
Evaluating Access Control Policies Through Model
Checking

Nan Zhang
�
, Mark Ryan

�
, and Dimitar P. Guelev

�

�
School of Computer Science, University of Birmingham, Birmingham UK, B15 2TT�

nxz,mdr � @cs.bham.ac.uk�
Section of Logic, Institute of Mathematics and Informatics, Acad. G. Bonchev str.,bl. 8.

1113 Sofia, BULGARIA
gelevdp@math.bas.bg

Abstract. We present a model-checking algorithm which can be used to evaluate
access control policies, and a tool which implements it. The evaluation includes
not only assessing whether the policies give legitimate users enough permissions
to reach their goals, but also checking whether the policies prevent intruders from
reaching their malicious goals. Policies of the access control system and goals
of agents must be described in the access control description and specification
language introduced as ��� in our earlier work. The algorithm takes a policy de-
scription and a goal as input and performs two modes of checking. In the assess-
ing mode, the algorithm searches for strategies consisting of reading and writing
steps which allow the agents to achieve their goals no matter what states the sys-
tem may be driven into during the execution of the strategies. In the intrusion
detection mode, a weaker notion of strategy is used, reflecting the willingness of
intruders to guess the value of attributes which they cannot read.

keywords: access control; access control model; model checking; verification;
access control policy; access control policy language.

1 Introduction

The importance of access control is growing rapidly in a world where computers are
ever-more interconnected. Access control policies are authorisation strategies upon which
access control systems are built. The correctness and integrity of access control policies
is crucial for an access control system to be effective. Several formalisations have been
proposed in the past to understand and describe access control policies. For instance,
the main principle of role-based access control (RBAC, [1]) is assigning access rights
to agents on the grounds of their having certain roles. In another approach known as
mandatory access control (MAC, [2]) systems enforce access control mechanisms that
use clearances and sensitivity labels which can not be overridden by common users
without special privileges. Programs can read information at the same or lower access
levels, but can write to files at their access level and higher levels only.

The 	�
 (where R and W stand for access by Reading and Writing, respectively)
formalism [3] is another example, based on propositional logic. It allows authorisation
rules to be defined based on arbitrary conditions so that it can be used for the implemen-
tation of other higher level access control mechanisms. Furthermore, it is beginning to

be language and tool supported. A machine-readable language (the 	�
 language [4])
was created to describe policies of access control systems defined in the 	�
 formalism
and their properties. A tool was also created. It can take a 	�
 script as input and con-
vert the policy description into XACML [5, 4]. For the property, the tool can verify its
validity by a model-checking algorithm. Due to the complexity of access control poli-
cies, in many circumstances, it is not easy to determine their correctness manually. Our
tool thus makes this task easier.

In a 	
 script, a property is a query which asks, for a group of agents and a goal,
whether the agents, acting within the permissions they have, can achieve the goal. Goals
include reading and overwriting data of the system. If the goal is considered to be le-
gitimate, we would be interested to know whether there is a strategy available for the
agents so that they can always reach the goal. A positive answer to this question would
mean that the access control policies grant users enough permissions for them to carry
out their operations and a security hole can be regarded as the achievability of an ille-
gitimate goal.

The question of whether a set of agents has a strategy to achieve its goal is an
appropriate question if the agents are legitimate users and one wants to know if the
system grants them the permissions they need. However, in the case that the agents
are malicious intruders, a weaker question is more appropriate. A malicious user may
guess the values of attributes it cannot read. Therefore, for malicious users, we ask if
there is a guessing strategy which they can execute which will take the system from the
initial state to the agent’s goal state. The question is weaker because when executing a
guessing strategy, the agents can guess the knowledge they need along the way. In the
case of a normal strategy, they cannot guess, but must find out by sampling them.

The model-checking algorithm mentioned above is proposed to decide the achiev-
ability of a goal in a system described in 	
 and the tool implements the algorithm.
Our algorithm and tool can be used to assess the fitness of access control systems.

Structure of the paper Section 2 is a brief formal introduction to 	�
 . The syntax
and semantics of 	�
 scripts are briefly explained in Sect. 3. The model-checking al-
gorithm is presented in Sect. 4. Its implementation is discussed in Sect. 5. Related work
is discussed in Sect. 6, which is followed by a section of conclusions.

2 The
���

Access Control Formalism

2.1 Definition

Let �����
	 be the set of the propositional logic formulas built from the propositional
variables in set � . An access control system � is a tuple ���������������� , where is a set of
agents, � is a set of propositional variables and the mappings ���������������� 	"!#�����
	
specify the immediate access rights of agent coalitions. States $ of � are valuations
of the variables from � . Agent %'&(is allowed to read and overwrite variable)
iff the current state $ satisfies �*�+),�.-/%102	 and �3�4)5�.-6%106	 , respectively. We assume that
rights are exercised by one agent at a time in this paper for the sake of simplicity. Thus
the formulas �*�+),��%7	8���*�4)5�9%:	;&������
	 define the conditions for agents to access � as
functions on its state.

2.2 Example

Our running example is a simple Employee Information System (EIS). It is used to
enforce authorisation rules on bonus allocation among the employees of a company.
A bonus package with a fixed number of options, such as a-day-off, is available for
employees. The director chooses options from the package to give to all employees.
He/she can also read the information about the distribution of options. The director can
promote an employee to be a manager. Managers can read and set ordinary employees’
bonuses, but not those of other managers or the director. An employee can appoint
another employee to be his advocate, and have read access to his bonus information –
for example, this might be useful if he needs help from a trade union.

To put it in the 	�
 formalism, let ��������� be the set of bonus options, be the set of
employees and thus � include the following propositional variables, for all 	 &
��������� ,
%1�9% � ��% � & : ������� ��%���	.	 bonus option 	 is owned by %��� � ����� ����%7	 % is a manager in the department��� � ����� ��� ��%:	 % is the director of the department� ��� � ������� ��% � ��% � 	 % � is % � ’s advocate

The permission mappings � and � can be defined as follows: (“ � ” denotes “is defined
as”.)

�*� ������� ��%���	.	.� ��	!� "# �$�&% %(' ��� � ���)� ��� �$��	�	'+* ��� � ����� �1�$��	-,/. ��� � ����� �1��%7	0,/. ��� � ���)� � �1��%7	�1' � ��� � ������� ��%�� ��	
23

1

�3� ������� ��%���	.	.� ��	!�54 * ��� � ����� �1�$��	6,&. ��� � ����� � ��%7	0,/. �7� � ���)� ��� ��%7	�1' ��� � ���)� � �1�$��	 8 2

�*� ��� � ����� � ��%:	.� ��	!� � ��� � 3
�3� ��� � ����� � ��%:	.� ��	!�9* ��� � ���)� �����$��	-' *:�/% %;, ��� � ����� �1��%7	<,&. ��� � ����� ��� ��%:	 1 1 4
�*� ��� � ���)� ������%7	8�=��	!� � ��� � 5
�*� � ��� � ������� ��% � ��% � 	.� ��	>� � ��� � 6
�3� � ��� � ������� ��% � ��% � 	.� ��	>�9*?�&% % � ' * � ��� � ������� ��% � �9% � 	<,
�&% % � 1 1 7

In 	�
 everything should be defined explicitly. However, for the reason of simplicity,
in this example, we assume actions which are not explicitly allowed are denied. This
rule is also followed by the model checker.

We shall pick several representative rules to explain.

Rule 1 defines who can find out whether a bonus option 	 belongs to an employee
% – the employee himself, the director, a manager, and his advocate. Rule 4 defines
who can overwrite an employee % ’s managership – the director can both promote an
employee to be a manager and demote him and an employee who has already been a
manager can resign.

Fig. 1. The ��� script for the above example.

3 The
���

Access Control Description Language

3.1 Overview

Figure 1 shows the 	�
 script for the above EIS example. The script consists of a
description part which contains the policies of the system and a specification part which
contains a property to be verified. The syntax and semantics of the description part is
discussed in [4] using another example.

3.2 Description Part

The description part starts with class definitions. In our example, the class ��������� is
defined. The class � ��� � � is built-in, so one needs not define it explicitly. Next come the
definitions of predicates. Each predicate must have at least one parameter. Parameter
definitions take the form of � � � ��������� �&� ����� : � � � ��������� � ��� � � . The � � � ��������� ���� � � must be one of the defined classes. The following defines � (reading) and �
(writing) mappings. For each parameterised predicate (a parameterised predicate cor-
responds to a number of variables in �), rules on reading and writing are specified by
the formulas following � ��� � � and �7� � ��� � and are enclosed in curly brackets. These
rules are defined from the perspective of the acting agent, which is denoted by ��� � � .
Thus the rules define under what condition ��� � � can read and write the parameterised
predicate.

3.3 Specification Part

The keyword ��� � separates the description part and the specification part. The speci-
fication part starts with the run-statement which specifies the numbers of the elements
of each class. Four elements are assigned to ��������� and eight elements to � ��� � � in the
example on Fig. 1. These elements are used to build a finite instance of the system to
be model-checked. Systems of other sizes are not considered. A similar approach is
taken by Alloy 3.0 [6] when the keyword �������)� is used. The check-statement defines
a property to be verified. The where-clause defines the acting agents. It states that the
model-checker must establish whether there is a strategy or guessing strategy (depend-
ing on the mode) available for non-director employees % � and % � such that if they can
realise they are both managers then somehow they can act together to set % � ’s bonus3.
Although the policies specify a manager cannot set another manager’s bonus, it doesn’t
prevent % � from resigning his/her managership and being set bonus by another manager.
The result yes returned by the model checker shows there is indeed such a possibility.
We will come back to this point in Sect. 5.2. Note that we use negation and disjunction
to express implication in this case.

A check-statement consists of two parts, which are separated by “ ��� ”. A quantifier
prefix is on the left side of “ ��� ”. “E” prefixes Existential variable definitions, and “A”
prefixes universal variable definitions. Quantified variables defined in a same class may
represent a same element during the checking. Credentials and a goal definition are on
the right side of “ ��� ”. Credentials and the goal are separated by “ ! ”. Credentials are
attributes carried by elements of the classes (usually by agents) during the process of
checking. Only rigid predicates – unwritable predicates – can be used as credentials. A
credential can be either positive or negative, which means the credential is owned by
the elements or is not owned by the elements. Different credentials can be connected by
conjunction only to form a list of credentials and used in the checking. Credentials are
used as pre-conditions for the checking.

The goal expression defines the goal that the group of agents intends to achieve.
We treat all the variables defined on � ��� � � on the left side of “ ��� ” which also ap-
pear on the right side as the group of acting agents unless it is defined explicitly in
the where-statement following it. If no agent-variables appear on the right side and no
where-statement defines acting agents explicitly, we treat all agents in the � ��� � � set as
the group of acting agents. In other words, agents defined in a where-statement takes
priority.

The goal is a combination consisting of conjunction and disjunction of three kinds
of atomic goals. These are making goals, realising goals and reading goals, written
using “ - 0 ”, “ �3� ” and “ ��� ”, respectively. For a 	 & �����
	 , -
	 0 is the goal of making 	
true; ��	 � is the goal of realising that 	 is true; and � 	�� is the goal of finding out the truth
value of 	 , whatever this value is. “Making” goals mean enforcing conditions on the
system state by eventually changing it. “Reading” goals are to extract information about
the system state. “Realising” goals are auxiliary and are used to allow the construction
of conditionals such as ��	 � � � � -
 0 ��� �$��� � 	 � � � � -
� 0 , which means: achieve either
 or � according to whether 	 is true or false. A single “realising” goal ��	 � is unlikely
to be useful, because 	 may simply turn out to be false. See [3] for details.

3 We use negation and disjunction to express implication

4 The
���

Model Checking Algorithm

4.1 Overview of the Algorithm

The Problem. Given an access control system and a goal, we need to determine
whether a group of agents can achieve it. The goal is a combination of the atomic
goals of finding out the values of some formulas about the state of the system (”read-
ing”) and driving the system into a state with a certain property (”making”). Conditions
on what has to be achieved can be formulated using the auxiliary primitive goals of
”realising” that something holds about the state, as mentioned in the previous section.
To achieve the goal, agents can sample and overwrite variables that they are permitted
to. Overwriting can be put down as simple assignment statements in the sought strat-
egy, and sampling means that the sampled variable can be used to control conditional
statements. Thus the strategy in question can be written in a simple language with as-
signment, sequential composition and ���������
	����	�����	 . A strategy can guarantee the
achievability of the goal because it contains both the outcomes of a “if” statement. A
guessing strategy is like a strategy except that it allows the agents to sample a variable
even if the policies do not permit them to read the variable. A guessing strategy reflects
the possibilities that the agents may be able to acquire the information they need from
other sources although the system prohibits them to learn. The verification problem to
determine is whether such a strategy or guessing strategy exists. As we have argued
in the introduction, this question is meaningful both for intrusion detection and system
functionality assessment.

The Solution. Following [3], our algorithm is built around the knowledge of the state
of the system that the considered group has at each step of implementing its strategy.
Obviously there is a set of knowledge states each of which is sufficient for the group
to regard its goal as achieved. This is so when the group knows that the formulas in
some appropriate combination of the involved making goals are true, enough is known
to work out the truth values of the formulas in the reading goals, etc. Each step takes
the group from a knowledge state to a possibly richer one. A knowledge state combines
knowledge of the initial state of the system and knowledge of its current state. Assign-
ments contribute the knowledge of the current value of the assigned variable, which has
been just given to it. This means that learning and changing the system are done simulta-
neously. To perform an assignment, a writing permission on the variable being assigned
is needed. Sampling steps can be done with a reading permission and contribute both
the current and the initial value of the sampled variable, unless it has already been over-
written. In the latter case sampling is redundant, because the current value must have
become known upon writing it. Overwriting without sampling in advance destroys the
prospect to learn the initial value of the variable. Strategies are supposed to take the
group from the empty knowledge state4 to one in which it can deem its goal achieved.

4 Normally we assume the agents have no knowledge about the system initially, however when
credentials are used we assume the agents hold the knowledge about the credentials and the
knowledge is used as pre-conditions for the checking.

To describe the group of agents’ knowledge on) , we use four knowledge variables.
For each) &;� , we have

����� is true if the agents know the initial value of)� ��� is true if the agents know initially) is true��� is true if the agents know the current value of)� � is true if the agents know currently) is true

When overwriting) to true, � � and
� � both become true, but � ��� and

� ��� do not change,
because it does not increase the agents’ knowledge on) ’s initial value. When overwrit-
ing) to false, � � becomes true;

� � becomes false; both � ��� and
� ��� do not change. When

sampling) , where) has not been overwritten, � ��� and � � both become true and
� ��� and� � both become false if) turns out to be false, or

� ��� and
� � both become true if) turns

out to be true. Since the contents of
� ��� and

� � are irrelevant when) is unknown, and
the initial value of a variable is known only if the current value is known too, there are
indeed only 7, and not �
	 knowledge states about each variable) . However it is easier
to explain our algorithm in terms of ����� ,

� ��� , ��� and
� � as independent variables.

A knowledge state is given by the quadruple �� � ��� � ��� ��� 	 , where � � = -9) &
� � ����� � � � ��� � 0 , � � = -�) & � � � ��� � � � ��� � 0 , � = -9) & � � ��� � � � ��� � 0 , � =
-�) & � � � � � � � ��� � 0 . we show the effects that the above three kinds of transitions
have on knowledge states in Fig. 2.

Fig. 2. The transitions.

Therefore, by modelling the accumulation of agents’ knowledge, we build a transi-
tion system over the access control system in question. Three kinds of transitional re-
lations can be identified – overwriting-to-true, overwriting-to-false and sampling, each
of which will carry the knowledge states of agents from one to another until the agents
have confidence to deduce the goal is reached from their knowledge states. Once the
agents reach the knowledge states from which they can deduce their goal is reached, we
regard their goal has been reached. This procedure is illustrated in Fig. 3.

Note the transition relations for overwriting are deterministic; the relation for sam-
pling is not. A strategy should lead the agents to the goal through both possible out-
comes of a sampling.

To find out if there is such a strategy our solution is to invert the whole process
described above and work backwards. We start from the set of knowledge states where

Fig. 3. The process of learning.

the goal can be deemed as achieved. Let ��� denote this set as represented in terms of
the variables ����� ,

� ��� , ��� and
� � , % & the agents,) & � . Given a set of knowledge states�

, we denote

� � ����� 	��
 �� � � 	 means the set of knowledge states in which % knows it is permitted to
overwrite) and which transition into

�
by overwriting) to true (�). Its formal

definition is: - � � � ��� � � �"��� 	 ��� � � �� ��� �� � ��������� 	 & � � �
�� % � � ���

�� % � � �����>%
��� -�)30 ������% ��� -9)30����3�+)5�9%7	 �����);�) & ��� � � �����);�) & � ��%���0 .� � ����� 	��
 �� � � 	 means the set of knowledge states in which % knows it is permitted to
overwrite) and which transition into

�
by overwriting) to false (�). Its formal

definition is: - � � � ��� � � �"��� 	 ��� � � �� ��� �� � ��������� 	 & � � �
�� % � � ���

�� % � � �����>%
��� -�)30 ������% �!� -9)30 � �3�+),��%7	 �����);�) & ��� � � � ���8) �) & � �<%"��0 .� � ����� 	�#�$ � � 	 means the set of knowledge states in which % knows it is permitted to
sample) and which transition into

�
by sampling) and find out it is true (�). Its

formal definition is: - �� � ��� � � �"��� 	 ���;� � �� ��� �� � ��������� 	 & � ��)%�& � � ��)&�& � � ��)%�&
�"��)!�& �����

�� % � � � -9)30���� �� % � � � -9)30 �����7% ����-�)30 ������% �'� -9)30����*�+)5�9%7	 �����)��
) & �(� � � �����);�) & � ��%���0 .� � ����� 	�#�$ � � 	 means the set of knowledge states in which % knows it is permitted to
sample) and which transition into

�
by sampling) and find out it is false (�). Its

formal definition is: - �� � ��� � � �"��� 	 ���;� � �� ��� �� � ��������� 	 & � ��)%�& � � ��)&�& � � ��)%�&
�"��)!�& �����

�� % � � ��-�)30 ��� �� % � � ��-�)30 ���)�7% �*��-�)50�������% ���1-9)30����*�+)5�9%7	 �����)��
) & �(� � � �����);�) & � ��%���0 .
During the course of the algorithm, we maintain pairs � � �9$6	 consisting of a set

�
of knowledge states and a strategy $. The pair � � �9$6	 denotes the fact that $ is a strategy
that enables the agents to reach � � from states in

�
. For � � , the $ is simply “ ��+ � �-, ”,

which means “do nothing”.
We start with the pair �.� � � ��+ � �-, 	 . The core of the algorithm works as follows:

given the pair � � �9$6	 , we add the pairs � � � �/��� 	�0
 �$ � � 	.� �4) � %��1,�$6	�	 and � � � ����� 	�0
 �$ � � 	.� �4)

� % �1,�$6	�	 . For any two pairs � � � �9$ � 	 and � � � � $ � 	 , we add the pair � � � ����� 	�#�$ � � � 	 �� � ����� 	�#�$ � � � 	8� ��� �4)�	 � % ���
	�� $ � 	�����	 $ � 	 .
we continue until no new pairs are generated. Now, all the pairs whose set of knowl-

edge states contains the initial knowledge state contain the strategies we are looking for.
To find out guessing strategies instead of strategies, the only thing needs to be

changed is to omit the condition �*�+),��%7	 �����) �) & � � � � �����)��)'& � � % �
when computing

� � � � � 	�#�$ � � 	 and
� � ��� � 	�#�$ � � 	 .

4.2 The Algorithm.

The algorithm for extracting strategies is described below in the form of pseudo-code.
It assumes as input the initial state �������	� and the set of goal knowledge states � � . It
outputs at least a strategy for going from �����
��� to some element of � � . The algorithm
works by backwards reachability from � � to ���	�
�	� . It maintains a set of states it has
seen, called � ������� � � ��� � , and a data structure associating subsets of � ������� � � ��� �
with strategies for reaching � � from them, called � � � ������� � � � .

We use to denote the group of acting agents. The algorithm is:

Input: � � - set of goal knowledge states ���	�
�	� - the initial knowledge state
� - set of propositional variables - set of acting agents (not the set of all

agents)
� , � - reading and writing privilege definitions (will be used when computing

the pre-sets, though not explicitly shown in the algorithm)
Output: at least a strategy for going from ����
�	� to some element of � � if such strategies

exist� � � ������� � � � := � ;� ������� � � ��� � := � ;
put �.�*�2� ��+ � �-, 	 in � � � ������� � � � ;
repeat until � � � ������� � � � does not change -

choose � � � �9$ � 	 & � � � ������� � � � ; // for all pairs in �������������������
for each) & � -

for each %�&;
-
� � � � :=

� � ����� 	��
 �� � � � 	 ;
if ((� � � ���%��) , (� � � ��� � ������� � � ��� �)) -� ������� � � ��� � := � ������� � � ��� � �;� � � � ;
) � $ � := “set) to � by % ;” + $ � ;� � � ������� � � � := � � � ������� � � � � - ��� � � � ��) � $ � 	80 ;
if (�!���
��� & � � � �)

output) � $ � ;
0
�#" � � :=

� � � ��� 	�0
 �$ � � � 	 ;
if ((�#" � � �%��) , (�#" � � � � ������� � � ��� �)) -� ������� � � ��� � := � ������� � � ��� � �;�#" � � ;
)%$*$ � := “set) to � by % ;” + $ � ;

� � � ������� � � � := � � � ������� � � � � - ���#" � � ��)%$*$ � 	80 ;
if (�!���
��� & �#" � �)

output)%$*$ � ;
0

0
0
choose � � � �9$ � 	 & � � � ������� � � � ; // for all pairs in �������������������
for each) & � -

for each %�&;
-
�
� � :=

� � � � � 	�#�$ � � � 	 � � � � ��� 	�#�$ � � � 	 ;
if ((�
� � �% �) , (�
� � � � ������� � � ��� �)) -� ������� � � ��� � := � ������� � � ��� � �;�
� � ;� � � ������� � � � := � � � ������� � � � � - ���
� � ��)�$6$6	 0 ;
)�6 := “if �4)�	 by a then $ �

else $ � ”;
if (�!���
��� & �
� �)

output)�6 ;
0

0
0

0

4.3 Proof of Correctness

Theorem 1. The algorithm will eventually terminate.

Proof. To prove the algorithm will terminate is equivalent to proving that the size of� � � ������� � � � will not infinitely grow. The set � � � ������� � � � only increases if we en-
counter states not yet in � ������� � � ��� � . As there are only finitely many states, we cannot
go on encountering new states for ever.

Lemma 1. If there exists a strategy $, then there exists a way of resolving the choice in
the algorithm such that $ is outputted.

Proof. Suppose $ is such a strategy. Assume without loss of generality that $ never
samples variables it has previously assigned. We recursively annotate the strategy with
the knowledge states which arise from executing the strategy at � ���
�	� , according to these
rules:

(i) The strategy $ is annotated with �	�7�
�7� ��� ��	 .
(ii) If “) � % �1,9$ � ” is annotated with the state � � � ��� � � �"��� 	 then $ � gets annotated

with �� � ��� � ���%� -�)50���� � -�)302	 .
(iii) If “) � % �1,9$ � ” is annotated with the state � � � ��� � � �"��� 	 then $ � gets annotated

with �� � ��� � ���%� -�)50���� ��-�)506	 .
(iiii) If “ ��� �+)�	 ��� 	�� $ � 	 ����	 $ � ” is annotated with �� � ��� � � �"��� 	 , we annotate $ � with

� � � �
-�)30 ��� � � -9)30 ��� � -9)30 ��� � -9)306	 and $ � with � � � �
-�)30 ��� � �5-�)50���� �
-�)30 ��� �
-�)506	 .

Let
�

be the set of states which annotate the leaves of $. Then
� � � , by hypothe-

sis. Judicious resolution of the choice operator in the algorithm, corresponding to the
strategy $, will result in states which include each annotation being considered by the
algorithm, until finally a state including � �����	� is considered.

Theorem 2. If there are strategies from ����
�	� to � � the algorithm finds at least one of
them.

Proof. Following Lemma 1, however the choice operator is resolved, � ���
�	� will even-
tually be included in � ������� � � ��� � , and therefore some strategy will be generated.

Lemma 2. For all � � � $6	 & � � � ������� � � � , and for all � & � , $ succeeds on � and the
result is in � � .
Proof. We look at all the ways that � � � $/	 can be added to � � � ������� � � � . At the begin-
ning, �.� � � ��+ � � , 	 is added in. the correctness of the lemma is self-evident for this case.
During the course of the algorithm, pairs are added in one of these three circumstances:

(i) ��� � � � ��) � $ � 	 is added, where, � %�&; and) & � , such that � � � � =
� � � ��� 	�0
 �$ � � � 	 ,

) � $ � = “set) to � by % ;” + $ � , and � � � �9$ � 	 is in � � � ������� � � � .
We know by the inductive hypothesis for all � � & � � , $ � succeeds on � � and result
is in � � . We also know for all � & � � � � that % can do) � % � and that the result
of that is in

� � , because that is the way we get � � � � from
� � . Therefore) � $ �

succeeds on all the states in � � � � and the result is in �*� .
(ii) ���#" � � ��)%$*$ � 	 is added, where, � %�& and) & � , such that �#" � � =

� � ����� 	�0
 �$ � � � 	 ,
)%$*$ � = “set) to � by % ;” + $ � , and � � � �9$ � 	 is in � � � ������� � � � .
The argument for the above case applies also to this one.

(iii) ���
� � ��)�6/	 is added, where, � %�&; and) &;� , such that �
� � =
� � ����� 	� �� � � � 	 �� � ��� � 	�#�$ � � � 	 ,)�$/$ = “if �+)�	 by a then $ �

else $ � ” and � � � �9$ � 	 , and � � � � $ � 	 are both
in � � � ������� � � � .
We know by the inductive hypothesis for all � � & � � , $ � succeeds on � � and result
is in � � , and � � & � � , $ � succeeds on � � and result is in � � . We also know for all

��& �
� � that % can read) and if it is � , the result of that is in
� � . However, if it is

� , the result of that is in
� � . Therefore)�6 succeeds on all the states in �
� � and

the result is in �*� .
Theorem 3. If the algorithm outputs the strategy $ then $ succeeds on ��	�
�	� and the
result is in � � .
Proof. From Lemma 2 we know that for all � � �9$6	 & � � � ������� � � � and � & �

, $
succeeds on � and the result is in ��� . Because if $ gets outputted, there must exist a

�
,

such that � �����	� & � and � � �9$6	 & � � � ������� � � � . Therefore, it follows that $ succeeds on
� �����	� and the result is in �*� .

From the implication of theorem 3, we know if there is no strategy $ which succeeds
on �!���
��� and results in � � , the algorithm will output none.

4.4 Computational Complexity

We use � for the set of all the knowledge states, � � � for the total number of knowledge
states, � � � for the number of variables in � , � � for the number of acting agents. The
computation time of the algorithm depends on the number of subsets of � it finds. In the
worst case the number of the subsets of � is � � � because we prevent any subset whose
elements are already found from being added to � � � ������� � � � . Thus the worst case is
that subsets of � are just singletons. Because the time spent on computing pre-sets does
not depend on � � � , the worst-case complexity is � � � � � � � ��� � ��� � � � � � � � � 	 %
� � � � .

5 Implementation

5.1 Performance

We have implemented the above algorithm in Java. Computations are done in BDDs5.
The tool can be downloaded from [8]. Its performance is good, despite the state ex-
plosion problem. In the EIS example, we assign 4 elements to the ��������� set and 8 to
� ��� � � . The total number of variables in � is 112. For each variable in � we have four
knowledge variables to describe the agents’ knowledge about it. Thus the total number
of variables in BDDs for knowledge states is

� � � ���;%������ . During the computation we
also need the primed version of variables, for all the variables in � and all knowledge
variables. Therefore, the total number of variables we need in BDDs for knowledge
states and transition relations together in the EIS example is

� � � � �	� % � � � � . On a
computer (Pentium M 1.6G, 512M memory, running Linux, kernel version 2.6.10), it
finishes one round of computation, finding one strategy, in about 18 seconds and con-
sumes less than 160MB memory. Whereas the processing power of today’s PCs grows
very fast, we think our tool is highly usable. For a strategy found by the tool, see Fig. 4

5.2 Abstraction

We have used abstraction to enable the handling of large cases by our tool. One of the
bottlenecks in our approach is the computations like � � % � ��-�)�
 0 . That computations
represent the fact that reading or overwriting)
 only change the agents’ knowledge on
)
 – it does not change the agents’ knowledge on other variables in � . In other words,
we keep on tracking the agents’ knowledge on all the variables in � , when an action is
only performed on)
 . For reasons of efficiency, it would be better not to maintain the
agents’ knowledge on all variables when actions are performed on)
 .

Therefore we have introduced three abstraction levels in the tool for users to specify
when running it. The minimum level, which is level 0, is the level that no abstraction
is used, that is, the tool maintains the agents’ knowledge on all variables in all com-
putations. It is the most precise level. The maximum level, level 2, is the level when
an action is performed on)�
 , the tool not only maintains the agents’ knowledge on)
 ,
but also on all the other variables that occur in the goal. In the middle, level 1 is built

5 The Java BDD package we use can be obtained from [7]

Fig. 4. A strategy found by the model checker. (Note: [� � =1 � � =2
�
=1] is the assignment, meaning

� � is assigned the first element in Agent, � � is assigned the second element in Agent, and
�

is
assigned the first element in Bonus.)

on level 2. In this level, the tool not only maintains the agents’ knowledge on)
 and
all the variables in the goal, as level 2 does, but also maintains the agents’ knowledge
on any other variables in � specified by the user in a configuration file named abstrac-
tion.config. When working on large systems, this level can be used as counter-example
driven refinement abstraction. In this level, when a false strategy is found, one can anal-
yse that which variable has caused this strategy to be found. Thus one can put that
variable in abstraction.config and run the model checker again. Having kept tracking
on this variable, a number of false strategies will be ruled out. The result will be more
and more precise.

With these abstraction levels, the tool performs much better. However, the more
abstraction we use, from level 0 to level 2, the more precision we lose. If in level 1 or 2,
the checking result is � , then it really means there is no strategy for the agents to reach
their goal. But if it is � , it does not guarantee there is a strategy. In fact, the answer is
uncertain. By not maintaining the agents’ knowledge on all variables, some transitions
which actually can not happen may not be ruled out.

6 Related Work

Access control policies analysis has attracted much attention in recent years. Fisler and
her colleagues [9] focus on verification and change-impact analysis of role-based ac-
cess control policies written in XACML. They have a tool called Margrave, which reads
XACML, translating them into multi-terminal decision diagrams (MTBDDs) [10] to an-
swer queries. MTBDDs are a more general form of BDDs. Unlike a BDD which only
has two terminals, 0 and 1, a MTBDD can have a set of terminals. Because XACML pol-
icy evaluation may lead to the result of permit, deny and not-applicable, MTBDDs are
more suitable for translating XACML policies than BDDs. Margrave verifies whether
a policy preserves a property by taking a query which expresses the property as input

and outputs the answer to the query. It does do by traversing the MTBDD for the pol-
icy, using the information provided in the query and seeing which terminal it gets to.
Change-impact analysis is also an important aspect of their work. Margrave can take
two policies that span a set of changes as input and output a summary of the differ-
ences. Two big advantages of the approach from [9] are performance and scalability.
According to their experimental data, most verification tasks take no longer than 10
milliseconds (ms), however representing policies take from 70ms to 335ms. Memory
consumption is about 4.7Mbytes. Because MTBDDs scale up quite well, the tool might
be capable to handle large cases.

However their approach can not detect hidden channels caused by multi-step actions
and co-operations.

Consider the policies in Fig. 1 and the strategy found by the tool in Fig. 4. The
policy specifies that no manager can set another manager’s bonus. However, being two
managers, % � and % � , they can work together to breach the spirit of this policy, as Fig. 4
shows. First, % � resigns its managership. Secondly, % � sets % � ’s bonus. Although each
of the two steps are permitted by the policies, the combining result renders the policies
powerless. This kind of hidden channels can not be detected by static analysis, such
as [11] and [12], or simply querying a policy. Our approach can reveal such kind of
weaknesses in policies because in finding the strategies we consider what coalition of
agents can achieve. Model-checking’s power of temporal reasoning also helps to reveal
possible attacks achieved by multi-step actions.

Schaad and Moffett [13] demonstrate how to use Alloy [6] to check that separation-
of-duty constraints may be breached when policies are changed by administrative poli-
cies defined in the ARBAC97 model. We have considered the possibility to use Alloy as
our modelling formalism and the Alloy analyser [14] as our checking tool too. However,
since Alloy has no built-in temporal reasoning, if we use Alloy, we have to hard-code
system states and the transition relations explicitly by ourselves. From our experience,
we found that this makes models in Alloy too complex and the checking too inefficient.
Alloy’s lack of temporal reasoning makes it unsuitable for our work.

7 Conclusion

We have discussed the 	�
 access control system description and verification frame-
work. It includes the 	�
 formalism, the 	�
 language and a tool which can both con-
vert a description of access control policies in the 	�
 language into a XACML policy
file for implementation and perform verification on the specification in the script. This
paper focuses on the verification part.

The model-checking algorithm discussed answers whether a goal can be achieved
and figures out how it can be achieved. we have added three abstraction levels to the
tool to enable trade-offs between precision and performance. However, even without
abstraction, the performance of the tool is good enough to do some reasonably sized
cases. With abstraction, the performance is even better. The tool can only check cases
of fixed sizes. Nevertheless this is often sufficient. As Daniel Jackson has argued in the
case of Alloy; small size checks are still extremely valuable for finding errors [6].

The practical applicability of our framework first depends on the modelling power
of the 	�
 formalism. The 	�
 formalism can be used to model various access con-
trol systems. For an access control system, what the 	
 formalism models are at-
tributes of the system and the permission relations which are based on the attributes.
The 	�
 formalism captures the essential aspects of a system in a highly abstract way
so that unimportant issues may be ignored. That is why 	
 formalism can be adapted
to model a wide range of access control systems.

Our framework can be used to detect errors in policies of existing access control
systems. When errors are found, one may figure out how to amend the policies by
reading the strategies output by the tool. However, our framework also helps to the
design and implementation of an access control system. One may use the tool to verify
the proposed policies and then translate them into XACML so that a real access control
system can be built on them.

References

1. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control models. IEEE
Computer 29 (1996) 38–47

2. Anderson, R.: Security Engineering: A Guide to Building Dependable Distributed Systems.
John Wiley & Sons, Inc., U.S.A. (2001)

3. Guelev, D.P., Ryan, M.D., Schobbens, P.Y.: Model-checking access control policies. In:
the Seventh Information Security Conference (ISC’04). Lecture Notes in Computer Science,
Springer-Verlag (2004)

4. Zhang, N., Ryan, M., Guelev, D.P.: Synthesising verified access control systems in XACML.
In: the 2004 ACM Workshop on Formal Methods in Security Engineering, Washington DC,
USA, ACM Press (2004) 56–65

5. Godik, S., Moses, T.: eXtensible Access Control Markup Language. OASIS committee. 1.1
edn. (2003) Committee specification.

6. Jackson, D.: Micromodels of Software: Lightweight Modelling and Analysis with Alloy.
Software Design Group, MIT Lab for Computer Science. (2002) This document and the tool
can be obtained from http://alloy.mit.edu/.

7. Whaley, J.: JavaBDD: Java BDD implementation (2004) Information about this implemen-
tation can be found at http://javabdd.sourceforge.net/.

8. Zhang, N.: Web site for the access control policy evaluator and generator (2005) The tool
can be obtained from http://www.cs.bham.ac.uk/˜nxz.

9. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and change-
impact analysis of access-control policies. In: ICSE’05, St. Louis, Missouri, USA (2005)

10. Clarke, E., Fujita, M., McGeer, P., Yang, J., Zhao, X.: Multi-terminal binary decision dia-
grams: An efficient data structure for matrix representation. In: International Workshop on
Logic Synthesis, Tahoe City (1993)

11. Ahmed, T., Tripathi, A.R.: Static verficiation of security requirements in role based CSCW
systems. In: SACMAT’03, Como, Italy (2003)

12. Chess, B.: Improving computer security using extended static checking. In: 2002 IEEE
Symposium on Security and Privacy, Washington, DC, USA, IEEE Computer Society (2002)

13. Schaad, A., Moffett, J.: A lightweight approach to specification and analysis of role-based
access control extensions. In: SACMAT’02, Monterey, California, USA (2002)

14. Jackson, D., Schechter, I., Shlyahter, H.: Alcoa: the Alloy constraint analyzer. In: the 22nd
international conference on Software engineering, ACM Press (2000) 730–733

