
Coercion-Resistance and Receipt-Freeness in Electronic Voting ∗

Stéphanie Delaune
LSV, France Télécom R&D
ENS Cachan, CNRS, France
delaune@lsv.ens-cachan.fr

Steve Kremer
LSV, INRIA

ENS Cachan, CNRS, France
kremer@lsv.ens-cachan.fr

Mark Ryan
School of Computer Science

University of Birmingham, UK
M.D.Ryan@cs.bham.ac.uk

Abstract

In this paper we formally study important properties of
electronic voting protocols. In particular we are interested
in coercion-resistance and receipt-freeness. Intuitively, an
election protocol is coercion-resistant if a voter A cannot
prove to a potential coercer C that she voted in a particular
way. We assume that A cooperates with C in an interactive
fashion. Receipt-freeness is a weaker property, for which
we assume that A and C cannot interact during the pro-
tocol: to break receipt-freeness, A later provides evidence
(the receipt) of how she voted. While receipt-freeness can
be expressed using observational equivalence from the ap-
plied pi calculus, we need to introduce a new relation to
capture coercion-resistance. Our formalization of coercion-
resistance and receipt-freeness are quite different. Never-
theless, we show in accordance with intuition that coercion-
resistance implies receipt-freeness, which implies privacy,
the basic anonymity property of voting protocols, as de£ned
in previous work. Finally we illustrate the de£nitions on a
simpli£ed version of the Lee et al. voting protocol.

1 Introduction

Electronic voting promises the possibility of a conve-
nient, ef£cient and secure facility for recording and tally-
ing votes. Many protocols specifying the interaction be-
tween voters and election administrators have been pro-
posed [6, 10, 12, 3, 11, 7, 13, 15]. While voting of this kind
appears to encourage higher voter turnout, it also carries the
potential of making abuse easier to perform and easier to
perform at a large scale. Such protocols involve a high level
of concurrency and even small protocols are known to be
extremely error-prone. Formal analysis is crucial to assess
their security.

∗19th IEEE Computer Security Foundations Workshop (CSFW), 2006.
This work has been partly supported by the RNTL project PROUVÉ
03V360 and the ACI-SI Rossignol.

Among the properties considered desirable of electronic
voting protocols are the following:

Privacy: the system cannot reveal how a particular voter
voted.

Coercion-resistance: a voter cannot cooperate with a co-
ercer to prove to him that she voted in a certain way.

The privacy property guarantees that the link between a
voter and her vote remains secret. Coercion-resistance guar-
antees that the coercer cannot become convinced of how a
voter votes, even if the voter cooperates with him. Of course
the voter can tell a coercer how she voted, but coercion-
resistance asserts that she is unable to prove it, so the co-
ercer has no reason to believe her. Intuitively, coercion-
resistance is a stronger property than privacy, since if it is
possible for a coercer to detect the value of a voter’s vote
without the voter’s cooperation, then it is certainly also
possible with the voter’s cooperation. Receipt-freeness is
a related property that has also been studied in the litera-
ture, which is between coercion-resistance and privacy in
strength:

Receipt-freeness: a voter does not gain any information (a
receipt) which can be used to prove to a coercer that
she voted in a certain way.

Note that in literature the distinction between receipt-
freeness and coercion-resistance is not very clear. The def-
initions are usually given in natural language and are in-
suf£ciently precise to allow comparison. The notion of
receipt-freeness £rst appeared in [4]. Since then, several
schemes [4, 16] were proposed in order to meet the con-
dition of receipt-freeness, but later shown not to satisfy it.
One of the reasons for such ¤aws is that no formal de£ni-
tion of receipt-freeness has been given. The situation for
coercion-resistance is similar. Systems have been proposed
aiming to satisfy it; for example, Okamoto [17] presents a
system resistant to interactive coercers, thus aiming to sat-
isfy what we call coercion-resistance, but this property is
stated only in natural language. Recently, a rigorous def-
inition in a computational model has been proposed for

coercion-resistance [13]. We present in this paper what
we believe to be the £rst “formal methods” de£nition of
receipt-freeness and coercion-resistance. We use the ap-
plied pi calculus framework and we make a clear distinc-
tion between the two notions. One of the advantages of
the applied pi calculus is that it allows us to reason about
equational theories that allow us to model the less classical
cryptographic primitives often used in voting protocols. It is
dif£cult to compare our de£nition and the one given in [13]
due to the inherently different models.

As is often done in protocol analysis, we assume the
Dolev-Yao abstraction: cryptographic primitives are as-
sumed to work perfectly, and the attacker controls the public
channels. The attacker can see, intercept and insert mes-
sages on a public channel, but can only encrypt, decrypt or
sign messages for which he has the relevant key. In the case
of both receipt-freeness and coercion-resistance, we assume
that the coercer has all the capabilities of the attacker on the
public channels.

We consider that the difference between receipt-freeness
and coercion-resistance lies in the powers of the coercer to
interact with the voter during the voting stage. In receipt-
freeness, we assume a coercer who simply examines ev-
idence gained from observing the election process. Such
evidence includes information provided by the cooperating
voter, e.g., the voter’s private key and random coins used for
probabilistic encryption. In coercion-resistance, the coercer
has additional capabilities. He can interact with the cooper-
ating voter, for example by (adaptively) preparing messages
which the voter will send during the process.

Coercion-resistance cannot possibly hold if the coercer
can physically vote on behalf of the voter. Some mechanism
is necessary for isolating the voter from the coercer at the
moment she casts her vote. This can be realised by a voting
booth, which we model here as a private and anonymous
channel between the voter and the election administrators.

Receipt-freeness is formalised as an observational equiv-
alence. Intuitively, a protocol is receipt-free if a coercer can-
not detect a difference between Alice voting in the way he
instructed, and her voting in some other way, provided Bob
votes in the complementary way each time. (The purpose
of introducing Bob here is to prevent the observer seeing a
different number of votes for each candidate.) Alice coop-
erates with the coercer by sharing secrets, but the coercer
cannot interact with Alice to give her some prepared mes-
sages.

In the case of coercion-resistance, the coercer is assumed
to communicate with Alice during the protocol, and can pre-
pare messages which she should send during the election
process. This gives the coercer much more power. It turns
out that observational equivalence is not ¤exible enough,
and we generalise it to a notion which we call adaptive sim-
ulation. We expect that adaptive simulation will prove to be

of interest for other kinds of properties and protocols than
the ones we study here.

Although the three properties are formalised in markedly
different ways, we prove that, in accordance with intuition,
coercion-resistance implies receipt-freeness, which in turn
implies privacy.

It is rather classical to formalize anonymity properties as
some kind of observational equivalence in a process alge-
bra or calculus, going back to the work of Schneider and
Sidiropoulos [18]. However, to the best of our knowledge
this is the £rst formalisation of the notion of not being able
to prove in this kind of framework.

Our formalization of coercion-resistance gives interest-
ing insights, such as the ability of the coercer to perform
fault attacks. This kind of attack is also mentioned in [13]
as a “randomization attack”. The idea of a fault attack is
to let the coercer test the behavior of a coerced voter by re-
quiring this voter to send a garbage message at some point
of the protocol. If the voter is unable to decide whether the
message is garbage or not, the attacker may distinguish a
voter following the coercer’s instructions from a voter who
is trying to cheat the coercer, as the protocol would block
on the incorrect message. Verifying whether a message is
correct or not is often dif£cult when for instance ciphertexts
are sent. In practice, a coercer can use this technique to
probabilistically check whether a coerced voter is behaving
as expected. Avoiding these attacks requires to carefully
choose some of the implementation issues.

Finally, we illustrate our de£nitions and the idea of a
fault attack on a simpli£ed version of a voting protocol pro-
posed by Lee et al. [15]. Due to lack of space, some proofs
are omitted. They can be found in [8].

2 The applied pi calculus

The applied pi calculus [2] is a language for describing
concurrent processes and their interactions. It is based on
the pi calculus, but is intended to be less pure and therefore
more convenient to use. The applied pi calculus has been
used to study a variety of security protocols, such as those
for private authentication [9], for key establishment [1], as
well as an electronic voting protocol [14].

To describe processes in the applied pi calculus, one
starts with a set of names (which are used to name com-
munication channels or other constants), a set of variables,
and a signature Σ which consists of the function symbols
which will be used to de£ne terms. In the case of secu-
rity protocols, typical function symbols will include enc
for encryption, which takes plaintext and a key and re-
turns the corresponding cipher text, and dec for decryp-
tion, taking ciphertext and a key and returning the plain-
text. Terms are de£ned as names, variables, and func-
tion symbols applied to other terms. Terms and function

symbols are sorted, and of course function symbol appli-
cation must respect sorts and arities. By the means of
an equational theory E we describe the equations which
hold on terms constructed from the signature. We de-
note =E the equivalence relation induced by E. A typical
example of an equational theory useful for cryptographic
protocols is dec(enc(x, k), k) = x. For example, given
this theory and terms T1 = dec(enc(enc(n, k1), k2), k2)
and T2 = enc(n, k1), we have T1 =E T2 (while obvi-
ously the syntactic equality T1 = T2 does not hold). We
write vars(T) for the set of variables occuring in T . When
vars(T) = ∅ we say that the term T is ground.

In the applied pi calculus, one has (plain) processes and
extended processes. Plain processes are built up in a similar
way to processes in the pi calculus, except that messages
can contain terms (rather than just names). In the grammar
described below, M and N are terms, n is a name, x a vari-
able and u is a metavariable, standing either for a name or a
variable.

P,Q,R := plain processes
0 null process
P | Q parallel composition
!P replication
νn.P name restriction
if M = N then P else Q conditional
in(u, x).P message input
out(u,N).P message output

Extended processes add active substitutions and restriction
on variables:

A,B,C := extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

{M/x} is the substitution that replaces the variable x with
the term M . Active substitutions generalise “let”. The pro-
cess νx.({M/x} | P) corresponds exactly to “let x = M
in P ”. As usual, names and variables have scopes, which
are delimited by restrictions and by inputs. We write fv(A),
bv(A), fn(A) and bn(A) for the sets of free and bound vari-
ables and free and bound names of A, respectively. We say
that an extended process is closed if all its variables are ei-
ther bound or de£ned by an active substitution.

Active substitutions are useful because they allow us to
map an extended process A to its frame φ(A) by replac-
ing every plain process in A with 0. A frame is an ex-
tended process built up from 0 and active substitutions by
parallel composition and restriction. The frame φ(A) can

be viewed as an approximation of A that accounts for the
static knowledge A exposes to its environment, but not A’s
dynamic behaviour. The domain of a frame ϕ, dom(ϕ), is
the set of variables for which ϕ de£nes a substitution (those
variables x for which ϕ contains a substitution {M/x} not
under a restriction on x). We denote by σ|X the substitu-
tion σ restricted to the set of variables X , i.e., σ|X = σ(x)
if x ∈ X and σ|X = x otherwise.

An evaluation context C[] is an extended process with a
hole instead of an extended process. Structural equivalence,
noted ≡, is the smallest equivalence relation on extended
processes that is closed under α-conversion on names and
variables, by application of evaluation contexts, and satis-
fying some further basic structural rules such as A | 0 ≡ A,
associativity and commutativity of |, binding-operator-like
behaviour of ν, and when M =E N the equivalences

νx.{M/x} ≡ 0 {M/x} ≡ {
N/x}

{M/x} | A ≡ {
M/x} | A{

M/x}.

Example 1 Consider the following process P :

νs, k.(out(c1, enc(s, k)) | in(c1, y).out(c2, dec(y, k))).

The £rst component publishes the message enc(s, k) by
sending it on c1. The second receives a message on c1, uses
the secret key k to decrypt it, and forwards the resulting
plaintext on c2. P is structurally equivalent to the following
extended process A:

A = νs, k, x1, x2.(out(c1, x1) | in(c1, y).out(c2, x2) |
{enc(s, k)/x1, dec(y, k)/x2

}
)

We have φ(A) = νs, k, x1, x2.{enc(s, k)/x1, k/x2} ≡ 0
(x1 and x2 are under a restriction).

The following lemma will be useful in the remaining of
the paper.

Lemma 1 Let C1, C2 be two evaluation contexts. For any
extended process A, we have C1[C2[A]] ≡ C2[C1[A]].

We can now de£ne what it means for two frames to be stat-
ically equivalent [2].

De£nition 1 (Static equivalence) Two closed frames ϕ1

and ϕ2 are statically equivalent, written ϕ1 ≈s ϕ2, if and
only if, for some names ñ1, ñ2 and substitutions σ1, σ2,
such that ϕ1 ≡ νñ1σ1 and ϕ2 ≡ νñ2σ2, we have

(i) dom(ϕ1) = dom(ϕ2),

(ii) for all termsM,N with variables included in dom(ϕi)
and using no names occurring in ñ1 or ñ2, Mσ1 =E

Nσ1 is equivalent to Mσ2 =E Nσ2.

Two extended processes A and B are statically equivalent if
and only if φ(A) ≈s φ(B).

Example 2 Let ϕ0 = νk.σ0 and ϕ1 = νk.σ1 where
σ0 = {enc(s0, k)/x1, k/x2}, σ1 = {enc(s1, k)/x1, k/x2}
and s0, s1 and k are names. Let E be the theory de-
£ned by the axiom dec(enc(x, k), k) = x. We have
dec(x1, x2)σ0 =E s0 but not dec(x1, x2)σ1 =E s0. There-
fore, ϕ0 6≈s ϕ1 although we have

νk.{enc(s0, k)/x1} ≈s νk.{enc(s1, k)/x1}.

The operational semantics of processes in the applied
pi calculus is de£ned by structural rules de£ning two re-
lations: structural equivalence (described above) and inter-
nal reduction, noted →. Internal reduction → is the small-
est relation on extended processes closed under structural
equivalence and application of evaluation contexts such that
out(a, x).P | in(a, x).Q → P | Q and for any ground
terms M and N , whenever M 6=E N , we have

if M =M then P else Q → P
if M = N then P else Q → Q.

The operational semantics is extended by a labeled op-
erational semantics enabling us to reason about processes
that interact with their environment. Labeled operational
semantics de£nes the relation

α
→ where α is either an input,

or the output of a channel name or a variable of base type.
We adopt the following rules in addition to the internal re-
duction rules.

in(a, x).P
in(a,M)
−−−−−→ P{M/x}

out(a, u).P
out(a,u)
−−−−−→ P

A
out(a,u)
−−−−−→ A′ u 6= a

νu.A
νu.out(a,u)
−−−−−−−→ A′

A
α
−→ A′ u does not occur in α

νu.A
α
−→ νu.A′

A
α
−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅

A | B
α
−→ A′ | B

A ≡ B B
α
−→ B′ A′ ≡ B′

A
α
−→ A′

Note that the labeled transition is not closed under ap-
plication of evaluation contexts. Moreover the output of a
term M needs to be made “by reference” using a restricted
variable and an active substitution.

De£nition 2 (Labeled bisimilarity (≈`)) Labeled bisimi-
larity is the largest symmetric relationR on closed extended
processes, such that AR B implies

1. A ≈s B,

2. if A→ A′, then B →∗ B′ and A′ R B′ for some B′,

3. if A
α
→ A′, then B →∗ α

→→∗ B′ and A′ R B′ for
some B′.

In [2], it is shown that labeled bisimilarity coincides with
observational equivalence. We prefer to work with labeled
bisimilarity, rather than observational equivalence, because
proofs for labeled bisimilarity are generally easier. Labeled
bisimilarity can be used to formalize many security proper-
ties, in particular anonymity properties, such as those stud-
ied in this paper.

3 Formalisation

In this section, we show how both receipt-freeness
and coercion-resistance can be formalised. While receipt-
freeness is expressed in terms of labeled bisimilarity,
coercion-resistance requires the de£nition of a new simu-
lation relation which we call adaptive simulation.

3.1 Voting protocols in applied pi calculus

Before de£ning the properties, we need to de£ne what
is an electronic voting protocol in applied pi calculus. Dif-
ferent voting protocols often have substantial differences.
However, we believe that a large class of voting protocols
can be represented by processes corresponding to the fol-
lowing structure.

De£nition 3 (Voting process) A voting process is a closed
plain process

VP ≡ νñ.(V σ1 | · · · | V σn | A1 | · · · | Am).

The V σi are the voter processes, the Ajs the different elec-
tion authorities and the ñ are channel names. We also sup-
pose that v ∈ dom(σi) is a variable which refers to the
value of the vote and at some moment the outcome of the
vote is made public. More formally, this means that there
exists A such that:

• VP(→∗ α
−→∗)∗A, and

• φ(A) ≡ ϕ | {vσ1/x1
, . . . , vσn/xn} for some ϕ.

We also de£ne an evaluation context S which is as VP ,
but has a hole instead of two of the V σi.

Note that it is likely that a voting process will have the
property that for any permutation π on {1, . . . , n} there ex-
ists a process A such that VP(→∗ α

−→∗)∗A and φ(A) ≡ ϕ |
{vσ1/xπ(1)

, . . . , vσn/xπ(n)
} for some ϕ; in words, it is able

to mix up the votes before publishing them. However, we
don’t require this property in general. Protocols that do not
respect this property most likely do not respect privacy, but
we do not wish to exclude them.

3.2 Privacy and receipt-freeness

Similarly to privacy, receipt-freeness may be formalised
as an observational equivalence. In [14], we modeled an
election scheme as an applied pi calculus process VP ,
and formalised privacy as the observational equivalence be-
tween VP and another version of VP in which two vot-
ers VA and VB have swapped their votes. In the remain-
der of the paper we denote by VA and VB two particular
processes such that VA = V σA|dom(σA)\{v} and VB =
V σB|dom(σB)\{v} where dom(σA) = dom(σB) = fv(V).
Hence v is the only free variable occuring in VA, respec-
tively VB . Formally, privacy is de£ned as follows.

De£nition 4 (Privacy) A voting protocol respects privacy
if S[VA{a/v} | VB{b/v}] ≈` S[VA{

b/v} | VB{
a/v}].

The intuition is that if an intruder cannot detect if arbitrary
honest voters VA and VB swap their votes, then in general
he cannot know anything about how VA (or VB) voted. Note
that this de£nition is robust even in situations where the re-
sult of the election is such that the votes of VA and VB are
necessarily revealed: for example, if the vote is unanimous,
or if all other voters reveal how they voted and thus allow
the votes of VA and VB to be deduced.

We also formalize receipt-freeness using observational
equivalence. However, we need to model the fact that VA is
willing to provide secret information, i.e., the receipt, to the
coercer. We assume that the coercer is in fact the intruder
who, as usual in the Dolev-Yao model, controls the public
channels. To model VA’s communication with the coercer,
we consider that VA executes a voting process which has
been modi£ed: any input and any freshly generated names
are forwarded to the coercer.

De£nition 5 (Process P ch) Let P be a plain process
and ch a channel name. We de£ne P ch as follows:

• 0ch =̂ 0,

• (P | Q)ch =̂ P ch | Qch,

• (νn.P)ch =̂ νn.out(ch, n).P ch,

• (in(u, x).P)ch =̂ in(u, x).out(ch, x).P ch,

• (out(u,M).P)ch =̂ out(u,M).P ch,

• (!P)ch =̂ !P ch,

• (if M = N then P else Q)ch =̂
if M = N then P ch else Qch.

In the remainder, we assume that ch 6∈ fn(P) ∪ bn(P)
before applying the transformation.

Given an extended process A and a channel name ch, we
need to de£ne the extended process A\out(ch,·). Intuitively,
such a process is as the process A, but hiding the ouputs on
the channel ch.

De£nition 6 (Process A\out(ch,·)) Let A be an extended
process. We de£ne A\out(ch,·) =̂ νch.(A |!in(ch, x)).

We are now ready to de£ne receipt-freeness. Intuitively,
a protocol is receipt-free if, for all voters VA, the process
in which VA votes according to the intruder’s wishes is in-
distinguishable from the one in which she votes something
else. As in the case of privacy, we express this as an ob-
servational equivalence to a process in which VA swaps her
vote with VB , in order to avoid the case in which the in-
truder can distinguish the situations merely by counting the
votes at the end. Suppose the coercer’s desired vote is c.
Then we de£ne receipt-freeness as follows.

De£nition 7 (Receipt-freeness) A voting protocol is
receipt-free if there exists a closed plain process V ′,
satisfying the two conditions below:

• V ′\out(chc,·) ≈` VA{
a/v}, and

• S[VA{
c/v}

chc | VB{
a/v}] ≈` S[V

′ | VB{
c/v}].

V ′ is a process in which voter VA votes a but communi-
cates with the coercer C in order to feign cooperation with
him. Thus, the equivalence says that the coercer cannot tell
the difference between a situation in which VA genuinely
cooperates with him in order to cast the vote c and one in
which she pretends to cooperate but actually casts the vote
a, provided there is some counterbalancing voter that votes
the other way around. According to intuition, we have the
following proposition.

Proposition 1 Let VP be a voting protocol.
VP is receipt-free =⇒ VP respects privacy.

Before we prove this proposition we introduce two lemmas.

Lemma 2 Let A be an extended process, C an evaluation
context and ch a channel name. If ch 6∈ fn(C[0]) we have

C[A]\out(ch,·) ≡ C[A\out(ch,·)].

Lemma 3 LetP be a closed plain process and ch a channel
name such that ch 6∈ fn(P) ∪ bn(P). We have

(P ch)\out(ch,·) ≈` P.

Proof of Proposition 1. By hypothesis, there exists a
closed plain process V ′, such that V ′\out(chc,·) ≈` VA{

a/v}
and S[VA{

c/v}
chc | VB{

a/v}] ≈` S[V
′ | VB{

c/v}]. By
applying the evalution context νchc.(|!in(chc, x)) on both
sides and by using Lemmas 2 and 3 , we deduce that:
S[VA{

c/v} | VB{
a/v}] ≈` S[V ′\out(chc,·) | VB{

c/v}].
Since V ′\out(chc,·) ≈` VA{

a/v}, we easily conclude. ¤

3.3 Formalising coercion-resistance

Coercion-resistance is a stronger property as we give the
coercer the ability to communicate interactively with the

voter and not only receive information. In this model, the
coercer can for instance prepare the messages he wants the
voter to send. As for receipt-freeness, we are going to mod-
ify the voter process. However, we give the coercer the pos-
sibility to provide the messages the voter should send.

De£nition 8 (Process P c1,c2) Let P be a plain process
and c1, c2 be channel names. We de£ne P c1,c2 as follows:

• 0c1,c2 =̂ 0,

• (P | Q)c1,c2 =̂ P c1,c2 | Qc1,c2 ,

• (νn.P)c1,c2 =̂ νn.out(c1, n).P c1,c2 ,

• (in(u, x).P)c1,c2 =̂ in(u, x).out(c1, x).P c1,c2 ,

• (out(u,M).P)c1,c2 =̂ in(c2, x).out(u, x).P c1,c2

where x is a fresh variable ,

• (!P)c1,c2 =̂ !P c1,c2 ,

• (if M = N then P else Q)c1,c2 =̂
if M = N then P c1,c2 else Qc1,c2 .

As a £rst approximation, we could try to de£ne coercion-
resistance in the following way:

S[VA{
c/v}

c1,c2 | VB{
a/v}] ≈` S[V

′ | VB{
c/v}].

This de£nition has an obvious problem as the coercer
could oblige VA{c/v}c1,c2 to vote c′ 6= c. In that case, the
process VB{c/v} would not counterbalance the outcome to
avoid a trivial way of distinguishing.

To properly de£ne coercion-resistance, we de£ne a new
simulation relation which allows the second voting process
on the right-hand side to dynamically adapt its vote to corre-
spond to the coercer’s choice. Before de£ning this relation
itself we have to introduce some more notation.

De£nition 9 (XA) Given an extended process A,
we de£ne XA to be the set of unbound vari-
ables that are not de£ned by an active substitution,
i.e., XA = fv(A) \ dom(φ(A)).

Example 3 Consider the following extended process B:

out(c1, x1).out(c2, x2) | in(c1, y1).in(c2, y2) |
{enc(z1, z2)/x1} | {enc(z1, z3)/x2}.

We have XB = {z1, z2, z3}.

De£nition 10 (XA(Aσ
(α)
→ A′)) Let A be an extended pro-

cess and σ be a substitution closing A, i.e., dom(σ) = XA.
We de£ne XA(Aσ → A′) (resp. XA(Aσ

α
→ A′)) to be the

variables in XA that are bound by σ during the internal re-
duction Aσ→A′ (resp. labeled transition Aσ

α
→ A′). More

formally, see Figure 1.

This de£nition can be extended naturally to any se-
quences of reduction steps.

Example 4 Let B be the process de£ned in Example 3.
We have φ(B) = {enc(z1, z2)/x1, enc(z1, z3)/x2}. Let
σ = {z1 7→ a, z2 7→ b, z3 7→ c}. Let B1 = out(c2, x2) |
in(c2, y2) | {enc(a, b)/x1} | {enc(a, z3)/x2} and B2 =
{enc(a, b)/x1} | {enc(a, c)/x2}. We have XB(Bσ →
B1σ) = {z1, z2} and XB1

(B1σ → B2) = {z3}.

De£nition 11 (Adaptive simulation (¹a)) Adaptive
simulation is the largest relationR on extended processes
A and B, such that AR B implies that for all σA such
that dom(σA) = XA

1. AσA ≈s BσB for some substitution σB
with dom(σB) = XB;

2. if AσA → A′σA then there exists σB with
dom(σB) = XB such that

(a) there exists B′ such that BσB →∗ B′σB and
A′θA R B′θB where θA = σA|XA(AσA→A′σA)

and θB = σB |XB(BσB→∗B′σB);

(b) if BσB → B′σB then there exists A′ such that
AσA →

∗ A′σA and A′θA R B′θB where
θA = σA|XA(AσA→∗A′σA) and
θB = σB |XB(BσB→B′σB).

3. if AσA
α
→ A′σA then there exists σB with

dom(σB) = XB such that

(a) there exists B′ such that BσB →∗ α
→→∗ B′σB

and A′θA R B′θB where
θA = σA|XA(AσA

α
→A′σA)

and

θB = σB |XB(BσB→∗ α→→∗B′σB)
;

(b) if BσB
α
→ B′σB then there exists A′ such that

AσA →
∗ α
→→∗ A′σA and A′θA R B′θB where

θA = σA|XA(AσA→∗ α→→∗A′σA)
and

θB = σB |XB(BσB
α
→B′σB)

.

Intuitively, adaptive simulation models the fact that no
matter how the process A is closed and no matter how the
environment reacts,B can be closed, such that the processes
are indistinguishable. The existential quanti£cation on σB
follows the reductions of A, in order to let B adapt to the
inputs of the environment. While the (a) parts ensure that B
indeed simulates A, the (b) parts ensure that B cannot “do
anything more” than A. Finally, by the means of θA and θB
we progressively close A and B, so that once their reduc-
tions depend on some variables, the value of these variables
cannot be changed any more, i.e., they have to stick to their
choices and cannot undo them anymore. Note that if A
and B are closed processes A≈` B if and only if A ¹a B.
Moreover adaptive simulation is transitive and enjoys sev-
eral other useful properties stated below.

Xout(u,M).P1|in(v,x).P2
((out(u,M).P1 | in(v, x).P2)σ → (P1 | P2{

M/x})σ) = vars(M) ∪ vars(u) ∪ vars(v)
Xif (M=N) then P1 else P2

((if (M = N) then P1 else P2)σ → Piσ) = vars(M) ∪ vars(N)

XA(Aσ → A′) = XB(Bσ → B′) if A ≡ B and A′ ≡ B′

XC[A](C[A]σ → C[A′]σ) = XAρ(Aρσ → A′) if φ(C[A]) ≡ νñ.ρ

Xin(u,x).P ((in(u, x).P)σ
in(uσ,M)
−−−−−−→ Pσ{M/x}) = vars(u)

Xout(u,M).P (out(u,M).Pσ
out(u,M)σ
−−−−−−−→ Pσ) = vars(M) ∪ vars(u).

Xνv.A1
(νv.A1σ

νv.out(u,v)
−−−−−−−→ A2) = XA1

(A1σ
out(u,v)
−−−−−→ A2) if uσ 6= vσ.

XA1
((νu.A1)σ

α
→ νu.A2) = XA1

(A1σ
α
→ A2) if u does not occur in α.

XA1|B((A1 | B)σ
α
→ A2 | Bσ) = XA1ρ(A1ρσ

α
→ A2) if bv(α) ∩ fv(B) = ∅ and bn(α) ∩ fn(B) = φ(A | B) ≡ νñ.ρ.

XA(Aσ
α
−→ A′) = XB(Bσ

α
−→ B′) if A ≡ B and A′ ≡ B′.

Figure 1: XA(Aσ
(α)
→ A′)

Lemma 4 Let A and B be two extended processes. If
for all ρA with dom(ρA) = XA there exists ρB with
dom(ρB) = XB such that AρA ≈` BρB , then A ¹a B.

Note that the converse is not true. Consider the two pro-
cesses A and B described below:
A = νc.(in(c1, x).out(c, a).out(c2, x)|in(c, z).out(c2, a));
B = νc.(in(c1, x).out(c, a).out(c2, a)|in(c, z).out(c2, y)).
We have that A ¹a B. However there is no ρB such that
for all ρA we have AρA≈`BρB .

Corollary 1 Let A and B be two extended processes such
that XA = XB . If for all substitution ρ with dom(ρ) =
XA = XB we have Aρ ≈` Bρ, then A ¹a B.

We say that an evaluation context is strict, if the hole
does not appear under a restriction of a variable.

Lemma 5 Let A, B be two extended processes and C a
strict evaluation context, such that fv(C[0]) = ∅. We have

A ¹a B =⇒ C[A] ¹a C[B].

Note that in Lemma 5 we cannot consider any open context
where fv(C[0]) 6= ∅. Consider for example A = {a/x1

}
and B = {y/x1

}. Then we have A ¹a B, while A |
{y/x2

} 6¹a B | {y/x2
}. One might want to relax this con-

dition to fv(C[0])∩fv(B) = ∅. However, this stronger ver-
sion is not needed in the remainder and would complicate
the proofs. For a similar reason we also restrict ourselves to
strict evaluation contexts, as νy.A 6¹a νy.B.

We are now ready to de£ne coercion-resistance.

De£nition 12 (Coercion-resistance) A voting protocol is
coercion-resistant if there exists a closed extended pro-
cess V ′ and a strict evaluation context C such that

• S[VA{
c/v}

c1,c2 | VB{
a/v}] ¹a S[V ′ | VB{

x/v}],

• νc1, c2.C[VA{
c/v}

c1,c2] ≈` VA{
c/v}

chc,

• νc1, c2.C[V
′]\out(chc,·) ≈` VA{

a/v},

where x is a fresh free variable.

The intuition of this de£nition is that whenever the co-
ercer requests a given vote on the left-hand side, then VB
can adapt his vote on the right-hand side and counter-
balance the outcome. However, we need to avoid the case
where V ′ = VA{

c/v}
c1,c2 letting VB vote a. Therefore we

require that when we apply a context C, intuitively the co-
ercer, requesting VA{

c/v}
c1,c2 to vote c, V ′ in the same

context votes a. There may be circumstances where V ′ may
need not to cast a vote that is not a. We discuss those in Sec-
tion 3.4.

Proposition 2 Let VP be a voting protocol.
VP is coercion-resistant =⇒ VP is receipt-free.

Proof. We need to show that there exists V ′′ satisfying the
conditions of receipt-freeness. Let V ′′ = νc1, c2.C[V

′]. we
have to show that

S[VA{
c/v}

chc | VB{
a/v}] ≈` S[V

′′ | VB{
c/v}].

Thanks to Lemma 5, we know that:

νc1, c2.C[S[VA{
c/v}

c1,c2 | VB{
a/v}]]

¹a

νc1, c2.C[S[V
′ | VB{

x/v}]].

Moreover, we have

νc1, c2.C[S[VA{
c/v}

c1,c2 | VB{
a/v}]]

≡ S[νc1, c2.C[VA{
c/v}

c1,c2] | VB{
a/v}] by Lemma 1

≈` S[VA{
c/v}

chc | VB{
a/v}] by hypothesis

Hence, we deduce that
S[VA{

c/v}
chc|VB{

a/v}] ¹a νc1, c2.C[S[V
′|VB{

x/v}]].

For any substitution ρ such that dom(ρ) = {x} we have
νc1, c2.C[S[V

′ | VB{
xρ/v}]] ≈` S[V

′′ | VB{
xρ/v}].

Using Corollary 1 we obtain that
νc1, c2.C[S[V

′ | VB{
x/v}]] ¹a S[V

′′ | VB{
x/v}].

Thanks to the transitivity of ¹a, we deduce that
S[VA{

c/v}
chc | VB{

a/v}] ¹a S[V
′′ | VB{

x/v}].

By the de£nition of a voting process, we have
S[VA{

c/v}
chc | VB{

a/v}](→
∗ α
−→∗)∗S′

where φ(S′) ≡ ϕ′|{a/x1
, c/x2

} for some ϕ′. Therefore
there exists a substitution σ with x ∈ dom(σ) such that

S[V ′′ | VB{
x/v}]σ(→

∗ α
−→∗)∗S′′ (1)

where φ(S′′) ≡ ϕ′′|{a/x1
, c/x2

} for some ϕ′′. Since
V ′′\out(chc,.) ≈` VA{

a/v}, V does not output c on a chan-
nel it shares with S[]. From equation (1) and the fact that c
does not occur in S[], it must be that σ(x) = c in all evo-
lutions of S[V ′′ | VB{

x/v}]σ preserving the adaptive sim-
ulation. Hence the result.

3.4 Fault attacks

Looking closely at the de£nition of coercion-resistance,
one may notice that the intruder could have an unexpected
strategy to distinguish the left-hand process from the right-
hand process. In protocols in which the voter is expected
to submit certain messages to the election administrators,
the arrangement between the voter and the coercer may in-
volve the coercer preparing those messages for the voter. In
this case, the coercer may submit messages to VA{c/v}c1,c2

with the pure intention to block the process on the left-hand
side of the relation. If V ′ is unable to detect that the message
is incoherent, the process will not block on the right-hand
side, thus yielding an observable difference. Our de£nition
therefore allows V ′ to block too and not to vote if V ′ thinks
that the messages sent by the coercer would block the pro-
tocol.

In a real-life scenario the intruder may use this method
to test the loyalty of VA in a probabilistic way. For example,
in one out of every one hundred coerced voters, the coercer
might submit such a garbage message to the voter. If the
voter is not genuinely cooperating with him by submitting
the garbage message, and instead casts his own vote suc-
cessfully, the attacker can perceive a difference.

We argue that this attack, if successful, is an attack
against coercion-resistance, since it means that the voter
knows that the coercer has the ability to detect whether the
voter is cooperating with him or not. Launching the attack
costs the coercer that particular vote, but it is a means of
applying pressure on the voter to cooperate.

Our de£nition of coercion-resistance is correct with re-
spect to this kind of attack. That is, a protocol which is
vulnerable to the attack is not coercion-resistant according
to our de£nition. A protocol is coercion-resistant if V ′ can
be chosen to mimic VA{c/v}c1,c2 . Thus, if V ′ can detect
that the message from the coercer is incoherent, she can act
in order to block the protocol, preserving the relation.

4 Example

In this section we apply the formalization, described in
the previous section to a simpli£ed version of the Lee et al.
protocol [15]. One of the main advantages of this protocol is
that it is vote and go: voters need participate in the election
only once, in contrast with [10], where all voters have to
£nish a £rst phase before any of them can participate in the
second phase.

We simpli£ed the protocol in order to concentrate on the
aspects that are important with respect to receipt-freeness
and coercion-resistance. In particular we do not consider
distributed authorities. Nevertheless, the protocol is neither
trivial to model nor to analyse and illustrates well subtle
issues in coercion-resistance.

4.1 Description of the protocol

The protocol relies on two less usual cryptographic prim-
itives: re-encryption and designated veri£er proofs (DVP)
of re-encryption. We start by explaining these primitives.

A re-encryption of a ciphertext (obtained using a ran-
domized encryption scheme) changes the random coins,
without changing or revealing the plaintext. In the ElGa-
mal scheme for instance, if (x, y) is the ciphertext, this is
simply done by computing (xgr, yhr), where r is a random
number, and g and h are the subgroup generator and the
public key respectively. Note that neither the creator of the
original ciphertext nor the person re-encrypting knows the
random coins used in the re-encrypted ciphertext, for they
are a function of the coins chosen by both parties. In par-
ticular, a voter cannot reveal the coins to a potential coercer
who could use this information to verify the value of the
vote, by ciphering his expected vote with these coins.

A DVP of the re-encryption proves that the two cipher-
texts contain indeed the same plaintext. However, a des-
ignated veri£er proof only convinces one intended person,
e.g., the voter, that the re-encrypted ciphertext contains the
original plaintext. In particular this proof cannot be used to
convince the coercer. Technically, this is achieved by giving
the designated veri£er the ability to simulate the transcripts
of the proof.

Our simpli£ed protocol can be described in three steps.
Firstly, the voter encrypts his vote with the collector’s public
key, signs the encrypted vote and sends it to an administra-
tor on a private channel. The administrator checks whether
the voter is a legitimate voter and has not voted yet. Then
the administrator re-encrypts the given ciphertext, signs it
and sends it back to the voter. The administrator also pro-
vides a DVP that the two ciphertexts contain indeed the
same plaintext. In practice, this £rst stage of the protocol
can be done using a voting booth where eligibility of the
voter is tested at the entrance of the booth. The booth con-

equation decrypt(pencrypt(m,pk(sk),r),sk) = m.
equation rencrypt(pencrypt(m,pk(sk),r1),r2)

= pencrypt(m,pk(sk),f(r1,r2)).
equation checksign(m,sign(m,sk),pk(sk)) = ok.
equation checkdvp(dvp(x,rencrypt(x,r),r,p), x,rencrypt(x,r),p)

= ok.
equation checkdvp(dvp(x,y,z,skv),x,y,pk(skv)) = ok.

Figure 2: Equational theory

process
(* private channels *)
ν pr ivCh . ν chA . ν pkaCh . ν pkcCh .
ν skaCh . ν skcCh . ν skvaCh . ν skvbCh
(* administrators *)
(processK | processA | processA |
processC | processC |
(* voters *)
(l e t skvCh=skvaCh in

l e t v=a in processV)
(l e t skvCh=skvbCh in

l e t v=b in processV))

Process 1. Main process

tains a tamper-proof device which performs re-encryptions,
signatures and DVP proofs. Then, the voter sends (via an
anonymous channel) the re-encrypted vote, which has been
signed by the administrator to the public board. Finally, the
collector checks the administrator’s signature on each of the
votes and, if valid, decrypts the votes and publishes the £nal
results.

4.2 Applied pi calculus model

Cryptographic primitives as an equational theory. The
equational theory is represented in Figure 2. The func-
tions and equations that handle public keys, probabilistic
encryption and digital signature are as usual. To model re-
encryption we add a function rencrypt, that permits us to
obtain a different encryption of the same message with an-
other random coin which is function of the original one and
the one used during the re-encryption. We also add a pair
of functions dvp and checkdvp: dvp permits us to build
a designated veri£er proof of the fact that a message is a
re-encryption of another one and checkdvp allows the des-
ignated veri£er to check that the proof is valid. Note that
checkdvp also succeeds for a fake dvp created using the
designated veri£er’s private key.

Main (Process 1). The main process sets up private chan-
nels and speci£es how the processes are combined in par-
allel. Most of the private channels are for key distribution.

l e t processK=
(* private key *)
ν ska . ν skc . ν skv1 . ν skv2 .
(* public key *)
l e t pka=pk (ska) in
l e t pkc=pk (skc) in
l e t pkv1=pk (skv1) in
l e t pkv2=pk (skv2) in
out (ch , pka) . out (ch , pkc) .
out (ch , pkv1) . out (ch , pkv2) .
(* register legitimate voters *)
(out (privCh , pkv1) | out (privCh , pkv2) |
(* keys disclosure on priv chan *)
! out (pkaCh , pka) | ! out (pkcCh , pkc) |
! out (skaCh , ska) | ! out (skcCh , skc) |
out (skvaCh , skv1) | out (skvbCh , skv2))

Process 2. Administrator for keying material

l e t processV=
(* his private key *)
in (skvCh , skv) .
(* public keys of administrators *)
in (pkaCh , pubka) .
in (pkcCh , pubkc) .
ν r .
l e t e=pencrypt (v , pubkc , r) in
out (chA , (pk (skv) , e , s ign (e , skv))) .
in (chA ,m2) .
l e t (re , sa , dvpV)=m2 in
i f checkdvp (dvpV , e , re , pk (skv))= ok
then i f checksign (re , sa , pubka)= ok
then out (ch , (re , sa))

Process 3. Voter process

The private channel chA is a private channel between the
administrator and voters. This is motivated by the fact that
the administrator corresponds to a tamper-proof hardware
device in this protocol. For ease of presentation, we only
model the protocol for two voters and launch two copies of
the administrator and collector process, one for each voter.

Keying material (Process 2). Our model includes a ded-
icated process for generating and distributing keying ma-
terial modeling a PKI. Additionally, this process registers
legitimate voters and also distributes the public keys of the
election authorities to legitimate voters: this is modeled us-
ing restricted channels so that the attacker cannot provide
false public keys.

Voter (Process 3). First, each voter obtains his secret key
from the PKI as well as the public keys of the election au-

l e t processA=
(* administrator’s private key *)
in (skaCh , skadm) .
(* register a legimitate voter *)
in (privCh , pubkv) .
in (chA ,m1) .
l e t (pubv , enc , s ig)=m1 in
i f pubv=pubkv then
i f checksign (enc , s ig , pubv)= ok
then ν r1 .
l e t reAd= renc ryp t (enc , r1) in
l e t signAd=sign (reAd , skadm) in
l e t dvpAd=dvp (enc , reAd , r1 , pubv) in
out (chA , (reAd , signAd , dvpAd))

Process 4. Administrator process

l e t processC=
(* collector’s private key *)
in (skcCh , p r i v c) .
(* administrator’s public key *)
in (pkaCh , pkadmin) .
in (ch ,m3) .
phase 1 .
l e t (ev , sev)=m3 in
i f checksign (ev , sev , pkadmin)= ok
then l e t voteV=decrypt (ev , p r i v c) in
out (ch , voteV)

Process 5. Collector process

thorities. Then, a fresh random number is generated to en-
crypt his vote with the public key of the collector. Next,
he signs the result and sends it on a private channel to the
administrator. If the voter has been correctly registered, he
obtains from the administrator, a re-encryption of his vote
signed by the administrator together with a designated ver-
i£er proof of the fact that this re-encryption has been done
correctly. If this proof is correct, then the voter sends his re-
encrypted vote signed by the administrator to the collector.

Administrator (Process 4). The administrator £rst re-
ceives through a private channel his own public key as well
as the public key of a legitimate voter. The received pub-
lic key has to match the voter who is trying to get a re-
encryption of his vote signed by the administrator. The ad-
ministrator has also to prove to the voter that he has done
the re-encryption properly. For this, he builds a designated
veri£er proof which will be only convincing for the voter.

Collector (Process 5). To model the collector, we use the
phase command, introduced in the ProVerif tool [5], as a
global synchronisation command, i.e., all processes £nish

l e t processV ’=
(* his private key *)
in (skvCh , skv) . out (c1 , skv) .
(* public keys of administrators *)
in (pkaCh , pubka) . out (c1 , pubka) .
in (pkcCh , pubkc) . out (c1 , pubkc) .

ν r . out (c1 , r) .
l e t e=pencrypt (a , pubkc , r) in
out (chA , (pk (skv) , e , s ign (e , skv))) .
in (chA ,m2) .

l e t (re , sa , dvpV)=m2 in
i f checkdvp (dvpV , e , re , pk (skv))= ok
then (

l e t f k =dvp (encrypt (c , pubkc , r) ,
re , r , skv) in

out (c1 , (re , sa , f k)) .
i f checksign (re , sa , pubka)= ok
then out (ch , (re , sa)) .

)
else out (c1 , (re , sa , dvpV))

Process 6. Process V ′ - receipt-freeness

the instructions of a given phase before any of them can start
the following phase. This separation is crucial for receipt-
freeness (and hence coercion-resistance) to hold. First, the
collector receives all the signed ballots. He checks the sig-
nature and decrypts the result with his private key to obtain
the value of the vote in order to publish the results.

4.3 Receipt-freeness, coercion-resistance

We do not give full formal proofs here but only the
ideas on how to construct the V ′ processes. The aim
is merely to illustrate the de£nitions. We denote VA =
V {skvaCh/skvCh} and VB = V {skvbCh/skvCh}.

Receipt-freeness. To show receipt-freeness one needs to
construct a process V ′ which successfully can fake all se-
crets to a coercer. The idea is for V ′ to vote a, but when
outputting secrets to the coercer V ′ prepares all outputs as
if he was voting c. The crucial part is that, using his pri-
vate key, he provides a fake dvp stating that the actual re-
encryption of the encryption of vote a is a re-encryption of
the encryption of vote c. Given our equational theory, the
two resulting frames are statically equivalent as for both the
real and the fake dvp, checkdvp would give ok.

Process 6 shows a possible V ′. To prove receipt-
freeness, we need to show

• V ′\out(chc,·) ≈` VA{
a/v}, and

• S[VA{
c/v}

chc | VB{
a/v}] ≈` S[V

′ | VB{
c/v}].

The £rst one may be seen informally by considering V ′ with
the “out(c1,...)” commands removed, and comparing it vi-
sually with VA. To see the second labelled bisimulation,
one can informally consider all the executions of each side.
S consists of the Main process, and therefore includes pro-
cess K, the two processA’s, and the two processC’s, but it
has a hole for the two voter processes. As shown above,
the hole is £lled by VA{c/v}chc | VB{a/v} on the left and
by V ′ | VB{

c/v} on the right. Executions of VA{c/v}chc

are matched with those of V ′; similarly, VB{a/v} on the
left is matched with VB{

c/v} on the right. The attacker
could try to make one side block, but this will make the
other one block too. Both left and right sides result in votes
for a and c; thus, when fully executed, if one side results
in a process whose frame contains the active substitutions
{a/x1

, c/x2
} then the other one can be executed that way

too.

Coercion-resistance. The construction of V ′ is similar
to the one for receipt-freeness. However, for coercion-
resistance the coercer also provides the inputs for the mes-
sages to send out. If the coercer prepares messages cor-
responding to a given vote, we fake the outputs as previ-
ously and know that the non-coerced voter will counter-
balance the outcome, by adaptively choosing the same vote.
The process V ′ and the strict evaluation context C required
for the de£nition of coercion resistance are shown in Pro-
cesses 7 and 8. Similar reasoning to that used above (for
receipt freeness) can be used here, to establish whether the
three conditions

• νc1, c2.C[VA{
c/v}

c1,c2] ≈` VA{
c/v}

chc,

• νc1, c2.C[V
′]\out(chc,·) ≈` VA{

a/v},

• S[VA{
c/v}

c1,c2 | VB{
a/v}] ¹a S[V ′ | VB{

x/v}],

hold for coercion resistance. The £rst two are straightfor-
ward, but reasoning about the third one reveals some sub-
tleties about details of how the protocol is implemented.

The attacker can observe a difference between both sides
if he schedules the processes so that VA{c/v}c1,c2 is de-
layed on the left while VB{a/v} is allowed to proceed. If
this happens, we cannot £nd the substitution for x required
for the adaptive simulation so that VB{x/v} can proceed.
The attacker will observe a difference because VB{

a/v}
will send his vote on the left, while VB{x/v} will not. To
prevent this attack, we can make the voters report their votes
along a private channel instead of a public one (last line of
Process 3). This means that the protocol could not be used
over the internet if one wants to guarantee coercion resis-
tance.

Another way to attack coercion resistance is to use the
fault attacks described in section 3.4. Here, the coercer pro-
vides a badly formatted input. The voter should detect this

l e t processV ’=
(* his private key *)
in (skvCh , skv) . out (c1 , skv) .
(* public keys of administrators *)
in (pkaCh , pubka) . out (c1 , pubka) .
in (pkcCh , pubkc) . out (c1 , pubkc) .

ν r . out (c1 , r) .
l e t e=pencrypt (a , pubkc , r) in
in (c2 , x1) .
l e t (p i , e i , s i)= x1 in
i f p i =pk (skv) then (
i f s i =s ign (ei , skv) then

out (chA , (pk (skv) , e ,
s ign (e , skv))) .

else out (chA , x1) .
)

else out (chA , x1) .

in (chA ,m2) .
l e t (re , sa , dvpV)=m2 in
i f checkdvp (dvpV , e , re , pk (skv))= ok
then (

l e t f k =dvp (ei , re , r , skv) in
out (c1 , (re , sa , f k)) .
i f checksign (re , sa , pubka)= ok
then in (c2 , x2) . out (ch , x2) .

)
else out (c1 , (re , sa , dvpV))

Process 7. Process V ′ - coercion-resistance

and just follow the instructions to avoid the fault attack. In-
valid signatures are easy to detect. However, the case where
the £rst encrypted vote sent to the administrator is an invalid
encryption is more dif£cult to handle as V ′ cannot detect it.
Here we can consider several cases depending on the details
of the implementation, namely whether decryption is possi-
ble on every bitstring. If so (as in our equational theory),
then the other voter could counterbalance by choosing x to
be the decryption of the given garbage message. At the tal-
lying stage this would indeed result in an invalid vote on
both sides. If one considers encryption with integrity check-
ing, which one could model in applied pi calculus by adding
an explicit checking equation, then this protocol would not
be coercion-resistant. This is because the non-coerced is
only allowed to choose the value of its vote, but in other
respects it follows the protocol and in particular encrypts
the chosen vote correctly. Therefore it cannot mimick the
coerced voter who sends an invalid vote. Thus the collector
blocks when trying to decrypt the vote for the coerced voter,
but not for VB , resulting in an observable difference.

l e t contextC [] = (
(* private key of V *)
in (c1 , x1) . out (chc , x1) .
(* public key of A *)
in (c1 , x2) . out (chc , x2) .
(* public key of C *)
in (c1 , x3) . out (chc , x3) .
(* nonce of V *)
in (c1 , x4) . out (chc , x4) .

l e t e=pencrypt (c , x3 , x4) in
out (c2 , (pk (x1) , e , s ign (e , x1)) .
(* dvp *)
in (c1 , x5) . out (chc , x5) .
l e t (re , sa , dvp)= x5 in
i f checkdvp (dvp , e , re , pk (x1))= ok
then i f checksign (re , sa , pubka)= ok
then out (c2 , (re , sa))
) |

Process 8. Context C - coercion-resistance

5 Conclusion

In this paper we studied two particular anonymity prop-
erties of election protocols: receipt-freeness and coercion-
resistance. Although the properties are modelled using
these different relations, we can prove that, according to
the intuition, coercion-resistance implies receipt-freeness
which itself implies privacy. Finally we illustrate the def-
initions on a simpli£ed version of the Lee et al. protocol.

As future work we would like to automate the veri£ca-
tion of observational equivalence. Although the ProVerif
tool can in many special cases prove observational equiva-
lence, it is not able to do so for privacy or the more elab-
orated properties of this paper. We foresee to investigate
automatic veri£cation of observational equivalence at least
for a £nite number of sessions (not authorizing replication)
and for restricted classes of equational theories.

References

[1] M. Abadi, B. Blanchet, and C. Fournet. Just fast keying in
the pi calculus. In Proc. 13th European Symposium On Pro-
gramming (ESOP’04), volume 2986 of LNCS, pages 340–
354, Barcelona, Spain, 2004. Springer.

[2] M. Abadi and C. Fournet. Mobile values, new names, and
secure communication. In Proc. 28th ACM Symposium on
Principles of Programming Languages (POPL’01), pages
104–115, London, UK, 2001. ACM.

[3] J. Benaloh. Veri£able Secret Ballot Elections. PhD thesis,
Yale University, 1987.

[4] J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elec-
tions (extended abstract). In Proc. 26th Annual Sympo-

sium on Theory of Computing (STOC’94), pages 544–553,
Montréal, Québec, 1994. ACM Press.

[5] B. Blanchet. ProVerif: Automatic Cryptographic Protocol
Veri£er User Manual, 2005.

[6] D. Chaum. Elections with unconditionally-secret ballots and
disruption equivalent to breaking RSA. In Proc. of Advances
in Cryptology (Eurocrypt’88), volume 330 of LNCS, pages
177–182, Davos, Switzerland, 1988. Springer.

[7] D. Chaum, P. Y. A. Ryan, and S. Schneider. A practi-
cal, voter-veri£able election scheme. In Proc. 10th Euro-
pean Symposium On Research In Computer Security (ES-
ORICS’05), volume 3679 of LNCS, pages 118–139, Milan,
Italy, 2005. Springer.

[8] S. Delaune, S. Kremer, and M. D. Ryan. Coercion-resistance
and receipt-freeness in electronic voting. Research Report
LSV-06-08, Laboratoire Spéci£cation et Véri£cation, ENS
Cachan, France, Apr. 2006. 17 pages.

[9] C. Fournet and M. Abadi. Hiding names: Private authen-
tication in the applied pi calculus. In Proc. of Int. Sympo-
sium on Software Security (ISSS’02), volume 2609 of LNCS,
pages 317–338, Tokyo, Japan, 2003. Springer.

[10] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret
voting scheme for large scale elections. In Proc. of Ad-
vances in Cryptology (Asiacrypt’92), volume 718 of LNCS,
pages 244–251, Gold Coast, Queensland, Australia, 1992.
Springer.

[11] M. Hirt and K. Sako. Ef£cient receipt-free voting based on
homomorphic encryption. In Proc. of Advances in Cryptog-
raphy (Eurocrypt’00), volume 1807 of LNCS, pages 539–
556, Bruges, Belgium, 2000. Springer.

[12] W.-S. Juang and C.-L. Lei. A secure and practical electronic
voting scheme for real world environments. IEICE Transac-
tion on Fundamentals of Electronics, Communications and
Computer Science, 1:64–71, 1997.

[13] A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant
electronic elections. In Proc. of Workshop on Privacy in
the Electronic Society (WPES’05), Alexandria, USA, 2005.
ACM Press.

[14] S. Kremer and M. D. Ryan. Analysis of an electronic voting
protocol in the applied pi-calculus. In Proc. 14th European
Symposium On Programming (ESOP’05), volume 3444 of
LNCS, pages 186–200, Edinburgh, U.K., 2005. Springer.

[15] B. Lee, C. Boyd, E. Dawson, K. Kim, J. Yang, and S. Yoo.
Providing receipt-freeness in mixnet-based voting protocols.
In Proc. of Information Security and Cryptology (ICISC’03),
volume 2971 of LNCS, pages 245–258, Seoul, Korea, 2004.
Springer.

[16] T. Okamoto. An electronic voting scheme. In IFIP World
Conference on IT Tools, pages 21–30, Canberra, Australia,
1996.

[17] T. Okamoto. Receipt-free electronic voting schemes for
large scale elections. In Proc. 5th Int. Security Proto-
cols Workshop, volume 1361 of LNCS, pages 25–35, Paris,
France, 1997. Springer.

[18] S. Schneider and A. Sidiropoulos. CSP and anonymity. In
Proc. 4th European Symposium On Research In Computer
Security (ESORICS’96), volume 1146 of LNCS, pages 198–
218, Roma, Italy, 1996. Springer.

