n‖g‖g′‖h‖R0‖R1‖S‖Z‖γ‖Γ‖ρ‖ζ‖T‖NV ‖T̂‖N̂V ‖nv)‖nt

)

‖b‖m
)

,

NV , ζ
?
∈ 〈γ〉, sf0 , sf1

?
∈ {0, 1}lf+lφ+lH+1 and se

?
∈ {0, 1}l′e+lφ+lH+1

Note that the check NV , ζ
?
∈ 〈γ〉 can be done by raising NV and ζ to the

order of γ (which is ρ) and checking whether the result is one i.e. check that

Nρ
V

?
≡ 1 (mod Γ ) and ζρ ?

≡ 1 (mod Γ ).

3. If ζ was derived from the verifier’s basename, check that ζ
?
≡ (HΓ (1‖bsnI))

(Γ−1)/ρ

(mod Γ ).

4. The verifier checks for all (f̃0, f̃1) on the rogue list that NI

?

6≡ ζ f̃0+f̃12lf

I

(mod Γ ).

B.7 Rogue tagging

The DAA protocol is designed so that a known rogue TPM can be prevented from
obtaining certification or making a successful claim of attestation to a verifier.
A rogue TPM is defined as an entity which has obtained an attestation identity
credential and the associated f . Once a rogue TPM is discovered, the certificate
(A, e, v) and the values f0, f1 are distributed to all potential issuers/verifiers who
add the value to their rogue list. Note that this does not involve a certificate
revocation authority.
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