
Verifying Properties of Electronic Voting Protocols ∗

Stéphanie Delaune
LSV, France Télécom R&D
ENS Cachan, CNRS, France
delaune@lsv.ens-cachan.fr

Steve Kremer
LSV, INRIA

ENS Cachan, CNRS, France
kremer@lsv.ens-cachan.fr

Mark Ryan
School of Computer Science
Univ. of Birmingham, UK
M.D.Ryan@cs.bham.ac.uk

Abstract

In this paper we report on some recent work to formally
specify and verify electronic voting protocols. In particular,
we use the formalism of the applied pi calculus: the applied
pi calculus is a formal language similar to the pi calcu-
lus but with useful extensions for modelling cryptographic
protocols. We model several important properties, namely
fairness, eligibility, privacy, receipt-freeness and coercion-
resistance. Verification of these properties is illustrated on
two cases studies and has been partially automated using
the Blanchet’s ProVerif tool.

1 Introduction

Electronic voting promises the possibility of a conve-
nient, efficient and secure facility for recording and tally-
ing votes. It can be used for a variety of types of elections,
from small committees or on-line communities through to
full-scale national elections. But this convenience comes
with it the possibility of large-scale abuse and fraud. The
procedures for detecting and avoiding fraud in paper-based
systems, such as public counting of votes and monitored
transport of ballot boxes, do not work when everything is
done electronically. The electronic voting machines used in
recent US elections have been fraught with problems [15].

Verification of electronic voting systems is therefore
paramount, in order that voters can have the same or bet-
ter confidence in electronic systems as they have in paper-
based systems. Researchers have produced a plethora of
formal protocols for electronic voting [8, 12, 3, 13, 9, 14,
17]. They offer the possibility of abstract analysis of the
protocol against formally-stated properties.

Among the properties which electronic voting protocols
may satisfy are the following:

∗This work has been partly supported by the RNTL project PROUVÉ
03V360 and the ACI-SI Rossignol.

Fairness: no early results can be obtained which could in-
fluence the remaining voters.

Eligibility: only legitimate voters can vote, and only once.

Privacy: the system cannot reveal how a particular voter
voted.

Receipt-freeness: a voter does not gain any information (a
receipt) which can be used to prove to a coercer that
she voted in a certain way.

Coercion-resistance: a voter cannot cooperate with a co-
ercer to prove to him that she voted in a certain way.

Individual verifiability: a voter can verify that her vote
was really counted.

Universal verifiability: the published outcome really is
the sum of all the votes.

Such security protocols are notoriously difficult to de-
sign and are known to be extremely error-prone. Formal
analysis is crucial to assess their security. For instance,
in other domains, security protocols which were thought
to be correct for several years have, by means of for-
mal verification techniques, been discovered to have major
flaws [18, 6].

In order to perform formal analysis, the security prop-
erties, usually stated in natural language, need to be for-
malised. In this paper, we describe our work of two pre-
viously published papers [16, 10] in which we formalise
some of these properties in a rigorous language, and ver-
ify whether they hold on particular protocols. We model
them in the applied pi calculus [2], which has the advan-
tages of being based on well-understood concepts. The ap-
plied pi calculus has a family of proof techniques which we
can use, is supported by the ProVerif tool [4], and has been
used to analyse a variety of security protocols in other do-
mains [1, 11].

Outline of the paper. In Section 2, we describe two elec-
tonic voting protocols. In Section 3 we recall some notions
of the applied pi calculus and in Section 4 we briefly dis-
cuss how such protocol can be modelled in this framework.
Finally, in Section 5, we formalise some of the security
properties given in the introduction and we discuss whether
they hold on the two electronic voting schemes introduced
in Section 2.

2 Electronic Voting Protocols

There are several kinds of protocols proposed for elec-
troning voting [20]. For example, in protocols based on
blind signature schemes [8, 12], the voter first obtains a to-
ken, which has been blindly signed by the administrator and
which is only known to the voter herself. She later sends her
vote anonymously, with this token as proof of eligibility. In
schemes using homomorphic encryption [3, 13], the voter
cooperates with the administrator in order to construct an
encryption of her vote. The administrator then exploits ho-
momorphic properties of the encryption algorithm to com-
pute the encrypted tally directly from the encrypted votes.
In yet other schemes [9], elaborate systems of MIX-nets are
employed to guarantee voter privacy.

In this section, we describe two of these protocols: a
protocol due to Fujioka et al. [12] which employs blind sig-
natures and a protocol due to Lee et al. [17] which uses
designated verifier proofs of re-encryption.

2.1 Fujioka et al., 1992

We give an informal description of the Fujioka et al. vot-
ing protocol [12]. The protocol involves voters, an adminis-
trator, verifying that only eligible voters can cast votes, and
a collector, collecting and publishing the votes. In compar-
ison with authentication protocols, the protocol also uses
some unusual cryptographic primitives, such as secure bit-
commitment and blind signatures. Moreover, it relies on
anonymous channels.

In a first phase, the voter gets a signature on a commit-
ment to his vote from the administrator. To ensure privacy,
blind signatures [7] are used, i.e. the administrator does not
learn the commitment of the vote.

• Voter V selects a vote v and computes the commitment
x = ξ(v,r) using the commitment scheme ξ and a ran-
dom key r;

• V computes the message e = χ(x, b) using a blinding
function χ and a random blinding factor b;

• V digitally signs e and sends his signature σV (e) to
the administrator A together with his identity;

• A verifies that V has the right to vote, has not voted yet
and that the signature is valid; if all these tests hold, A
digitally signs e and sends his signature σA(e) to V ;

• V now unblinds σA(e) and obtains y = σA(x), i.e. a
signed commitment to V ’s vote.

The second phase is the actual voting phase.

• V sends y to the collector C using an anonymous chan-
nel;

• C checks correctness of the signature y and, if the test
succeeds, enters (`, x, y) onto a list as an `-th item.

The last phase starts, once the collector decides that he
received all votes, e.g. after a fixed deadline. In this phase
the voters reveal the random key r which allows C to open
the votes and publish them.

• C publishes the list (`i, xi, yi) of commitments he ob-
tained;

• V verifies that his commitment is in the list and sends
`, r to C via an anonymous channel;

• C opens the `-th ballot using the random r and pub-
lishes the vote v.

Note that we need to separate the voting phase into a com-
mitment phase and an opening phase to avoid releasing par-
tial results of the election.

2.2 Lee et al., 2003

We present a simplified version of the Lee et al. proto-
col [17]. One of the main advantages of this protocol is that
it is vote and go: voters need participate in the election only
once, in contrast with [12], where all voters have to finish a
first phase before any of them can participate in the second
phase.

We simplified the protocol in order to concentrate on the
aspects that are important with respect to properties such as
receipt-freeness and coercion-resistance. In particular we
do not consider distributed authorities. The protocol relies
on two less usual cryptographic primitives: re-encryption
and designated verifier proofs (DVP) of re-encryption. We
start by explaining these primitives.

A re-encryption of a ciphertext (obtained using a ran-
domized encryption scheme) changes the random coins,
without changing or revealing the plaintext. In the ElGa-
mal scheme for instance, if (x, y) is the ciphertext, this is
simply done by computing (xgr, yhr), where r is a random
number, and g and h are the subgroup generator and the
public key respectively. Note that neither the creator of the
original ciphertext nor the person re-encrypting knows the

2

random coins used in the re-encrypted ciphertext, for they
are a function of the coins chosen by both parties. In par-
ticular, a voter cannot reveal the coins to a potential coercer
who could use this information to verify the value of the
vote, by ciphering his expected vote with these coins.

A DVP of the re-encryption proves that the two cipher-
texts contain indeed the same plaintext. However, a des-
ignated verifier proof only convinces one intended person,
e.g., the voter, that the re-encrypted ciphertext contains the
original plaintext. In particular this proof cannot be used to
convince the coercer.

Our simplified protocol can be described in three steps.

1. Firstly, the voter encrypts his vote with the collector’s
public key, signs the encrypted vote and sends it to an
administrator on a private channel. The administrator
checks whether the voter is a legitimate voter and has
not voted yet. Then the administrator re-encrypts the
given ciphertext, signs it and sends it back to the voter.
The administrator also provides a DVP that the two
ciphertexts contain indeed the same plaintext.

2. Then, the voter sends (via an anonymous channel) the
re-encrypted vote, which has been signed by the ad-
ministrator to the public board.

3. Finally, the collector checks the administrator’s signa-
ture on each of the votes and, if valid, decrypts the
votes and publishes the final results.

3 The applied pi calculus

The applied pi calculus [2] is a language for describing
concurrent processes and their interactions. It is based on
the pi calculus, but is intended to be less pure and there-
fore more convenient to use. Properties of processes de-
scribed in the applied pi calculus can be proved by employ-
ing manual techniques [2], or by automated tools such as
ProVerif [4]. As well as reachability properties which are
typical of model checking tools, ProVerif can in some cases
prove that processes are observationally equivalent [5]. This
capability is important for privacy-type properties such as
those we study here. The applied pi calculus has been used
to study a variety of security protocols, such as those for pri-
vate authentication [11] and for fast key establishment [1].

To describe processes in the applied pi calculus, one
starts with a set of names (which are used to name com-
munication channels or other constants), a set of variables,
and a signature Σ which consists of the function symbols
which will be used to define terms. In the case of security
protocols, typical function symbols will include enc for en-
cryption, which takes plaintext and a key and returns the
corresponding cipher text, and dec for decryption, taking
cipher text and a key and returning the plaintext. One can

also describe the equations which hold on terms constructed
from the signature, such as

dec(enc(x, k), k) = x.

Terms are defined as names, variables, and function sym-
bols applied to other terms. Terms and function symbols are
sorted, and of course function symbol application must re-
spect sorts and arities. Modelling bit commitment and blind
signatures may also be done by choosing function symbols
and defining appropriate equations.

Plain processes are built up in a similar way to processes
in the pi calculus, except that messages can contain terms
(rather than just names). In the grammar described below,
M and N are terms, n is a name, x a variable and u is a
metavariable, standing either for a name or a variable.

P, Q, R :=
0 null process
P | Q parallel composition
!P replication
νn.P name restriction
if M = N then P else Q conditional
in(u, x).P message input
out(u, N).P message output

In the applied pi calculus, there is also a notion of extended
processes A which generalises plain processes P . Details
are not given here (but may be found in [2] and also in our
papers [16, 10]).

Example 1 Consider the following process P :

νs, k.(out(c1, enc(s, k)) | in(c1, y).out(c2, dec(y, k))).

The first component publishes the message enc(s, k) by
sending it on c1. The second receives a message on chan-
nel c1, uses the secret key k to decrypt it, and forwards the
resulting plaintext on c2.

The operational semantics of processes in the applied
pi calculus is defined by structural rules defining two re-
lations: structural equivalence, noted ≡ and internal re-
duction, noted →. Structural equivalence, noted ≡, is the
smallest equivalence relation on extended processes that is
closed under α-conversion on names and variables, by ap-
plication of evaluation contexts—an evaluation context is
an extended process with a hole instead of some extended
process—and satisfying some further basic structural rules
such as A | 0 ≡ A, associativity and commutativity of |,
etc. Internal reduction → is the smallest relation on ex-
tended processes closed under structural equivalence and
application of evaluation contexts such that out(a, x).P |
in(a, x).Q → P | Q and for any ground terms M and N ,
whenever M 6=E N , we have

3

if M = M then P else Q → P
if M = N then P else Q → Q.

Applied pi calculus processes evolve by executing the
actions mentioned above. We write A → A′ to mean that
the process A evolves to A′ by one step, and A →∗ A′ for
finitely many steps.

Example 2 Consider the process P described in exam-
ple 1. We have P → νs, k.out(c2, s). This internal reduc-
tion expresses a communication on the channel c1 between
the two components of the process P . In the remainder of
the process, y is replaced by enc(s, k). Note that we have
assumed that dec(enc(x, y), y) = x.

Many properties of security protocols (including some
of the properties we study in this paper) are formalised in
terms of observational equivalence (≈) between processes.
Intuitively, processes which are observationally equivalent
cannot be distinguished by an outside observer, no matter
what sort of test he makes. This is formalised by saying
that the processes are indistinguishable under any context,
i.e., no matter in what environment they are executed.

Advantages and limitations of the applied pi calculus.
An advantage of the applied pi calculus is that we can com-
bine powerful (hand) proof techniques from the applied
pi calculus with automated proofs provided by Blanchet’s
ProVerif tool. Moreover, the verification is not restricted to
a bounded number of sessions and we do not need to explic-
itly define the adversary. We only give the equational theory
describing the intruder. Generally, the intruder has access
to any message sent on public, i.e. unrestricted, channels.
These public channels model the network. Note that all
channels are anonymous in the applied pi calculus. Unless
the identity or something like the IP address is specified ex-
plicitly in the conveyed message, the origin of a message is
unknown. This abstraction of a real network is very appeal-
ing, as it avoids having us to model explicitly an anonymiser
service. However, we stress that a real implementation
needs to treat anonymous channels with care. Another ad-
vantage of the applied pi calculus is its ability to model so-
phisticated cryptographic primitives (such as those used in
the two example protocols) by means of the equational the-
ory. One limitation concerns modelling non-determinism
or probabilities, e.g. in MIX-nets [9]. In the applied pi cal-
culus, all non-determinism is controlled by the attacker. If
MIX-nets are modelled non-deterministically, this gives the
attacker unreasonably strong powers.

4 Modelling Voting Protocols

Before defining the properties, we need to define what
is an electronic voting protocol in applied pi calculus. Dif-

l e t processV=
(* his private key *)
in (skvCh , skv) .
(* public keys of administrators *)
in (pkaCh , pubka) .
in (pkcCh , pubkc) .
ν r .
l e t e=pencrypt (v , pubkc , r) in
out (chA , (pk (skv) , e , s ign (e , skv))) .
in (chA ,m2) .
l e t (re , sa , dvpV)=m2 in
i f checkdvp (dvpV , e , re , pk (skv)) = ok
then i f checksign (re , sa , pubka)= ok
then out (ch , (re , sa))

Process 1. Voter process

ferent voting protocols often have substantial differences.
However, we believe that a large class of voting protocols
can be represented by processes corresponding to the fol-
lowing structure.

Definition 1 A voting process is a closed plain process

VP ≡ νñ.(V σ1 | · · · | V σn | A1 | · · · | Am).

The V σi are the voter processes, the Ajs the different elec-
tion authorities and the ñ are channel names. We also sup-
pose that v ∈ dom(σi) is a variable which refers to the
value of the vote and at some moment the outcome of the
vote is made public.

We also define an evaluation context S which is as VP ,
but has a hole instead of two of the V σi.

As an example, the voter process of the Lee et al. pro-
tocol is described in Process 1. First, each voter obtains his
secret key from the PKI as well as the public keys of the
election authorities. Then, a fresh random number is gener-
ated to encrypt his vote with the public key of the collector.
Next, he signs the result and sends it on a private channel
to the administrator. If the voter has been correctly regis-
tered, he obtains from the administrator, a re-encryption of
his vote signed by the administrator together with a desig-
nated verifier proof of the fact that this re-encryption has
been done correctly. If this proof is correct, then the voter
sends his re-encrypted vote signed by the administrator to
the collector.

5 Formalising Properties

We have analysed five major properties of electronic vot-
ing protocols: fairness, eligibility, privacy, receipt-freeness,
and coercion resistance. The first two of these can be di-
rectly verified using ProVerif. The tool allows us to ver-
ify standard secrecy properties as well as resistance against

4

guessing attacks, defined in terms of equivalences. But for
privacy, receipt-freeness and coercion-resistance, we need
to rely on the hand-proof techniques introduced in [2]. In
the case of the last of our properties, we had to extend the
applied pi calculus with a new notion which we call adap-
tive equivalence. We believe that the way we formalise
and verify the properties increases the understanding of the
properties themselves and also the way to model them.

5.1 Fairness

Fairness is the property that ensures that the protocol
does not leak any votes before the opening phase. We dis-
cuss fairness using the Fujioka et al. protocol as an exam-
ple. We model fairness as a secrecy property: it should be
impossible for an attacker to learn a vote before the opening
phase, i.e., before the beginning of phase 2.

Standard secrecy. Checking standard secrecy, i.e. se-
crecy based on reachability, is the most basic property
ProVerif can check. We request ProVerif to check that the
variable v representing the vote cannot be deduced by the
attacker. ProVerif directly succeeds to prove this result.

Strong secrecy. We also verified strong secrecy in the
sense of [5]. Intuitively, strong secrecy is verified if the in-
truder cannot distinguish between two processes where the
secret changes. ProVerif directly succeeds to prove strong
secrecy.

Corrupt administrator. We have also verified standard
secrecy and strong secrecy for the Fujioka et al. protocol in
the presence of a corrupt administrator. A corrupt admin-
istrator is modeled by outputting the administrator’s secret
key on a public channel. Hence, the intruder can perform
any actions the administrator could have done. Again, the
result is positive: the administrator cannot learn the votes
of a honest voter, before the committed votes are opened.
Note that we do not need to model a corrupt collector, as the
collector never uses his secret key, i.e. the collector could
anyway be replaced by the attacker.

5.2 Eligibility

Eligibility is the property verifying that only legitimate
voters can vote, and only once. Again, we discuss this prop-
erty for the Fujioka et al. protocol. The way we verify the
first part of this property is by giving the attacker a chal-
lenge vote. We modify the processes in two ways: (i) the
attacker is not registered as a legitimate voter; (ii) the col-
lector tests whether the received vote is the challenge vote
and outputs the restricted name attack if the test succeeds.

Verifying eligibility is now reduced to secrecy of the name
attack. ProVerif succeeds in proving that attack cannot be
deduced by the attacker.

If we register the attacker as a legitimate voter, the tool
finds the trivial attack, where the intruder votes challenge
vote. Similarly, if a corrupt administrator is modeled then
the intruder can generate a signed commitment to the chal-
lenge vote and insert it.

5.3 Privacy

The privacy property aims to guarantee that the link
between a given voter V and his vote v remains hidden.
Anonymity and privacy properties have been successfully
studied using equivalences. However, the definition of
privacy in the context of voting protocols is rather sub-
tle. While generally most security properties should hold
against an arbitrary number of dishonest participants, arbi-
trary coalitions do not make sense here. Consider for in-
stance the case where all but one voter are dishonest: as the
results of the vote are published at the end, the dishonest
voter can collude and determine the vote of the honest voter.
A classical trick for modeling anonymity is to ask whether
two processes, one in which V1 votes and one in which V2

votes, are equivalent. However, such an equivalence does
not hold here as the voters’ identities are revealed (and they
need to be revealed at least to the administrator to verify el-
igibility). In a similar way, an equivalence of two processes
where only the vote is changed does not hold, because the
votes are published at the end of the protocol. To ensure
privacy we need to hide the link between the voter and the
vote and not the voter or the vote itself.

Definition 2 A voting protocol respects privacy if

S[VA{
a/v} | VB{b/v}] ≈ S[VA{

b/v} | VB{a/v}].

The intuition is that if an intruder cannot detect if arbi-
trary honest voters VA and VB swap their votes, then in gen-
eral he cannot know anything about how VA (or VB) voted.
Note that this definition is robust even in situations where
the result of the election is such that the votes of VA and VB

are necessarily revealed: for example, if the vote is unani-
mous, or if all other voters reveal how they voted and thus
allow the votes of VA and VB to be deduced.

Both the Fujioka et al. and Lee et al. protocols may
be shown to satisfy privacy, but this proof requires to be
done by hand. Although ProVerif is capable of showing
observational equivalence in some simple cases, it is not
able to show it in this case.

5.4 Receipt-freeness

We also formalize receipt-freeness using observational
equivalence. However, we need to model the fact that VA is

5

willing to provide secret information, i.e., the receipt, to the
coercer. We assume that the coercer is in fact the intruder
who, as usual in the Dolev-Yao model, controls the public
channels. To model VA’s communication with the coercer,
we consider that VA executes a voting process which has
been modified: any input and any freshly generated names
are forwarded to the coercer. Given a process A and a a
channel name ch, we define P ch to be the process like P ,
but which sends all of its secrets on the channel ch.

We also need a definition which removes communication
from a processes. Given a process A and a channel name ch,
we define the extended process A\out(ch,·) to be like the
process A, but hiding the ouputs on the channel ch.

We are now ready to define receipt-freeness. Intuitively,
a protocol is receipt-free if, for all voters VA, the process
in which VA votes according to the intruder’s wishes is in-
distinguishable from the one in which she votes something
else. As in the case of privacy, we express this as an ob-
servational equivalence to a process in which VA swaps her
vote with VB , in order to avoid the case in which the in-
truder can distinguish the situations merely by counting the
votes at the end. Suppose the coercer’s desired vote is c.
Then we define receipt-freeness as follows.

Definition 3 A voting protocol is receipt-free if there exists
a closed plain process V ′, satisfying the two conditions be-
low:

• V ′\out(chc,·) ≈ VA{
a/v}, and

• S[VA{
c/v}

chc | VB{a/v}] ≈ S[V ′ | VB{c/v}].

V ′ is a process in which voter VA votes a but communi-
cates with the coercer C in order to feign cooperation with
him. Thus, the equivalence says that the coercer cannot
tell the difference between a situation in which VA gen-
uinely cooperates with him in order to cast the vote c and
one in which she pretends to cooperate but actually casts
the vote a, provided there is some counterbalancing voter
that votes the other way around. In accordance with intu-
ition, we have formally shown in [10] that whenever V P is
receipt-free, it also respects privacy.

The Fujioka et al. protocol is known not to satisfy
receipt-freeness [19]. Indeed, anyone who gets to know the
voter’s token can easily find out her vote in the list published
by the collector at the end of the election.

Lee et al. does satisfy that property. To show receipt-
freeness for Lee et al., one needs to construct a process V ′

which successfully can fake all secrets to a coercer. The
idea is for V ′ to vote a, but when outputting secrets to the
coercer V ′ prepares all outputs as if he was voting c. The
crucial part is that, using his private key, he provides a fake
dvp stating that the actual re-encryption of the encryption
of vote a is a re-encryption of the encryption of vote c.

5.5 Coercion-resistance

Coercion-resistance is a stronger property as we give the
coercer the ability to communicate interactively with the
voter and not only receive information. In this model, the
coercer can for instance prepare the messages he wants the
voter to send. As for receipt-freeness, we are going to mod-
ify the voter process. However, we give the coercer the pos-
sibility to provide the messages the voter should send.

To define coercion resistance, we need to specify a
stronger mode of communication with the attacker. To this
end, given a process P and channel names c1, c2, we define
the process P c1,c2 to be the process which:

• outputs all its secrets on c1;

• accepts inputs on c2 and uses them in its communica-
tion with the voting system.

This means that the attacker gets to see all P ’s secrets (via
c1), and gets to prepare messages which P should use in the
voting process, and send them to P via c2.

As a first approximation, we could try to define coercion-
resistance in the following way:

S[VA{
c/v}

c1,c2 | VB{a/v}] ≈ S[V ′ | VB{c/v}].

This definition has an obvious problem as the coercer
could oblige VA{

c/v}
c1,c2 to vote c′ 6= c. In that case, the

process VB{c/v} would not counterbalance the outcome to
avoid a trivial way of distinguishing.

To properly define coercion-resistance, we define a new
simulation relation which allows the second voting process
on the right-hand side to dynamically adapt its vote to cor-
respond to the coercer’s choice. We do not give the full
details here (they may be found in [10]). The intuition is
that adaptive simulation holds between A and B, written
A �a B, if no matter how the process A is closed and no
matter how the environment reacts, B can be closed, such
that the processes are indistinguishable.

We are now ready to define coercion-resistance.

Definition 4 A voting protocol is coercion-resistant if there
exists a closed extended process V ′ and a (strict) evaluation
context C such that

• S[VA{
c/v}

c1,c2 | VB{a/v}] �a S[V ′ | VB{x/v}],

• νc1, c2.C[VA{
c/v}

c1,c2] ≈ VA{
c/v}

chc,

• νc1, c2.C[V ′]\out(chc,·) ≈ VA{
a/v},

where x is a fresh free variable.

The intuition of this definition is that whenever the co-
ercer requests a given vote on the left-hand side, then VB

6

can adapt his vote on the right-hand side and counter-
balance the outcome. However, we need to avoid the case
where V ′ = VA{

c/v}
c1,c2 letting VB vote a. Therefore we

require that when we apply a context C, intuitively the co-
ercer, requesting VA{

c/v}
c1,c2 to vote c, V ′ in the same

context votes a. There may be circumstances where V ′ may
need not to cast a vote that is not a (fault attacks).

In accordance with intuition, we have formally shown
that whenever a protocol is coercion-resistant, it is also
receipt-free [10].

Since the Fujioka et al. protocol doesn’t satisfy receipt-
freeness, it follows that it doesn’t satisfy coercion-resistance
either. In the case of Lee et al., the construction of V ′ is sim-
ilar to the one for receipt-freeness. However, for coercion-
resistance the coercer also provides the inputs for the mes-
sages to send out. If the coercer prepares messages corre-
sponding to a given vote, we fake the outputs as previously
and know that the non-coerced voter will counter-balance
the outcome, by adaptively choosing the same vote. We
have also to provide the context C and to show that the three
equivalences hold.

The first one some subtleties about details of how the
protocol is implemented. The attacker can observe a dif-
ference between both sides if he schedules the processes
so that VA{

c/v}
c1,c2 is delayed on the left while VB{a/v}

is allowed to proceed. If this happens, we cannot find the
substitution for x required for the adaptive simulation so
that VB{x/v} can proceed. The attacker will observe a dif-
ference because VB{a/v} will send his vote on the left,
while VB{x/v} will not. To prevent this attack, we can
make the voters report their votes along a private channel
instead of a public one This means that the protocol could
not be used over the internet if one wants to guarantee coer-
cion resistance.

Another way to attack coercion resistance is to use the
fault attacks. Here, the coercer provides a badly formatted
input. The voter should detect this and just follow the in-
structions to avoid the fault attack. Invalid signatures are
easy to detect. However, the case where the first encrypted
vote sent to the administrator is an invalid encryption is
more difficult to handle as V ′ cannot detect it. Here we
can consider several cases depending on the details of the
implementation, namely whether decryption is possible on
every bitstring. If so (as in our equational theory), then the
other voter could counterbalance by choosing x to be the
decryption of the given garbage message. At the tallying
stage this would indeed result in an invalid vote on both
sides. If one considers encryption with integrity checking,
which one could model in applied pi calculus by adding an
explicit checking equation, then this protocol would not be
coercion-resistant. This is because the non-coerced is only
allowed to choose the value of its vote, but in other respects
it follows the protocol and in particular encrypts the cho-

sen vote correctly. Therefore it cannot mimick the coerced
voter who sends an invalid vote. Thus the collector blocks
when trying to decrypt the vote for the coerced voter, but
not for VB , resulting in an observable difference.

6 Conclusion

The paper describes our recent efforts to formally spec-
ify and verify electronic voting protocols in the applied pi
calculus. Properties such as fairness and eligibility benefit
from automated proofs. For more sophisticated anonymity
properties, even specifying the properties is challenging, in
particular receipt-freeness and coercion-resistance. In these
cases we rely on hand proofs and reuse existant proof tech-
niques from the applied pi calculus. The definition of these
properties and their verification on two examples provided
interesting insights.

References

[1] M. Abadi, B. Blanchet, and C. Fournet. Just fast key-
ing in the pi calculus. In D. Schmidt, editor, 13th
European Symposium on Programming (ESOP’04),
volume 2986 of Lecture Notes in Computer Sci-
ence, pages 340–354, Barcelona, Spain, March 2004.
Springer.

[2] M. Abadi and C. Fournet. Mobile values, new names,
and secure communication. In H. R. Nielson, editor,
Proceedings of the 28th ACM Symposium on Prin-
ciples of Programming Languages, pages 104–115,
London, UK, Jan. 2001. ACM.

[3] J. G. Beneloh. Verifiable Secret Ballot Elections. PhD
thesis, Yale University, 1987.

[4] B. Blanchet. An efficient cryptographic protocol ver-
ifier based on prolog rules. In S. Schneider, editor,
14th IEEE Computer Security Foundations Workshop,
pages 82–96, Cape Breton, Nova Scotia, Canada, June
2001. IEEE Computer Society Press.

[5] B. Blanchet. Automatic Proof of Strong Secrecy for
Security Protocols. In IEEE Symposium on Security
and Privacy, pages 86–100, Oakland, California, May
2004.

[6] R. Chadha, S. Kremer, and A. Scedrov. Formal analy-
sis of multi-party contract signing. In R. Focardi, edi-
tor, 17th IEEE Computer Security Foundations Work-
shop, pages 266–279, Asilomar, CA, USA, June 2004.
IEEE Computer Society Press.

[7] D. Chaum. Blind signatures for untraceable pay-
ments. In Advances in Cryptology, Proceedings of
CRYPTO’82, pages 199–203. Plenum Press, 1983.

7

[8] D. Chaum. Elections with unconditionally-secret bal-
lots and disruption equivalent to breaking RSA. In
Advances in Cryptology – Eurocrypt’88, volume 330
of LNCS, pages 177–182. Springer, 1988.

[9] D. Chaum, P. Y. A. Ryan, and S. Schneider. A prac-
tical, voter-verifiable election scheme. In Proc. 10th
European Symposium On Research In Computer Se-
curity (ESORICS’05), volume 3679 of LNCS, pages
118–139, Milan, Italy, 2005. Springer.

[10] S. Delaune, S. Kremer, and M. D. Ryan. Coercion-
resistance and receipt-freeness in electronic voting.
In 19th Computer Security Foundations Workshop
(CSFW 2006). IEEE Comp. Soc. Press, 2006.

[11] C. Fournet and M. Abadi. Hiding names: Private
authentication in the applied pi calculus. In Inter-
national Symposium on Software Security (ISSS’02),
pages 317–338. Springer, 2003.

[12] A. Fujioka, T. Okamoto, and K. Ohta. A practical se-
cret voting scheme for large scale elections. In J. Se-
berry and Y. Zheng, editors, Advances in Cryptology
— AUSCRYPT ’92, volume 718 of Lecture Notes in
Computer Science, pages 244–251. Springer, 1992.

[13] M. Hirt and K. Sako. Efficient receipt-free voting
based on homomorphic encryption. In B. Preneel,
editor, Advances in Cryptography – Eurocrypt’00,
volume 1807 of Lecture Notes in Computer Sci-
ence, pages 539–556, Bruges, Belgium, may 2000.
Springer.

[14] A. Juels, D. Catalano, and M. Jakobsson. Coercion-
resistant electronic elections. In Proc. of Workshop on
Privacy in the Electronic Society (WPES’05), Alexan-
dria, USA, 2005. ACM Press.

[15] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wal-
lach. Analysis of an electronic voting system. In IEEE
Symposium on Security and Privacy. IEEE Computer
Society Press, 2004.

[16] S. Kremer and M. D. Ryan. Analysis of an elec-
tronic voting protocol in the applied pi-calculus. In
Proc. 14th European Symposium On Programming
(ESOP’05), volume 3444 of LNCS, pages 186–200,
Edinburgh, U.K., 2005. Springer.

[17] B. Lee, C. Boyd, E. Dawson, K. Kim, J. Yang, and
S. Yoo. Providing receipt-freeness in mixnet-based
voting protocols. In Proc. of Information Security and
Cryptology (ICISC’03), volume 2971 of LNCS, pages
245–258, Seoul, Korea, 2004. Springer.

[18] G. Lowe. An attack on the Needham-Schroeder
public-key authentication protocol. Information Pro-
cessing Letters, 56:131–133, 1995.

[19] T. Okamoto. An electronic voting scheme. In IFIP
World Conference on IT Tools, pages 21–30, Canberra,
Australia, 1996.

[20] Z. Rjaskova. Electronic voting schemes.
Master’s thesis, Comenius University, 2002.
www.tcs.hut.fi/∼helger/crypto/link/
protocols/voting.html.

8

